
Audio-Based Cold-Start in Music
Recommendation Systems

Rodrigo Carvalho Borges

Thesis presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
in partial fulfillment
of the requirements

for the degree of
Doctor of Science

Program: Computer Science

Advisor: Prof. Dr. Marcelo Gomes de Queiroz

During the development if this work, the author received
financial support from CAPES Grant 88881.189985/2018-01

São Paulo

July, 2022

Audio-Based Cold-Start in Music
Recommendation Systems

Rodrigo Carvalho Borges

This is the original version of the

thesis prepared by candidate Rodrigo

Carvalho Borges, as submitted

to the Examining Committee.

The content of this work is published under the CC BY 4.0 license
(Creative Commons Attribution 4.0 International License)

Ficha catalográfica elaborada com dados inseridos pelo(a) autor(a)
Biblioteca Carlos Benjamin de Lyra
Instituto de Matemática e Estatística

Universidade de São Paulo

Borges, Rodrigo Carvalho
Audio-Based Cold-Start in Music Recommendation Systems

/ Rodrigo Carvalho Borges; orientador, Marcelo Gomes
de Queiroz. - São Paulo, 2022.

121 p.: il.

Tese (Doutorado) - Programa de Pós-Graduação em Ciência
da Computação / Instituto de Matemática e Estatística
/ Universidade de São Paulo.

Bibliografia
Versão corrigida

1. Music Recommendation Systems. 2. Audio Content. 3.
Audio-Based Music Recommendation. 4. Cold-Start. I. Gomes
de Queiroz, Marcelo. II. Título.

Bibliotecárias do Serviço de Informação e Biblioteca
Carlos Benjamin de Lyra do IME-USP, responsáveis pela

estrutura de catalogação da publicação de acordo com a AACR2:
Maria Lúcia Ribeiro CRB-8/2766; Stela do Nascimento Madruga CRB 8/7534.

https://creativecommons.org/licenses/by/4.0/

Abstract

Rodrigo Carvalho Borges. Audio-Based Cold-Start in Music Recommendation Sys-
tems. Thesis (Doctorate). Institute of Mathematics and Statistics, University of São

Paulo, São Paulo, 2022.

Music streaming platforms have become popular in the last decades due to the increasing number of

tracks available online. The track catalogues offered by these platforms are usually too big to be searched

manually, and automatic recommendation algorithms might be implemented for helping users navigate on

these platforms. More specifically, Music Recommendation Systems (MRS) are designed for analyzing user

listening behaviours and for predicting the songs that will be played in the near future by one specific user

or within a listening session. But in the case new tracks are added to a platform, also known as the cold-

start problem, no listening data is available, and the system needs to somehow incorporate these tracks

into its recommendation algorithms. In this work, we propose methods that leverage the audio associated

with tracks that were recently added to streaming platforms as an alternative for compensating the lack of

interaction data.

Our propositions are elaborated considering collaborative filtering (CF), sequence-aware (SA), and

stream-based (SB) recommendation systems, and audio files are considered represented as codeword his-

tograms, Mel-spectrograms, and raw waveforms. In the first experiment, we propose a method that applies

Convolutional Neural Networks (CNN) for mapping audio content to profiles containing the users who

listened to a track. In a second experiment, Recurrent Neural Networks (RNN) are trained for reproducing

the audio feature associated with the upcoming tracks within a listening session, given the audio feature

associated with the current track. An inverted index structure is used for retrieving tracks given their esti-

mated audio feature in an efficient way. In a third experiment, we propose a model that maps track/track

transitions to an audio domain in a multi-level Markov Chain fashion. The method allows dynamic updates,

allowing its application to scenarios of data streams.

The experiments were conducted using the LFM-1b music consumption dataset, and audio previews

downloaded from Spotify. Our methods presented competitive prediction results in situations of cold-start

in the case of CF and SA recommendation systems. The novel stream-based method is able to recommend

tracks with an accuracy that is comparable to the accuracy measured for conventional rating-based methods,

being based exclusively on audio content.

Keywords: Music Recommendation Systems. Audio Content. Audio-Based Music Recommendation.

Cold-Start.

Resumo

Rodrigo Carvalho Borges. Sistemas de Recomendação de Música Baseados em Áu-
dio. Tese (Doutorado). Instituto de Matemática e Estatística, Universidade de São Paulo,

São Paulo, 2022.

Plataformas de streaming de música se tornaram populares nas últimas décadas devido ao crescente nú-

mero de faixas disponíveis on-line. Os catálogos de faixas oferecidos por estas plataformas são, geralmente,

muito grandes para serem pesquisados manualmente, e algoritmos de recomendação automática podem

ser implementados para ajudar os usuários a navegar nestas plataformas. Mais especificamente, Sistemas

de Recomendação Musical (MRS) são projetados para analisar os comportamentos de escuta dos usuários

e para prever as músicas que serão tocadas em um futuro próximo por um usuário específico ou dentro

de uma sessão de escuta. Mas quando novas faixas são adicionadas a uma plataforma, também conhecido

como problema de cold-start, os dados de audição não estão disponíveis e o sistema precisa incorporar

estas faixas em seus algoritmos de alguma forma. Neste trabalho, propomos métodos que utilizam o áudio

associado às faixas que foram recentemente adicionadas às plataformas de streaming como uma alternativa

para compensar a falta de dados de interação.

Nossas propostas são elaboradas considerando sistemas de recomendação baseados em Filtragem Co-

laborativa (CF), em sequências de dados de escuta (SA) e em stream de dados de escuta (SB). Os arquivos de

áudio são considerados representados como histogramas de palavra-chave, mel-spectrogramas e formas de

onda puras. Em um primeira experimento, propomos um método que aplica Convolutional Neural Networks

(CNN) para mapear conteúdo de áudio a um perfil contendo os usuários que ouviram a uma faixa. Em um

segundo experimento, Redes Neurais Recorrentes (RNN) são treinadas para reproduzir os conteúdos de

áudio associados às próximas faixas dentro de uma sessão de escuta, dado o conteúdo de áudio associado à

faixa atual. Uma estrutura de índice invertido é usada para a recuperação de faixas, dado seu conteúdo de

áudio de forma eficiente. Em um terceiro experimento, propomos um modelo que mapeia as transições de

faixa/faixa para um domínio de áudio utilizando uma cadeia de Markov de vários níveis. O método permite

atualizações dinâmicas, permitindo sua aplicação a cenários de intenso fluxo de dados.

Os experimentos foram conduzidos utilizando o conjunto de dados de consumo de música LFM-1b, e

previews de áudio baixados de Spotify. Nossos métodos apresentaram resultados de previsão competitivos

em situações de cold-start no caso de sistemas de recomendação CF e SA. O novo método baseado em fluxo

é capaz de recomendar faixas com uma precisão comparável à precisão medida para métodos convencionais

baseados em dados de escuta, sendo baseado exclusivamente no conteúdo de áudio.

Palavras-chave: Sistemas de Recomendação de Música. Conteúdo de Áudio. Sistemas de Recomendação

de Música Baseados em Áudio.

v

List of Figures

2.1 Matrix Factorization. 15

2.2 Audio Representations of a 30-seconds excerpt of “Harder, Better, Faster,

Stronger” by Daft Punk. 17

2.3 Triangular Mel filter bank with 50% overlap. 19

2.4 A nonlinear function of a weighted sum of inputs on an artificial neuron. 22

2.5 Variational Autoencoder. 25

2.6 Illustration for 1D and 2D convolutional operations. 29

2.7 GRU4REC applies Recurrent Neural Networks for predicting the next item

in the sessions given the current one (figure reproduced from Hidasi et al.,
2016). 37

2.8 Neural Attentive Recommendation Machine (NARM) scheme (figure re-

produced from J. Li et al., 2017). 38

2.9 Previous audio-base methods proposed for mitigating the cold-start in

music recommendation. 46

3.1 Audio-Based Convolutional Variational Autoencoder Recommender (AC-

VAE). 53

3.2 Audio-Based Convolutional Regularized Embedding Recommender (ACRE) 55

3.3 Audio-Based GRU4REC (AGRU4REC). 58

3.4 Multi-Level Audio Inverted Index (MLAII) structure for N=6. 59

3.5 Sequential Audio-Based Top-N Autoencoder for Recommendation (SA-

TAREC). 62

3.6 Audio-based Transition Tensor Recommendation model (ATTREC). . . . 65

4.1 LFM-1b years histogram. 70

4.2 CNN architectures used in the Collaborative Filtering experiments. . . . 75

4.3 The number of target users separated for evaluating the CF methods. . . 78

vi

A.1 Results measured for the track profile prediction task in the context of

collaborative filtering. 100

A.2 Six hand-made clusters obtained from audio-based representations of songs

from the LFM-1b dataset. 101

A.3 Results measured for the next track prediction task. 102

A.4 Results measured for the stream-based methods, with K=1 and for 50,000

listening sessions. 103

A.5 Results measured for the stream-based recommendation methods, with

K=10 and for 50,000 listening sessions. 104

A.6 Results measured for the stream-based recommendation methods, with

K=100, and for 50,000 listening sessions. 105

vii

List of Tables

2.1 Explicit feedback user rating matrix example. Ratings values can vary from

1 to 5. 32

4.1 Datasets description . 70

4.2 Results obtained for VAE-CF and WMF methods in the Collaborative

Filtering recommendation task. 79

4.3 Recommendation results for the task of track profile prediction in the

context of collaborative filtering. 80

4.4 Retrieval results obtained for the Multi-Level Audio Inverted Index (MLAII). 86

4.5 Results measured for the next-track prediction task. 88

4.6 ATTREC recommendation results measured for the first 50,000 listening

sessions with different 𝑁 and 𝛼 parameters. 94

4.7 Recommendation results measured for the first 50,000 listening sessions

according to a simulation of a dynamic recommendation environment. . 95

4.8 Recommendation results measured for the audio-based methods in the task

of next-track prediction. The results are separated into overall, warm-start

and cold-start scenarios. 95

A.1 Recommendation results obtained for the WMF recommendation method.

The results are presented in the following format: confidence type/𝛼/𝜆. . 99

ix

Contents

1 Introduction 1
1.1 Context and Motivation . 2

1.2 Related Work . 4

1.2.1 Collaborative Filtering . 4

1.2.2 Sequence-Aware . 6

1.2.3 Stream-Based . 8

1.3 Research Questions . 9

1.4 Contributions . 10

1.5 Organization . 10

2 Background 13
2.1 Basic Concepts . 14

2.1.1 Vector Quantization . 14

2.1.2 Matrix Factorization . 15

2.1.3 Markov Models . 16

2.2 Audio Representation . 16

2.2.1 Time Domain . 16

2.2.2 Frequency Domain . 18

2.2.3 Task Specific Representations . 21

2.3 Deep Learning Methods . 21

2.3.1 Neural Networks . 21

2.3.2 Autoencoders . 24

2.3.3 Convolutional Networks . 27

2.3.4 Recurrent Networks . 29

2.4 Rating-Based Recommendation . 31

2.4.1 Collaborative Filtering . 32

2.4.2 Sequence-Aware . 35

2.4.3 Stream-Based . 39

x

2.5 Audio-Based Music Recommendation . 43

2.5.1 Collaborative Filtering . 44

2.5.2 Sequence-Aware . 47

2.5.3 Stream-Based . 48

3 Methodology 51
3.1 Collaborative Filtering . 51

3.1.1 Problem Definition . 52

3.1.2 Audio-Based Convolutional Variational Autoencoder Recommender 52

3.1.3 Audio-Based Convolutional Regularized Embedding Recommender 55

3.1.4 Evaluation Metrics . 55

3.2 Sequence-Aware . 56

3.2.1 Problem Definition . 57

3.2.2 Audio-Based GRU4REC . 57

3.2.3 Multi-Level Audio Feature Inverted-Index 59

3.2.4 Sequential Audio-Based Top-N Autoencoder Recommender . . . 61

3.2.5 Metrics . 62

3.3 Stream-Based . 63

3.3.1 Problem Definition . 64

3.3.2 Audio Transition Tensor Recommender 64

3.3.3 Metrics . 66

4 Experiments and Results 69
4.1 Datasets . 69

4.2 Collaborative Filtering . 71

4.2.1 Data Preparation . 72

4.2.2 Methods . 73

4.2.3 Experiments . 77

4.2.4 Results . 78

4.3 Sequence-Aware . 81

4.3.1 Data Preparation . 82

4.3.2 Methods . 82

4.3.3 Experiments . 84

4.3.4 Results . 86

4.4 Stream-Based . 89

4.4.1 Data Preparation . 89

4.4.2 Methods . 89

4.4.3 Experiments . 91

xi

4.4.4 Results . 94

5 Conclusions 97

Appendixes

A Appendix 99
A.1 Rating-Based Collaborative Filtering . 99

A.2 Cold-Start Collaborative Filtering Results 100

A.3 Audio-Based Artist Clusters . 101

A.4 Sequence-Aware Recommendation Results 102

A.5 Stream-Based Recommendation Results 103

A.6 List of Publication . 106

References 107

1

Chapter 1

Introduction

Digital music became largely available on the internet in the last decades, drastically
changing the way people consume music. Today, instead of having individual song collec-
tions, many people prefer to pay a monthly fee and get access to platforms hosting huge
collections of tracks, available for streaming upon demand. Some popular music streaming
platforms nowadays are: Tidal1, Deezer2 and Spotify3.

Most streaming platforms provide their users with search engines, allowing them to
search for specific tracks or artists, and some platforms also offer a personalized service
capable of suggesting tracks based on a user’s listening habits. These personalized services
are known as Music Recommendation Systems (MRS) (Schedl et al., 2015). Nowadays,
most of these systems are data-driven, meaning that they are trained with data associated
with a user’s interactions with the platform. Once trained, these systems are capable of
suggesting tracks that are relevant to each individual user.

In this work, we consider three categories of methods for MRS: (i) collaborative filtering
(CF), (ii) sequence-aware (SA), and (iii) stream-based (SB) methods. CF has been considered
the most popular recommendation technique (Koren et al., 2009a); it associates each user
with a listening profile, representing the user’s music preferences. Similar profiles are then
used to produce track suggestions (Goldberg et al., 1992). SA methods consider the se-
quence of listened tracks and use sequence similarity to produce recommendations (Quad-
rana et al., 2018). Timestamped sequences can be associated with the entire listening
history of a user, or they can be partitioned into uninterrupted listening sessions, which
are associated with a reduced temporal listening context. Lastly, SB methods are capable of
instantly updating their models after each user interaction with the platform (Zhao et al.,
2013). This defining capability of SB methods can be associated with both collaborative
filtering and sequence-aware methods and emphasizes their real-time adaptability to
listening context changes.

Historical listening data, i.e. user/track records, is the most important resource for
MRS. In streaming platforms, it is reasonable to assume that new tracks and users, lacking

1 https://tidal.com/
2 https://www.deezer.com/
3 https://www.spotify.com

https://tidal.com/
https://www.deezer.com/
https://www.spotify.com

2

1 | INTRODUCTION

historical listening data, are constantly being added to the system. This context is usually
referred to as cold-start (Schein et al., 2002), meaning that these new users or tracks are
not associated with any listening preferences, and have to be somehow incorporated
into the algorithm. In this scenario, the recommender needs access to other resources
of information besides listening data. User and/or track information can be obtained,
for example, from social networks or online textual reviews, and in the specific case of
music recommenders, the audio content is also available as side information within the
platform (Cano et al., 2005b).

This work is focused on the context of cold-start, and we propose methods for mitigating
the lack of user listening information using the audio contents. We explore different audio
representations, such as Mel-Spectrogram and raw waveform4, and compare them within
collaborative filtering, sequence-aware, and stream-based recommendation tasks. The
proposed methods are mostly derived from, but not restricted to, artificial neural networks,
including Variational Autoencoders (VAE), Convolutional Neural Networks (CNN), and
Recurrent Neural Networks (RNN)5.

1.1 Context and Motivation
In order to understand the challenges of automatically recommending music, we may

imagine the following hypothetical scenario. Consider a person using a music streaming
platform and listening to music in three different contexts: at home with kids, walking back
home from work, and at the bar with friends; consider also that this person has different
music preferences for each of these contexts. In order to tie this hypothetical scenario to
our focus on cold-start, imagine that our hypothetical user’s favorite artist has just released
a new track. Now imagine that this user relies on an automatic recommender system for
choosing music tracks, being able to skip suggestions, and also manually selecting desired
tracks.

From the perspective of the recommender system, we consider that it has full access
to all listening data for all of its users, including users’ full listening records (associated
with long-term preferences) and ongoing listening sessions (associated with short-term
preferences). We also consider that the recommender system has full access to all audio
data in the streaming platform6. The recommender system is comprised of one or more
previously trained models, whose role is to recommend a new track each time the user skips
the current track or finishes listening to it. This model should be retrained periodically or
at each user interaction with the system.

The main challenges considered here are: (a) suggesting relevant tracks, ideally tracks
which the user didn’t listen; (b) adapting to context to suggest suitable tracks; (c) dynam-
ically incorporating incoming data from user/track interactions; and (d) incorporating
recently released tracks and recommend these to matching users (this is the cold-start

4 Audio representations are discussed in detail in Section 2.2
5 Section 2.3 is dedicated to artificial neural networks, where VAE, CNN, and RNN will be discussed in detail.
6 this may be obvious if the recommender system is part of the streaming platform, but it might also be an

independent service.

1.1 | CONTEXT AND MOTIVATION

3

problem). We discuss in the sequel each of these challenges separately, considering the
previously presented recommendation approaches: (i) Collaborative Filtering, (ii) Sequence-
Aware, and (iii) Stream-Based methods.

Challenge (a) is closely, but not exclusively, related to recommender methods belonging
to category (i). Imagine that the hypothetical user from our previous example listens
mostly to Miles Davis and Daft Punk. The algorithm is capable of comparing this user’s
profile with all other user profiles, and ranking the latter according to similarity. The
first-ranked profiles might include tracks by Miles Davis, Daft Punk, and Madonna, and
the system might infer that Madonna is a suitable recommendation to our target user. The
collaborative approach, described here in a very simplified way, is efficient for finding
similarities between user profiles. It is not clear, however, how to consider listening context
within a purely CF approach.

Challenge (b) has a closer connection to recommendation strategies belonging to
category (ii). Sequence-Aware methods take into account not only long-term listening
preferences but also short-term preferences, e.g. sequences of tracks within listening
sessions. Sequential methods might thus be more flexible in adapting to new contexts than
Collaborative Filtering methods. In our current example, imagine the user leaving home
to work, and switching to a faster-paced track. From a global point of view, their listening
preferences are still the same, but a sequence-aware recommender might look for similar
listening sessions starting with the selected track, and thus suggest a follow-up track that
reflects the new listening context.

Stream-based recommendation models (category iii) are those that support dynamic
updates, i.e. the incorporation of continuously generated user/track listening data in real-
time, allowing every user action to influence the following recommendations. They address
the challenge (c) and allow the representation of listening profiles using several simulta-
neous temporal contexts. Some dynamic models are able to introduce a certain amount
of uncertainty in their regular operation, allowing them to explore new recommendation
possibilities, instead of just exploiting its current knowledge. Stream-based systems can
operate according to collaborative or sequence-aware approaches.

The last challenge (d), or the cold-start problem, associated with the necessity of
incorporating recently released tracks in recommendation systems, can be addressed
in collaborative, sequential, and dynamic recommendation approaches. As previously
mentioned, user/track interaction data is vital for the operation of recommender sys-
tems, and when a new track is inserted into the platform, there has to be a strategy
for incorporating this track into new recommendations. One simple idea would be to
retrieve music information from the audio signal of the new track; for example, the audio
content analysis might identify it as a fast-paced track, or a song for voice and piano.
Such descriptions could be aligned with user preferences to support recommendations
including this recently released track. The correspondence between user preferences and
audio features, however, may not be as straightforward as in the previous example, and
more sophisticated approaches are required.

In this work, we propose audio-based strategies for incorporating new tracks into
recommendation algorithms, i.e., strategies that rely on music information retrieval for
tracks without any associated listening data. Some strategies are meant to support the

4

1 | INTRODUCTION

inclusion of these tracks within collaborative or sequential recommender methods, and
some strategies are proposed for operating as end-to-end recommendation systems.

1.2 Related Work
We now review the most relevant attempts at mitigating the cold-start problem from the

perspective of collaborative, sequence-aware, and stream-based recommendation systems.
We are here mainly interested in the works that used audio as an auxiliary resource for
overcoming the lack of interaction data. It is worth mentioning that the majority of works
that have addressed this issue were focused on CF.

1.2.1 Collaborative Filtering
Collaborative Filtering (CF) was first proposed as an alternative for filtering content

in a shared communication environment (Goldberg et al., 1992), assuming that similar
preference profiles (as modelled by the CF mechanism) would imply similarity of subjective
(real) preferences. CF recommendation strategies can be separated into at least two cate-
gories (Ricci et al., 2011): neighborhood-based (Ning et al., 2015), and model-based (Koren
et al., 2009a).

Neighbourhood-based strategies propose metrics for measuring similarity between
user profiles, where profiles that are similar to the target user profile are taken into account
in the process of calculating recommendations for this specific user.

Model-based strategies rely on user/item interaction data for training recommendation
models, within which latent variables (or latent factors) are calculated for each user as
a dense and compact representation of the original preference profile. In model-based
approaches, the interaction data is usually stored in a big and sparse matrix, the rating
matrix, containing numerical values associated with each (𝑢𝑠𝑒𝑟 , 𝑖𝑡𝑒𝑚) pair: rows of this
matrix (ratings by a single user) may be viewed as user profiles and columns (rating of a
single item) as item profiles. Instead of explicitly considering the similarity of user profiles
as the rationale for the recommendation, these approaches aim at predicting rating values
from existing ratings (e.g. using matrix factorization techniques).

In CF approaches, user/item interaction data do not involve timestamps, and any
information regarding the temporal sequence of items consumed by a single user is
ignored. Some of the most popular approaches for CF are Weighted Matrix Factorization
(WMF) (Hu et al., 2008) and more recently, Variational Autoencoders (VAE) (Liang et al.,
2018).

When one new item is added to a system operating according to a model-based CF
algorithm (i.e. the cold-start problem), we can imagine an empty column (item profile)
in the user/item rating matrix, meaning that no interaction information is associated
with this specific item. One possible approach for mitigating this lack of information is
to approximate the values of this empty column based on metadata associated with the
new item (e.g. audio features in music recommendation). In this case, an inference model
may be trained based on previous user/item interactions in order to predict the new item
profile solely based on the corresponding metadata. Several strategies were proposed

1.2 | RELATED WORK

5

for addressing the cold-start problem in the context of recommender systems, which are
discussed in the sequel.

One possible option, maybe the most intuitive one, is to first factorize the rating matrix
into user and item latent matrices, and then to factorize the item latent matrix into two
new matrices, one of them containing given metadata and another latent matrix that is
learned (Forbes and Zhu, 2011). A rating is then estimated/predicted from the user profile,
the learned latent matrix, and the item metadata, allowing the prediction of ratings of new
items from their metadata alone. This method is known as Content-Boost.

Regarding the content associated with items, one option is to use textual data associated
with items as an alternative resource of information (Gouvert et al., 2018; Fressato et al.,
2018; Elahi et al., 2019; Barkan et al., 2019; Bogdanov, Haro, et al., 2013; Volkovs et al.,
2017). Textual data can be embedded in the item as metadata (e.g., the release date of a
movie or the singer of a song), it may be obtained by expert annotators (who associate
semantic tags to items), or it may be gathered from the internet. Expert annotations may
be the most meaningful among these, but their production can be time-consuming (Q. Li
et al., 2004). It is also important to notice that annotators of real-life platforms often lack
expertise and may produce unreliable metadata, especially regarding non-mainstream
items or items outside of their own cultural background. This suggests caution when
dealing with textual metadata.

Another possible approach for the cold-start problem is to consider combinations of
textual and audio data for new tracks (Knees et al., 2006). A multimodal network that
combines artist metadata and CNN audio embeddings was proposed by Oramas et al.,
2017 for this specific purpose. In this work, matrix factorization is applied to a dataset of
user/track interactions in order to produce separate user and track dense representations,
and also artist dense representations from track representations. Next, neural networks
are trained for learning these track and artist representations having the corresponding
content as the input: audio in the case of tracks, and biographical textual data in the case
of artists. The previous-to-last layer in both cases is considered as an embedding, and
these two combined embeddings are applied for learning the track dense representations
obtained in the first stage. The resulting model is able to infer ratings for new tracks, given
textual and audio data as input.

In Yoshii et al., 2006 the authors proposed a probabilistic model for suggesting tracks
to users based on the tracks’ audio content, described as follows. First, Gaussian Mixture
Models (GMM) are built from the Mel Frequency Cepstrum Coefficients (MFCC) associated
with each track. Then, user preferences towards GMM representations are calculated based
on user/track interaction data. And finally, a three-way aspect model is then capable of
suggesting tracks to users based on audio contents associated with tracks. A similar ap-
proach was proposed in Borges and Queiroz, 2018, but using audio codeword histograms
and implicit (binary) feedback.

A new method is proposed for mapping the audio content associated with a track
to its corresponding listening profile, i.e. a profile containing the information of which
users interacted with that track (Oord et al., 2013). This was the first approach based

6

1 | INTRODUCTION

on deep learning7, and it allowed the estimation of an empty column that is added to
the rating matrix in the case of a new track, as mentioned previously. The proposed
methodology consists of two steps: first, the rating matrix is factorized for obtaining
compact representations (embeddings) of track and user profiles8. Second, a CNN is trained
for approximating the track embeddings, given the audio features associated with the
corresponding tracks. A new track can have its embedding estimated by the CNN, and this
embedding can be, then, multiplied by the user embeddings for obtaining an approximation
of its corresponding profile. The authors compare different audio representations (bag-of-
words and Mel-spectrograms) used as input data, and different predictors (linear regression,
multi-layer perceptron, metric learning-to-rank) applied as estimation methods. A similar
approach proposes using the raw waveform associated with tracks as input data (Platt,
2017) and applying a sample-level CNN architecture. This sample-level CNN architecture
was originally proposed in the context of auto-tagging (Kim et al., 2018).

Instead of estimating track profiles in two stages, first a matrix factorization, and
then an embedding estimation, a new method is proposed by X. Wang and Ye Wang,
2014 for performing both stages simultaneously. The Hierarchical Linear Model with Deep
Belief Networks (HLDBN) was designed for learning audio embeddings and minimizing
the profile estimation error at the same time, within one single optimization process. The
method is based on Deep Belief Networks (DBN9) and once trained, it can estimate track
profiles directly from their corresponding Mel-spectrograms.

In this work, we propose new methods for estimating track listening profiles given
their corresponding audio content, with the aim of alleviating the limitations imposed by
the cold-start. Our methods are closely related to or could be understood as a continuation
of the ones presented in Oord et al., 2013; X. Wang and Ye Wang, 2014; Platt, 2017, and
the CNN architecture used in one of the methods was originally proposed in Kim et al.,
2018. We test two audio representations (Mel-Spectrograms (Oord et al., 2013; X. Wang
and Ye Wang, 2014) and Raw Waveforms Platt, 2017), two matrix factorization methods
(WMF (Oord et al., 2013; X. Wang and Ye Wang, 2014; Platt, 2017) and VAE), and two
strategies for training the inference model (an end-to-end (X. Wang and Ye Wang, 2014)
and a two-step (Oord et al., 2013; Platt, 2017)). To the best of our knowledge, this is the
first attempt on using VAE as an alternative for WMF in this specific task.

1.2.2 Sequence-Aware
Another category of recommendation methods, referred to here as sequence-aware

(SA) methods, formulate the recommendation task as a sequence prediction task. The
temporal context in which tracks were listened is now preserved, and recommendation
methods are designed for suggesting the tracks that will be listened in the near future,
given the information about the tracks that were listened in the past. Listening events
can be considered as ordered in time (sequence-aware) (Quadrana et al., 2018), they can

7 See Section 2.3
8 More information about matrix factorization can be found in Section 2.1.2
9 To the best of our knowledge, Deep Belief Networks have the same architecture as fully connected neu-

ral networks, or Multi-Layer Perceptrons (MLP). For more information the reader might want to check
Section 2.3.1.

1.2 | RELATED WORK

7

be considered as segmented in non-interrupted listening sessions (session-based), or can
be considered individually, together with the timestamp when the user/track interaction
happened (time-aware) (Campos et al., 2014). We refer to time-aware and to session-based
methods as specific setups that can be considered sequence-aware methods since this is
the most general setup, that can be made more specific if necessary.

Markov Chain (MC) might be the most intuitive, yet powerful, model applicable to
sequence prediction, that was applied to the task of sequential recommendation (Ludewig
and Jannach, 2018; Brian McFee and Lanckriet, 2011; Hosseinzadeh Aghdam et al.,
2015). The main assumption in MC is that item/item transitions that happened more
frequently in the past are more likely to happen in the future. A tensor factorization method,
named Factorizing Personalized Markov Chains (FPMC) (Rendle, Freudenthaler, et al.,
2010), combines matrix factorization and personalized transition matrices for predicting the
next set of items that will be consumed by users. A deep learning method, based on Gated
Recurrent Units (GRU) (Chung et al., 2014), was proposed for predicting the following
item within a non-interrupted session, given the previously consumed item (Hidasi et al.,
2016); and Neural Attentive Recommendation Machine (NARM) (J. Li et al., 2017) was also
proposed for predicting the upcoming item within a session, but this time all previous
items from the session are considered in the prediction task. Other methods based on
recurrent neural networks were applied to the next-item prediction task, with several
improvements (Devooght and Bersini, 2016; Xu et al., 2019; Wu et al., 2019; Q. Liu et al.,
2018). RNN-based methods were compared to neighborhod-based methods in Jannach
and Ludewig, 2017; Ludewig, Mauro, et al., 2021; Latifi et al., 2021.

In the specific case of music recommendation, the idea of segmenting user/item inter-
actions in non-interrupted sessions is very relevant, especially if compared with other
recommendation domains: tracks are short and are usually consumed in listening sessions
or in the format of playlists (Bonnin and Jannach, 2014). The authors in Chen et al.,
2012 propose an algorithm for generating playlists automatically, named Latent Markov
Embedding (LME). The LME algorithm calculates embeddings for every track based on
playlist co-occurrence, and playlists are generated from a Euclidian space built from those
embeddings. A recent work highlights the importance of the context in which users listen
to music (Hansen et al., 2020). The authors propose a neural network architecture named
CoSeRNN that models users’ preferences as a sequence of embeddings.

To the best of our knowledge, one single method was already proposed for incor-
porating new tracks into a sequential music recommender given their corresponding
audio contents (Chou et al., 2016). The method, named Adaptive Linear Mapping Model
(ALMM), adapts the content-boost methodology (Forbes and Zhu, 2011) to the next-track
recommendation task. ALMM decomposes transitions between tracks observed for each
user as a product of three latent matrices, in a fashion similar to FPMC. The three matrices
are associated with users, previous tracks, and next tracks. The two last matrices, the ones
associated with previous and next tracks, are factorized again as linear products of an audio
features matrix and auxiliary matrices that will be learned during the optimization process.
When a new track is added to the track set, it can be incorporated into the algorithm by
calculating the inner products of its audio feature and the learned auxiliary matrices.

In this work, we propose a method that maps track/track transitions to an audio domain,

8

1 | INTRODUCTION

and that calculates next-track predictions within this new space. When a new track is
incorporated it could be included in the new space and be recommended solely based
on its audio representation. It differs from ALMM in the sense that track transitions are
considered anonymously, meaning that new users can be instantly incorporated into the
algorithm.

1.2.3 Stream-Based
In the case of a real-life streaming platform, it might be reasonable to assume that users

are frequently interacting with items and that the data originating from these interactions
is arriving at the platform as data streams. An automatic recommender operating within
this platform is supposed to suggest relevant tracks to users upon demand, and in order to
do that, the recommender needs to incorporate the arriving data in real (or almost real)
time. The systems capable of adapting themselves dynamically according to incoming
data streams were baptized stream-based (SB) recommendation systems (Al-Ghossein,
Abdessalem, and BARRÉ, 2021).

We differentiate two specific characteristics observed in SB systems: the first one is
associated with their capability of adapting themselves when users change their preferences
during a listening session (known as preference shift (Hariri et al., 2015)), for instance,
when a user changes from one music genre to another. The second characteristic is
associated with the situation when new items and/or new users are registered in the
platform and need to be dynamically incorporated into the recommendation algorithm, i.e.
cold-start. In order to incorporate these new elements, systems usually apply strategies
associated with the dilemma of exploration-exploitation, that is, they need to combine the
knowledge they have already acquired (exploitation), with the risk of trying out new
possibilities (exploration).

Another observation to be made is that SB systems can operate according to CF or
SA approaches. The majority of work on stream-based recommendation is focused on
collaborative recommendation when rating matrices are built or factorized dynamically.
Another branch of studies is focused on how to update SA methods dynamically. In this
work we focus on the situation when new tracks are added to a music recommendation
platform that operates suggesting next-tracks within listening sessions, that is, we tackle
dynamic cold-start in SA music recommendation systems.

The specific task of recommending music in a dynamic fashion was tackled as a
multi-dimensional navigation task, in which each reaction from users is incorporated
dynamically, thus having an impact on the next movement in the trajectory (Cardoso
et al., 2016). In Pereira et al., 2019, the authors propose an online learning-to-rank scheme
that is capable of updating the recommendation model according to implicit feedback
provided by users. The recommender is assumed to be a linear model, and its parameters
are updated at each round according to the position in which the next track is located in
the generated ranking.

Incorporating uncertainty or even a certain amount of stochasticity is one alternative
for expanding the system’s knowledge of user preferences, as seen in Zhao et al., 2013.
Another alternative is to rely on an external source of information about the new users or

1.3 | RESEARCH QUESTIONS

9

items that are being added to the platform. A strategy for incorporating textual information
about items was proposed in X. Liu and Aberer, 2014, together with a combination of an
online and an offline factorization models designed for delivering top-N recommendations
dynamically.

A novel approach is proposed for a dynamic content-based music recommender in Xing
et al., 2014; X. Wang, Yi Wang, et al., 2014. Ratings given by users are modelled as normal
distributions whose parameters are estimated from the combination of two factors, an
affinity for the audio content associated with the track, and a factor responsible for diversity.
The affinity towards audio features is modelled as an inner product of a user preference
variable and the audio features associated with the listened tracks. The diversity factor
is implemented as an exponential curve that prevents the recommender to repeat a song
that was recently suggested. The authors present an efficient method for estimating the
model’s parameters given the historical data from each user, which converts the overall
updating procedure into a simple task of updating the historical data obtained from each
user after a recommendation round. The system, however, iterates through every track for
selecting the one that maximizes a quantile value of the estimated distribution, inspired
by Bayesian-UCB (Kaufmann et al., 2012), and this can be time-consuming.

Another audio-based strategy proposed for suggesting the next track in an ongoing
listening session is proposed in Liebman et al., 2015. DJ-MC is an algorithm that assumes
user profiles composed of preferences for audio features obtained from tracks listened
to previously, as well as preferences for transitions between those audio features. That
is to say, it assumes that users have preferences not just for tracks with certain audio
characteristics, but also for certain transitions between those audio characteristics. The
method supports online updates, performed after each recommendation round, and it
decides about the next track to be recommended according to a strategy that selects
the most suitable playlist among a set of pseudo-random generated playlists. DJ-MC is
considered the main method to be used as a baseline method due to the fact that it is
audio-based, and due to the fact that it suggests the next track in an ongoing listening
session.

We propose a new stream-based music recommendation method that summarizes one-
dimensional audio features according to their top-N most relevant values, and that stores
transitions between those simplified features in a transition tensor. Recommendations
are calculated based on the most likely transitions between these audio feature elements,
in a Markovian fashion, but considering a transition matrix for each of the N audio
elements.

1.3 Research Questions
In this study, we discuss the situation in which new tracks are added to music rec-

ommender systems, known as cold-start, and we proposed audio-based methods for
incorporating those tracks into recommendation algorithms. Some methods were designed
with the aim of incorporating new tracks into recommender systems that are already
operating, and some methods were designed for delivering accurate suggestions to users
in a content-based fashion (Flexer et al., 2010; Bogdanov, Haro, et al., 2013).

10

1 | INTRODUCTION

Our research questions are:

• How to integrate new tracks to recommender systems implemented according to CF,
SA and SB recommendation strategies, having only access to the audio associated
with these tracks?

• Which audio representations (audio feature) are the most suitable in each of these
situations?

• Is it possible to build a music audio-based recommender system? Or, do the strategies
designed for mitigating cold-start require a pre-existing rating-based recommenda-
tion model?

1.4 Contributions
Our contributions are:

• We propose a new method for predicting the top-N users that will interact with
a certain track based on its audio content. Our method is based on CNN and VAE
networks, and it outperforms methods proposed previously in the literature, both in
terms of prediction accuracy and in terms of the time spent in the training process.

• We propose two new methods for predicting the next track within an ongoing
listening session given an audio feature associated with the current track. The first
method is based on GRU networks, and it is applicable to situations where the
audio content associated with the current track is the only information available.
This method, however, can not extrapolate its predictions to new tracks, not being
adequate for mitigating the cold-start problem. The second method is also based
on GRU networks, it is proposed for addressing the same task, but this time it is
designed for extrapolating its predictions to new tracks, being adequate for cold-start
situations.

• Lastly, we propose a novel method designed for predicting the next track within
an ongoing listening session, that is also fed with the audio feature associated with
the current track, that is able to incorporate new tracks into the recommendation
algorithm, and can be updated dynamically. The method is composed of two modules,
an audio transition tensor, within which the likelihood of transitions in the audio
domain are registered, and a retrieval module consulted for retrieving candidate
tracks given an estimated audio feature. The method can have its parameters updated
in real-time, and its results are comparable to results calculated for rating-based
methods in a stream-based recommendation task.

1.5 Organization
The text is structured as follows. We start reviewing the most relevant concepts and

summarizing the methods used along the text in Chapter 2. First, some basic concepts
applied in the text are briefly explained, several audio representations are also intro-
duced, the three main neural network architectures applied by the proposed methods are

1.5 | ORGANIZATION

11

presented, and recent work on music recommendation is reviewed and discussed under
the perspective of cold-start. New methods designed for incorporating new tracks into
collaborative, sequential, and dynamic music recommendation methods are introduced
in Chapter 3. First, a method is proposed for estimating which users interacted with a
certain track given its audio content, a second method is proposed for modelling transition
patterns in an audio domain, used for estimating the next track within a listening session,
and another method is proposed, also based on audio content, for incorporating new
tracks to recommendation algorithms, but this time on the context of stream-based rec-
ommendation systems. Experiments conducted with a dataset containing real user/track
interaction data are described in Chapter 4. The process used for obtaining and organizing
audio files, and matching them to the original dataset containing user/track interactions
data is described in detail. Three different experiments were designed for the tasks of
collaborative, sequential, and dynamic recommendations, and their results are discussed
in detail. Finally, conclusions and future work are presented in Chapter 5.

13

Chapter 2

Background

In this chapter, we introduce the main concepts and definitions to be considered as
the basis for the rest of the work. First, techniques like matrix factorization and vector
quantization are briefly explained for helping the reader to go through some methods that
will apply those techniques later on in the text.

We proceed by reviewing several music audio representations and commenting on
their potential applications. In this work, we don’t rely on any reference to symbolic
representations of music like music sheets, MIDI protocol or any machine-readable data
format that represents music entities. Instead, we consider songs as equivalent to their
audio contents.

Next, we introduce Multi-Layer Perceptrons (MLP), Variational Autoencoders (VAE),
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), considered
the most popular architectures of Artificial Neural Networks (ANN). ANN gained much
attention in the last decades, mainly due to its ability to approximate complex functions in a
data-driven fashion. These networks are composed of layers of nodes (perceptrons) that are
connected by edges in a graph-like topology, and the networks containing more than one
internal layer of nodes are usually referred to as Deep Learning (DL) architectures.

We present a bibliographical review on automatic recommendation methods based
on user/item interaction data (rating-based), and we classify these methods into three
categories: collaborative filtering, sequence-aware and stream-based methods. We present
a review of music recommendation methods that leverage the audio content associated
with tracks in their modelling processes (audio-based methods). We provide a detailed de-
scription of the problem of incorporating new tracks to music recommendation algorithms,
also referred as New Item or Cold-Start problem. The methods applying both user/item
interaction and audio are considered audio-based for the sake of simplicity.

14

2 | BACKGROUND

2.1 Basic Concepts

2.1.1 Vector Quantization

Quantization is the process of representing continuous values (or values obtained from
large sets) in terms of a finite number of elements (or in terms of a smaller set of elements).
It is a popular technique in the field of signal processing, in particular in the analogue to
the digital signal conversion process, within which analogue measurements are mapped
to a smaller set of digital values (Zölzer, 2008). A quantization procedure usually includes
two steps, one of distance measurement, and another one of rounding or truncation. In
the first step, input values are compared to all available elements and are mapped to the
closest one; in the second step, the same values are truncated for assuming a new value,
the one attributed to the closest element.

A specific quantization technique, named Vector Quantization (VQ) (Burton et al.,
1983), was proposed for representing samples composed of multiple measurements (e.g.
a time series), according to a reduced number of clusters originating from the same
measurements. First, all measurements associated with all samples are grouped in clusters
by similarity; second, a centroid is calculated for each cluster; and third, each sample is
represented as a histogram of centroid indexes, each index being associated with one
measurement contained in the sample.

We provide one practical example for the sake of illustration. We have a large set of
texts (𝑡 ∈ 𝑇), each text is composed of a set of sentences (𝑡 = {𝑠1, 𝑠2,… , 𝑠𝑁}), and we want to
represent each text according to a reduced vocabulary originated from the content of their
sentences. As a first step, (i) all sentences extracted from all texts are grouped in 𝐾 clusters
with the help of a clustering algorithm. Each cluster of sentences has an index in the range
[1,… , 𝐾], and the number of sentences associated with each cluster can vary. As a second
step, (ii) 𝐾 centroids are calculated (𝐶 = {𝐶1, 𝐶2,… , 𝐶𝐾}) for indicating the average content
contained in each cluster. And as a third step, (iii) we iterate through all sentences of one
specific text, and to each of these sentences, we attribute the index of the closest centroid.
A text is now represented as a sequence of centroid indexes (𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑁}), whose
elements are calculated by:

𝑢𝑗 = argmin
𝑐∈𝐶

dist(𝑠𝑗 , 𝑐) (2.1)

where 𝑗 is the index of the sentence in the text, and 𝑑𝑖𝑠𝑡(𝑎, 𝑏) is a generic function that
calculates the distance between 𝑎 and 𝑏. The VQ representation (𝐻) for one specific text
with 𝑁 sentences is expressed as a histogram of size 𝐾 , whose 𝑘𝑡ℎ element is calculated
with:

𝐻𝑘 =
𝑁

∑
𝑗=0

𝕀[𝑢𝑗 = 𝑘]. (2.2)

Each text is then represented as a histogram of cluster indexes of size 𝐾 , that can be
interpreted as the likelihood of a text belonging to each sentence cluster.

2.1 | BASIC CONCEPTS

15

R

(a) Rating Matrix.

UT

V

R̂

(b) Matrix Factorization.

Figure 2.1: The matrix 𝐑 (a) is factorized as the product of two smaller matrices 𝐔 and 𝐕 (b). Each
value 𝑅𝑖𝑗 of the original matrix is approximated by the inner product between a row 𝑢𝑇𝑖 and a column
𝑣𝑗 .

2.1.2 Matrix Factorization

A factorization, or decomposition, of a matrix, is an equation that expresses this matrix
as a product of two or more matrices. Matrices might be factorized in order to simplify the
solution of a problem associated with a linear system, as in the case of LU and Cholesky
decomposition; they might be factorized for allowing redundancy removal in the context
of data compression, as in the case of Singular Value Decomposition (SVD); or they can be
factorized for obtaining smaller representations in a dimensionality reduction fashion, as
in the case of Alternate Least Square (ALS) (Koren et al., 2009a).

In the specific case of ALS, the original matrix 𝐑 ∈ ℕ|𝑈 |×|𝑉 | is decomposed into two
dense and smaller matrices, 𝐔𝑇 ∈ ℕ|𝑈 |×𝐾 , with 𝐾 << |𝑉 | and 𝐕 ∈ ℕ𝐾×|𝑉 |, with also
𝐾 << |𝑈 | (Koren et al., 2009b; Rennie and Srebro, 2005). The original matrix is approxi-
mated by �̂� ≈ 𝐔𝑇𝐕 (see Figure 2.1). Smaller matrices are easier to manipulate and dense
representations could be used for calculating the similarity between rows or columns with
higher accuracy. A probabilistic approach for matrix factorization was also proposed (R.
Salakhutdinov and Mnih, 2007), as an alternative for representing latent values as
normal distributions.

In the ALS matrix factorization, an optimization process is conducted for minimizing
the prediction error of every positive value in the matrix according to:

min
𝑢,𝑣

∑
𝑟𝑖𝑗≠0

(𝑟𝑖𝑗 − 𝑢𝑇
𝑖 𝑣𝑗)

2 + 𝜆(‖𝑢𝑖‖2 + ‖𝑣𝑗‖2), (2.3)

where 𝑟𝑖𝑗 is the actual rating given by the user and 𝑢𝑇
𝑖 𝑣𝑗 is the inner product of a row of 𝐔𝑇

and a column of 𝐕 corresponding to the predicted values for that rating. The second term
in the equation is a regularization factor controlled by a parameter 𝜆, to ensure that the
factors 𝑢𝑖 and 𝑣𝑗 will not grow unreasonably (notice that ∑𝑖 ‖𝑢𝑖‖2 and ∑𝑗 ‖𝑣𝑗‖2 correspond
to the squared norms of 𝐔 and 𝐕, respectively).

16

2 | BACKGROUND

2.1.3 Markov Models

Markov Models (MM) can be applied for the task of sequence modelling considering
sequential data as a stochastic process over discrete random variables assuming values
within a finite set. A Markov Chain (MC) assumes that the probability distribution for
the next event depends only on the values of 𝑚 previous events in the sequence, where
𝑚 represents the memory of the process. A standard MC of order 𝑚 can be expressed
as

𝑝(𝑋𝑡 = 𝑥𝑡 |𝑋𝑡−1 = 𝑥𝑡−1,… , 𝑋𝑡−𝑚 = 𝑥𝑡−𝑚), (2.4)

where 𝑋𝑡 ,… , 𝑋𝑡𝑚 are random variables and 𝑥𝑡 ,… , 𝑥𝑡𝑚 their realizations.

In order to represent a MC of order 𝑚 it is necessary to store all probabilities associated
with all possible transitions from a given state (𝑋𝑡−1 = 𝑥𝑡−1,… , 𝑋𝑡−𝑚 = 𝑥𝑡−𝑚) to the next
value 𝑋𝑡 = 𝑥𝑡 , which requires an (𝑚 + 1)-dimensional tensor. One limitation imposed by
MCs is that the storage space for such a tensor quickly becomes unmanageable when
considering every possible transition occurring in the observed data.

2.2 Audio Representation

An audio signal can be represented in several forms, and the decision on which rep-
resentation to choose will depend on the task considered in the analysis. The simplest
representation is the discrete waveform, or raw waveform when samples are obtained
periodically from the audio signal and stored in a time series format (Oppenheim and
Schafer, 2009). The same signal can be also represented in the frequency domain when
an emphasis is given to the frequencies of its sinusoidal components. This is achieved
through the Fourier Transformation, and different variations that prioritize frequency
regions or human physiological aspects are also possible (e.g. Mel-spectrogram) Müller
et al., 2011. The audio signal can also be represented according to a finite vocabulary
obtained from its frequency content, also known as codewords (Hoffman et al., 2009;
B. McFee et al., 2012; Seyerlehner et al., 2008). Codeword-based representations can be
useful in situations where a compact representation is needed. Many hand-crafted features
were proposed for several tasks involving music audio signals, as well as combinations
of different features for obtaining high-level representations (Bogdanov, Serrà, et al.,
2011). With the recent popularization of Artificial Neural Networks (ANN), researchers
started experimenting with representations that are meant for one specific purpose, and
that is learned during the optimization process performed for one specific task, e.g. chord
recognition (Korzeniowski and Widmer, 2016).

2.2.1 Time Domain

An analogue audio signal consists of a continuous function that represents sound
pressure as a function of time. A discrete version of that signal can be obtained in the form
of a discrete time series by taking periodic measurements. The numeric value of the 𝑛th
sample in the series is equal to the continuous signal, 𝑥𝑎(𝑡), at time 𝑛𝑇 (Oppenheim and

2.2 | AUDIO REPRESENTATION

17

Figure 2.2: Audio Representations of a 30-seconds excerpt of “Harder, Better, Faster, Stronger” by Daft
Punk.

Schafer, 2009) and is given by

𝑥[𝑛] = 𝑥𝑎(𝑛𝑇), −∞ < 𝑛 < ∞, (2.5)

18

2 | BACKGROUND

where 𝑇 is the sampling period. The number of samples measured per second is known as
sampling rate (SR), and its value is usually selected to be high enough to capture extremely
fast variations (i.e. with high-frequency content). The highest frequency that can be
detected when adopting a certain sampling rate is equal to half of the sampling rate (SR/2),
explained by the Nyquist Theorem1.

The waveform of a 30-seconds excerpt from the song “Harder, Better, Faster, Stronger”
by Daft Punk is shown in the first row of Figure 2.2 The waveform was obtained with an
SR equal to 22,050 samples per second.

2.2.2 Frequency Domain
Another important representation for an audio signal is its Frequency Spectrum (or

spectrogram), in which the signal is represented in the frequency domain. The representa-
tion of a signal in the frequency domain is obtained by decomposing it into a combination
of sinusoidal oscillators. Each oscillator is associated with a complex number containing a
value for the magnitude (that indicates the amplitude of the sinusoidal oscillation), and
a value for the phase (that indicates the temporal location in the oscillation loop). The
decomposition of a discrete signal (as in Equation 2.5) corresponds to the Discrete Fourier
Transformation (DFT). The Fourier coefficients 𝑋 [𝑘] are obtained from 𝑥[𝑛] in such a way
that

𝑋 [𝑘] =
𝑁−1

∑
𝑛=0

𝑥[𝑛]𝑒−𝑗(2𝜋/𝑁)𝑘𝑛, 𝑘 = 0,… , 𝑁 − 1, (2.6)

considering complex exponentials (or sinusoids) with frequencies that are integer multiples
of the fundamental frequency (2𝜋/𝑁) (Oppenheim and Schafer, 2009).

Short-Time Fourier Transform

It can happen that the frequency components of a signal vary over time, and in this
case, a DFT might be applied in a windowed version of the original signal. The windowed
version of a DFT is known as short-time Fourier Transform (STFT), and it is one of the most
common tools for describing the time-varying energy across frequency bands (Müller
et al., 2011). Formally, a window function 𝑤 with size 𝑀 << 𝑁 and shifted 𝑚 samples is
multiplied by the original signal, and the DFT of the product is expressed as

𝑋 [𝑚, 𝑘] =
𝑁−1

∑
𝑛=0

𝑥[𝑛]𝑤[𝑛 −𝑚]𝑒−𝑗(2𝜋/𝑁)𝑘𝑛 𝑘 = 0,… , 𝑁 − 1. (2.7)

An STFT representation of the same excerpt mentioned previously is shown in the second
row of Figure 2.2. In this specific case, a Hann window function was used, and 𝑚 and 𝑀
were set to 2048.

1 The Nyquist Theorem determines the minimum sampling rate that is necessary for representing a sinu-
soidal signal of a certain frequency value. For more information about these topics, the reader is referred
to Müller, 2015

2.2 | AUDIO REPRESENTATION

19

0 200 400 600 800 1000
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t

Figure 2.3: Triangular Mel filter bank with 50% overlap.

Mel-Spectrogram

The human auditory system distinguishes frequency intervals differently along its
hearing range (20 to 20K Hz) (Stevens et al., 1937). In particular, humans can not discern
the difference between two closely spaced frequencies, and this effect becomes more
pronounced as the frequencies increase.

For this reason, filters with different sizes were proposed for each area of the frequency
spectrum according to the Mel Filterbank (Figure 2.3). The most common option is to
implement a Mel Filterbank as a bank of triangular filters with 50% of overlapping: the
centre frequency of the first filter coincides with the starting frequency of the next one,
and the same happens for all filters (Ganchev et al., 2005). The first filter is narrow, and
they get wider as frequencies get higher. The filtering process is normalized in such a way
that the sum of weights for each triangle is the same.

The Mel Spectrum of 𝑋 [𝑘] is obtained by multiplying its magnitude by each of the Mel
weighting filters:

𝑠[𝑚] =
𝑁−1

∑
𝑘=0

[|𝑋 [𝑘]| ⋅ 𝐻𝑚[𝑘]], 0 ≤ 𝑚 ≤ 𝑀 − 1, (2.8)

where 𝑀 is the total number of Mel filters, and 𝐻𝑚[𝑘] is the weight given to the 𝑘𝑡ℎ energy
spectrum bin contributing to the 𝑚𝑡ℎ output band, expressed as:

𝐻𝑚[𝑘] =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

0, 𝑘 < 𝑓 (𝑚 − 1)
2(𝑘−𝑓 (𝑚−1))
𝑓 (𝑚)−𝑓 (𝑚−1) , 𝑓 (𝑚 − 1) ≤ 𝑘 ≤ 𝑓 (𝑚)
2(𝑓 (𝑚+1)−𝑘)
𝑓 (𝑚+1)−𝑓 (𝑚) , 𝑓 (𝑚) < 𝑘 ≤ 𝑓 (𝑚 + 1)
0, 𝑘 > 𝑓 (𝑚 + 1)

(2.9)

where 𝑓 are the boundary points that specify the 𝑀 filters (Ganchev et al., 2005). A spec-
trogram filtered by a Mel Filterbank is a Mel Spectrogram. The Mel-spectrogram calculated
for the same excerpt mentioned before is presented in the third row of Figure 2.2).

Mel-Frequency Cepstral Coefficients

The so-called cepstral coefficients are calculated as:

𝐶[𝑛] =
𝑀−1

∑
𝑚=0

log10(𝑠[𝑚])𝑐𝑜𝑠(
𝜋𝑛(𝑚 − 0.5)

𝑀), 𝑛 = 0,… , 𝐶 − 1, (2.10)

20

2 | BACKGROUND

where 𝐶 is the number of coefficients. The zeroth coefficient is often excluded since it
represents the average log energy of the input signal.

The sound is finally represented as its Mel-Frequency Cepstral Coefficients (MFCC)
(fourth row of Figure 2.2). In this specific case, the first 20 coefficients are shown.

Codewords

A data-driven audio representation was proposed based on Vector Quantization (VQ)
(Section 2.1.1). The main idea is to represent each track from a track set according to a finite
vocabulary, named codewords (Hoffman et al., 2009; B. McFee et al., 2012; Seyerlehner
et al., 2008), learned from the audio features extracted from the whole track set.

We assume a set of tracks (𝑆 ∈ 𝑀) within which each track is composed of a temporal se-
quence of audio frames (𝑆 = [𝑠1, 𝑠2,… , 𝑠𝑁]). Tracks can have different lengths, thus different
numbers of audio frames. An audio feature (𝑎) is associated to each audio frame (𝑓 (𝑠𝑖) = 𝑎𝑖),
and tracks have a corresponding audio feature representation (𝐴 = [𝑎1, 𝑎2,… , 𝑎𝑁]). The
process for calculating a codeword representation can be described in four steps:

• 𝐿 consecutive audio features are extracted from each track, resulting in |𝑀 | × 𝐿
extracted features;

• A clustering algorithm is applied for grouping those |𝑀 | × 𝐿 features in 𝐾 clusters,
and 𝐾 centroids (𝐶 = [𝐶1, 𝐶2,… , 𝐶𝐾]) are calculated for representing the average
content of each cluster;

• A Codeword Sequence (𝑈 = [𝑢1, 𝑢2,… , 𝑢𝑁]) is obtained from an audio feature repre-
sentation (𝐴) by calculating the closest centroid to each of its elements.

𝑢𝑗 = argmin
𝑐∈𝐶

‖𝑎𝑗 − 𝑐‖, 0 < 𝑗 < 𝑁 ; (2.11)

• A Codeword Transition Matrix (𝑇 ∈ ℝ𝐾×𝐾) expresses the probability of transition
between consecutive codewords within a sequence (𝑝(𝑢𝑗 |𝑢𝑗−1));

• And finally, a Codeword Histogram (𝐻 ∈ ℕ𝐾) summarizes the audio content of a
track according to its general codeword composition in the format of a histogram
with size 𝐾 . Each 𝑘𝑡ℎ element of the histogram calculated for 𝑈 is obtained with:

𝐻𝑘 =
𝑁

∑
𝑗=0

𝕀[𝑢𝑗 = 𝑘]. (2.12)

A codeword sequence, a codeword transition matrix, and a codeword histogram rep-
resentation calculated for our musical excerpt are shown in the fifth and sixth rows of
Figure 2.2). The audio feature is the MFCC, the clustering algorithm is K-means and K was
set equal to 25.

2.3 | DEEP LEARNING METHODS

21

2.2.3 Task Specific Representations
More recently, methods were designed in such a way that audio representations are

learned together with the model parameters, instead of relying on a given filter bank (Jaitly
and G. Hinton, 2011; Hamel and Eck, 2010; Dieleman and Schrauwen, 2014; Kim et al.,
2018). One argument in favour of those task-specific representations is that the step
of calculating high-level audio features, e.g. STFT, can be skipped, thus simplifying the
training process (Dieleman and Schrauwen, 2014). Another argument, in the specific case
of music-related tasks, is that some of those representations, e.g. MFCC, were first proposed
for representing speech signals, with characteristics that are significantly different from
music signals (X. Wang and Ye Wang, 2014).

In Dieleman and Schrauwen, 2014 the first layer of an artificial neural network is
designed to mimic a log-mel spectrum, and it is learned together with the other parameters
of the network. The network was trained for tagging raw audio signals with semantic
labels, i.e. auto-tagging. A similar attempt at auto-tagging raw audio signals is described
in Kim et al., 2018, but this time convolution operations are applied with higher resolution
than before, referred to as sample-level. Learned representations are submitted to a careful
analysis for identifying properties they might have learned, for example, filtering of a
specific frequency range.

Audio features learned with one specific goal can also be applied to a different task,
referred to as transfer learning (Hamel and Eck, 2010; Choi et al., 2017). A neural network
was trained for recognizing music genres given the DFT extracted from music audios,
and the last layer of the network was applied to the task of auto-tagging in Hamel and
Eck, 2010. In Choi et al., 2017, a convolutional neural network is trained for mapping Mel-
spectrograms to semantic tags, and the network weights are applied as learned features
to several music-related tasks, like speech/music classification or emotion prediction. In
both cases, the learned representations were responsible for better results than standard
hand-crafted features.

2.3 Deep Learning Methods
Artificial neural networks (ANN) gained much attention in the last decades, mainly

due to their ability to approximate potentially complex functions in a data-driven fashion.
These networks are composed of layers of nodes (perceptrons) that are connected by edges
in a graph-like topology, and the networks containing more than one internal layer of nodes
are usually referred to as Deep Learning (DL) architectures. These networks have been
applied to numerous tasks within several domains, from time series prediction (Chung
et al., 2014) to speech recognition (Chorowski et al., 2019), but we are here interested
in its application to audio signal processing (Purwins et al., 2019) and to recommender
systems (Zhang et al., 2019).

2.3.1 Neural Networks
Neural Networks (NN) are models for approximating functions 𝑦 = 𝑓 (𝑥), by combining

the outputs of a large number of simple elements within a graph-like topology. Neural

22

2 | BACKGROUND

(a) A Multi-Layer Perceptron (MLP). (b) A zoom in one perceptron.

Figure 2.4: A nonlinear function of a weighted sum of inputs on an artificial neuron.

Networks thus consist of a combination of two things, a set of nodes (also known as
perceptrons or units), and a set of directed edges connecting them (Lipton, 2015) (see
Figure 2.4). The value 𝑣𝑖 of each node (perceptron) 𝑖 is calculated by applying its activation
function ℎ𝑖 to a weighted sum 𝑧 of the values of its previous nodes 𝑗:

𝑣𝑖 = ℎ𝑖(

𝑧⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑
𝑗
𝑤𝑖𝑗 ⋅ 𝑣𝑗

𝑖

), (2.13)

where the weight 𝑤𝑖𝑗 is associated to the edge connecting 𝑗 to 𝑖.

Typical activation functions ℎ𝑖 are the sigmoid function 𝜎 (𝑧) Δ= 1/(1 + 𝑒−𝑧), rectifier
linear unit (ReLU) 𝑙(𝑧) Δ= max(0, 𝑧), and hyperbolic tangent function (tanh) 𝜙(𝑧) = (𝑒𝑧 −
𝑒−𝑧)/(𝑒𝑧 + 𝑒−𝑧). Sigmoid functions range from 0 (= lim

𝑧→−∞
𝜎 (𝑧)) to 1 (= lim

𝑧→∞
𝜎 (𝑧)), and are

monotonically increasing. ReLU improves the performance of neural networks on specific
tasks, e.g. in speech processing (Nair and Geoffrey E. Hinton, 2010). And tanh has become
a popular option for feedforward neural networks.

Neural networks may be applied to classification tasks, by interpreting output values
as probability values, which can be achieved by activation functions. For instance, sig-
moid functions already produce values in the range [0, 1] and correspond to probabilities
associated with a bell-shaped distribution 𝜎 ′(𝑧).

Feed-forward Networks and Backpropagation

Feed-forward networks are a class of neural networks which organizes the nodes of
the network in layers and allows only forward computation in the graph of nodes. This
way, the outputs of each layer are considered as the input for the next layer, and this
happens successively. The input 𝐱 is usually provided by setting the values of the first
layer, and the output �̂� is calculated in the last layer. The output is evaluated according to
a loss function (�̂�, 𝐲,𝐰) that compares the given output �̂� (produced by the network with
weights 𝑤𝑖𝑗) with the expected output 𝐲 = 𝑓 (𝐱), which is known during the training phase.
The learning is accomplished, then, by iteratively updating each weight in the network to

2.3 | DEEP LEARNING METHODS

23

minimize the loss function.

The most popular algorithm for training neural networks is backpropagation (Rumel-
hart et al., 1986). This algorithm uses the chain rule to calculate the loss function with
respect to each parameter in the network, where weights are adjusted by gradient descent.
Currently, neural networks are mostly trained with Stochastic Gradient Descent (SGD)
using mini-batches; when considering a mini-batch with size 1, the gradient descent update
is:

𝐰 ←← 𝐰 − 𝜂∇𝐰(�̂�, 𝑓 (𝐱),𝐰), (2.14)

where 𝐰 is the set of weights (network parameters), 𝜂 is the learning rate and ∇𝐰 is the
gradient of the objective function with respect to the parameter 𝐰 for a single data sample
(𝐱, 𝐲).

In what follows, the process of backpropagation is described step by step. First, a data
sample propagates through the network, producing values 𝑣𝑖 in each node, and an output
�̂� in the last layer. An error value (�̂�𝑘 , 𝑦𝑘) is computed for each output node 𝑘, assuming
the output as having k nodes, and the partial derivative is calculated for each incoming
edge 𝑗 according to the chain rule:

Δ𝑤𝑘𝑗 =
𝜕(𝑦𝑘 , 𝑦𝑘)

𝜕𝑤𝑘𝑗
=
𝜕(𝑦𝑘 , 𝑦𝑘)

𝜕𝑧𝑘
⋅
𝜕𝑧𝑘
𝜕𝑤𝑘𝑗

. (2.15)

considering that �̂�𝑘 = ℎ𝑘(𝑧𝑘). The first part on the right-hand side expresses how much the
loss changes when varying the predicted value for node 𝑘, and the second term expresses
the dependence of this prediction on the edge coming from 𝑗. The first term is denoted as
𝛿𝑘 and it can be expanded, also using the chain rule, as:

𝛿𝑘 =
𝜕(�̂�𝑘 , 𝑦𝑘)

𝜕𝑧𝑘
=
𝜕(�̂�𝑘 , 𝑦𝑘)
𝜕ℎ𝑘(𝑧𝑘)

𝜕ℎ𝑘(𝑧𝑘)
𝜕𝑧𝑘

=
𝜕(�̂�𝑘 , 𝑦𝑘)

𝜕�̂�𝑘
ℎ′𝑘(𝑧𝑘). (2.16)

And the second term can be rewritten as:

𝜕𝑧𝑘
𝜕𝑤𝑘𝑗

=
𝜕

𝜕𝑤𝑘𝑗
(∑

𝑗
𝑤𝑘𝑗ℎ𝑗(𝑧𝑗)) = ℎ𝑗(𝑧𝑗). (2.17)

Equation 2.15 is equivalent to:

Δ𝑤𝑘𝑗 =

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.17
⏞⏞⏞⏞⏞⏞⏞⏞⏞
ℎ𝑗(𝑧𝑗)

𝜕(�̂�𝑘 , 𝑦𝑘)
𝜕�̂�𝑘

ℎ′𝑘(𝑧𝑘)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.16

, (2.18)

meaning that the partial derivative of the error function with respect to previous weight
𝑤𝑘𝑗 is calculated as the product of the error in node 𝑘, the derivative of the activation
function in that same node, and the current value of node 𝑗. The weight values are updated
according to a learning rate 𝜂 that multiples Equation 2.18.

If the node is not an output node, then multiple errors propagate back according

24

2 | BACKGROUND

to:
𝜕

𝜕ℎ𝑖(𝑧𝑖)
= ∑

𝑥

𝜕
𝜕𝑧𝑥

𝜕𝑧𝑥
𝜕ℎ𝑖(𝑧𝑖)

= ∑
𝑥

𝜕
𝜕𝑧𝑥

𝑤𝑥𝑖 , (2.19)

and Equation 2.18 is rewritten as:

Δ𝑤𝑖𝑗 = ℎ𝑗(𝑧𝑗)ℎ′𝑖 (𝑧𝑖)∑
𝑥

𝜕
𝜕𝑧𝑥

𝑤𝑥𝑖 . (2.20)

The equation is used for adjusting all weights in the network starting from the output
towards the first layer in the network.

Many variations of SGD can be used to accelerate the learning process. AdaGrad (Duchi
et al., 2011) is one of the most popular among these; it adapts the learning rate by caching
the sum of squared gradients with respect to each parameter at each time step.

2.3.2 Autoencoders
Autoencoders (AE) are feed-forward networks implemented in an encoder/decoder

format, and whose aim is to estimate an output that is as close as possible to the input (G. E.
Hinton and R. R. Salakhutdinov, 2006; Sedhain et al., 2015). Typically, the input data is
first encoded in a compact representation, and after that, this representation is decoded back
to its original dimension. AE networks usually have at least three layers (e.g. input-hidden-
output), and the middle layer is usually referred to as bottleneck or latent representation
(Figure 2.5).

Formally, a AE model assumes an encoder function 𝑔 parameterized by 𝜙 and a decoder
function 𝑓 parameterized by 𝜃 . The bottleneck layer is calculated with 𝐳 = 𝑔𝜙(𝐱), where 𝐱
is the input data, and the reconstructed input is calculated with �̂� = 𝑓𝜃 (𝑔𝜙(𝐱)). The training
procedure is conducted in order to adjust the parameters 𝜙 and 𝜃 according to a selected
loss function, for example, the Mean Squared Error (MSE):

𝐴𝐸(𝐱, 𝜃, 𝜙) =
1
𝑛

𝑛

∑
𝑖=1

(𝑥 (𝑖) − 𝑓𝜃 (𝑔𝜙(𝑥 (𝑖))))2, (2.21)

considering an input vector of size 𝑛, and 𝑥 (𝑗) as the value in position 𝑗 in the input vector.
A successfully trained model can generate a compact and meaningful representation of
the input (𝐳 = 𝑔𝜙(𝐱)) in a dimensionality-reduction fashion (Kramer, 1991).

The latent representations, however, have no constraint, for example, for maintaining
their values within a certain range, or for avoiding overfitting2. This motivated the propo-
sition of several adaptations for AE, such as Denoising Autoencoders (Srivastava et al.,
2014), Sparse Autoencoders (Makhzani and Frey, 2014), or Contractive Autoencoders (Ri-
fai et al., 2011), among others. We focus on a regularized version of autoencoders, named
Variational Autoencoders.

2 A model is prone to overfitting when it “memorizes” the training data and can not generalize its perfor-
mance to unseen data, i.e. test data.

2.3 | DEEP LEARNING METHODS

25

Encoder Decoder

x x^ LATENT
REPRESENTATIONS

z

(a) Autoencoder

Encoder Decoder

x x^
 LATENT
REPRESENTATIONS

σ

μ

z

(b) Variational Autoencoder

Figure 2.5: Variational Autoencoder.

Variational Autoencoders

Variational Autoencoders (VAE) are considered as a probabilistic version of standard
Autoencoders (AE), whose latent representations are assumed as Gaussian distributions,
and whose encoder/decoder steps are modelled as conditional probabilities (Kingma and
Welling, 2019). Assuming latent representations as Gaussian distributions has the desired
effect of regularizing the latent space, which enhances the model’s generalization ability
and, as a consequence, its overall accuracy.

The prior 𝑝𝜃 (𝐳) is assumed as a Gaussian distribution, 𝑝𝜃 (𝐱|𝐳) models the generation
of the input data 𝐱 conditioned on the latent space 𝐳 (decoder), and 𝑝𝜃 (𝐳|𝐱) models the
estimation of 𝐳 from input data 𝐱 (encoder). This time, 𝜃 denotes the parameters of the
distributions to be learned during the training process. See Figure 2.5.

It can happen, however, that the integral of the marginal likelihood 𝑝𝜃 (𝐱) =
∫ 𝑝𝜃 (𝐳)𝑝𝜃 (𝐱|𝐳)𝑑𝐳 is intractable, meaning that the marginal likelihood can not be evaluated
or differentiated. It can happen that posterior distribution 𝑝𝜃 (𝐳|𝐱) = 𝑝𝜃 (𝐱|𝐳)𝑝𝜃 (𝐳)/𝑝𝜃 (𝐱) is
also intractable (Kingma and Welling, 2014). The posterior 𝑝𝜃 (𝐳|𝐱) is then approximated
by a tractable 𝑞𝜙(𝐳|𝐱), defined as (𝐳; 𝜇𝜙(𝐱), 𝜎 2

𝜙 (𝐱)), where 𝜇𝜙(𝐱) and 𝜎 2
𝜙 (𝐱)) are the outputs

of the encoder.

Training the model consists of jointly adjusting 𝜃 and 𝜙 for minimizing the Kullback-
Leibler (KL) divergence between approximated and original distributions. The KL formula

26

2 | BACKGROUND

can be expanded as3:

KL(𝑞𝜙(z|x)||𝑝𝜃 (z|x)) = ∫ 𝑞𝜙(z|x) log
𝑞𝜙(z|x)
𝑝𝜃 (z|x)

𝑑𝐳

= ∫ 𝑞𝜙(z|x) log
𝑞𝜙(z|x)𝑝𝜃 (𝐱)
𝑝𝜃 (z,x)

𝑑𝐳

= ∫ 𝑞𝜙(z|x)(log 𝑝𝜃 (𝐱) + log
𝑞𝜙(z|x)
𝑝𝜃 (z,x))

𝑑𝐳

= log 𝑝𝜃 (𝐱) + ∫ 𝑞𝜙(z|x) log
𝑞𝜙(z|x)
𝑝𝜃 (z,x)

𝑑𝐳

= log 𝑝𝜃 (𝐱) + ∫ 𝑞𝜙(z|x) log
𝑞𝜙(z|x)

𝑝𝜃 (x|z)𝑝𝜃 (z)
𝑑𝐳

= log 𝑝𝜃 (𝐱) + 𝔼𝐳∼𝑞𝜙 (z|x)[log
𝑞𝜙(z|x)
𝑝𝜃 (z)

− log 𝑝𝜃 (x|z)]

= log 𝑝𝜃 (𝐱) + KL(𝑞𝜙(z|x)||𝑝𝜃 (z)) − 𝔼𝐳∼𝑞𝜙 (z|x) log 𝑝𝜃 (x|z),

(2.22)

where 𝐳 ∼ 𝑞𝜙(z|x) indicates that 𝐳 is generated from distribution 𝑞𝜙(z|x). Re-arranging the
terms, we have:

log 𝑝𝜃 (𝐱) − KL(𝑞𝜙(z|x)||𝑝𝜃 (z|x)) = 𝔼𝐳∼𝑞𝜙 (z|x) log 𝑝𝜃 (x|z) − KL(𝑞𝜙(z|x)||𝑝𝜃 (z)) (2.23)

On the left-hand side of the equation, we have the marginal log-likelihood log 𝑝𝜃 (𝐱), which
needs to be maximized, and the KL divergence measured between the tractable and the
intractable distributions, which needs to be minimized. On the right-hand side we have two
corresponding terms, respectively, the expected value of the log-likelihood of generated 𝐱
conditioned on 𝐳, and the KL divergence measured between the tractable distribution and
the prior 𝑝𝜃 (𝐳).

The Variational Lower Bound (VLB) is defined as the target of a minimization pro-
cess:

(𝜃, 𝜙;x) = − log 𝑝𝜃 (x) + KL(𝑞𝜙(z|x)||𝑝𝜃 (z|x))
= −𝔼𝐳∼𝑞𝜙 (z|x) log 𝑝𝜃 (x|z) + KL(𝑞𝜙(z|x)||𝑝𝜃 (z)).

(2.24)

When encouraged to learn the first term 𝔼𝐳∼𝑞𝜙 (z|x) log 𝑝𝜃 (x|z), the VAE is adjusting its predic-
tions to the ground truth data, and when encouraged to learn the second KL(𝑞𝜙(z|x)||𝑝𝜃 (z))
it is approximating a theoretical assumed distribution to the one observed in the data.

The log-likelihood is approximated by drawing samples 𝐳𝑙 from 𝑞𝜙(z|x) in such a way
it can be expressed as:

𝔼𝐳∼𝑞𝜙 (z|x) log 𝑝𝜃 (x|z) ≃
1
𝐿

𝐿

∑
𝑙=1

log 𝑝𝜃 (𝐱|𝐳𝑙). (2.25)

But sampling is a stochastic process and gradient can not be backpropagated. In order to

3 Reproduced from https://lilianweng.github.io/posts/2018-08-12-vae/

https://lilianweng.github.io/posts/2018-08-12-vae/

2.3 | DEEP LEARNING METHODS

27

make the gradient differentiable with respect to 𝜙, the authors in Kingma and Welling,
2014 proposed the reparameterization trick, in which

𝐳𝑙 = 𝜇𝜙(𝐱) + 𝜎 2
𝜙 (𝐱) ⊙ 𝜖𝑙 , (2.26)

where 𝜖𝑙 ∼ (0, 𝐈) and ⊙ is a element-wise multiplication.

KL divergence can be computed and differentiated without estimation, in the case
when the prior 𝑞𝜙(z|x) and the posterior 𝑝𝜃 (z) approximations are Gaussians (Kingma and
Welling, 2014):

− KL(𝑞𝜙(z|x)||𝑝𝜃 (z)) =
1
2

𝐽

∑
𝑗=1

(1 + log((𝜎𝑗)2) − (𝜇𝑗)2 − (𝜎𝑗)2), (2.27)

where 𝐽 is the dimensionality of 𝐳, and 𝜇𝑗 and 𝜎𝑗 are the j-th element of these vectors.

And the new VLB is given by:

(𝜃, 𝜙;x) ≃ −
1
𝐿

𝐿

∑
𝑙=1

log 𝑝𝜃 (𝐱|𝐳𝑙) −
1
2

𝐽

∑
𝑗=1

(1 + log((𝜎𝑗)2) − (𝜇𝑗)2 − (𝜎𝑗)2), (2.28)

where 𝐳𝑙 = 𝜇𝜙(𝐱) + 𝜎 2
𝜙 (𝐱) ⊙ 𝜖 𝑙 . The decoding term log 𝑝𝜃 (𝐱|𝐳𝑙) will depend on the type of

data that is being modelled.

2.3.3 Convolutional Networks

Convolutional Neural Networks (CNN) are variations of feed-forward networks that use
convolution in place of general matrix multiplication in at least one layer (Goodfellow
et al., 2016). Convolutional layers employ the mathematical operation of convolution
(explained in the sequel), which requires the input data to have a grid-like topology. The
grid can be 1-D, as in the case of time series; or it can be 2-D, as in the case of images.
CNNs became extremely popular in the area of Computer Vision due to their successful
performance in a wide range of tasks.

We briefly describe how the input data propagates through a typical CNN with several
convolution layers (deep CNN) before entering into details about two important elements:
convolutional and pooling layers. First, the input data is submitted to the first convolutional
layer, which performs convolution operations given a kernel function. The convolution
operations generate a set of filtered results, known as feature maps. These maps are
first submitted to activation functions (activation layer), like in the case of feed-forward
networks, and then sub-sampled in the following sub-sampling layers, referred to as
pooling layers. The data propagates until the output layer when an error is calculated, and
the weights of the network are then adjusted with backpropagation. A dense layer can be
added as a final layer for reducing the dimension of the final output, especially common
in the case of classification tasks.

28

2 | BACKGROUND

Convolutional Layers

The discrete convolution operation of a function 𝑥 with a kernel 𝑤 is denoted as:

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) =
∞

∑
𝑎=−∞

𝑥(𝑎)𝑤(𝑡 − 𝑎), (2.29)

which can be described as the area under the function 𝑥 weighted by a kernel 𝑤 shifted by
an amount 𝑡 . In the case where 𝑥 is multidimensional, convolution is applied on more than
one axis at a time. For example, in the case of a 2-dimensional image 𝐼 and a 2-dimensional
kernel 𝐾 , the convolution is calculated with:

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑
𝑚

∑
𝑛
𝐼 (𝑚, 𝑛)𝐾 (𝑖 −𝑚, 𝑗 − 𝑛). (2.30)

Two important properties that differentiate CNNs from the feed-forward networks are
sparse connectivity and shared weights. In a conventional feed-forward network, all nodes
from one layer are connected to all nodes from the subsequent layer, but in CNNs the
connectivity between two successive layers happens through a subset of units. This sparse
connectivity is accomplished by making the kernel smaller than the input, which reduces
the number of parameters stored and, as a consequence, the memory required for training
the model (Goodfellow et al., 2016).

Also, in a convolutional network, each member of the kernel is used at every position of
the input, referred to as shared weights. In practice, this means that one set of parameters
is learned for the whole input instead of learning a separate set of parameters for every
location. This also reduces the memory requirements and is more efficient when compared
to conventional matrix multiplications.

In complex tasks, several kernels4 might be applied by the same convolutional layer.
The motivation for this is that each different kernel can learn a specific function responsible
for complementary features in the input. For example, imagine a CNN that is trained for
classifying audio Mel-spectrograms according to their corresponding music genres. Drum
kicks might be a relevant event for predicting one specific musical genre, and one kernel
might end up learning to detect them. Certain harmonic content might be relevant for
predicting another musical genre, and another kernel would be necessary for detecting it.
Both kernels together would then complement each other in this classification task. In
Figure 2.6 we illustrate 1-D and 2-D convolution processes related to audio inputs.

Pooling Layers

The application of one or more kernels to the input data generates one or more feature
maps (see Figure 2.6), and these feature maps are submitted to activation functions in
order to, for example, convert all values to positive values. The results of an activation
layer, with the same dimensions as the original feature map, might need to be reduced to
a more compact format, and this reduction is performed by a pooling operation.

A pooling operation replaces several neighbour values in a features map with a value

4 Kernels can be also referred to as filters.

2.3 | DEEP LEARNING METHODS

29

FEATURE MAPS

STRIDE

FILTER LENGTH

(a) 1D raw audio convolution

FILTER LENGTH

STRIDE

FEATURE MAPS

(b) 2D Mel-spectrogram convolution

Figure 2.6: Illustration for 1D and 2D convolutional operations. The filter length determines the
number of pixels, in the case of Mel Spectrum, and samples, in the case of the waveform, considered
in the convolution operation. The stride value determines the size of the step between convolution
operations. A feature map is generated as the result of convolving each filter with the input, and its
dimensions depend on the filter size and stride value. We omit the padding and bias for the sake of
simplicity.

that summarizes the original values (Goodfellow et al., 2016). In the case when the input
is an image, the whole matrix can be divided into rectangles, and for each rectangle, one
value is returned. Max-pooling is a popular option for a pooling operation, and it extracts
the highest value among the considered values.

CNNs can be understood as a class of deep models for learning a hierarchy of increas-
ingly complex features. These features might be used in classification tasks for identifying,
for example, if an image contains an object or not, with high accuracy. But sometimes the
identification task requires detecting events happening on time, and CNNs might present
a limited performance. Recurrent networks were proposed taking this specific limitation
into account, and are discussed in the sequel.

2.3.4 Recurrent Networks
The main difference between Recurrent Neural Networks (RNN) and conventional

feed-forward deep networks is the existence of an internal hidden state inside the units
that compose the network (Hidasi et al., 2016). Like feed-forward networks, RNNs have
no cycles involving conventional edges, but edges that connect adjacent time steps called
recurrent edges. At time 𝑡 the nodes with recurrent edges receive input from the current
data point 𝐱(𝑡) and hidden node values 𝐡(𝑡−1) from the network’s previous state (Lipton,
2015). The output �̂�(𝑡) at each time 𝑡 is calculated given the node values 𝐡(𝑡).

A standard RNN outputs the probability indicating the most likely item to appear as
the next one in a sequence, given its current state 𝐡(𝑡). This same hidden state is updated
as:

𝐡(𝑡) = 𝜎 (𝑊 ℎ𝑥𝐱(𝑡) +𝑊 ℎℎ𝐡(𝑡−1) + 𝐛ℎ), (2.31)

where 𝜎 is a smooth function like a logistic sigmoid, 𝐱(𝑡) is the input at time 𝑡 (represented

30

2 | BACKGROUND

as a binary vector containing 1 in the position of the current element), and 𝐡(𝑡−1) is the
previous state of the hidden state. Matrices𝑊 ℎ𝑥 and𝑊 ℎℎ are, respectively, the conventional
weights between the input and the hidden layer, and the recurrent weights between the
hidden layer and itself in adjacent time steps. Both matrices are adjusted during the training
phase.

The output is given by:

�̂�(𝑡) = softmax(𝑊 𝑦ℎ𝐡(𝑡) + 𝐛𝑦), (2.32)

where 𝑊 𝑦ℎ is the matrix containing the weights between the hidden states and the outputs,
and 𝐛𝑦 (as well as 𝐛ℎ) is the bias parameter which allows the nodes to learn an offset. The
recurrent feedback mechanism memorizes the influence of each past data sample in the
hidden state, overcoming the fundamental limitation of MCs.

Learning long-range dependencies with recurrent networks, however, can be challeng-
ing (Bengio et al., 1994). Long sequences might correspond to long chains of multiplications
occurring in the backpropagation gradient calculations, and gradient values may shrink
or expand too rapidly. These were considered as the main barrier for RNNs to succeed in
this scenario, known as the problems of vanishing and exploding gradients.

Truncated backpropagation through time (TBPTT) (Williams and Zipser, 1989) sets
a maximum number of time steps along which error can be propagated, when trying to
avoid vanishing or exploding gradients. This method addresses the same issues that led to
Long Short-Term Memory (LSTM) architectures (Hochreiter and Schmidhuber, 1997).
In LSTMs each node in the hidden layer is replaced by a memory cell, and each of these cells
contains a node with a self-connected recurrent edge of fixed weight, ensuring that the
gradient can pass across as many times as necessary without exploding or vanishing.

Gated Recurrent Unit (GRU)

Gated Recurrent Units (GRU) are suitable for modelling long sequence Cho et al., 2014,
not being susceptible to the vanishing drawback of standard RNNs. The key distinction
between RNNs and GRUs is the mechanism dedicated to updating or resetting the hidden
state, known as gating. A reset gate is responsible for controlling how much of the previous
state needs to be remembered, and the update gate controls how much of the new state is
just a copy of the old state.

According to the same notation presented before, for a given time step 𝑡 , reset (𝐫(𝑡))
and update (𝐳(𝑡)) gates are calculated as:

𝐫(𝑡) = 𝜎 (𝑊 𝑟𝑥𝐱(𝑡) +𝑊 𝑟ℎ𝐡(𝑡−1) + 𝐛𝑟) (2.33)

𝐳(𝑡) = 𝜎 (𝑊 𝑧𝑥𝐱(𝑡) +𝑊 𝑧ℎ𝐡(𝑡−1) + 𝐛𝑧) (2.34)

where 𝐱(𝑡) is the input at that time step, 𝑊 correspond to weights that will be learned,
and 𝐛 are biases. Sigmoid is applied to transform the input values to the range (0,1). The
reset gate is then integrated into the regular latent space calculation (check Formulas 2.31),
which becomes:

𝐧(𝑡) = 𝑡𝑎𝑛ℎ(𝑊 𝑛𝑥𝐱(𝑡) +𝑊 𝑛ℎ(𝐫(𝑡) ⊙ 𝐡(𝑡−1)) + 𝐛𝑛)) (2.35)

2.4 | RATING-BASED RECOMMENDATION

31

where ⊙ is the Hadamard (elementwise) product and 𝑡𝑎𝑛ℎ is applied to ensure that the
values remain in the interval (-1,1). This is also known as a candidate hidden state, which
still needs to incorporate the update gate. For now, when entries in the reset gate are set
to 1, then the new candidate state reminds the hidden state calculated for standard RNN
(Formula 2.31). When the reset gate is set to 0 the architecture then resembles a standard
MLP having 𝐱(𝑡) in the input.

The new hidden state is calculated with

𝐡(𝑡) = (1 − 𝐳(𝑡)) ⊙ 𝐧(𝑡) + 𝐳(𝑡) ⊙ 𝐡(𝑡−1), (2.36)

where 𝐡(𝑡−1) is the hidden state at time 𝑡 − 1. The update gate 𝐳(𝑡) determines to which
extent the new hidden state 𝐡(𝑡) is inherited from the previous hidden state 𝐡(𝑡−1), and
how much of the new candidate state is considered. When 𝐳(𝑡) is close to 1, the previous
state is maintained, and the input 𝐱(𝑡) is ignored. When the update gate is set to 0, the
new hidden state incorporates the candidate state. Briefly, GRUs have reset gates that
help to capture short-term dependencies in sequences, and update gates that help capture
long-term dependencies in sequences.

2.4 Rating-Based Recommendation

Recommender systems were originally proposed for helping users in situations of
information overload, i.e. when users have too many options available and need to take
a decision. A typical recommender is capable of leveraging information on someone’s
past decisions and suggesting future actions that match their preferences. These systems
became popular in the last decades and were applied in many domains like movies, books,
news, music, etc.

In this Section, we review the recommendation methods considered the most relevant
for this research. These methods are rating-based, meaning that they were designed for
dealing with user/item interaction data, i.e. ratings, and we separated the methods into
three categories: collaborative filtering, sequence-aware and stream-based. We discuss the
assumptions and limitations of each category, and we highlight their application to the
music domain.

The assumptions for designing recommenders can vary significantly from one domain
to the next, and when considering music as the item to be suggested, there are three main
specificities that should be considered. First, (i) the duration of a standard song is relatively
small if compared to other items like movies, books, and trips, but somehow similar to the
time spent when reading articles online. Second, (ii) users repeat songs intentionally and
frequently, which impacts the design of prediction algorithms, especially the ones that take
the order of events into account. And finally, (iii) music preferences can vary depending
on the context, which also imposes new challenges to the automatic recommendation.
This might be also the case when considering movies, but still, someone’s preference for
movies will hardly vary as much as when having a playlist to go to the gym and another
one for meditation.

32

2 | BACKGROUND

Song 1 Song 2 Song 3 Song 4 Song 5

User 1 5 2 4

User 2 4 2 3 3

User 3 4 3 5 1

User 4 3 2

Table 2.1: Explicit feedback user rating matrix example. Ratings values can vary from 1 to 5.

2.4.1 Collaborative Filtering
Collaborative Filtering (CF) was first proposed as an alternative for filtering content in

a shared communication environment (Goldberg et al., 1992). Back in those days (1990’s),
users were already overloaded with the number of documents available, and the idea
of storing individual feedback was suggested as a resource for filtering uninteresting
documents. Formally, users 𝑢 ∈ 𝑈 have access to documents 𝑣 ∈ 𝑉 , and the reaction of
each user 𝑖 to each document 𝑗 is stored in a matrix 𝐑 ∈ ℕ|𝑈 |×|𝑉 |, the rating matrix. Each
reaction of user 𝑖 to the item 𝑗 was considered as a rating 𝑟𝑖𝑗 (for example between 1 and 5)
and the empty values can mean either that the user didn’t like one specific item, or that
the item was not presented to them.

In the strategy referred to as explicit feedback, the rating given to an item is directly
provided by the user, and lies within a pre-specified range of values, as illustrated in
Table 2.1. The numbers in the matrix indicate the ratings given by a user to a song, and
blank cells indicate user-song interactions that haven’t happened yet. The recommendation
system will then use known rating values to infer the unknown (empty) ratings (this
is the prediction phase), in order to recommend the next song in a listening session
(recommendation phase).

A first proposition for applying CF assumed that each row 𝑢𝑖 ∈ ℕ|𝑉 | of the rating
matrix represented a user profile, indicating preferences for each item, and that similar
profiles corresponded to similar preferences. An automatic recommender, known as user-
based (Ahmad Wasfi, 1998), was able to gather similar users (i.e. users with similar profiles)
and suggest new items to a specific user based on its neighbour profiles. It was also possible
to calculate the similarity between items, considering item profiles (𝑣𝑗 ∈ ℕ|𝑈 |), which was
referred to as item-based recommendation (Sarwar et al., 2001).

Many approaches were proposed for implementing collaborative recommendations,
Bayesian networks, k-nearest neighbours, clustering, and graph-based, among oth-
ers (Breese et al., 1998), the majority of them focused on the selection of sets of similar
users given the consumption profiles. But dealing with extremely big rating matrices
turned out to be challenging and inefficient, for example, when calculating the correlation
between sparse vectors (users who interacted with few items).

Deep Learning (DL) techniques were recently adapted for the task of inferring users’
preferences collaboratively (H. Wang et al., 2015; He et al., 2017), and proved to be espe-
cially interesting for modelling non-linear and non-trivial user-item relationships. These

2.4 | RATING-BASED RECOMMENDATION

33

DL techniques are also able to calculate complex representations of the input data due to
the characteristic of stacking as many layers as necessary, which is also the reason they
are called deep architectures.

The authors in Zhang et al., 2019 point out three main benefits and three drawbacks of
applying deep methods in the task of recommendation. According to them, one of the most
attractive properties is the fact that they are end-to-end differentiable and provide inductive
biases tailored to the input data type. Also, these methods can learn representations
that are specific to the task being addressed, bypassing the necessity of hand-crafted or
modality-specific features. On the other hand, these methods are widely known for lacking
interpretability, requiring significant amounts of data (enough to model a phenomenon),
and also for requiring extensive hyperparameter tuning.

We now review some of the most relevant methods for recommendation based on
collaborative filtering.

Weighted Matrix Factorization

A factorization model was proposed in Hu et al., 2008, in which there is a distinction
between preference and confidence, which is especially useful in situations where the rating
information available corresponds to the number of interactions (e.g. a number of clicks),
also known as implicit feedback5. The new optimization formula is given by:

min
𝑢,𝑣

∑
𝑟𝑖𝑗

𝑐𝑖𝑗(𝑝𝑖𝑗 − 𝑢𝑇
𝑖 𝑣𝑗)

2 + 𝜆
(
∑
𝑖
‖𝑢𝑖‖2 +∑

𝑗
‖𝑣𝑗‖2)

, (2.37)

where 𝑝𝑖𝑗 stands for (binary) preference, and 𝑐𝑖𝑗 is a confidence parameter. Confidence
can take two different forms, a linear model 𝑐𝑖𝑗 = 1 + 𝛼(𝑟𝑖𝑗) or a logarithmic model 𝑐𝑖𝑗 =
1 + 𝛼 log(1 + 𝑟𝑖𝑗/𝜖), where 𝛼 is a factor that multiplies the ratings in order to differentiate
them from 0 values, and 𝜖 is a compensation which depends on how frequently users
interact with the same item in the dataset.

By differentiation an analytic expression for 𝑢𝑖 is given by (Hu et al., 2008):

𝑢𝑖 = (𝑉 𝑇𝐶 𝑖𝑉 + 𝜆𝐼)−1𝑉 𝑇𝐶 𝑖𝑝(𝑖), (2.38)

where 𝐶 𝑖 is a diagonal matrix, within which 𝐶 𝑖
𝑗𝑗 = 𝑐𝑖𝑗 , 𝑉 is the matrix containing all 𝑣𝑗 , 𝑝(𝑖)

contains all preferences for user 𝑖 and 𝜆 is the learning rate. Next, matrix 𝑉 is updated in a
similar way, according to:

𝑣𝑗 = (𝑈 𝑇𝐶 𝑗𝑈 + 𝜆𝐼)−1𝑈 𝑇𝐶 𝑗𝑝(𝑗). (2.39)

Both matrices, 𝑈 and 𝑉 , are updated alternately until convergence.

From this perspective, this can be seen as a classification task, where each item is
classified as 0 or 1, but the idea of providing users with a list of potentially interesting
items comes closer to the recommendation objective, which corresponds to sorting items

5 When considering binary implicit feedback, user preferences are indicated as 1’s, but 0’s do not necessarily
indicate that the user dislikes an item, they could also mean that the item was not presented to them.

34

2 | BACKGROUND

according to relevance and presenting the most relevant ones in the first positions of the
list.

In the specific domain of music recommendation, the number of tracks available for
recommendation is usually large and much larger than the number of users. This leads to
sparse rating matrices with high dimensions. The WMF technique can be useful in such
situations, not only for producing recommendation lists but also for generating dense
representations of both users and tracks to be applied in other tasks.

Variational Autoencoders

Recently, Variational Autoencoders (VAE) were adapted for the task of CF with com-
petitive performance. VAE-CF (Liang et al., 2018) is considered the state-of-the-art CF
recommender system, due to its accuracy, scalability and robustness when dealing with
extremely large datasets. User features are learned from the data, in what is known as the
encoder phase, before propagating these through the decoder, where scores are actually
attributed to each item.

VAE-CF loss function is the same as the one presented in Equation 2.24, except that
now an extra hyperparameter (𝛽) is included for controlling the strength of KL divergence
in the optimization process. The new loss function can be expressed as:

(𝜃, 𝜙;x) = −𝔼𝐳∼𝑞𝜙 (z|x) log 𝑝𝜃 (x|z) + 𝛽 ⋅ KL(𝑞𝜙(z|x)||𝑝𝜃 (z)). (2.40)

The new hyperparameter 𝛽 is gradually introduced during the training process in such
a way that the network is first adjusted to the first term on the right-hand side of the
equation, before being introduced with the second term. This allows the network to first
prioritize the quality of the input reconstruction (log 𝑝𝜃 (x|z)), before focusing in adjusting
its hidden distribution (𝑝𝜃 (z)) to the one observed in the data (𝑞𝜙(z|x)).

From a user profile presented in its input, the VAE-CF encoder produces a latent
representation corresponding to one line in the user matrix 𝑈 in the case of matrix
factorization techniques. If a VAE-CF autoencoder is trained with columns of a rating
matrix (item profiles), the latent representations can be thought of as corresponding to
columns of the item matrix 𝑉 .

In Liang et al., 2018, the latent representation of a single user (z𝑢) is transformed by a
nonlinear function 𝑓 (⋅) ∈ ℝ𝑁 , to produce a probability distribution 𝜋 (z𝑢) over 𝑁 items, and
the multinomial log-likelihood is given by:

log 𝑝(x𝑢 |z𝑢) =
𝑁

∑
𝑖=0

𝑥𝑢𝑖 log 𝜋𝑖(z𝑢). (2.41)

The authors compared this likelihood with two other ones: the same one used in the
WMF method, referred to here as a Gaussian likelihood, and a logistic log-likelihood. The
multinomial likelihood, however, presented the best overall results and is the one used in
our experiments.

2.4 | RATING-BASED RECOMMENDATION

35

Final Considerations

The methodology for testing CF methods consists in removing a small number of
known ratings from the original data and applying the prediction method to the remaining
ones. After the model is trained, the values removed from the factorization are predicted,
and the accuracy is measured as how many of them were correctly predicted.

Some assumptions and limitations of CF recommendation models are:

Assumptions :

• All tracks ever rated or listened to by a user is considered as a listening profile.

• Profiles are assumed as a proxy for preference, and similar profiles are assumed as a
similarity of preference among users.

Limitations :

• New users and new items are difficult to incorporate into the algorithm, because of
the lack of historical data.

• The sequence in which users listened to tracks is never considered.

• CF relies on the similarity and completeness of user profiles, i.e. theoretically it is as
accurate as the amount of listening data contained in the dataset. This assumption
can lead to expensive models, that work exclusively in big datasets.

2.4.2 Sequence-Aware
CF methods consider previous interactions of a user as a static profile, that serves

as a proxy for preference, and assume similar profiles to indicate affinity between users’
musical tastes. But static profiles might be a limited resource for modelling a music listening
phenomenon, mainly because they do not consider its corresponding temporal dynamics:
people usually listen to several tracks in a row, and it might be reasonable to assume that
their sequence is a key factor for a fruitful listening experience.

Differently from the previously described methods, sequence-aware (SA) recommender
systems have the ability to handle temporal context information (Quadrana et al., 2018;
Jannach, Mobasher, et al., 2020). They consider user interactions as sequences, and rec-
ommendation as the task of, giving a slice within a sequence of listened tracks, predicting
the next item appearing after the slice. Formally, let 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑚} denote the set of all
songs available in the system. A sequence 𝑠 is represented as a list [𝑣𝑠,1, 𝑣𝑠,2,… , 𝑣𝑠,𝑛], ordered
by the timestamps of the user interactions, where each 𝑣𝑠,𝑖 ∈ 𝑉 . The aim of the SA recom-
mender is to predict the song 𝑣𝑠,𝑗+1 within the sequence, given a slice [𝑣𝑠,𝑖 , 𝑣𝑠,𝑖+1,… , 𝑣𝑠,𝑗].
The method outputs a probability distribution 𝐩𝐤 = {𝑣𝑠,𝑗+1 = 𝑣𝑘}, ∀𝑘, and the top-K
values as potential candidates for the next item.

The position of the correctly predicted item (𝑣𝑠,𝑗+1) in the top-K list has now a different
meaning than it had in the collaborative filtering context. There, probabilities reflect a
user’s global preference for each song, whereas here they reflect the adherence of each

36

2 | BACKGROUND

song to a specific position in the sequence of previously heard items. An accurate SA
recommender is expected to retrieve the correct item in the first positions of the Top-K
list, preferably with the lowest possible index. For this reason, it makes perfect sense to
use ranking-related metrics for measuring the performance of SA recommenders.

One interesting characteristic of SA methods is their assumption of temporal patterns
observed within listening sessions as the resource for making recommendations, regardless
of the user who listened to each session. This provides these methods with the ability to
incorporate new users (user cold-start) without any extra effort. Remember that in the CF
case user and item cold-start were presented as potential problems for the recommendation
algorithms, due to the collaborative strategy applied by them.

Markov Models

Markov Models (MM) can be applied for the task of sequence modelling (see Sec-
tion 2.1.3) and thus, can be also applied for the task of SA recommendation. When MMs are
applied for the task of SA recommendation, states are assumed as tracks and the transitions
between these states correspond to transitions between consecutive tracks observed in
listening sessions.

A common option is to set the memory 𝑚 equals to one (Rendle, Freudenthaler,
et al., 2010), meaning that each listened track depends exclusively on the previous one.
When that is the case, then 𝑚 = 1 and the probability of the next track (𝑥𝑡), given the
previous one (𝑥𝑡−1) is given by:

𝑝(𝑋𝑡 = 𝑥𝑡 |𝑋𝑡−1 = 𝑥𝑡−1). (2.42)

A first-order MC models transitions based on pairs of consecutive tracks appearing in
sessions, and predicts the next track based on the most likely transition from the state
associated with the current track (Zimdars et al., 2001). This can be implemented as a
lookup table where transitions are stored, and a transition probability can be consulted
very efficiently.

GRU4REC

The first deep learning approach for predicting the next item within a listening session
was GRU4REC (Hidasi et al., 2016), based on recurrent neural networks, or more specifi-
cally on Gated Recurrent Units (GRU6). In this approach, each item (track) within a session
is represented as an indicator vector of dimension #tracks, and the model is trained for
predicting an indicator vector corresponding to the next item, depending on the current
state of the network.

GRU layers are arranged as in Figure 2.7, where each layer stores a hidden state that
encodes some previously occurring item in the session. Items are fed according to their
sequence in the session, and hidden states are reset after each session. The authors report
that the best results are obtained using a single GRU layer, which can be thought of as a
Markovian process of order 1.

6 More details on GRU architecture are brought in Section 2.3.4

2.4 | RATING-BASED RECOMMENDATION

37

Figure 2.7: GRU4REC applies Recurrent Neural Networks for predicting the next item in the sessions
given the current one (figure reproduced from Hidasi et al., 2016).

A session-parallel mini-batch strategy is proposed for handling several sessions in
parallel. This strategy arranges sessions with different lengths in batches, in such a way
that whenever a session ends, a new one is positioned in the same place in the batch for
maintaining continuity. For each new session, the hidden state is reset so the model is not
learning about transitions between sessions.

The authors propose two loss functions which have a great impact on their results.
Instead of calculating the score for each item at each round of training, as would be usual,
samples are taken from the output and the loss associated with a small subset of items
is calculated. Items are sampled according to their popularity and negative samples are
taken from the previous mini-batch for saving time.

The model can be trained with stochastic gradient descent (SGD) using the following
loss functions:

• BPR: The score of a positive item is compared with several negative ones, and
their average is considered as the loss. Formally, the loss is calculated with: 𝐿𝑆 =
− 1
𝑁𝑆

∑𝑁𝑆
𝑗=1 log(𝜎 (𝑟𝑠,𝑖 − 𝑟𝑠,𝑗)), where 𝑁𝑆 is the sample size, 𝑟𝑠,𝑘 is the score of item 𝑘 in

session 𝑠, 𝑖 is the desired item, and 𝑗 are the negative samples.

• TOP1: The loss is considered as a regularized approximation of the relative ranking
of the positive item. The relative rank of the relevant item is given by 1

𝑁𝑆
∑𝑁𝑠

𝑗=1 𝐼{𝑟𝑠,𝑗 >
𝑟𝑠,𝑖}, which indicates that the relevant item is in a lower position compared to other
items, and an extra regularization term forces negative samples to have scores close
to zero. The final loss function is given by: 𝐿𝑆 = 1

𝑁𝑆
∑𝑁𝑆

𝑗=1 𝜎 (𝑟𝑠,𝑗 − 𝑟𝑠,𝑖) + 𝜎 (𝑟2𝑠,𝑗).

Neural Attentive Recommendation Machine (NARM)

Another method applicable to SA recommendation, named Neural Attentive Recom-
mendation Machine (NARM) (J. Li et al., 2017), combines the sequential behaviour of a
user with an assessment of the main purpose of the current session, identified with the
most relevant item browsed by the user. The authors argue for the necessity of consid-
ering the main purpose of a user’s session as a relevant factor for the recommendation,
considering that implicit feedback can sometimes be noisy, for example when an item
is clicked by mistake or curiosity. In NARM, sessions are fed to the network in a cumu-
lative fashion, where a session [𝑥1, 𝑥2,⋯ , 𝑥𝑛−1, 𝑥𝑛] is represented by 𝑛 − 1 sub-sessions

38

2 | BACKGROUND

Figure 2.8: Neural Attentive Recommendation Machine (NARM) scheme (figure reproduced from J.
Li et al., 2017).

[𝑥1, 𝑥2,⋯ , 𝑥𝑛−1, 𝑥𝑗], 𝑗 = 2,… , 𝑛.

The NARM architecture combines two independent encoders, responsible for calculat-
ing two representations, one local that highlights the most relevant item within the session,
and one global corresponding to a standard recurrent representation, as in Figure 2.8. The
steps of the method are as follows:

1. sessions are fed in the input and submitted to a GRU-based recurrent network (global
encoder). The last hidden state (𝐡𝑡) is stored as a general representation of the session
𝐜𝑔𝑡 ;

2. An item-level attention mechanism (local encoder) is applied for matching the cur-
rent state of the network with each item in the input, and for focusing on important
items (trying to identify the main purpose of the current session). A function 𝑞(𝐡𝑔

𝑡 , 𝐡𝑙
𝑗)

performs a linear combination of the current state with each input item, generating
a local representation 𝐜𝑙𝑡 ;

3. Both representations, 𝐜𝑔𝑡 and 𝐜𝑙𝑡 , are concatenated as 𝐜𝑡 , considered as features of the
session. 𝐜𝑡 is first submitted to an inner product with an auxiliary matrix (𝐁), and
the product of this inner product is multiplied by item embeddings (𝑒𝑚𝑏). Both 𝐁
and 𝑒𝑚𝑏 are adjusted during the training. The final formulation of the last phase is
given by 𝑆𝑖 = 𝑒𝑚𝑏𝑇𝑖 × 𝐁 × 𝐜𝐭 for each item 𝑖;

4. A softmax layer is applied to the resulting 𝑆𝑖 and produces scores for each item.

The model is trained with gradient descent, on a cross-entropy loss:

𝐿(𝑝, 𝑞) = −
𝑚

∑
𝑖=1

𝑝𝑖 log(𝑞𝑖), (2.43)

where 𝑞 is the predicted probability distribution and 𝑝 is the true distribution.

2.4 | RATING-BASED RECOMMENDATION

39

Final Considerations

Some assumptions and limitations of SA recommendation models are:

Assumptions :

• Sequence-aware methods are able to detect patterns in sequences of items observed
in users’ sessions and assume these patterns as candidates for future actions.

• Some methods assume listening sessions (in the specific case of music recommender)
as anonymous and this alleviates the problem of new users entering the platform.

Limitations :

• The methods are not personalized, as in the collaborative case, and this can po-
tentially lead to undesired consequences, of recommending items users didn’t like
previously.

• New items are, again, hardly incorporated in the algorithm, because of not having
historical data available.

• Recommendation models are learned offline, regardless of the feedback provided by
the user during the listening session

2.4.3 Stream-Based
The majority of experiments designed for evaluating CF and SA recommender systems

are usually considered in an offline fashion: the model is first trained according to a loss
function, and then tested in an unseen slice of the data. But in a more realistic scenario,
models are updated after each user’s feedback, and their performance is evaluated by
summing the accuracy associated with each consecutive recommendation round. This
configuration, named stream-based (SB), requires the models to be updated in real-time, in
such a way that relevant suggestions start being delivered to users as soon as possible.

In an attempt to adapt existing methods to the stream-based scenario, some authors
proposed an incremental CF method (Papagelis et al., 2005), in which a matrix is built for
storing the similarity between users, and is updated whenever a user finishes interacting
with one item. The similarity between two users is understood as the number of items they
have in common in their listening profiles, and when a recommendation for one specific
user is needed, the most similar profiles can be readily obtained. The same procedure
could be also applied for storing similarities between items, and in this case, the next
item is selected based on the information about co-occurrence in user profiles or listening
sessions (Miranda and Jorge, 2009). Several dynamic local models are frequently updated
for delivering online recommendations to groups of users gathered by similarity in Al-
Ghossein, Abdessalem, and Barré, 2018. A global model is also maintained and updated,
and both suggestions, calculated by the local and by the global model, are combined in a
final top-K list for a target user.

Neighbourhood-based (NB) methods were also adapted for handling real-time updates
and were considered as competitive baselines for evaluating next-item recommendation

40

2 | BACKGROUND

algorithms (Jannach and Ludewig, 2017). Given an ongoing session, the main idea is to
find the most similar past sessions containing those elements and use them for calculating
recommendations. The similarity function compares two sessions represented in the
item space, instead of performing item/item comparisons as in CF methods. In order to
allow efficient lookups for online recommendations, the authors propose storing sessions
in an in-memory index structure (cache) (Jannach and Ludewig, 2017; Ludewig and
Jannach, 2018). Variants of this method, that emphasize the more recent events of a
session by weighting the items according to the timestamp of the interaction, were proposed
in Ludewig and Jannach, 2018; Garg et al., 2019.

Dynamic matrix factorization methods were also proposed as an alternative for sug-
gesting items to users and incorporating their feedback instantly (Rendle and Schmidt-
Thieme, 2008; Vall et al., 2019; Zhao et al., 2013). The main idea behind these approaches
is to first, initialize users and items latent variables, and then update a new user (item)
latent variable, whenever a new user (item) is added in the system (Rendle and Schmidt-
Thieme, 2008; Vall et al., 2019). But dynamic matrix factorization approaches do not
include strategies for actively incorporating new users or items: new users or items corre-
spond to empty columns or rows in the rating matrix, and these can not be incorporated
into the algorithm unless they are actively suggested to new users, in the case of items, or
are offered new items, in the case of users.

A similar technique is explored in an interactive recommendation environment when
item features are learned a priori and maintained fixed, while new users are included
in the recommendation algorithm for simulating a user cold-start situation (Zhao et
al., 2013). Items’ and users’ latent variables are modelled as normal distributions, and
different strategies of item selection are compared taking the exploration/exploitation
dilemma into consideration. This time, not just latent variables are updated dynamically,
but uncertainty (the variance estimated for the normal distribution) is incorporated into
the item selection procedure, according to the Upper Confidence Bound (UCB) principle. It
is worth mentioning that in this specific case cold-start users are considered as users with
short profiles (users who rated few items), and not as new users which have just entered
the platform.

Multi-Armed Bandits (MAB) became a popular setup for designing dynamic CF meth-
ods, due to their formulation proposed in the context of active learning in dynamic
environments. The strategy is adapted to recommender systems considering decisions
as suggestions of items and considering the reward as corresponding to users’ satis-
faction (Sanz-Cruzado et al., 2019). The rewards obtained from taking decisions can
sometimes be modelled as probability distributions Kaufmann et al., 2012 and can be
also assumed as changing over time, described as non-stationary bandits (Auer et al.,
2019). Decisions can also be taken considering the current context, i.e. a vector containing
information about the target of the recommendation, known as Contextual Bandits (L. Li
et al., 2010).

Adapting MAB to recommendation systems, however, can have some specificities. First,
the number of decisions (arms) can’t be too large, for example, when considering the act
of recommending one single track as corresponding to a decision of a music recommender.
In such cases exploring all possibilities and identifying the optimal ones can take too long,

2.4 | RATING-BASED RECOMMENDATION

41

and it even may not be viable. Dealing with a more restricted set of options was proposed
in Sanz-Cruzado et al., 2019, in which arms were modelled as users in the context of
a nearest-neighbour recommender; or in S. Li et al., 2016, in which items are grouped
in clusters by similarity and suggestions are made according to historical interactions
between users and clusters.

Another limitation of applying MAB to recommendation systems is the correspon-
dence between identifying the best items to be recommended to each user and learning
an independent model per user. Learning independent models does not comprise the
dependence among users, considered the main characteristic of collaborative strategies. In
order to address this limitation, a Collaborative Filtering Bandits was proposed (S. Li et al.,
2016), in which users and items are separated into clusters and at each recommendation
round the rewards are used to update the composition of such clusters.

Here, we restrict ourselves to methods that can operate in stream-based scenarios, and
that can be adapted to the task of providing next item recommendations, aligned with
the objective of SA methods. For this reason, we decided to consider SKNN, VSKNN and
STAMP methods as baselines in our experiments. Those methods are explained in more
detail in the sequel.

SKNN

In Session-Based kNN (SKNN), the main idea is to find the 𝑘 most similar past sessions
𝑁𝑠 containing the same elements of a given session 𝑠. This is achieved by comparing their
binary vectors over the item space using any suitable similarity measure 𝑠𝑖𝑚(𝑠1, 𝑠2), such
as the cosine similarity or the Jaccard distance (Ludewig and Jannach, 2018). The score
of a recommendable item 𝑖 for session 𝑠 is defined by:

scoreSKNN(𝑖, 𝑠) = ∑
𝑛∈𝑁𝑠

sim(𝑠, 𝑛) × 𝕀𝑛(𝑖), (2.44)

where 𝕀 is 1 when 𝑖 ∈ 𝑛 and 0 otherwise. SKNN method, however, does not consider the
order of the elements in a session.

VSKNN

Vector Multiplication Session-Based kNN (V-SKNN) (Ludewig and Jannach, 2018) is
a variant of SKNN that emphasizes the more recent events of a session by weighting the
items, in such a way that the weight of the last item of the session is 1, and the values
decay according to a linear function. The V-SKNN method uses the dot product between
the weight-encoded ongoing session vector and the binary-encoded past session as the
similarity function.

scoreVSKNN(𝑖, 𝑠) = ∑
𝑛∈𝑁𝑠

⃖⃖⃗𝑠𝑤 ⋅ ⃖⃗𝑠𝑛√
𝑙(𝑠) ⋅ 𝑙(𝑠𝑛)

× 𝕀𝑛(𝑖), (2.45)

where ⃖⃖⃗𝑠𝑤 is the weighted version of the ongoing session, ⃖⃗𝑠𝑛 is the binary version of a
candidate session 𝑛, and 𝑙(⋅) denotes the length of the session.

42

2 | BACKGROUND

STAN

The Sequence and Time Aware Neighborhood approach (STAN) is proposed in Garg
et al., 2019 to extend SKNN method in order to incorporate sequential information. As
in V-SKNN, the method also uses decay factors, but in multiple levels. The new score is
calculated with:

scoreSTAN(𝑖, 𝑠) = ∑
𝑛∈𝑁𝑠

⃖⃖⃗𝑠𝑤 ⋅ ⃖⃗𝑠𝑛√
𝑙(𝑠) ⋅ 𝑙(𝑠𝑛)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑠𝑖𝑚1(𝑠,𝑠𝑛)

𝑤2(𝑠𝑛 |𝑠)⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑒(
𝑡(𝑠)−𝑡(𝑠𝑛)

𝜆2) 𝑒(
− |𝑝(𝑖,𝑛)−𝑝(𝑖∗ ,𝑛)|

𝜆3)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑤3(𝑖|𝑠,𝑛)

𝕀𝑛(𝑖), (2.46)

where 𝑝(𝑖, 𝑠) denotes the position of item 𝑖 in session 𝑠, 𝑡(𝑠) denotes the timestamp of the
most recent item in 𝑠, 𝑖∗ is the index of an item observed in both 𝑠 and in 𝑛 sessions, and 𝜆s
are fixed and positive values. 𝑠𝑖𝑚1 ensures that recent items are more relevant, 𝑤2 ensures
that sessions farther from session 𝑠 are assigned with lower weight, and 𝑤3 ensures that
items occuring in both 𝑠 and 𝑛 are also weighted according to how recently they were
observed.

Final Considerations

SB methods do not have a specific strategy for actively incorporating new items in
their algorithms, nevertheless, they rely on calculations of similarity between sessions,
allowing new items to become recommendation candidates as soon as they participate
in a first listening session. While in the case of CF and SA the models would need to be
retrained when a new item is added to the item set, now this is accomplished by forcing
new items to take part in their first listening sessions. This is not yet a strategy to overcome
the cold-start problem, but it alleviates the issue.

SB methods are usually evaluated with experiments that simulate a dynamic recom-
mendation situation. Instead of training and testing the models with different slices of the
data, now the recommenders start without any knowledge of users’ preferences, and after
each interaction, the models are updated with the most recent data. Their performances
are usually evaluated by summing the overall accuracy and two main desired metrics
can be calculated: how fast the model learns to make relevant recommendations, and the
overall accuracy achieved along all sessions.

Some assumptions and limitations observed for SB recommendation models are:

Assumptions :

• Stream-based methods assume user/item interaction data arriving as data streams,
and thus, dynamic updating and retrieval procedures are usually applied;

Limitations :

• No specific strategy is proposed for incorporating new items in stream-based rec-
ommendation algorithms;

2.5 | AUDIO-BASED MUSIC RECOMMENDATION

43

• Retrieving procedures that compare a current element with all elements to find the
best option are usually unfeasible in the case of large catalogues of items, as music
catalogues usually are;

2.5 Audio-Based Music Recommendation
Typically, music recommender methods rely on user/track interaction data for cal-

culating suggestions of tracks, known as rating-based methods. But it can also happen
that music recommender methods use the audio signals associated with each track for
calculating recommendations to users, known as audio-based methods.

The audio signals associated with the tracks might be used by these methods in
two possible ways: the audio signals can serve as the primary resource for providing
recommendations, or they can be used as an auxiliary source of information by rating-based
strategies. In the former case, tracks are suggested based on similarities measured within
the audio domain, which prevents the cold-start problem but imposes severe limitations
on the quality of recommendations (Flexer et al., 2010). In the latter case, information
extracted from the audio signal is incorporated in methods that were originally designed to
operate with user/item interaction data, for alleviating situations of item cold-start (Forbes
and Zhu, 2011).

Music recommenders that rely solely on audio information have considered the rec-
ommendation task as a task of selecting tracks from an audio-based representation space
according to a set of tracks a user has listened to before or is currently listening to (Cano
et al., 2005a). This representation space is built in such a way that similar tracks are
supposed to be located next to each other, which makes strategies for measuring similarity
between pairs of tracks an essential choice in this context (Slaney et al., 2008; Logan and
Salomon, 2001; Bogdanov, Serrà, et al., 2011; Hoffman et al., 2008). A clear definition
of what it means for two audios to be similar to each other, however, has never reached a
consensus and is beyond the scope of this work.

Audio files can be also applied by rating-based methods for helping them mitigate
the cold-start limitation. In Q. Li et al., 2004, users are clustered according to listening
habits, and track audios are clustered into music genres. Preferences may be modelled
for each user cluster and musical genre, mitigating the lack of interaction information
for new tracks. The idea that the similarity between tracks can be defined through user
access patterns, and that this similarity can be estimated from the audio domain, was
explored in Shao et al., 2009. A similar idea, based on learning-to-rank, was proposed
in B. McFee et al., 2012. When given a query track, the ranking system retrieves other
tracks sorted by relevance according to user access patterns, and a corresponding ranking
is simultaneously learned using the query audio as input. After training, the ranking
system is supposed to retrieve relevant tracks when queried with the audio of a new track,
i.e., as a query-by-example system.

A novel approach is proposed for a dynamic content-based music recommender in Xing
et al., 2014; X. Wang, Yi Wang, et al., 2014. Ratings given by users are modelled as a
combination of two factors, an affinity for the audio content, and a factor responsible
for diversity. The affinity for audio features is modelled as an inner product of a user

44

2 | BACKGROUND

preference variable and the audio features of listened tracks. The diversity is implemented
with an exponential curve that prevents the recommender to repeat a song that was
recently suggested. The probability of a repeated song being suggested again increases
with time when the so-called forgetting curve tends to zero. The parameters to be estimated
are then the user preference for audio features and the decaying factor of the forgetting
curve. The authors present an efficient method for estimating both parameters given the
historical data from one specific user, and the system is capable of real-time adjustments
in its parameters by simply updating the historical data obtained from users. The system,
however, iterates through every track for selecting the one that maximizes the quantile
value of the estimated distribution, inspired by Bayesian-UCB (Kaufmann et al., 2012),
and this can be time-consuming.

We now describe the methods selected in our experiments, which are applicable to
situations of item cold-start in three music recommendation scenarios: collaborative
filtering, sequence-aware and stream-based. These methods were selected considering
their applicability to the tasks addressed here, and to the conditions imposed by the
experiments.

2.5.1 Collaborative Filtering
We assume a set of tracks 𝑠 ∈ 𝑆, a set of users 𝑝 ∈ 𝑃 , and a function 𝑓 (⋅) for calculating

a generic audio feature 𝑎 in such a way that 𝑓 (𝑠𝑖) = 𝑎𝑖 . Matrix 𝐀 contains the features
calculated for all tracks. Matrix 𝐑 is a rating matrix, and the rating given by user 𝑝𝑖 to
track 𝑠𝑗 is given by 𝑅𝑖𝑗 .

Content-Boosted Matrix Factorization (CBMF)

Content-Boosted Matrix Factorization (CBMF) was proposed for integrating an audio
feature matrix (𝐀) in the matrix factorization process (see Section 2.4.1). CBMF factorizes
the rating matrix𝐑 into user and track latent variables,𝐔𝑇 and𝐕 respectively, and factorizes
𝐕 as a linear product between the audio features matrix𝐀 and an auxiliary matrix𝚽 (Forbes
and Zhu, 2011).

The factorization process consists of several optimization rounds, and at each round
the rating matrix is factorized as �̂� ≈ 𝐔𝑇𝐕, and 𝐕 is also factorized as 𝐕 ≈ 𝚽𝐀𝑇 . The new
�̂� can then be decomposed as:

�̂� ≈ 𝐔𝑇 ⋅ 𝚽𝑇 ⋅ 𝐀𝑇 (2.47)

where �̂� ∈ ℝ|𝑈 |×|𝑆|, 𝐔𝑇 ∈ ℝ|𝑈 |×𝑘 , 𝐀 ∈ ℝ|𝑆|×|𝑎|, and 𝚽 ∈ ℝ|𝑎|×𝑘 . 𝑘 is the size of the dimension of
latent variables. The optimization process is performed with the aim of minimizing:

min
𝑢𝑖 ,𝚽

∑
𝑖,𝑗
(𝑟𝑖𝑗 − 𝑢𝑇

𝑖 𝚽
𝑇𝑎𝑇𝑗)

2 + 𝜆(∑
𝑢∈𝑈

||𝑢||2 + ||𝚽||2), (2.48)

where 𝜆 is the learning rate. Once the optimization process is finished, a rating 𝑅𝑖𝑗 is
estimated as two consecutive products: first, 𝚽𝑇 is multiplied by one row 𝑎𝑇𝑗 , and the result
is multiplied by one row 𝑢𝑇

𝑖 . When a new track is added to the system, its rating can be
estimated without the need to re-calculating the matrices.

2.5 | AUDIO-BASED MUSIC RECOMMENDATION

45

Deep Convolutional Matrix Factorization (DCMF)

A new method was proposed for mapping audio features to latent variables generated
by matrix factorization, but instead of relying on a linear model, a Convolutional Neural
Network (CNN) is applied (Oord et al., 2013). The proposed method, referred to here
as Deep Convolutional Matrix Factorization (DCMF), is separated into two steps: first, the
rating matrix is factorized with WMF (see Section 2.4.1), and then a CNN is trained for
mapping audio features to track latent variables.

Let 𝑔𝜃 (⋅) be a function responsible for mapping audio features 𝑎𝑗 to latent variables
𝑧𝑗 , and whose parameters 𝜃 need to be optimized. The authors propose two objective
functions:

min
𝜃

∑
𝑗
||𝑣𝑗 −

𝑧𝑗⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑔𝜃 (𝑎𝑗) ||2, (2.49a)

min
𝜃

∑
𝑖,𝑗
(𝑟𝑖𝑗 − 𝑢𝑇

𝑖

𝑧𝑗⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑔𝜃 (𝑎𝑗))2. (2.49b)

The objective 2.49a approximates 𝐙 and 𝐕, according to a regression error measurement
(Figure 2.9 (a)). The objective 2.49b approximates the rating matrix 𝐑 directly, through a
pre-computed user latent variable 𝐔7 (Figure 2.9 (b)). The authors compare different audio
representations applied to different predictors designed for the same task for comparison,
and the CNN approach applied to Mel-spectrograms presented the best results.

The function 𝑔𝜃 (⋅) is implemented as a CNN, but little information is provided about
its architecture. We consider this method in our experiments, but with no guarantee that
the proposed CNN is similar to the one used in the original work.

Hierarchical Linear Model with Deep Belief Networks (HLDBN)

Hierarchical Linear Model with Deep Belief Networks (HLDBN) was proposed for learn-
ing tracks and users’ latent variables at the same time (X. Wang and Ye Wang, 2014).
Differently from previous methods, HLDBN does not require a pre-computation of a
matrix factorization, and it was designed to optimize all its parameters at once.

The new user latent variable is denoted by 𝛽 (Figure 2.9 (c)), and it is assumed as
being drawn from a normal distribution 𝛽𝑖 ∼ (𝜇, 𝜎 2

𝑖 𝐈). The rating given by users are also
assumed as drawn from a normal distribution 𝑟𝑖𝑗 |𝛽𝑖 , 𝑎𝑗 ∼ (𝛽 ′

𝑖 𝑎𝑗 , 𝜎 2
𝑅). 𝜎𝑖 and 𝜎𝑅 are the

corresponding variances.

The new error function to be minimized is given by:

𝐿𝐻𝐿𝐷𝐵𝑁 = ∑
𝑖,𝑗
(𝑟𝑖𝑗 − 𝛽

′

𝑖

𝑧𝑗⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑔𝜃 (𝑎𝑗))2 + 𝜆∑

𝑖
‖𝛽𝑖 − 𝜇‖2, (2.50)

7 In the original, the authors are considering 𝑐𝑖𝑗 and 𝑝𝑖𝑗 instead of 𝑟𝑖𝑗 in the second objective, like in Equa-
tion 2.37, but the latter is presented here for the sake of simplicity

46

2 | BACKGROUND

V~Z ~

(a) Deep Convolutional Matrix Factorization (DCMF) objective #1.

UT

Z

RT^

(b) Deep Convolutional Matrix Factorization (DCMF) objective #2.

βT

Z

RT^

(c) Hierarchical Linear Model with Deep Belief Networks (HLDBN).

Figure 2.9: Previous audio-base methods proposed for mitigating the cold-start in music recommenda-
tion. (a) A CNN is trained for learning embeddings 𝐙 that approximate the item latent representations
𝐕 from Figure 2.1. (2) A CNN is trained for learning embeddings 𝐙 that multiple the user latent 𝐔
representations from Figure 2.1 for approximating the rating matrix 𝐑. (c) A DBN and an auxiliary
matrix 𝛽 are trained jointly in such a way that the product between the generating embedding 𝐙 and
matrix 𝛽 approximate the rating matrix 𝐑. Solid lines indicate static variables, dashed lines indicate
variables that are being trained.

where 𝜇 is the average item latent variable, and the regularization factor ensures that item
latent variables do not deviate too much from the average. 𝜆 is the learning rate.

The function 𝑔𝜃 (⋅) was now implemented as a Deep Belief Network (DBN), and the

2.5 | AUDIO-BASED MUSIC RECOMMENDATION

47

method was also tested with the Mel-spectrograms representation. The results presented by
the authors suggest that user latent variables optimized specifically for this task (𝛽) provide
better results than user latent variables derived from matrix factorization (𝐔).

2.5.2 Sequence-Aware

Adaptive Linear Mapping Model (ALMM)

Adaptive Linear Mapping Model (ALMM) (Chou et al., 2016) adapts Factorization
Machines (Rendle, 2012), and the content-boost method (see Section 2.5.1) for the task
of audio-based next-track recommendation. In short, ALMM decomposes personalized
matrices containing transitions between tracks as two consecutive products of three
latent variables, in a similar way to FPMC (Rendle, Freudenthaler, et al., 2010). The
three matrices are considered latent representations of users, previous tracks, and next
tracks. The two last matrices, the ones associated with previous and next tracks, are
again factorized as linear products of an audio features matrix and auxiliary matrices, just
like in the content-boost method. When a new track is added to the track set, it can be
incorporated into the algorithm by calculating the inner products of its audio feature and
the learned auxiliary matrices.

Let {𝑠𝑢1 , 𝑠𝑢2 ,… , 𝑠𝑢𝑡−1} be the tracks listened by user 𝑢 before time 𝑡 , ordered by timestamp.
Let 𝐋𝑢 ∈ ℕ|𝑆|×|𝑆| be a matrix containing all song transitions associated with user 𝑢, in such a
way that 𝐿𝑢𝑖,𝑗 indicates how many time this user listened to track indexed by 𝑗 after listening
to track indexed by 𝑖. And let 𝐋 ∈ ℕ|𝑆|×|𝑆|×|𝑈 | be a tensor containing every 𝐋𝑢. The authors
consider the task of, given a track 𝑠𝑢𝑡−1 listened by user 𝑢 at time 𝑡 − 1, predicting the track
𝑠𝑢𝑡 that will be listened next (i.e. estimating 𝑝(𝑠𝑢𝑡 |𝑠𝑢𝑡−1)).

A new tensor 𝐂 is obtained by calculating the confidence associated to each value in 𝐋,
like in Hu et al., 2008. Confidence values are calculated as 𝐶𝑢

𝑖,𝑗 = 1 + log(1 + 𝑃𝑢
𝑖,𝑗), where 𝑃𝑢

𝑖,𝑗
is the binary value associated with 𝐿𝑢𝑖,𝑗 : it is 1 if 𝐿𝑢𝑖,𝑗 > 0 and 0 otherwise. 𝐂 is decomposed
by minimizing:

min
𝑈 ∗,𝑋 ∗,𝑌 ∗

∑
(𝑢,𝑖,𝑗)

(𝐶𝑢
𝑖,𝑗 − 𝐔𝑇

𝑢𝐗𝑖 − 𝐔𝑇
𝑢𝐘𝑗 − 𝐗𝑇

𝑖 𝐘𝑗)2 + 𝜆𝑈 ||𝐔𝑢 ||2 + 𝜆𝑋 ||𝐗𝑖 ||2 + 𝜆𝑌 ||𝐘𝑗 ||2, (2.51)

where 𝐔𝑢 ∈ ℝ𝑘 is a user latent vector, 𝐗𝑖 ∈ ℝ𝑘 is a previous track latent vector, and 𝐘𝑗 ∈ ℝ𝑘

is a current track latent vector. 𝑘 is the latent dimension. The regularization factors on the
right-hand side are introduced for maintaining the norm of latent variables as close as
possible to zero.

In order to integrate the audio feature matrix 𝐀 in the decomposition process, matrices
𝐗 and 𝐘 are factorized once more in such a way that 𝐗 ≈ 𝚽𝑋 ⋅ 𝐀𝑇 , and 𝐘 ≈ 𝚽𝑌 ⋅ 𝐀𝑇 . The
final loss function applied in the minimization process is expressed by:

min
𝑈 ∗,Φ𝑋 ∗,Φ𝑌 ∗

∑
(𝑢,𝑖,𝑗)

(𝐶𝑢
𝑖,𝑗 − 𝐔𝑇

𝑢𝚽
𝑋𝐀𝑖−𝐔𝑇

𝑢𝚽
𝑌𝐀𝑗 − (𝚽𝑋𝐀𝑖)𝑇 (𝚽𝑌𝐀𝑗))2

+ 𝜆𝑈 ||𝐔𝑢 ||2 + 𝜆Φ𝑋 ||𝚽𝑋 ||2 + 𝜆Φ𝑌 ||𝚽𝑌 ||2.
(2.52)

A summary of the optimization process is reproduced in Algorithm 1.

48

2 | BACKGROUND

Algorithm 1: Algorithm for Adaptive Linear Mapping Model (ALMM) (repro-
duced from Chou et al., 2016 with few modifications).

Data: confidence matrix 𝐶 , audio features 𝐴, number of interactions 𝑀
1

2 Initialize 𝐗 and 𝐘 ;
3 repeat
4 for 𝑢 ∈ 𝑁𝑢 do
5 Update 𝐔𝑢
6 end
7 for 𝑖 ∈ 𝑁𝑠 do
8 Update 𝐗𝑖
9 end

10 𝚽𝑋 ← 𝐗𝐀𝑇 (𝐀𝐀𝑇 + 𝜆𝑥𝚽𝑋)−1;
11 𝐗 ← 𝚽𝑋𝐀 ;
12 for 𝑗 ∈ 𝑁𝑠 do
13 Update 𝐘𝑗
14 end
15 𝚽𝑌 ← 𝐘𝐀𝑇 (𝐀𝐀𝑇 + 𝜆𝑥𝚽𝑌)−1;
16 𝐘 ← 𝚽𝑌𝐀 ;
17 until Convergence;
18 return 𝐔𝑢, 𝚽𝑋 , 𝚽𝑌

2.5.3 Stream-Based

DJ-MC

DJ-MC (Liebman et al., 2015) is an audio-based framework designed for recommending
song sequences to users in a personalized fashion, that is, taking into consideration the
preference of users for audio features associated with tracks listened previously. The
framework assumes users as having preferences not just for tracks with certain audio
characteristics, but also for certain transitions between those audio characteristics. DJ-MC
is presented as a reinforcement learning strategy, it allows updates to its model after each
user feedback, and it delivers suggestions in the format of track sets, or playlists.

A total of 34 audio descriptors are extracted from the available tracks, from pitch
dominance to variance in timbre. The extracted audio descriptors are real-valued time series
and are converted to binary vectors according to a 10-percentile quantization process8.
The final feature vector calculated for track 𝑎, denoted as 𝜃𝑠(𝑎), has dimensions #𝑏𝑖𝑛𝑠 ×
#𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 10 × 34, consisting of 34 number 1’s located in coordinates corresponding
to the bins track 𝑎 populates for each descriptor.

An audio transition feature is modelled, but not yet calculated, in a similar fashion, but
considering a potential transition between two feature vectors. A transition from track
𝑎𝑖 to track 𝑎𝑗 , denoted as 𝜃𝑡(𝑎𝑖 , 𝑎𝑗), is obtained in such a way that one transition matrix
(#𝑏𝑖𝑛𝑠 × #𝑏𝑖𝑛𝑠) is calculated for each descriptor. The final feature is represented as a tensor

8 The reader might want to read the original text for more details (Liebman et al., 2015)

2.5 | AUDIO-BASED MUSIC RECOMMENDATION

49

Algorithm 2: Algorithm for updating the DJ-MC recommendation method
(reproduced from Liebman et al., 2015 with few modifications).

Data: set 𝐴 of all tracks, rounds of recommendation 𝐾
1

2 for 𝑖 ∈ {1,… , 𝐾} do
3 recommend track 𝑎𝑖 and obtain reward 𝑟𝑖 ;
4 let 𝑟 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒({𝑟1,… , 𝑟𝑖−1}) ;
5 𝑟𝑖𝑛𝑐𝑟 = log(𝑟𝑖/𝑟) ;
6 𝑤𝑠 = 𝑅𝑠 (𝑎𝑖)

𝑅𝑠 (𝑎𝑖)+𝑅𝑡 (𝑎𝑖−1,𝑎𝑖)
;

7 𝑤𝑡 = 𝑅𝑡 (𝑎𝑖−1,𝑎𝑖)
𝑅𝑠 (𝑎𝑖)+𝑅𝑡 (𝑎𝑖−1,𝑎𝑖)

;
8 𝜙𝑠 = 𝑖

𝑖+1 ⋅ 𝜙𝑠 +
𝑖

𝑖+1 ⋅ 𝜃𝑠 ⋅ 𝑤𝑠 ⋅ 𝑟𝑖𝑛𝑐𝑟 ;
9 𝜙𝑡 = 𝑖

𝑖+1 ⋅ 𝜙𝑡 +
𝑖

𝑖+1 ⋅ 𝜃𝑡 ⋅ 𝑤𝑡 ⋅ 𝑟𝑖𝑛𝑐𝑟 ;
10 normalize 𝜙𝑠 and 𝜙𝑡 for each descriptor independently ;
11 end

with dimensions #𝑏𝑖𝑛𝑠 × #𝑏𝑖𝑛𝑠 × #𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 = 10 × 10 × 34, consisting of 34 number 1’s
indicating the transitions observed for each descriptor.

Users are assumed as having preferences for audio features and preferences for au-
dio feature transitions denoted, respectively, as 𝜙𝑠 and 𝜙𝑡 . It is also assumed that those
preferences can be estimated from recommendation rounds, in which users are presented
with tracks, and have the options to like or dislike them. The act of liking or disliking is
considered as a reward 𝑅(𝑠, 𝑎) associated with the action of suggesting one track 𝑎 ∈ 𝐴,
after listening to track 𝑠 ∈ 𝑆.

The reward obtained from suggesting track 𝑎 when the user has finished listening to
track 𝑠 is factorized as a combination of two factors: a preference for audio features, and a
preference for audio feature transitions:

𝑅(𝑠, 𝑎) = 𝑅𝑠(𝑎) + 𝑅𝑡(𝑠, 𝑎). (2.53)

The affinity of user 𝑢 for track 𝑎 is given by 𝑅𝑠(𝑎) = 𝜙𝑠(𝑢) ⋅ 𝜃𝑠(𝑎), and the affinity of the
same user for this audio transition is calculated as 𝑅𝑡(𝑠, 𝑎) = 𝜙𝑡(𝑢) ⋅ 𝜃𝑡(𝑠, 𝑎). The higher
the affinity user 𝑢 has for audio feature 𝜃𝑠(𝑎) and for audio transition feature 𝜃𝑡(𝑠, 𝑎), the
higher is the resulting reward 𝑅(𝑠, 𝑎) obtained from this specific suggestion.

The method supports online updates, performed after each recommendation round,
which consists of updating variables 𝜙𝑠 and 𝜙𝑡 . The details of how these variables are
updated are shown in Algorithm 2. And finally, the next track is recommended according to
a strategy that selects the most suitable playlist among a set of pseudo-random generated
playlists. In other words, given the desired size 𝑀 of a playlist, 𝑁 pseudo-random playlists
are generated and the one that suits better the user preference is selected among those
𝑁 .

DJ-MC is considered the main method to be used in the experiments method due to
the fact that it is audio-based, it can be adapted to the task of next-track recommendation
in an ongoing listening session, and it supports big amounts of tracks.

51

Chapter 3

Methodology

In this chapter, we present several novel music recommender methods that were
designed with the aim of mitigating the cold-start issue, and which use exclusively audio
features as input. The methods are presented according to the three recommendation
categories considered in this text: Collaborative Filtering, Sequence-Aware or Stream-Based
methods.

3.1 Collaborative Filtering
The cold-start problem refers to the inclusion of new items within a recommender

system, for which there exists no corresponding listening data. In the specific case of a
collaborative music recommender, a new track corresponds to an empty column in the
rating matrix, and an auxiliary method is needed in order to integrate this new track in
the current recommendation algorithm. We consider that this auxiliary method has access
to the audio features associated with all tracks, and is trained with past listening data in
order to estimate user/item interactions from audio features. Once trained, this auxiliary
method is supposed to predict, from the audio data of a new track, users that will most
likely interact with this track.

The methods proposed here assume a latent factor structure1, and they operate accord-
ing to two strategies: in the two-step strategy, a model is trained to learn the embeddings
encoded by a pretrained collaborative recommender, while in the one-step strategy, a model
is trained to directly estimate user/track interaction data in an end-to-end fashion. Both
strategies apply audio features to predict listening profiles.

In the sequel, we formalize the cold-start problem and present the details of the pro-
posed methods, which will be subjected to an experimental evaluation in Chapter 4.

1 By latent factor structure we assume models that are built according to an encoder-decoder architecture.
The intermediate, or encoded, representation of the input data is referred to as embedding or latent vari-
ables.

52

3 | METHODOLOGY

3.1.1 Problem Definition

Let 𝑢 ∈ 𝑈 be a set of users and let 𝑠 ∈ 𝑆 be a set of tracks. Matrix 𝐑 ∈ ℝ|𝑆|×|𝑈 | is a
rating matrix2, where 𝑟𝑖𝑗 is the rating given to track 𝑠𝑖 by user 𝑢𝑗 . Let 𝑅𝑖 be the 𝑖-th row of
the matrix 𝐑, which corresponds to a binary listening profile associated with track 𝑠𝑖 . A
track listening profile contains 1 at the indexes of users who listened to that track, and 0
otherwise.

Let 𝑍𝑘 ∈ ℝ𝑀 be the embedding associated with a track listening profile 𝑅𝑘 , and let
𝑓𝜃 (⋅) be an encoder function 𝑓 ∶ ℝ|𝑈 | ↦ ℝ𝑀 that maps track listening profiles to their
corresponding embeddings 𝑓𝜃 (𝑅𝑘) = 𝑍𝑘 , using 𝜃 as parameters for the encoder/decoder. Let
𝑔𝜃 (⋅) be the corresponding decoder function 𝑔 ∶ ℝ𝑀 ↦ ℝ|𝑈 | that maps embeddings back
to their corresponding listening profiles 𝑔𝜃 (𝑍𝑘) = �̂�𝑘 ≈ 𝑅𝑘 . Please observe that 𝑔𝜃 is usually
not the inverse of 𝑓𝜃 , but we expect the training process to minimize the encoder/decoder
error, so that 𝑔𝜃 (𝑓𝜃 (𝑅)) ≈ 𝑅.

Let 𝐴𝑘 ∈ ℝ𝑃 be an audio feature associated with track 𝑠𝑘 , and let 𝑍 ′
𝑘 ∈ ℝ𝑀 be an

embedding estimated from 𝐴𝑘 . Let ℎ𝜙 ∶ ℝ𝑃 ↦ ℝ𝑀 be an estimation function that maps
audio features to their estimated embeddings ℎ𝜙(𝐴𝑘) = 𝑍 ′

𝑘 . Our aim is to adjust parameters
𝜃 and 𝜙 in such a way that the approximation 𝑔𝜃 (ℎ𝜙(𝐴)) ≈ 𝑅 is as accurate as possible. The
set of users that will most likely interact with a new track can then be estimated from its
corresponding audio feature.

3.1.2 Audio-Based Convolutional Variational Autoencoder
Recommender

The Audio-Based Convolutional Variational Autoencoder Recommender (ACVAE) is a
novel two-step model composed by a VAE (see Section 2.3.2) and a CNN (see Section 2.3.3)
network. The VAE is applied in the encoding/decoding process associated with track listen-
ing profiles, and the CNN is applied in the process of estimating audio embeddings.

The training process consists of three stages, as illustrated in Figure 3.1. In the first
stage, named VAE Calibration, a VAE is presented with a known track listening profile and
is calibrated in order to reproduce an estimated version of this profile in the output. The
calibration process corresponds to a joint calibration of an encoder VAE_Enc and a decoder
VAE_Dec. In the second stage, named Audio Embedding Pretraining, a convolutional neural
network is pretrained for mapping audio features to audio embeddings that match the
embeddings estimated in the previous stage by the encoder VAE_Enc. In the third stage,
named Profile Prediction, the pretrained CNN is attached to the calibrated decoder and is
submitted to a new training round, in order to improve the predictions of track listening
profiles. The three stages are described in the sequel.

1. VAE Calibration: First, a VAE is submitted to a conventional CF training procedure,
in which its Encoder and Decoder parameters are adjusted for estimating ratings
�̂� ≈ 𝐑 (the process is illustrated in step number 1 of Figure 3.1). Functions 𝑓𝜃 (⋅) and

2 The rating matrix is presented having tracks as rows and users as columns, differently from how it is
usually presented (as in the case of Section 2.4.1). The idea is to simplify the notation for track listening
profiles, which is the focus of this section.

3.1 | COLLABORATIVE FILTERING

53

1

3

2

~

VAE_Enc VAE_Dec

VAE_Enc

CNN

CNN VAE_Dec

VAE_Enc

μ

σ

R R̂

μ

σ

μ

σ

R

R

R̂A

A

Z'

Z'

E

E'

Z

~

Figure 3.1: Audio-Based Convolutional Variational Autoencoder Recommender (ACVAE) is a method
for mitigating cold-start in music recommendation systems. The green colour indicates networks that
are being adjusted in each specific stage, and the black colour indicates networks that are kept fixed.
In stage (1) a VAE is submitted to a conventional CF training procedure for adjusting encoder and
decoder weights in order to approximate user/track interaction data. The embeddings 𝐙 are modeled
as Gaussian distributions (𝝁,𝝈) and samples 𝐄 are obtained from these distributions. In stage (2)
a CNN is trained to generate audio embeddings 𝐙′ that match the mean values of the embeddings
generated in the previous step. In stage (3) the same CNN is fine-tuned according to the trained decoder,
in order to approximate the user/track interaction training data used in stage 1. The new samples 𝐄′
are obtained from the new embeddings modeled as (𝐙′,𝝈). Once trained, the CNN can predict
user/track interactions given the audio features associated with a new track.

𝑔𝜃 (⋅) are implemented as MLPs, and the embeddings 𝐙 are assumed to be normal
distributions (𝝁,𝝈). For the sake of clarity, given the input 𝑅, the values estimated

54

3 | METHODOLOGY

for 𝜇 are expressed as 𝜇𝜃 (𝑅) and the values estimated for 𝜎 are expressed as 𝜎𝜃 (𝑅).

Samples 𝐄 ∼ 𝐙 are taken from the estimated embedding space and are propagated to
the decoder. But a sampling operation is not differentiable, thus not allowing the
optimization through backpropagation. In order to make the gradient differentiable
with respect to 𝜃 (Kingma and Welling, 2014) proposed the reparameterization
trick, in which

𝐄 = 𝜇𝜃 (𝐑) + 𝜎 2
𝜃 (𝐑) ⊙ 𝝐, (3.1)

where 𝝐 ∼ (0, 𝐈) and ⊙ is an element-wise multiplication. 𝐄 is submitted to 𝑔𝜃 (⋅)
for estimating the original profiles 𝐑, i.e. 𝑔𝜃 (𝐄) ≈ �̂�.

The loss function considered for adjusting 𝜃 parameters is given by (see Section 2.4.1
and Section 2.3.2 for more information):

𝜃 (𝑅𝑘) ≃ −
|𝑆|

∑
𝑖=1

𝑅𝑖
𝑘 log �̂�

𝑖
𝑘 −

1
2

𝐽

∑
𝑗=1

(1 + log((𝜎 𝑗
𝜃 (𝑅𝑘))2) − (𝜇𝑗𝜃 (𝑅𝑘))2 − (𝜎 𝑗

𝜃 (𝑅𝑘))2), (3.2)

where 𝑅𝑘 ≈ 𝑔𝜃 (𝐸𝑘) and 𝐽 is the dimensionality of 𝐸𝑘 . 𝑅𝑖 and �̂�𝑖 are the i-th elements
of these vectors, and 𝜇𝑗 and 𝜎 𝑗 are the j-th element of these vectors.

2. Audio Embedding Pre-Training: Second, ℎ𝜙(⋅) is implemented as a CNN, and its pa-
rameters are adjusted for generating audio embeddings 𝐙′ that match the mean
values 𝜇𝜃 (𝐑) of the previously generated embeddings (the process is illustrated in
step number 2 of Figure 3.1). The aim of the optimization process is to adjust the
parameters 𝜙 in order to minimize the Mean Square Error (MSE) between both
embeddings:

𝜙(𝜇𝜃 (𝑅), 𝑍 ′) =
𝐽

∑
𝑗=1

(𝜇𝑗𝜃 (𝑅) − 𝑍
′𝑗)2 (3.3)

where 𝑍 ′ ≈ ℎ𝜙(𝐴) and 𝐽 is the dimensionality of 𝑍 ′. The parameters 𝜃 were adjusted
in the previous step, and are now maintained fixed.

3. Profile Prediction: Finally, parameters 𝜙 are fine-tuned to minimize a loss function
that is similar to the one from step 1, except that now the 𝜇𝜃 (𝐑) term is substituted
by the pre-trained 𝐙′. The new loss function is given by:

𝜙(𝐴𝑘 , 𝑅𝑘) ≃ −
|𝑆|

∑
𝑖=1

𝑅𝑖
𝑘 log �̂�

𝑖
𝑘 −

1
2

𝐽

∑
𝑗=1

(1 + log((𝜎 𝑗
𝜃 (𝑅𝑘))2) − (𝑍 ′𝑗

𝑘)
2 − (𝜎 𝑗

𝜃 (𝑅𝑘))2), (3.4)

where 𝑅𝑘 ≈ 𝑔𝜃 (𝐸′
𝑘), 𝑍 ′

𝑘 ≈ ℎ𝜙(𝐴𝑘), 𝐸′
𝑘 = 𝑍 ′

𝑘 + 𝜎 2
𝜃 (𝑅𝑘) ⊙ 𝜖, and 𝐽 is the dimensionality of

𝐸′
𝑘 . 𝑅𝑖 and �̂�𝑖 are, again, the i-th element of these vectors, and 𝜇𝑗 , 𝜎 𝑗 and 𝑍 ′𝑗 are the

j-th element of these vectors.

After the three steps are finished, the calibrated Encoder and samples 𝐄 are not needed
anymore. New track listening profiles can be estimated directly from audio features in
such a way that 𝑔𝜃 (ℎ𝜙(𝐴)) = �̂� ≈ 𝑅.

3.1 | COLLABORATIVE FILTERING

55

A CNN DECODER R

μ

σ

E

Z
^

Figure 3.2: Audio-Based Convolutional Regularized Embedding Recommender (ACRE).

3.1.3 Audio-Based Convolutional Regularized Embedding
Recommender

Audio-Based Convolutional Regularized Embedding Recommender (ACRE) is a one-step
model designed for predicting listening profiles associated with tracks, given its corre-
sponding audio features. The embeddings are modelled as Gaussian distributions, which
have the effect of regularization and which allow the model to be trained in an end-to-end
fashion.

ℎ𝜙(⋅) is implemented as a CNN, and 𝑔𝜃 (⋅) is implemented as an MLP network. The
embeddings 𝐙 are, again, modeled as Gaussian distributions (𝝁,𝝈), but they are now
estimated from audio features 𝐀. This time, given an audio feature 𝐴, mean values are
expressed as 𝜇𝜙(𝐴) and standard deviation values are expressed as 𝜎𝜙(𝐴).

The variable 𝐄 is obtained by taking samples from 𝐙, according to the reparameteriza-
tion trick (Kingma and Welling, 2014), and is expressed as:

𝐄 = 𝜇𝜙(𝐀) + 𝜎 2
𝜙 (𝐀) ⊙ 𝝐. (3.5)

Parameters 𝜃 and 𝜙 are jointly optimized, by minimizing the following loss function:

𝜃,𝜙(𝐴𝑘 , 𝑅𝑘) ≃ −
|𝑆|

∑
𝑖=1

𝑅𝑖
𝑘 log �̂�

𝑖
𝑘 −

1
2

𝐽

∑
𝑗=1

(1 + log((𝜎 𝑗
𝜙(𝐴𝑘))2) − (𝜇𝑗𝜙(𝐴𝑘))2 − (𝜎 𝑗

𝜙(𝐴𝑘))2), (3.6)

where 𝑅𝑘 ≈ 𝑔𝜃 (𝐸𝑘), 𝐸𝑘 = 𝜇𝜙(𝐴𝑘) + 𝜎 2
𝜙 (𝐴𝑘) ⊙ 𝜖, and 𝐽 is the dimensionality of 𝐸𝑘 . 𝑅𝑖 and

�̂�𝑖 are the i-th element of these vectors, and 𝜇𝑗 , 𝜎 𝑗 and 𝑍 𝑗 are the j-th element of these
vectors.

Once trained, the ACRE model might be applied for estimating track listening profiles
given their corresponding audio features, in such a way that 𝑔𝜃 (𝜇𝜙(𝐴)) = �̂� ≈ 𝑅.

3.1.4 Evaluation Metrics
In order to evaluate the performance of these methods, a dataset containing information

on which users interacted with a set of tracks is needed, as well as audio features associated
with these tracks. For each track 𝑠 ∈ 𝑆, there is a corresponding listening profile 𝑅, and
a corresponding audio feature 𝐴. The set of tracks is separated into train/validation/test

56

3 | METHODOLOGY

slices, the first for training the model, the second for monitoring the training and the third
for testing the model’s overall performance.

The performance is evaluated by feeding the model with audio features associated with
the test tracks, and comparing their estimated listening profiles �̂� with the original ones
𝑅. For each audio feature presented in the input, the model attributes scores to each user
𝑢 ∈ 𝑈 for indicating their willingness in interacting with that specific track. The scores
are ordered for positioning the most likely users in the first positions, and the ordered list
is truncated at position 𝐾 . The top-K most likely users are compared with the original
profile for measuring the performance.

Let {𝑢1, 𝑢2,… , 𝑢𝐾} be the ordered list of users estimated by the model, truncated at 𝐾 ,
let 𝐴𝑖 be the audio feature associated with track 𝑠𝑖 , and let 𝑅𝑖 be its corresponding listening
profile. The truncated version of Recall and Precision was used for measuring the quality
of the results, and they are explained in the sequel.

Precision at K (PREC@K) measures the relative number of correct predictions in the
first 𝐾 ranked suggestions:

𝑃𝑅𝐸𝐶@𝐾 (𝐴𝑖) =
1
𝐾

𝐾

∑
𝑘=1

𝕀[𝑢𝑘 ∈ 𝑅𝑖], (3.7)

where 𝕀 is an indicator function. This can be interpreted as the percentage of users retrieved
by the model, up to position K in the ranked list, that actually listened to the track.

Recall at K (REC@K) measures the relative number of correct predictions with respect
to the complete listening profile:

𝑅𝐸𝐶@𝐾 (𝐴𝑖) =
1
|𝑅𝑖 |

𝐾

∑
𝑘=1

𝕀[𝑢𝑘 ∈ 𝑅𝑖]. (3.8)

It can be interpreted as the percentage of the users who listened to the track that was
retrieved by the model up to position K in the ordered list.

3.2 Sequence-Aware

SA recommender systems assume a temporal dependency among consecutive tracks
listened to by users within listening sessions, and recommendations of next tracks are
provided based on the sequence of previously listened tracks. Relying solely on previously
listened tracks for providing recommendations alleviates the problem of user cold-start:
users who have never listened to any track, but who can start receiving recommendations
by simply selecting one first track. But the problem of track cold-start, referring to the
addition of new tracks into an active recommender system, is still an issue, and it can only
be addressed by strategies that aggregate additional information about tracks, e.g. their
audio content.

We propose new SA music recommendation methods that were designed to suggest

3.2 | SEQUENCE-AWARE

57

the next track to a user based on audio features3 associated with the tracks listened to
previously within a listening session. A first model, named Audio-Based GRU4REC, was
designed to suggest the next track given the audio feature associated with the current
track. This method is audio-based but does not address the track cold-start issue, and it is
considered as a baseline in the experimental evaluation. A second model, named Sequential
Audio-Based Autoencoder for Recommendation was designed to predict the audio feature
associated with the next track given the audio feature associated with the track listened to
previously. Retrieving a track by its corresponding audio feature can, however, be time-
consuming, and a hash scheme is proposed, named Multi-Level Audio Feature Inverted
Index. The hash scheme allows efficient retrieval of a track given its audio feature by
sorting the elements of an audio feature by relevance and using the top-K most relevant
elements for searching for their corresponding track in an inverted index structure.

3.2.1 Problem Definition

A listening session of size 𝑇 is denoted as {𝑠(1), 𝑠(2),… , 𝑠(𝑇)}, where 𝑠(𝑡) ∈ 𝑆 is the
track observed at instant 𝑡 , with 0 < 𝑡 ≤ 𝑇 . A temporal dependency among consecutive
tracks is assumed according to the conditional probabilities 𝑝(𝑠(𝑡)|𝑠(𝑡−1),… , 𝑠(𝑡−𝑚)), taking
the previous 𝑚 tracks into consideration. A temporal dependency between audio features
is also assumed, corresponding to the probabilities 𝑝(𝐴(𝑡)|𝐴(𝑡−1),… , 𝐴(𝑡−𝑚)), where 𝐴(𝑡) is the
audio feature associated with track 𝑠(𝑡) observed at instant 𝑡 . And finally, we assume also
a dependency between the current track and the previous audio features, expressed as
𝑝(𝑠(𝑡)|𝐴(𝑡−1),… , 𝐴(𝑡−𝑚)).

Our aim is to train a model that is able to predict the upcoming track 𝑠(𝑡+1) given the
audio feature associated with the current track 𝐴(𝑡). In other words, a model that estimates
𝑝(𝑠(𝑡+1)|𝐴(𝑡)).

3.2.2 Audio-Based GRU4REC
Audio-Based GRU4REC (AGRU4REC) was inspired in GRU4REC (Hidasi et al., 2016),

originally proposed as a rating-based model. AGRU4REC suggests a next track within a
listening session given an audio feature associated with the current track.

The model consists of three stages described as follows. First, a function 𝑓 (⋅) maps an
audio feature 𝐴(𝑡) to an audio embedding 𝐷(𝑡), in such a way that 𝑓 (𝐴(𝑡)) = 𝐷(𝑡). Second,
another embedding is calculated by a function 𝑔(⋅) with memory, i.e. a function that is
able to store its parameters so they can be used in the next round of recommendation.
Let 𝑔(⋅) be the function that maps the audio embedding to the new embedding, named
sequence-aware embedding 𝐸(𝑡), and let 𝐻 (𝑡) be the current state of function 𝑔(⋅). At instant
𝑡 , a sequence-aware embedding is calculated considering the state stored at instant 𝑡 − 1,
in such a way that 𝑔(𝐷(𝑡), 𝐻 (𝑡−1)) = 𝐸(𝑡). When a listening session ends, the state 𝐻 is reset,
assuming that listening sessions are independent of each other. Finally, a function 𝑞(⋅)
maps the session-aware embedding to the scores corresponding to the next track in the
session 𝑌 (𝑡+1), in such a way that 𝑞(𝐸(𝑡)) = 𝑌 (𝑡+1). The output 𝑌 (𝑡+1) has size |𝑆|, and contains

3 These methods presuppose a choice for a specific audio feature representation for the tracks, which is
simply referred to in the sequel as “the audio feature”.

58

3 | METHODOLOGY

GRU

Y(t+1)

A(t)
CNN

D(t)
E(t)

H(t-1) MLP

Figure 3.3: Audio-Based GRU4REC (AGRU4REC), inspired in GRU4REC Hidasi et al., 2016.

the scores attributed to each track 𝑠 ∈ 𝑆. The highest the score attributed to a track, the
higher the probability that this track is the next one in a current listening session.

Function 𝑓 (⋅) is implemented with a CNN, function 𝑔(⋅) is implemented with a GRU
network (see Section 2.3.4), and function 𝑞(⋅) is implemented with an MLP. The hidden
state of the GRU network 𝐻 is initialized containing zeros, and the training process is
summarized in the sequel.

The audio embedding 𝐷(𝑡) is first obtained from its corresponding audio feature 𝐴(𝑡)

(Left-hand side of Figure 3.3) and it propagates to the GRU network. The reset (𝑅(𝑡)) and
update (𝑍 (𝑡)) gates of the GRU network are the first parameters to be adjusted, respectively,
with equations:

𝑅(𝑡) = 𝜎 (𝐖𝑟𝑠𝐷(𝑡) +𝐖𝑟ℎ𝐻 (𝑡−1) + 𝐵𝑟) (3.9)

𝑍 (𝑡) = 𝜎 (𝐖𝑧𝑠𝐷(𝑡) +𝐖𝑧ℎ𝐻 (𝑡−1) + 𝐵𝑧) (3.10)

where 𝐖𝑥𝑦 are weight matrices for mapping 𝑥 to 𝑦 , to be adjusted during the training, and
𝐵𝑟 and 𝐵𝑧 are biases. Sigmoid is applied to transform the input values to the range (0,1).
When presenting the audio embedding corresponding to the first track of each listening
session, 𝐻 (𝑡−1) is set equal to zero for ensuring independency between sessions, and the
second terms of both equations are not considered in the calculation of 𝑅(𝑡) and 𝑍 (𝑡).

A candidate hidden state 𝑁 (𝑡) is calculated, incorporating the reset gate:

𝑁 (𝑡) = 𝑡𝑎𝑛ℎ(𝐖𝑛𝑠𝐷(𝑡) +𝐖𝑛ℎ(𝑅(𝑡) ⊙ 𝐻 (𝑡−1)) + 𝐵𝑛)) (3.11)

where ⊙ is the Hadamard (elementwise) product and 𝑡𝑎𝑛ℎ is applied to ensure that the
values remain in the interval (-1,1). For now, when entries in the reset gate are set to
1, then the candidate’s new state reminds the hidden state calculated for standard RNN
(Equation 2.31). When the reset gate is set equal to 0 the architecture reminds of a standard
MLP having 𝐷(𝑡) in the input.

The final hidden state incorporates the update gate, and is calculated with:

𝐻 (𝑡) = (1 − 𝑍 (𝑡)) ⊙ 𝑁 (𝑡) + 𝑍 (𝑡) ⊙ 𝐻 (𝑡−1), (3.12)

where 𝐻 (𝑡−1) is the hidden state at time 𝑡 − 1. The update gate 𝑍 (𝑡) determines to which
extent the new hidden state 𝐻 (𝑡) is inherited from the previous hidden state 𝐻 (𝑡−1), and
how much of the new candidate state is considered.

The session-aware embedding 𝐸(𝑡) is a copy of 𝐻 (𝑡), and 𝑌 (𝑡+1) is obtained from 𝐸(𝑡),
considering that 𝑌 (𝑡+1) = (𝑞(𝐸(𝑡))) (Right hand side of Figure 3.3). The scores attributed to

3.2 | SEQUENCE-AWARE

59

 Ak

sk

6

0

11

2

8

10

{1: {7 : sk}}

{2: {1 : sk}}

{3: {12: sk}}

{4: {3 : sk}}

{5: {9 : sk}}

{6: {11: sk}}

 MLAII

21

3

 L'k

Figure 3.4: Multi-Level Audio Inverted Index (MLAII) structure for N=6.

every track are sorted for positioning the most relevant tracks in the first positions.

The model is trained for minimizing the TOP1 loss function (first presented in Sec-
tion 2.4.2), calculated as:

𝐿𝑜𝑠𝑠 =
1
|𝑆|

|𝑆|

∑
𝑗=1

𝜎 (�̂�𝑗 − �̂�𝑖) + 𝜎 (�̂�2
𝑗), (3.13)

where �̂�𝑖 is the score given to the right track 𝑠(𝑡+1), and �̂�𝑗 is the score given to any other
track observed within a mini-batch (negative samples). An extra regularization term forces
negative samples to have scores close to zero.

3.2.3 Multi-Level Audio Feature Inverted-Index

Multi-Level Audio Feature Inverted Index (MLAII) is an efficient structure implemented
for retrieving tracks given their corresponding audio features. The MLAII structure assumes
audio features associated with tracks in the format of numerical vectors, and it is composed
of indexing and retrieval modules. During the indexing phase, the most relevant values of
audio features are stored in a inverted-index structure, ordered by relevance. In the retrieval
phase, the most relevant values of an audio feature are used as a query for obtaining the
number of the track with which that audio feature is associated. The size of the query can
be reduced for increasing efficiency, and the accuracy of the retrieval task will depend on
the selected audio feature.

𝐴𝑘 ∈ ℝ𝐶 is an audio feature associated with track 𝑠𝑘 , and 𝐴𝑙
𝑘 refers to the l-th value

of 𝐴𝑘 . A function 𝐴𝑟𝑔𝑆𝑜𝑟𝑡(⋅) is applicable to 𝐴, and retrieves a vector 𝐿 containing the
indexes of 𝐴 ordered by relevance, in such a way that 𝐴𝐿𝑝 > 𝐴𝐿𝑞 , ∀𝑝 < 𝑞. And lastly, we
assume a key/value structure, represented here as {𝑘𝑒𝑦 ∶ 𝑣𝑎𝑙𝑢𝑒}, within which values
can be indexed by a respective numerical key, and from which the same values can be
efficiently retrieved by using their key as a query.

We discuss the indexing and retrieval modules in detail, considering the task of retriev-
ing the right track 𝑠𝑘 by submitting its corresponding audio feature 𝐴𝑘 .

60

3 | METHODOLOGY

Indexing

1. In step number 1 of Figure 3.4, an audio feature 𝐴𝑘 of size 𝐶 is obtained from track
𝑠𝑘 . There are no restrictions regarding the sparsity or the size of the audio feature,
as long as it can be represented as a numerical vector 𝐴𝑘 ∈ ℝ𝐶 .

2. In step 2, function 𝐴𝑟𝑔𝑆𝑜𝑟𝑡 is applied to the audio feature for obtaining its indexes
ordered by relevance: 𝐿𝑘 = 𝐴𝑟𝑔𝑆𝑜𝑟𝑡(𝐴𝑘). The vector 𝐿𝑘 has the same size as 𝐴𝑘 , and a
truncated version 𝐿′𝑘 is obtained by selecting its first 𝑁 values. The truncated version
is represented as 𝐿′𝑘 = {𝐿1𝑘 , 𝐿2𝑘 ,… , 𝐿𝑁𝑘 }. In Figure 3.4, 𝑁 was set equal to 6.

3. In step 3, each value of 𝐿′𝑘 is stored in two multi-level inverted-index structures,
corresponding to two key/value structures. In a first structure, the value 𝐿′𝑖

𝑘 is
associated with track 𝑠𝑘 , in such a way that {𝐿′𝑖

𝑘 ∶ 𝑠𝑘}, for 1 < 𝑖 < 𝑁 (The inner
structure in the right hand side of Figure 3.4). In a second structure, the first structure
is associated with index 𝑖 of 𝐿′𝑖

𝑘 , in such a way that {𝑖 ∶ {𝐿′𝑖𝑘 ∶ 𝑠𝑘}} (The outer
structure in the right hand side of Figure 3.4).

Retrieval

Retrieving songs from the MLAII structure repeats steps 1 and 2 described in the
indexing phase, and once the 𝐿′𝑘 vector is available, the multi-level inverted index can be
consulted for obtaining a set of candidate tracks that is supposed to contain 𝑠𝑘 .

Consulting MLAII with 𝐿′1
𝑘 will retrieve all tracks that were indexed previously in

the structure, whose most relevant audio feature coincides with the most relevant audio
feature of 𝐿′𝑘 . Consulting for 𝐿′2

𝑘 will retrieve all tracks whose second most relevant audio
feature coincides with the second most relevant audio feature of 𝐿′𝑘 , and this process
repeats N times.

The resulting set contains all tracks that coincide at least once with 𝐿′𝑘 in the same
position 𝑛, that is, 𝐿′𝑛

𝑘 = 𝐿′𝑛
𝑗 , ∀𝑗 ∈ 𝑆 ⧵ 𝑠𝑘 . This set contains repetitions, meaning that tracks

might coincide with 𝐿′𝑘 more than once. The number of occurrences of track 𝑠𝑗 in the
resulting set given 𝐴𝑘 can be calculated as:

𝐶𝑜𝑢𝑛𝑡(𝑠𝑗 , 𝐴𝑘) =
𝑁

∑
𝑛=1

𝕀[𝐿
′𝑛
𝑘 = 𝐿

′𝑛
𝑗], (3.14)

where 𝕀 is an indicator function, that returns 1 when the condition is true, and 0 otherwise.
𝐿′𝑘 corresponds to the top-N most relevant values of 𝐴𝑘 , ordered by relevance. Tracks are
ordered by the number of occurrences in the resulting set in an output list, for positioning
the highest number of coincidences in the first positions of the list.

The MLAII structure retrieves a track given its top-N most relevant audio feature values,
making all other values irrelevant for the retrieval task. Moreover, the order in which
the top-N most relevant values are presented is the only information that is important,
making the values themselves also irrelevant to the task.

3.2 | SEQUENCE-AWARE

61

3.2.4 Sequential Audio-Based Top-N Autoencoder
Recommender

Sequential Audio-Based Top-N Autoencoder Recommender (SATA-REC) is a method de-
signed for predicting the next track within a listening session given the audio feature
associated with the current track. Differently from AGRU4REC, SATA-REC is able to
incorporate new tracks to its model without retraining, thus mitigating the cold-start
problem.

The SATA-REC reproduces the first two stages presented for AGRU4REC, with a key
difference in the third stage: instead of estimating the next track from a sequence-aware
embedding, the model now estimates a simplified version of the audio feature associated
with the next track. This new audio feature is submitted to a MLAII structure, which finally
retrieves the most likely candidate for the next track. The audio feature used as input for
SATA-REC does not have to be necessarily the same audio feature estimated from the
sequence-aware embedding, e.g. the model might be trained with Mel-spectrograms, and
be adjusted for estimating codeword histograms as auxiliary audio features. The auxiliary
audio feature, however, must be the same one used for indexing the MLAII structure.

The training process of SATA-REC takes into account the fact that the only important
information for the MLAII structure is the order in which the top-N most relevant audio
feature elements are presented, and it estimates a simplified audio feature that is restricted
to N values. The model is optimized according to a loss function expressed as the summation
of N cross-entropy values calculated for each of the top-N values. A weight is given to
each of these cross-entropy values, in such a away that higher weights are given to the
first values, and the weight decreases linearly for emphasizing the higher audio feature
indexes despite of the lower ones.

Let 𝐴(𝑡) be an audio feature associated with the track observed at instant 𝑡 , and let
𝐴(𝑡+1) be an audio feature associated with the track observed at instant 𝑡 + 1, i.e. the next
track. Let 𝐿(𝑡+1) be a vector containing the indexes of 𝐴(𝑡+1) ordered by relevance, calculated
in the same way as in Subsection 3.2.3, and let 𝐿′(𝑡+1) be its reduced version, truncated in
𝑁 .

𝐴′(𝑡+1) denotes a simplified version of 𝐴(𝑡+1), calculated with:

𝐴
′(𝑡+1)(𝑖) =

{
𝐴(𝑡+1)(𝑖), if 𝑖 ∈ 𝐿′(𝑡+1)

0, if 𝑖 ∉ 𝐿′(𝑡+1) , with 1 < 𝑖 ≤ |𝐴|, (3.15)

where 𝐴′(𝑡+1)(𝑖) is the i-th element of 𝐴′(𝑡+1).

The two stages applied for estimating the sequence-aware embeddings (𝐸(𝑡)) in
AGRU4REC are the same ones used here, whose result is expressed in Equation 3.12
(remember that 𝐸(𝑡) is a copy of 𝐻 (𝑡)). In the third stage, 𝐸(𝑡) is multiplied by a weight matrix
𝐌 ∈ ℝ|𝐸|×|𝐴| , for estimating a simplified version of the audio feature associated with the
next track, �̂�′(𝑡+1), in such a way that �̂�′(𝑡+1) = 𝐸(𝑡)𝐌 (right-hand side of Figure 3.5).

62

3 | METHODOLOGY

ŝ(t+1)

Â'(t+1)

MLAII

top-N
argSort

Count

M

GRU

A(t)
CNN

S(t)
E(t)

H(t-1)

RETRIEVAL

Figure 3.5: Sequential Audio-Based Top-N Autoencoder for Recommendation (SATAREC).

The loss function used to optimize the model’s parameters is expressed as:

(𝐴(𝑡+1), �̂�
′(𝑡+1)) = −

𝑁

∑
𝑛=1

𝑤(𝑛)
|𝐴|

∑
𝑗=1

�̂�
′(𝑡+1)(𝑗) log 𝕀[𝐿

′(𝑡+1)(𝑛)](𝑗) (3.16)

where 𝕀[𝑘] is an indicator vector of dimension |𝐴| containing 1 in position 𝑘, and 0 otherwise.
A weight vector is defined as 𝑤(𝑛) = 1/𝑛 for ensuring that higher emphasis is given to the
first 𝑁 positions of 𝐿′(𝑡+1)(𝑛).

Once trained, the model estimates �̂�′(𝑡+1) given an audio feature 𝐴(𝑡), and the MLAII
can be consulted with �̂�′(𝑡+1) for retrieving the best candidate for the next track 𝑠(𝑡+1).

3.2.5 Metrics
In order to evaluate the performance of these methods, a dataset containing listening

sessions is needed, as well as audio features associated with the tracks within these sessions.
Sessions are sorted by timestamp and separated into train/validation/test slices, the first
for training the model, the second for monitoring the training and the third for testing the
model’s performance. The model is trained with events that happened earlier in time, and
is tested with more recent ones, in order to ensure its generalization .

At each prediction round, the probability of each track being the next one in the session
(target) is calculated by the model, given the audio feature associated with the current
track (query). A list containing the probability associated with all tracks is ordered, for
positioning the most likely tracks in the first positions, and it is truncated at position K.
The prediction is considered successful in the case where the truncated list contains the
next track.

Let 𝑠(𝑡) be the current track in a listening session, let 𝑠(𝑡+1) be the next track, and let 𝑃
be a list of tracks returned by the model, ordered by relevance, given audio features 𝐴(𝑡).
Recall and Mean Reciprocal Rank were selected for measuring the performance of the
models, and are explained in the sequel.

3.3 | STREAM-BASED

63

Recall at K (REC@K) measures if the target track is among the top-K predicted val-
ues:

𝑅𝐸𝐶@𝐾 (𝐴(𝑡)) =
𝐾

∑
𝑘=1

𝕀[𝑃 (𝑘) = 𝑠(𝑡+1)], (3.17)

where 𝕀 is an indicator function that returns 1 if the condition is true, and 0 otherwise,
and 𝑃 (𝑘) stands for the k-th element of 𝑃 .

Mean Reciprocal Rank (MRR) is the inverse position of the correct prediction:

𝑀𝑅𝑅@𝐾 (𝐴(𝑡)) =
1

𝑓 (𝑃, 𝑠(𝑡+1), 𝐾)
, (3.18)

where
𝑓 (𝑃, 𝑠, 𝐾) = min{𝑘 ≤ 𝐾 such that 𝑠𝑘 ∈ 𝑃},

i.e., 𝑓 (𝑃, 𝑠, 𝐾) is the rank of the target track within the first 𝐾 recommended tracks of list 𝑆.
If the first 𝐾 tracks of 𝑃 do not include the target track, then 𝑓 (𝑃, 𝑠, 𝐾) = ∞ and its inverse
in the expression of 𝑀𝑅𝑅@𝐾 is 0.

3.3 Stream-Based
Stream-Based recommendation systems assume that users are frequently interacting

with tracks and that the data resulting from these interactions are constantly arriving
in the system as data streams. The systems designed to operate as SB systems need to
take two requirements into consideration: first, they need to incorporate incoming data
as fast as possible, in order to deliver up-to-date suggestions, and second, they need to
incorporate new tracks that were recently added to the recommendation algorithm, not
associated with any previous interaction data, i.e. cold-start.

Previous methods proposed for incorporating incoming data were usually based on
dynamic procedures for updating the recommendation models, in such a way that new
interactions could be assimilated by the model without retraining. This capability allows
the models to not just provide suggestions to users informed by the latest interactions from
other users, but also to adapt their suggestions to sudden changes in listening behaviours,
known as preference shifts.

Allowing dynamic updates to the model’s parameters, however, does not guarantee
that recently added tracks will be eventually suggested to users, and end up incorporated
into the recommendation algorithm. Suggesting a track that was never heard by any
user requires an active attitude from the recommender, of identifying the users that
are potentially willing to interact with that new track, and suggesting it to them. One
possible option for incorporating new tracks dynamically is to design a recommender
that recommends tracks based on their audio content. In case a new track is added to the
system, it could be suggested based on its audio, even if it had not been listened to by any
user previously.

We present a recommendation model named Audio-Based Transition Tensor that allows
dynamic updates to its parameters, and that suggests tracks based on their audio content,

64

3 | METHODOLOGY

thus overcoming the cold-start limitation. The model assumes audio features in the format
of numerical vectors, that can be sorted according to relevance. The sorted version of the
audio features have now their most relevant values in the first positions of the vector, and
the original indexes in which these values were located before are also stored. Lists con-
taining these most relevant indexes are truncated at a specific position, and their truncated
versions are considered as auxiliary audio features. Transitions between consecutive tracks
are mapped to transitions between those auxiliary audio features, and recommendations
for the next tracks within listening sessions are calculated based on transitions that are
more likely to happen, in a Markov Chain fashion. The tracks corresponding to predicted
auxiliary features are finally retrieved from a previously indexed MLAII structure. New
transitions can be incorporated dynamically into the model, based on their corresponding
auxiliary audio features, and new tracks can be added to the MLAII, independently from
the recommendation process.

3.3.1 Problem Definition
The problem is defined similarly as in Sections 3.2.1 and 3.2.3, but with a slightly

different notation. Let 𝐴 ∈ ℝ𝐶 be an audio feature, and let 𝐴𝑙 refer to the l-th value of 𝐴. A
function 𝐴𝑟𝑔𝑆𝑜𝑟𝑡(⋅) is applicable to 𝐴, and retrieves a vector 𝐿′ = 𝐴𝑟𝑔𝑆𝑜𝑟𝑡(𝐴) containing
the indexes of 𝐴 ordered by relevance, in such a way that 𝐴𝐿′𝑝 > 𝐴𝐿′𝑞 , ∀𝑝 < 𝑞. The vector
𝐿′ has the same dimension as 𝐴, and a truncated version 𝐿 is obtained by selecting its
first 𝑁 values, named auxiliary audio feature. The auxiliary audio feature is represented
as 𝐿 = {𝐿′1, 𝐿′2,… , 𝐿′𝑁}.

A listening session of size 𝑇 is denoted as {𝑠(1), 𝑠(2),… , 𝑠(𝑇)}, where 𝑠(𝑡) ∈ 𝑆 is the track
observed at instant 𝑡 , with 0 < 𝑡 ≤ 𝑇 . A temporal dependency between auxiliary audio
features is assumed, expressed as 𝑝(𝐿(𝑡)|𝐿(𝑡−1)), where 𝐿(𝑡) is the auxiliary audio feature
associated with track 𝑠(𝑡) observed at instant 𝑡 . And finally, we assume also a temporal
dependency between the current track and the previous auxiliary audio features, expressed
as 𝑝(𝑠(𝑡)|𝐿(𝑡−1)).

Lastly, we assume a temporal depency between the values of an auxiliary audio feature,
expressed as 𝑝(𝐿(𝑡)𝑘 |𝐿

(𝑡−1)
𝑘) for 0 < 𝑘 ≤ 𝑁 . That said, the upcoming auxiliary audio feature

can be estimated as 𝐿(𝑡+1) = {𝑝(𝐿(𝑡+1)1 |𝐿(𝑡)1), 𝑝(𝐿
(𝑡+1)
2 |𝐿(𝑡)2),… , 𝑝(𝐿(𝑡+1)𝑁 |𝐿(𝑡)𝑁)}.

3.3.2 Audio Transition Tensor Recommender
The Audio Transition Tensor Recommender (ATTREC) is a novel method designed for

predicting an upcoming track within a listening session given the audio feature associated
with the current track. The new method summarizes audio features for obtaining a compact
and non-redundant audio-based representation of tracks, and transition patterns between
the values contained in this new representation are used for estimating the upcoming
tracks.

The method is composed of two modules, a first module is applied for mapping tran-
sitions between auxiliary audio features in such a way that upcoming auxiliary audio
features can be obtained given the current one. A second module is applied for retrieving
tracks given its corresponding auxiliary audio feature. The first module is implemented

3.3 | STREAM-BASED

65

 Audio
Features

 Top N
Argsort

s(t)s(t-1)

7

1

12

3

9

11

11

5

7

3

1

8

...

A(t-1)

A(t)

L(t-1)

L(t)

(a) Transition between two consecutive tracks

N

C

C

...

(b) Audio Transition Tensor

Figure 3.6: Audio-based Transition Tensor Recommendation model (ATTREC).

as multiple transitions matrices, corresponding to each position of the auxiliary audio
feature, named Audio Transition Tensor, and the second module is implemented as an
MLAII structure (see Section 3.2.3). The ATTREC method can be updated dynamically,
allowing its operation in an SB scenario, and the method is audio-based, thus overcoming
the limitation imposed by cold-start.

The process used for training the ATTREC method is illustrated in Figure 3.6 and
explained in the sequel. Audio features 𝐴(𝑡−1) ∈ ℝ𝐶 and 𝐴(𝑡) ∈ ℝ𝐶 , corresponding to each
track/track transition observed within a listening session is first calculated, ordered by
relevance, and truncated at the N-th position for obtaining their respective auxiliary audio
features (𝐶 is set equal to 12 and 𝑁 is set equal to 6 in Figure 3.6). The preceding and
the current auxiliary audio features are denoted, respectively, as 𝐿(𝑡−1) and 𝐿(𝑡). Note that
auxiliary audio features are represented as integer index numbers, differently from audio
features, which are represented as real numbers.

The 𝑁 positions of an auxiliary audio feature are assumed independent from each other,
and the transitions between them are modelled independently. The transitions related to
the most relevant position of an auxiliary audio feature, i.e. 𝐿(𝑡−1)1 /𝐿(𝑡)1 , are modeled as a
Markov Chain (see Section 2.4.2), as illustrated in the right upper corner of Figure 3.6a. In
this example, a transition observed from an audio feature whose most relevant value is
located at position 7, is mapped to an audio feature whose most relevant value is located
in position 11. The process is repeated 𝑁 times, corresponding to each position of the
auxiliary audio feature (and corresponding to each matrix in Figure 3.6a), and it is also
repeated for each transition observed in the dataset. Once trained, ATTREC will have
mapped 𝑁 transition matrices, corresponding to the 𝑁 positions of an auxiliary audio
feature (Figure 3.6b), and these matrices can be finally used for estimating the upcoming
track within a listening session.

Let 𝑇 denote the matrix (upper matrix in Figure 3.6a) corresponding to the most

66

3 | METHODOLOGY

relevant audio feature value, i.e. 𝐴𝐿1 , and let 𝑇𝑖 denote one row of such matrix, with
1 < 𝑖 ≤ 𝐶 . The value 𝑇𝑖,𝑗 is interpreted as the probability of transition between an audio
feature whose most relevant value is located in position 𝑖 to an audio feature whose most
relevant value is located in position 𝑗. The same interpretation is applied to all 𝑁 matrices,
corresponding to the N-th most relevant positions of audio features.

The transition matrices are considered independent from each other and are applied
independently in the process of retrieving tracks from the MLAII structure. In this process,
the value of each position of the current auxiliary audio features 𝐿(𝑡) is used for retrieving
tracks from the MLAII structure, and the track that is retrieved the most is considered the
best candidate for the upcoming track. In other words, let 𝑇𝐿(𝑡)1

be the row of the transition

matrix corresponding to 𝑁 = 1, containing the probability values 𝑝(𝐿(𝑡+1)1 |𝐿(𝑡)1) (row number
7 of the upper matrix in Figure 3.6a). The value of 𝐿(𝑡)1 is known, and the upcoming 𝑝(𝐿(𝑡+1)1)
values can be obtained directly from 𝑇𝐿(𝑡)1

.

In our example, considering matrix 𝑇 , position 11 presents the highest probability
𝑝(𝐿(𝑡+1)1), and tracks corresponding to this position could be obtained from the MLAII, as
in Section 3.2.3. But in this example, one single transition was mapped, corresponding to
a hypothetical first transition observed in the dataset. After many transitions, 𝑇𝐿(𝑡)1

will
contain several values corresponding to different transition probabilities, and a parameter
𝛼 is used for determining the proportion of the values of 𝑇𝐿(𝑡)1

that will be submitted to
MLAII. The new function for calculating the number of occurrences of track 𝑠𝑗 in the
resulting set obtained from MLAII, given an auxiliary audio feature 𝐿, is expressed as:

𝐶𝑜𝑢𝑛𝑡(𝑠𝑗 , 𝐿) =
𝑁

∑
𝑛=1

∑
𝑝∈𝑃

𝕀[𝑇 𝑛
𝐿𝑛 ,𝑝 = 𝐿𝑗𝑛], (3.19)

where 𝑃 = 𝑓 (𝑇 𝑛
𝐿𝑛 , 𝛼), considering a function 𝑓 (⋅) returning the positions of 𝑇 𝑛

𝐿𝑛 whose values
are higher than 𝛼 ×𝑚𝑎𝑥(𝑇 𝑛

𝐿𝑛) . 𝐿𝑗 denotes the auxiliary audio feature associated to track 𝑠𝑗 ,
𝑇𝑛 denotes the n-th transition matrix, and the superscript (𝑡) is removed from 𝐿(𝑡) for the
sake of notation.

Tracks are ordered based on the number of occurrences returned by 𝐶𝑜𝑢𝑛𝑡(⋅), and the
tracks observed the most are considered as the best candidates for the upcoming track in
the listening session.

3.3.3 Metrics
A dataset containing listening sessions and audio features associated with the tracks

within these listening sessions is applied for measuring the performance of SB recom-
mendation methods. The sessions are sorted by their timestamp and are submitted to the
recommendation methods one by one, starting from the most distant in time and moving
towards the most recent ones. The tracks observed within each listening session are also
sorted by timestamp, and the recommender is asked to predict the upcoming track, given
the information about the current one. The first track of each session is assumed as given,
and the predictions are evaluated starting from the second position.

The recommendation models are initialized with no information and are updated after

3.3 | STREAM-BASED

67

each prediction round. The average accuracy is measured for each session, and the results
are presented as a temporal evolution of these values. The aim is to observe how much
and how fast the models are learning.

Let 𝐿 = {𝑠(1), 𝑠(2),… , 𝑠(𝑀)} be the listening session under evaluation. For each audio
feature 𝐴(𝑡) (query), associated with each track 𝑠(𝑡), a list 𝑃 (𝑡+1) is returned by the recom-
mender containing the probability that each track 𝑠 ∈ 𝑆 is the next track 𝑠(𝑡+1) (target).
The list 𝑃 (𝑡+1) is a ordered list, containing the most relevant tracks in the first positions,
and a recommendation round is considered successful if track 𝑠(𝑡+1) is among the first 𝐾
positions of 𝑃 (𝑡+1).

Hit Rate at K (HR@K) is applicable to listening sessions, and it measures the propor-
tion of recommendation rounds in which the target track was among the top-K predict
values:

𝐻𝑅@𝐾 (𝐿) =
1
𝑀

𝑀

∑
𝑚=1

𝕀[𝑠(𝑚+1) ∈ 𝑃 (𝑚+1)
𝐾], (3.20)

where 𝕀 is an indicator function that returns 1 if the condition is true, and 0 otherwise,
and 𝑃 (𝑡+1)

𝐾 stands for a reduced version of 𝑃 (𝑡+1), truncated in the K-th position.

Mean Reciprocal Rank (MRR) is also applicable to listening sessions, and it measures
the average of the inverse position of a correct prediction:

𝑀𝑅𝑅@𝐾 (𝐿) =
1
𝑀

𝑀

∑
𝑚=1

1
𝑓 (𝑃 (𝑚+1), 𝑠(𝑚+1), 𝐾)

, (3.21)

where
𝑓 (𝑃, 𝑠, 𝐾) = min{𝑘 ≤ 𝐾 such that 𝑠𝑘 ∈ 𝑃},

i.e., 𝑓 (𝑃, 𝑠, 𝐾) is the rank of the target track within the first 𝐾 recommended tracks of list 𝑆.
If the first 𝐾 tracks of 𝑃 do not include the target track, then 𝑓 (𝑃, 𝑠, 𝐾) = ∞ and its inverse
in the expression of 𝑀𝑅𝑅@𝐾 is 0.

69

Chapter 4

Experiments and Results

In this chapter, we describe the procedures applied for acquiring and preparing the data,
and the procedures applied for training and testing the recommendation methods.

Regarding the acquisition and preparation of the data, we provide an overview of
the dataset selected for the experiments, named LFM-1b (Schedl, 2016), which contains
approximately 1 billion user/track interaction events. 30-second audio clips associated
with some of these tracks were downloaded from the Spotify website, with the help
of an API, and were applied to a feature extraction procedure, for obtaining Codeword
Histogram, MCFF, Mel-Spectrogram and Raw Waveform representations of each of those
audio files.

The experiments are presented separately considering Collaborative Filtering,
Sequence-Aware and Stream-Based recommendation methods. Details are provided
about the architectures of neural networks, as well as the hyperparameters used in
the experiments. Visualizations of the results are provided, and the results measured
for cold-start items are presented separately from the overall performance, whenever
possible.

4.1 Datasets
The LFM-1b (Schedl, 2016) was selected as the dataset to be used in the experiments,

considering the fact that it is one of the biggest datasets publicly available containing
user/track interaction information. LFM-1b was compiled with data extracted from the
LastFM1 streaming platform, and it is composed of more than 1 billion entries containing
values for user, artist, album, track and timestamp. Each entry corresponds to a listening
event of a user who listened to a certain track in a specific timestamp, within the period
between 2005 and 2014. Each track is associated with an album and with an artist.

The number of listening events observed for each year can vary significantly, as one can
see in Figure 4.1. This difference can be problematic for the experiments, considering the
possibility that tracks released, for example in 2012, might be associated with a substantially

1 https://www.last.fm/

https://www.last.fm/

70

4 | EXPERIMENTS AND RESULTS

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
0

1

2

3
1e8

Figure 4.1: LFM-1b years histogram.

Dataset # events # users # tracks #sessions
LFM-1b_2013 273,444,036 84,826 14,530,826 19,023,734

LFM-1b_2011_2013 759,241,825 119,905 25,308,850 53,449,318

Table 4.1: Datasets description

higher number of listening events than a track released, for example, in 2007. Models might
end up more exposed to certain tracks, despite others, and this can introduce bias in the
results (Bellogín et al., 2017). We filtered user/track interactions observed between 2011 to
2013, corresponding to approximately 70% of the whole dataset, and we filtered interactions
observed for the year 2013. The former subset is referred to as LFM-1b_2011_2013, and
the latter is referred to as LFM-1b_2013 subsets. Information about both subsets can be
seen in Table 4.1.

Audio files corresponding to tracks from LFM-1b_2011_2013, that were listened by
at least 10 users, were downloaded from the Spotify website with the help of their API2.
Spotify also provides a Python library named Spotipy3, with which one can search for
track information by using artist and track names as a query. The URL corresponding to a
30-second preview of each song is retrieved, and it can be used to download the audio clip.
We were able to download audio previews associated, with 368,221 tracks with 328,189
unique audio files (40,032 repeated ones). All the information extracted from Spotify’s
website was exclusively used for research purposes.

Mel-spectrograms were calculated for all tracks using Librosa4 Python library. The
sampling rate of audio files was adjusted to 22,050, and the length of the FFT was set equal
to 2048. Spectrograms were calculated with window and hop sizes equal to 2048 and to
512 samples, respectively, and the window function selected was the Hanning function.
Finally, 128 Mel filters are used, and the final Mel-spectrogram has dimensions 128 × 1292.
The magnitudes of the spectrograms were compressed by a nonlinear curve log(1 + 𝐶 |𝐴|)
where 𝐴 is the magnitude and C is set to 10, as suggested in Kim et al., 2018. The audio files
were also stored in raw format, with dimension 661, 500, referred to as raw audios.

2 https://developer.spotify.com/documentation/web-api/
3 https://github.com/plamere/spotipy
4 https://librosa.org/doc/latest/index.html

https://developer.spotify.com/documentation/web-api/
https://github.com/plamere/spotipy
https://librosa.org/doc/latest/index.html

4.2 | COLLABORATIVE FILTERING

71

The 20 first Mel Frequency Cepstrum Coefficients (MFCC) were also calculated for
all tracks using the Librosa library, with dimensions 20 × 1292, and were applied as audio
features in the process for calculating audio codewords (see Section 2.2.2), described in
three steps. In a first step, the first and second derivatives of 100 consecutive frames
selected from a random position of each MFCC were calculated. The original 100 frames,
and their corresponding first and second derivatives were concatenated vertically, named
ΔMFCC, in order to enrich the original audio feature with extra information about temporal
variations. The consecutive frames had dimensions 20 × 100, and the new ΔMFCC had
dimensions 60 × 98, considering the difference between the two frames that were removed
for matching the dimensions of the second derivative. ΔMFCCs were calculated for each
track in the dataset and were concatenated horizontally, ending up with dimensions
32, 984, 313 × 60.

In a second step, the concatenated ΔMFCCs were clustered in 4,000 clusters (Oord
et al., 2013), using the K-means clustering algorithm. In the clustering process, each frame
from each ΔMFCC was considered independent from any other one, and the frames
were grouped in 4,000 groups according to their proximity. The resulting cluster centres
(centroids) were then used in the following step when codewords were calculated for each
track.

In the third and last step, a ΔMFCC was calculated for each track, this time considering
all frames of the corresponding MFCC, and each of the 1292 frames was compared to all
centroids for identifying the closest ones. The idea is to represent each ΔMFCC according
to a finite vocabulary, i.e. the cluster centroids, in the format of a histogram of occurrences.
In order to reduce the problem of having frames equally close to two or more centroids, we
calculated the closest 3 centroids (B. McFee et al., 2012), and the centroids calculated for all
ΔMFCC frames are gathered in a histogram. The final histogram codeword has dimension
4000, and it was normalized. The process is repeated for all tracks in the dataset.

4.2 Collaborative Filtering
In this round of experiments, the ACVAE and the ACRE recommendation methods are

evaluated in the task of predicting which users would interact with a track given its audio
feature, i.e. cold-start. The models are first submitted to a training process, for having
their weights adjusted according to a slice of the dataset separated for training, and once
trained, the models are evaluated in the task of estimating which users interacted with
the tracks from a different slice of the data, separated for testing (and never seen by the
model). A slice of the data is also separated for monitoring the training process, named
validation subset, and it is applied in the same way as the test slice, but for evaluating the
model after each training round.

The experiments were not designed just to reveal the most efficient method, but to
reveal also the most appropriate audio feature applied in the task. Three audio features
are considered in the experiments: codeword histograms, Mel-spectrograms and raw
waveforms. These audio features are mapped to listening profiles, represented as binary
vectors, containing 1 in the position of users who interacted with a certain track, and 0
otherwise.

72

4 | EXPERIMENTS AND RESULTS

ACVAE is a two-step method, built on top of a previously trained CF recommendation
model. The previously trained CF model is implemented according to a latent factor or
encoder/decoder structure, that is to say, the input data is first encoded in a compact
representation, named embedding, and decoded back to its original dimension. ACVAE
needs access to both encoder and decoder separately, considering that the model was
designed to reproduce the encoded embeddings given audio features as inputs. The new
embeddings, named audio embeddings, propagate to the trained decoder, and listening
profiles are finally estimated. ACRE, on the other hand, is a one-step method, which can be
trained directly with audio features and listening profiles, in an end-to-end fashion.

In what follows, we describe the process applied for preparing the data used to train
the CF recommendation and the audio-based models. We also present the implementations
of two latent factor CF models, a first one based on matrix factorization, named WMF, and
a second one based on Variational Autoencoder, named VAE-CF. Next, we provide imple-
mentation details of the audio-based methods, with special attention to the architectures
selected for the CNNs. And finally, the results measured for CF and cold-start tasks are
presented for all combinations of methods and audio features.

4.2.1 Data Preparation
When preparing the data for the CF algorithms, we selected users and tracks from

the LFM-1b_2011_2013 subset with at least 10 entries, defined as the minimum number
of interactions. When considering the tracks associated with audio files, tracks with the
same filename were interpreted as repeated entries, and the duplicates were removed
as explained in the sequel. First, the number of occurrences of each of these tracks was
calculated, and every time a repeated file name was detected, the track number was
replaced by the track number with the same file name that was associated with the highest
number of occurrences. The idea was to substitute repeated tracks by the one with a higher
chance of being the “right” track. Finally, repeated listening events (i.e. the same user
and the same track) were removed for obtaining binary listening profiles. The number of
interactions was reduced to 203,001,538, and the number of tracks to 2,625,670.

The data was separated into train/valid/test slices, corresponding to, respectively,
proportions of 80/10/10% of the dataset. We wanted to ensure that all tracks associated
with audio files would have been exposed to the CF recommenders when applying these
recommenders to the following audio-based experiments. In order to ensure that, we
removed all items with audio from the dataset, and among the remaining ones, we selected
a random slice of 10% of the tracks (262,567) for validation and another random slice of 10%
of the tracks (262,567) for testing. The remaining 80% of the tracks (2,100,536), including
all tracks associated with audio files, were considered as the training slice.

The listening profiles were separated as validation and test data slices were also
separated as query and target, corresponding to proportions of 80/20% of the users who
listened to each track, respectively. For example, in the case of a track with a listening
profile {𝑢1, 𝑢2,… , 𝑢10}, eight random users were selected as a query, and the two remaining
ones were considered as the target. The CF algorithms are presented with a query and are
asked to predict the whole listening profile, including the target users. The performance
of these methods is measured according to the proportion of target users retrieved among

4.2 | COLLABORATIVE FILTERING

73

the most relevant scores calculated in the output. That said, a rating matrix was built with
dimensions 2, 625, 670 × 119, 824, corresponding to #𝑡𝑟𝑎𝑐𝑘𝑠 × #𝑢𝑠𝑒𝑟𝑠. Note that the matrix
has dimensions that match the total number of tracks and users, even though some data
was removed from the dataset for validating and testing the methods. That is because
the interaction data removed for validation and testing correspond to entries in listening
profiles, thus not affecting the matrix overall dimensions.

When preparing the data for the audio-based algorithms, we separated the tracks
associated with audio files in random train/validation/test slices according to 80/10/10%
proportions of the number of audio files. 262,553 tracks were separated for training, 32,818
tracks were separated for validating and 32,818 tracks were separated for testing the
models. This time, the performance is measured based on how many of the users who
actually listened to a track are retrieved by the audio-based model.

4.2.2 Methods
The methods applied to the CF task were the WMF (Hu et al., 2008) and the VAE-

CF (Liang et al., 2018). WMF is a matrix factorization method, proposed for decomposing
a user/track interaction matrix as a product of two smaller matrices. The smaller matrices
are considered embeddings, one associated with tracks and the other associated with users.
The track embedding matrix is used in the second step of the ACVAE training procedure
when audio embeddings are approximated, and the user embedding matrix is used in the
third step when listening profiles are actually estimated.

The VAE-CF method, on the other hand, is composed of an encoder and a decoder, and
it only generates track embeddings. These embeddings are also used in the second step of
the ACVAE training procedure, and in the third step, the decoder is applied for mapping
embeddings to listening profiles. More details about the implementations of WMF and
VAE-CF are presented in the sequel.

• Weighted Matrix Factorization (WMF)5 The embedding size was set equals to
200, as suggested in Liang et al., 2018, and the remaining parameters, 𝛼 , 𝜆, 𝜖 and
the type of confidence (linear or logarithmic) were selected through grid search
(All results can be seen in Table A.1). The best results were observed for Linear
confidence, 𝛼 = 200 and 𝜆 = 1𝑒 − 5, all applied to Equation 2.37.

• Variational Autoencoder Collaborative Filtering (VAE-CF)6 The embedding
size was also set equals to 200, for ensuring comparability, and the MLP was imple-
mented with one hidden layer, in such a way that the network dimensions were set
as [#𝑢𝑠𝑒𝑟𝑠 ←→ 600 ←→ 200 ←→ 600 ←→ #𝑢𝑠𝑒𝑟𝑠]. The model was trained for 200 epochs, and
the learning rate, which started equal to 1𝑒 − 4, was reduced by a factor of 0.1 in
epochs 100 and 150. A dropout layer was added as the first layer of the encoder, with
a dropout rate equal to 0.5, for ensuring generalization, and a Tanh layer was also
added between every two internal layers, for maintaining values between -1 and 1.

The methods applied to the CS task were DCMF (Oord et al., 2013) and HLDBN (X.

5 https://github.com/benanne/wmf
6 https://github.com/cydonia999/variational-autoencoders-for-collaborative-filtering-pytorch

https://github.com/benanne/wmf
https://github.com/cydonia999/variational-autoencoders-for-collaborative-filtering-pytorch

74

4 | EXPERIMENTS AND RESULTS

Wang and Ye Wang, 2014). DCMF was the first method proposing CNNs for mapping audio
content to embeddings generated by a WMF matrix factorization. The authors proposed
two different objectives expressed as two errors functions: the first compares the new
audio embeddings generated by a CNN with the track embeddings generated by WMF,
and the second error function compares the product between these new embeddings and
the WMF user embeddings with the original listening profiles. The method, considered
here as a two-step method, was first proposed using Mel-spectrograms and codeword
histograms as audio features (Oord et al., 2013), and it was later adapted for using raw
audio (Platt, 2017).

Later on, HLDBN was proposed also for mapping audio features to embeddings, with
the help of neural networks, but this time the embeddings were learned jointly with the
network weights. The original work uses Deep Belief Networks, but we adapted the model
to use CNN for the sake of comparison. According to the authors, user embeddings that
are estimated jointly with the network parameters should provide better results than if
held fixed like in DCMF.

Different input formats require different CNN architectures, and three architectures are
proposed here, one for each audio feature (shown in Figure 4.2). In the case of codeword
histograms, five consecutive linear layers are used, and the dimension of the audio features
is gradually reduced for matching the embedding size. Each codeword histogram has a size
of 4,000, and it is gradually reduced to 200, as shown on the right-hand side of Figure 4.2.
Each linear layer is applied together with batch normalization and Tanh operations. The
batch normalization improves the stability of the learning process of deep networks (Ioffe
and Szegedy, 2015), and the Tanh keeps values within the range [−1, 1]. A dropout layer
with a dropout rate of 0.5 is added to the output of the network.

The architecture selected for mapping Mel-spectrograms to audio embeddings has
five convolutional layers, followed by a linear layer, used for reducing the embedding
size. Mel-spectrograms, whose original dimensions were 128 × 1292, are sliced in 10 slices
of 128 × 115, corresponding to approximately 2.7 seconds of audio, and these slices are
submitted to the network separately. All slices calculated from the same Mel-spectrogram
are presented to the network as corresponding to the same listening profile, to ensure that
the spectral content is presented to the network in its totality.

Each 2-dimensional convolutional layer is applied together with batch normalization,
a ReLu and max pooling operations. The ReLu operation keeps values greater than or
equal to zero, and the max pooling performs a summarizing operation in the layer input,
by extracting the highest value among consecutive 3 × 3 rectangles. The number of filters
applied at each convolutional layer is gradually increased, from 1 to 512, and the size of the
image that propagates to the following layer is gradually reduced. The last convolutional
layer contains 512 filters of size 1 × 1, to which a dropout layer with a dropout rate of 0.5
is applied, for improving robustness. An illustration of the architecture is shown in the
middle of Figure 4.2.

A similar architecture was selected for mapping raw waveforms to audio embeddings.
The architecture proposed in Kim et al., 2018 was adopted and adapted to the task addressed
here. The architecture was first proposed for automatically tagging music excerpts with
semantic tags, and it was adapted for the task of predicting the users who listened to

4.2 | COLLABORATIVE FILTERING

75

RAW MEL CODEWORD

59049 x 1

1968 x 128

6561 x 128

2187 x 128

729 x 256

243 x 256

81 x 256

27 x 256

9 x 256

3 x 256

1 x 512

115 x 128 x 1

38 x 42 x 64

12 x 14 x 128

4 x 4 x 256

1 x 1 x 512

4000 x 3000

3000 x 2000

2000 x 1000

1000 x 500

500 x 200

512 x 200

512 x 200

Figure 4.2: CNN architectures used in the Collaborative Filtering experiments. Solid lines represent
fully connected layers, dash-dotted lines represent 2-dimensional convolutional layers, and dotted
lines represent one-dimensional convolutional layers. The number inside fully connected layers has
the format (number input nodes x number output nodes). The number inside 2-dimensional convolu-
tional layers has the format (feature map size #1 x feature map size #2 x number of feature maps).
The number inside 1-dimensional convolutional layers has the format (feature map size x number of
feature maps).

76

4 | EXPERIMENTS AND RESULTS

tracks given audio features. The input size of 59,049 samples was kept as proposed by
the authors, which also corresponds to approximately 2.7 seconds of the original audio
sampled with a 22,050 sampling rate. Once again, the raw audio was separated into 10 non-
overlapping slices, and the slices were presented to the network separately for ensuring
that the network is exposed to the audio content in its integrity.

The convolutional layers are now applying 1-dimensional convolutional operations, fol-
lowed again by batch normalization, ReLu and max pooling operations. The motivation be-
hind batch normalization, ReLu and max pooling is the same as in the case of 2-dimensional
convolutional layers, even though they are now operating in one-dimensional input data.
Max pooling operations are now performed in every 3 sample, and a dropout layer with a
dropout layer of 0.5 is applied in the output of the network. The number of filters applied
in each convolutional layer can be seen on the left-hand side of Figure 4.2.

The audio-based methods applied to the CS task are now presented considering the
CNN architectures mentioned previously.

• Deep Convolutional Matrix Factorization (DCMF). The method is applied on
top of tracks and user embeddings obtained from WMF. Track embeddings with
dimensions #𝑡𝑟𝑎𝑐𝑘𝑠 × 200 are applied in the first step of the training procedure, and
user embeddings with dimensions #𝑢𝑠𝑒𝑟𝑠 × 200 are applied in the second step. In the
first step, 2-dimensional CNNs are trained for mapping Mel-spectrograms to track
embeddings, and the CNN weights are adjusted until the error becomes stable for
three consecutive training rounds. When this happens, the learning rate decreases
from an initial value of 0.001 to 10% of this value, and the training procedure switches
to the second step when the network’s weights start being adjusted according to
a second objective. In this second step, the generated audio embeddings are not
compared to track embeddings anymore but are multiplied by the user embeddings
for obtaining the original listening profiles.

The training process is performed until the learning rate reaches the value of 1e-7,
considered a fairly low learning rate. The model is optimized according to Equa-
tion 2.37, with the difference that the regularization factor is now applied for mini-
mizing only the track embeddings’ norm (||𝑣||). The user embedding (||𝑢||) is kept
fixed, not being a target of the optimization process. The method that applies Mel-
spectrograms as inputs is referred to as DCMF (MEL), and the methods that apply
raw waveforms and codeword histograms are referred to as DCMF (RAW) and DCMF
(CODE), respectively. Results are presented separately for the first and the second
objectives.

• Hierarchical Linear Model with Deep Belief Networks (HLDBN) The method
is submitted to a slightly simpler training procedure than in the case of DCMF,
considering that it does not operate on top of any other method and that it can be
trained in an end-to-end fashion. This time, the audio features are mapped to audio
embeddings, and the audio embeddings are multiplied by an auxiliary matrix with
dimensions #𝑢𝑠𝑒𝑟𝑠 × 200. This auxiliary matrix is adjusted together with network
weights, in one single optimization process.

The original model applied Deep Belief Networks (DBN) for mapping audio fea-

4.2 | COLLABORATIVE FILTERING

77

tures to audio embeddings, but we adapted the model to use CNNs for the sake of
comparison. We tested the regularization factor shown in Equation 2.50, but the
results were better when applying the regularization factors from Equation 2.37.
We decided to report the latter results. The HLDBN method trained with codeword
histograms, Mel-spectrograms and raw waveforms are referred to respectively as
HLDBN (CODE), HLDBN (MEL) and HLDBN (RAW).

4.2.3 Experiments
After setting up the other methods, the implementation of ACVAE and ACRE recom-

mender methods are presented in detail. ACVAE is somehow similar to DCMF, taking
into account that both methods are built on top of an auxiliary CF method, and ACRE
is somehow similar to HLDB, taking into account that both methods are trained in an
end-to-end fashion.

• Audio-Based Convolutional Variational Autoencoder (ACVAE) recom-
mender7. The method is built on top of a previously trained VAE-CF, and it
uses VAE-CF’s calibrated encoder and decoder in two consecutive steps of the
training process. First, audio embeddings generated by a CNN are adjusted for
matching the mean values of embeddings generated by the VAE-CF encoder.
Listening profiles and audio features are presented simultaneously to the VAE-CF
and to the CNN, respectively, and a regression task is performed for approximating
the values. Second, the same CNN is fine-tuned for approximating the original
listening profiles, with the help of the calibrated decoder, that maps the audio
embedding to listening profiles. The calibrated encoder is also used in this second
step, for providing the embeddings’ variance values, to which the CNN was not
exposed yet. The idea is that these variance values will contribute to the training
process by helping CNN learn more robust audio embeddings. The process is
illustrated in Section 3.1.2. Remember that variance values obtained from the
calibrated encoder are used during the training procedure of the ACVAE method but
are omitted in the validation and testing procedures. The ACVAE method trained
with codeword histograms, Mel-spectrograms and raw waveforms is reported,
respectively, as ACVAE (CODE), ACVAE (MEL) and ACVAE (RAW).

• Audio-Based Convolutional Regularized Embedding (ACRE) recom-
mender8. The audio features are now mapped to audio embeddings, which
are modelled as normal distributions. After obtaining the values for mean and
variance, samples are taken and submitted to the decoder, which maps the samples to
the listening profiles. The variance values are used during training and are omitted
during the validation and test procedures. The process is illustrated in Section 3.1.3.
The ACRE method trained with codewords histograms, Mel-spectrograms and raw
waveforms is reported, respectively, as ACRE (CODE), ACRE (MEL) and ACRE
(RAW).

All methods were trained with the data slice separated for training, and the performance

7 https://github.com/rcaborges/ACVAE
8 https://github.com/rcaborges/ACRE

https://github.com/rcaborges/ACVAE
https://github.com/rcaborges/ACRE

78

4 | EXPERIMENTS AND RESULTS

0

10
0

20
0

30
0

40
0

50
0

#target users

0

50000

100000

150000

200000

Co
un

t

0

10
0

20
0

30
0

40
0

50
0

#target users

0

200

400

600

800

Co
un

t

Figure 4.3: (Top) The number of target users separated for evaluating the CF methods. (Bottom)
The number of users associated with each track is separated for evaluating the CS methods. Tracks
associated with more than 500 target users were removed for the sake of visualization.

metrics were measured for the data slice separated for validation, after each training round.
The trained methods are applied to the slice of the data separated for testing, and the
results are presented in the following section. The methods were also optimized with
Stochastic Gradient Descent (SGD), with parameters weight decay (equal to 1e-6) and
momentum (equal to 0.9). The learning rates were set equal to 0.001, and this value is
multiplied by 0.1 when the loss function is stable for three consecutive epochs.

4.2.4 Results
The results measured for the CF recommendation methods and the results measured

for the CS methods are presented separately. The former methods are discussed briefly,
whereas the latter methods are discussed in more detail, considered as the main task in
these rounds of experiment.

In the CF task, 20% of the users who interacted with the test tracks are randomly
removed from their respective listening profiles, and considered target users and the
models are asked to predict those missing values. In the CS task, the methods are asked to
predict the users who interacted with the test tracks, given their respective audio features.
The number of values to be predicted by the methods in both tasks is considerably different,
as one can see in Figure 4.3, and this will have an impact on the evaluation metrics, as
explained in the sequel.

The results obtained for VAE-CF are substantially better than the results obtained
for the WMF method in the CF task, as one can see in Table 4.2. It is worth mentioning
that Precision results decrease as the K value increases, while in the case of Recall, the
performance of the methods increases as K gets higher, regardless of the K value. This can
be explained by formulas 3.8 and 3.7. Both metrics, Precision and Recall, have the same
numerator, associated with the number of correct users predicted by the method in the
first K positions, the former metric, however, divides this result by an increasing value
of K, while the latter divides the result by a fixed number of target users associated with
each track.

4.2 | COLLABORATIVE FILTERING

79

PRECISION RECALL
@1 @10 @100 @1 @10 @100

WMF 0.062 0.040 0.017 0.014 0.080 0.304
VAE 0.221 0.116 0.034 0.046 0.208 0.517

Table 4.2: Results obtained for VAE-CF and WMF methods in the Collaborative Filtering recommen-
dation task.

The results obtained for the CS task, i.e. predicting the users who interacted with a
track given its audio feature, are shown in Table 4.3. The values measured for Recall are,
in general, smaller than the values measured for Precision, and this can be, once more,
explained with equations 3.8 and 3.7. Recall values are affected by the number of target
users, as discussed before, while Precision values are not.

The ACRE methods applied with Mel-spectrograms and raw waveforms present the
best overall results, regardless of the evaluation metric or the audio feature selected
in the experiment. When considering the results separated by audio feature, the ACRE
has also the best results if compared to DCMF, ACVAE and HLDBN methods. There is
no clear distinction between one-step and two-step models, and raw waveforms seem
to provide slightly better Recall results, followed by Mel-spectrograms and codeword
histograms. Graphs illustrating Recall and Precision values measured for K values within
the interval between 1 and 100 are presented in Figure A.1. The results are separated for
all combinations of methods and audio features and are also presented separately by audio
feature for the sake of visualization.

It is worth mentioning that the models trained with codeword histograms are evaluated
with fewer samples than the models trained with Mel-spectrograms and raw waveforms.
Even though the number of tracks is the same in both cases, Mel-spectrograms and raw
waveforms are sliced into 10 samples each, thus generating a larger number of samples
considered in the evaluation process.

The audio embeddings associated with all tracks in the dataset were calculated by
using the ACRE(MEL) method and were reduced to a 2-dimensional representation with
the t-sne algorithm. Six hand-made clusters were built for illustrating the location of six
different music styles within this new representation space, presented in Figure A.2.

80

4
|EX

PERIM
EN

T
S

A
N

D
RESU

LT
S

METHOD REC@1 REC@10 REC@100 PREC@1 PREC@10 PREC@100

OBJ1

DCMF (CODE) 0.001 0.004 0.024 0.114 0.083 0.057
DCMF (MEL) 0.001 0.007 0.042 0.175 0.134 0.092
DCMF (RAW) 0.000 0.002 0.008 0.058 0.039 0.023

ACVAE (CODE) 0.001 0.003 0.020 0.111 0.079 0.048
ACVAE (MEL) 0.001 0.006 0.038 0.171 0.132 0.086
ACVAE (RAW) 0.001 0.006 0.040 0.173 0.134 0.089

OBJ2

DCMF (CODE) 0.001 0.006 0.040 0.155 0.119 0.082
DCMF (MEL) 0.001 0.008 0.046 0.204 0.146 0.094
DCMF (RAW) 0.001 0.008 0.047 0.213 0.149 0.098

ACVAE (CODE) 0.001 0.005 0.028 0.155 0.106 0.064
ACVAE (MEL) 0.001 0.008 0.044 0.200 0.148 0.094
ACVAE (RAW) 0.001 0.009 0.053 0.222 0.170 0.112

HLDBN (CODE) 0.000 0.002 0.013 0.072 0.062 0.035
HLDBN (MEL) 0.001 0.006 0.033 0.188 0.131 0.080
HLDBN (RAW) 0.001 0.007 0.040 0.211 0.151 0.094
ACRE (CODE) 0.001 0.007 0.042 0.209 0.153 0.097
ACRE (MEL) 0.001 0.010 0.057 0.261 0.194 0.125
ACRE (RAW) 0.001 0.010 0.057 0.240 0.188 0.124

Table 4.3: Recommendation results for the task of track profile prediction in the context of collaborative filtering. The best results are highlighted in boldface,
and the second best is highlighted with underlined.

4.3 | SEQUENCE-AWARE

81

4.3 Sequence-Aware

In this round of experiments, the AGRU4REC and the SATAREC methods are evaluated
in the task of predicting the upcoming track within a listening session, given the audio
feature associated with the current track. The former method is trained to predict the
upcoming track, given the audio feature associated with the current track, but it can not
extrapolate to new tracks that have never participated in any listening session. The latter
method is trained to predict the audio feature associated with the upcoming track, given
the audio feature associated with the current track. An auxiliary inverted index structure
is indexed in such a way that a track can be efficiently retrieved given its corresponding
audio feature. The SATAREC method, then, can extrapolate its predictions to new tracks,
thus mitigating the cold-start limitation.

The listening sessions contained in the dataset are ordered by timestamp and are
separated into three slices, one for training, one for validating and one for testing the
models. The models are trained with the 80% oldest listening sessions, i.e. with smaller
timestamps, and are tested with the most recent 10% of the listening sessions. Another
10% of the sessions, located between the train and test slices, is used for validating the
models after each training round.

During the training procedure, each track/track transition and its corresponding audio
features are applied for adjusting the models. Once trained, the models are consulted with
an audio feature associated with a track from a listening session, and a list containing
scores associated with each track from the dataset is returned. The scores are interpreted
as a proxy for the probability of each track being the next track within the listening session,
and a successful prediction round is the one for which the next track is among the top-K
scores calculated by the model. AGRU4REC and SATAREC are compared with rating-based
models designed for the same task, and results are reported separately for tracks observed
in both train and test data slices, considered as warm-start tracks, and for tracks appearing
for the first time in the test slice, considered as cold-start tracks.

As well as in the CF experiments, the experiments are designed to reveal the most
appropriate audio feature for the given task, and three versions of each model are trained
having codeword histograms, Mel-spectrograms and raw waveforms as input. In the case
of codeword histograms, each track is associated with one histogram, which is used during
the training and testing processes. In the case of Mel-spectrograms and raw waveforms, the
audio features are separated into 10 non-overlapping slices, and at each round, a random
slice is considered as the audio feature. This decision is based on the assumption that each
track participates in several track/track transitions, and if in each of these occurrences a
random slice of the audio feature is selected, it might be reasonable to say that all slices will
end up being exposed to the model. Assuming audio features as a random slice taken from
the original Mel-spectrogram or raw waveforms also substantially reduces the training
time.

A Multi-Level Audio-Based Inverted Index (MLAII) structure is tested in the task of
retrieving the right track given its top-N codeword histogram values. First, the MLAII
structure is indexed with codeword histograms associated with all tracks available in the
dataset, and once indexed, the structure is consulted with the top-N histogram values

82

4 | EXPERIMENTS AND RESULTS

associated with a certain track, and a list of tracks that could potentially be the one
associated with that codeword histogram is returned. The aim of this test is to reveal: (i)
whether the structure is able to return the right track given its top-N codeword histogram
values, and if that is the case, (ii) what is the minimum N value necessary for a successful
retrieval.

In what follows, we go through the process applied for preparing the data, which
includes calculating listening sessions and filtering the sessions associated with audio
features. The rating-based and audio-based methods are presented in the sequel, along
with their implementation details. Some details about the implementation of AGRU4REC
and of SATAREC methods are also presented, as well as the results obtained from all
methods in the next-track prediction task. The results obtained from the experiment of
retrieving tracks from an MLAII structure given the top-N codeword histogram values are
also presented, for several values of N.

4.3.1 Data Preparation
The LFM-1b dataset is composed of approximately one billion entries, each of which

corresponds to an event of a user who listened to a track. The dataset provides numerical
identifications for the user, for the track, for the artist and the album associated with the
track, and a timestamp, but no information is provided about listening sessions. In order to
group user/track interactions in listening sessions, we separated the tracks listened by the
same user, ordered these events by timestamp, and sessions are assumed as non-interrupted
sequences of listening events. More specifically, a session is assumed as starting with the
first track of the list, and whenever an interval between adjacent tracks longer than 30
minutes is observed, the current session is finished and the following track is assumed to
belong to a new session. This process is repeated for all tracks listened to by all users.

We iterated through the LFM-1b_2013 subset containing around 19,000,000 of these
listening sessions, and we selected 889,968 ones containing tracks for which audio files
were downloaded. Sessions with less than 5 events, with more than 100 events, and with less
than 2 unique tracks were discarded. The remaining sessions were ordered by timestamp
and were split into train/valid/test subsets. 711,355 sessions (corresponding to 7,542,193
listening events) were separated for training, 88,919 sessions (corresponding to 945,039
listening events) were separated for validating, and 88,920 sessions (corresponding to
952,473 listening events) were separated for testing the methods. The idea is to simulate
a situation when the models are exposed to events that happened in the past, and once
trained, they are consulted for predicting events that are about to happen in the near and
mid-term future.

4.3.2 Methods
The methods considered in this round of experiments belong to three groups: the

rating-based methods, the audio-based methods that were not designed to mitigate cold-
start, and the audio-based methods that were designed to mitigate the cold-start issue. The
first group comprises conventional recommender methods, that learn from past track/track
transitions, and that are able to predict an upcoming track within a listening session. The

4.3 | SEQUENCE-AWARE

83

second group of methods comprises methods that are also trained to predict the upcoming
track within a listening session, but that are fed with the audio feature associated with the
track being currently listened to. The third group of methods comprises the methods that
are, once more, applied to predict the upcoming track within a listening session, but that
are actually trained to predict the audio feature associated with the upcoming track. This
predicted audio feature is submitted to an audio-based inverted index structure, designed
to retrieve a track given its audio feature.

The rating-based methods considered in the experiments are:

• Markov Chain (MC)9. This is a simple Markov chain method with memory equals
to one and with a limited number of candidates associated with each track. A lookup
table is built with dimensions #𝑡𝑟𝑎𝑐𝑘𝑠 × #𝑡𝑟𝑎𝑐𝑘𝑠, within which every track/track
transition observed in the training data is stored. The rows correspond to previous
tracks, and the columns correspond to the next tracks. The number of potential
transitions considered for each track is limited to 100, and when consulted for the
most likely transition, the MC method returns the candidate tracks ordered by the
number of occurrences.

• GRU4REC10. Differently from the MC method, this method has an internal state
that is updated at each track transition, and that is reset when a listening session
ends. The tracks are represented as indicator vectors, before being submitted as
input data to the GRU network. The output of the model is a vector containing
the probabilities of each track being the upcoming one within a current listening
session. The loss function, as well as the optimizer, were maintained the same as
in the original article, respectively, TOP1 and Adagrad. The hidden size was set
equal to 100, and a Tanh activation layer is added at the output of the network, for
restricting values within the interval [-1,1].

• Neural Attentive Recommendation Machine (NARM)11. As well as GRU4REC,
NARM method is based in GRU networks. This method, however, considers all pre-
vious tracks as an input for the network in a training/prediction round, for example:
a session {𝑠1, 𝑠2, 𝑠3, 𝑠4} is separated in queries {𝑠1}, {𝑠1, 𝑠2} and {𝑠1, 𝑠2, 𝑠3}, with the
corresponding targets {𝑠2}, {𝑠3} and {𝑠4}. Also, an attention layer is responsible for
emphasizing the most relevant track in the session. All parameters were maintained
the same as in the original work. The embedding dimension was set equal to 50, the
hidden size was set equal to 100, and the learning rate was set equal to 0.001.

The audio-based method is:

• Audio-Based GRU4REC (AGRU4REC)12. The method derives from GRU4REC,
and instead of having tracks represented as indicator vectors, tracks are considered
as their corresponding audio features. A CNN is attached before the GRU network,
responsible for converting audio features, like Mel-spectrograms or raw waveforms,

9 https://github.com/rn5l/session-rec/blob/master/algorithms/baselines/markov.py
10 https://github.com/hungthanhpham94/GRU4REC-pytorch
11 https://github.com/Wang-Shuo/Neural-Attentive-Session-Based-Recommendation-PyTorch
12 https://github.com/rcaborges/AGRU4REC

https://github.com/rn5l/session-rec/blob/master/algorithms/baselines/markov.py
https://github.com/hungthanhpham94/GRU4REC-pytorch
https://github.com/Wang-Shuo/Neural-Attentive-Session-Based-Recommendation-PyTorch
https://github.com/rcaborges/AGRU4REC

84

4 | EXPERIMENTS AND RESULTS

into a one-dimensional audio embedding compatible with the input format of the
GRU network. This GRU network outputs scores that are submitted to a Tanh
activation layer, for restricting values within the interval [-1,1]. The final scores are
interpreted as the probability of each track being the upcoming track, just as in the
original method. The CNNs applied here are the same ones shown in Figure 4.2 and
described in Section 4.2.2, and parameters such as hidden size, activation function
and the optimizer are inherited from the GRU4REC method.

The audio-based cold-start method considered in the experiments is:

• Adaptive Linear Mapping Model (ALMM)13. The method was designed for sug-
gesting the next tracks to users given an audio feature associated with the current
tracks, in a personalized fashion. The method is based on the idea that personalized
transition matrices can be factorized in three embedding matrices (one corresponding
to users, one corresponding to previous tracks, and one corresponding to upcoming
tracks), and that the probability of a transition between two tracks for one specific
user can be estimated as a summation of three consecutive products involving
the three embedding matrices. Two of these three matrices, the ones associated to
previous and next tracks, are factorized once again, as products of an audio feature
and an auxiliary mapping matrices. Tracks are then suggested to users based on
their audio features, and new tracks can be suggested with the help of the auxiliary
mapping matrix. For more details about the method, the reader might want to check
Section 2.5.2.

The original formulation of the method, however, didn’t work with the interaction
data and with the audio features applied here. We customized the method in such
a way that listening events are not associated with users anymore, and instead,
one single 𝑡𝑟𝑎𝑐𝑘 × 𝑡𝑟𝑎𝑐𝑘 transition matrix is used for registering all transitions
observed in the training set. This new transition matrix is factorized as the product
of two embedding matrices, one corresponding to the previous, and another one
corresponding to the next tracks. These embedding matrices are factorized once
again, as the product of an audio feature matrix and an auxiliary matrix, as in the
original method. The probability of a transition between two tracks can now be
calculated as the inner product of their respective estimated embeddings, obtained
as a product between their respective audio features and their respective auxiliary
matrices.

The method was implemented with an embedding size equal to 200, and codeword
histograms were selected as audio features. The learning rate was set equal to 0.0001,
and transition values are considered as their original values, without a confidence
weighting function, like the one applied in the original work.

4.3.3 Experiments
The aim of this study is to mitigate the limitation imposed on music recommendation

systems when new tracks are introduced to their algorithms. These systems are heavily
dependent on user feedback information, and they can only incorporate new tracks into

13 https://github.com/fearofchou/ALMM

https://github.com/fearofchou/ALMM

4.3 | SEQUENCE-AWARE

85

their algorithms if extra information, e.g. audio features, is provided. In this round of
experiments, we simulate situations in which music recommenders are trained with a
set of track/track transitions, and are tested with a different set of track/track transitions,
including tracks that were never exposed to the recommender. The method introduced in
the sequel was designed to suggest tracks based on their audio features, in such a way that
new tracks can be introduced to the recommender system, with no need for retraining its
model.

• Sequential Audio-Based Top-N Autoencoder Recommender (SATAREC)14 -
The method was implemented based on AGRU4REC, with the difference that the
prediction target is now the codeword histogram associated with the upcoming
track, instead of the upcoming track index, as in the original method. In fact, the
order in which the top-N values of this histogram is organized is the real prediction
target, since this is the information that will be used for retrieving the candidate
tracks from the MLAII structure, described as follows.

An MLAII structure is indexed with codeword histograms calculated for all tracks
from the dataset. The indexing process is as simple as selecting the index of the top-N
values, and storing these indexes in an inverted index structure in the {𝑘𝑒𝑦 ∶ 𝑣𝑎𝑙𝑢𝑒}
format. N independent structures are indexed, corresponding to the top-N positions
of the histograms, resulting, thus, in a multi-level inverted index structure. Once
indexed, the MLAII structure is expected to retrieve a list of tracks given a codeword
histogram. The list is ordered according to the likelihood associated with each track,
in such a way that the probability that the track is the right one decreases as the
position in the list increases.

The CNN architectures mentioned previously were adopted again, as well as the
hidden size, optimizer, learning rate, weight decay, and momentum. A new loss
function was implemented according to the aim of the method, which is to reproduce
the right order of the top-N values of the codeword histogram associated with the
next track within a listening session. The new loss function is the summation of N
cross-entropy values calculated for each of the top-N values. A weight is given to
each of these cross-entropy values, in such a way that higher weights are given to
the first values, and the weight decreases linearly, emphasizing the higher histogram
indexes despite the lower ones.

All methods were trained for 50 rounds, and the results are reported considering
the data slice separated for testing the models, in three scenarios: warm-start, cold-start
and overall. In the warm-start scenario, the performance of the methods is measured
considering the track/track transitions to tracks that participate in the training data. In the
cold-start scenario, the performance of the methods is measured considering the transitions
to tracks that only participate in the test data, i.e. never exposed to the models. And in the
overall scenario, the models are evaluated considering the whole test data.

The results obtained for the audio-based model are reported with references to the
audio feature used in the experiments. Methods trained with codewords, Mel-spectrograms
and raw waveforms are reported, respectively, as CODE, MEL and RAW.

14 https://github.com/rcaborges/SATAREC

https://github.com/rcaborges/SATAREC

86

4 | EXPERIMENTS AND RESULTS

REC@1 REC@20 REC@100
N=1 0.014 0.221 0.722
N=2 0.499 0.995 1.000
N=5 0.998 0.999 1.000
N=10 0.999 1.000 1.000

Table 4.4: Retrieval results obtained for the Multi-Level Audio Inverted Index (MLAII).

4.3.4 Results
Before discussing the results obtained for the audio-based recommendation methods,

we report the results obtained for the MLAII structure in the task of retrieving the right
track, given its corresponding codeword histogram. The results obtained for the retrieval
task are shown in Table 4.4 for different values of 𝑁 .

The multi-level inverted index structure can be used for indexing and retrieving any
audio feature, as long as it can be represented as a one-dimensional variable15. We evaluated
the MLAII’s performance considering codeword histograms with dimension 4,000. The
size of the histograms is relatively big, which produces histograms that are sparse, and
which probably contributed to the results obtained in this retrieval task. When considering
only the most relevant position of the histogram, N=1, the structure was able to return the
right track among the first 100 ones for more than 70% of the tracks. For N greater than
5, the MLAII structure has practically 100% of efficiency in the task of retrieving tracks
given their respective codeword histogram.

The results obtained for the rating-based, audio-based, and audio-based cold-start
recommendation methods are presented in Table 4.5. One first thing to be noticed in these
results is the fact that recommendation results obtained for the rating-based methods are
substantially superior to the results obtained for the audio-based methods. Also, audio-
based methods perform substantially better than audio-based cold-start methods.

One of the questions proposed in this study addresses the existence of temporal patterns
observed in the audio features associated with tracks composing listening sessions. The
AGRU4REC method is proposed motivated by this question. The AGRU4REC combines
convolutional and recurrent networks, the former calculates an audio embedding from
the input audio feature, and the latter is trained to learn the temporal patterns in audio
embeddings within listening sessions. The method performed reasonably well, and the
results corroborate the hypothesis suggested in the research question.

The SATAREC method was designed for mapping input to output audio features,
with the aim of mitigating the cold-start problem in the next-track recommendation task,
but its performance was not good. The method was expected to have an inferior overall
performance, which happened indeed, but it was also expected to generalize its predictions
to new tracks introduced for the first time in the test subset. Its performance in this subset,
however, was very poor.

5,459 tracks are only observed in the data subset separated for testing the methods,

15 By one-dimensional variable we mean a vector ℝ𝑁𝑥1 with 𝑁 positions.

4.3 | SEQUENCE-AWARE

87

considered as the cold-start tracks. 44,638 transitions involving these tracks are evaluated
separately, considered as the performance of the methods in a cold-start scenario. The
SATAREC performance in the cold-start scenario was lower than expected, possibly
because of an inadequate problem formulation. The ALMM performance was also poor,
both in the overall and in the cold-start scenarios.

There is no consensus on which audio feature is the best feature for the next-track
prediction task. In this study, we adopted codeword histograms, Mel-spectrograms and
raw waveforms audio features, and there was no clear superiority of one specific audio
feature. One possible reason for the good results measured for the SATAREC (CODE)
method, is the fact that CNNs were trained with a random slice of Mel-spectrogram and
raw waveforms, while the codeword histogram summarizes the whole audio excerpt, and
might provide better resources in the specific task.

Even though the AGRU4REC method has a limited application, not being able to
mitigate the cold-start problem, this method can still be an interesting method for other
reasons. For example, the audio embedding calculated as an input for the GRU network
might be used as an audio feature, containing information about the temporal context
from listening sessions.

88

4
|EX

PERIM
EN

T
S

A
N

D
RESU

LT
S

REC@1 REC@10 REC@100 MRR@1 MRR@10 MRR@100

Overall

Rating-Based
MC 0.691 0.779 0.803 0.691 0.721 0.722

GRU4REC 0.619 0.770 0.847 0.619 0.667 0.670
NARM 0.667 0.761 0.837 0.667 0.695 0.699

Audio-Based

AGRU4REC (CODE) 0.294 0.471 0.633 0.294 0.348 0.354
AGRU4REC (MEL) 0.223 0.436 0.630 0.223 0.288 0.295
AGRU4REC (RAW) 0.245 0.450 0.643 0.245 0.307 0.315

ALMM⋆ 0.003 0.023 0.104 0.003 0.007 0.010
SATAREC (CODE)⋆ 0.078 0.130 0.230 0.078 0.094 0.097
SATAREC (MEL)⋆ 0.062 0.104 0.177 0.062 0.074 0.076
SATAREC (RAW)⋆ 0.065 0.116 0.199 0.065 0.081 0.083

Warm-Start

Rating-Based
MC 0.729 0.821 0.847 0.729 0.760 0.762

GRU4REC 0.652 0.812 0.893 0.652 0.703 0.707
NARM 0.704 0.803 0.883 0.704 0.734 0.737

Audio-Based

AGRU4REC (CODE) 0.310 0.498 0.667 0.310 0.368 0.374
AGRU4REC (MEL) 0.234 0.457 0.664 0.234 0.302 0.310
AGRU4REC (RAW) 0.260 0.477 0.680 0.260 0.326 0.334

ALMM⋆ 0.003 0.023 0.107 0.003 0.008 0.010
SATAREC (CODE)⋆ 0.084 0.137 0.244 0.084 0.101 0.104
SATAREC (MEL)⋆ 0.064 0.109 0.185 0.064 0.077 0.079
SATAREC (RAW)⋆ 0.069 0.122 0.208 0.069 0.085 0.088

Cold-Start Audio-Based

ALMM⋆ 0.000 0.000 0.000 0.000 0.000 0.000
SATAREC (CODE)⋆ 0.000 0.003 0.014 0.000 0.001 0.001
SATAREC (MEL)⋆ 0.000 0.002 0.008 0.000 0.001 0.001
SATAREC (RAW)⋆ 0.000 0.002 0.008 0.000 0.001 0.001

Table 4.5: Results measured for the next-track prediction task. The methods marked with a star were designed with the aim of mitigating the cold-start
problem. Results are reported separately for: all transitions in the test subset (overall), for the transitions to tracks that were already observed in the training
subset (warm-start), and for transitions to tracks that appear in the test slice for the first time (cold-start). The best results are highlighted in boldface for
each category (rating-based, audio-based and audio-based cold-start recommendation methods), within each scenario (overall, warm-start and cold-start)
separately.

4.4 | STREAM-BASED

89

4.4 Stream-Based
The recommender system methods presented so far were designed under the assump-

tion that a static dataset containing user/track or track/track interactions is available for
adjusting and evaluating their models. The models are usually exposed to a significantly
large number of interactions, for learning the patterns contained in the data, and once
trained, the models are tested in a new slice of the data, for evaluating their prediction per-
formance. In a real recommendation situation, however, users are continuously interacting
with tracks, and streams of data are being frequently produced. The systems designed under
these considerations, the so-called stream-based recommender systems, are capable of
incorporating interaction data streams in (almost) real-time, by allowing dynamic updates
in their parameters. This way, stream-based methods can perform uninterruptedly, with
no need for freezing the recommendation process for retraining their models.

When considering real recommendation situations, it might be also reasonable to
assume that new tracks are being added to the recommender system catalogue, with no
historical interaction data, i.e. cold-start. In this case, dynamic parameter updating is not
enough, and another mechanism is necessary for incorporating these new tracks into
the recommendation algorithms. In this section, we evaluate the novel Audio Transition
Tensor for Recommendation (ATTREC) method, designed for incorporating interaction
data streams, and for incorporating new tracks given their respective audio features. The
new method maps track/track interactions to an audio domain and recommendations are
calculated solely based on audio features associated with tracks. The method is evaluated
assuming codeword histogram as audio features, and the MLAII structure mentioned in the
previous section is applied for retrieving tracks given their respective audio features.

The algorithm applied for evaluating the stream-based recommendation methods does
not consider the dataset separated in train/valid/test slices anymore, instead, it considers
all listening sessions ordered by timestamp and each track/track transition as a prediction
round. When a session ends, the recommendation models are updated, and the algorithm
moves to the following session. Methods are expected to perform poorly at the beginning
when few track/track transitions were observed, and they are expected to improve their
predictions over time, as far as information about transitions accumulates.

4.4.1 Data Preparation
The same 889,968 listening sessions mentioned in the previous section, referred to as

the sessions containing tracks for which audio files were downloaded, are considered here.
Sessions with less than 5 events, with more than 100 events, and with less than 2 unique
tracks were discarded, reducing the dataset to 889,194 sessions. These sessions are ordered
according to the timestamp of their first listening event and are submitted, one by one, to
the evaluation algorithm designed for conducting the experiments.

4.4.2 Methods
Four rating-based and one audio-based recommendation method were selected for the

stream-based experiments. Three of the rating-based methods calculate recommendations

90

4 | EXPERIMENTS AND RESULTS

based on the k-nearest-neighbour sessions, named kNN methods16, and the other method
is based on Markov Chains17. The audio-based method assumes that users’ preferences can
be decomposed in two terms: one related to a preference towards audio features associated
with tracks, and another related to a preference towards transitions between these audio
features.

The rating-based methods are:

• Dynamic Markov Chain (DMC). The DMC method is practically the same as
the MC method mentioned in the SA experiments, except that now there is no
restriction on the number of candidates associated with each track. The equivalent
of a lookup table, with dimensions #𝑡𝑟𝑎𝑐𝑘 × #𝑡𝑟𝑎𝑐𝑘𝑠, is maintained up-to-date with
the information of every track/track transition ever observed. When consulted with
a track, the method returns the tracks with a higher chance of being the next track
within a listening session, and after each session, the lookup table is updated for
keeping the method up-to-date.

• Session-Based kNN (SKNN). The method expands the idea of collaborative filter-
ing, which was originally proposed oriented to user listening profiles, to listening
sessions. Similar listening sessions are assumed as sharing the same tracks, and the
top-k most similar sessions are selected as a resource for calculating suggestions
whenever an ongoing listening session is presented as a query. At each recommenda-
tion round, the Jaccard distance is applied for selecting the 100 most similar listening
sessions, out of the 1,000 most recent ones, and scores are given to each of the tracks
from the dataset (see Equation 2.44). Listening sessions are indexed as soon as they
are finished, for keeping the model always updated.

• Vector Multiplication Session-Based kNN (VSKNN). The method is a variant
of SKNN that emphasizes the more recent events of the listening session presented
as a query, by weighting the items according to their positions within the session.
A weight equal to 1 is attributed to the most recent track, and the weights decay
linearly towards the first track of the session. The idea is that the most recent track
is the most relevant one in the recommendation task and that this relevance decays
as the relative position of a track gets higher. The same distance is applied for
measuring the distance between sessions, the number of the most similar sessions
and the number of recent sessions considered in the calculations are the same as in
the SKNN case, and scores are calculated with Equation 2.45.

• Sequence and Time Aware Neighborhood (STAN). The method expands the
idea of attributing weights to tracks within a listening session by emphasizing the
most recent ones, proposed in VSKNN, by including new terms in the formula
used for calculating the scores. A first new term ensures that sessions farther from
the query session are assigned with lower weight, and another new term ensures
that items occurring in both sessions, the query and the candidate sessions, are
also weighted according to how recently they were observed. The 100 most similar
sessions are again considered as potential candidates for the recommendation, but

16 https://github.com/rn5l/session-rec/tree/master/algorithms/knn
17 https://github.com/rn5l/session-rec/blob/master/algorithms/baselines/markov.py

https://github.com/rn5l/session-rec/tree/master/algorithms/knn
https://github.com/rn5l/session-rec/blob/master/algorithms/baselines/markov.py

4.4 | STREAM-BASED

91

this time, these 100 sessions are selected from a pool containing the 5,000 most
recent ones.

The audio-based method is:

• DJ-MC. The method is based on the idea that users’ preferences are reflected in the
audio features associated with tracks, and that these preferences can be used for
predicting an upcoming track within a listening session, given the audio feature
associated with the current track. The method was originally proposed for generating
playlists automatically, and it performed poorly in the task of next-track prediction.
This led us to propose three modifications in its original formulation, described as
follows. The modifications were also motivated by comparability and efficiency.

The original method proposed the use of several audio features (e.g. pitch dominance,
variance in timbre, among others), but it was here adapted for using codeword his-
togram audio features for the sake of comparison. In the original work, audio features
are considered as real numbers that are quantized into 10-percentile bins, taking the
whole dataset into account. Each track ends up being represented as several indicator
vectors, each one associated with one of these audio features. Here, the index of the
highest value of the codeword histogram is considered equivalent to the bin number,
and as a consequence, transitions between tracks, that were originally represented as
transitions between those predominant bins, are represented as transitions between
the indexes of the highest value of the codeword histograms.

Two user profiles are kept up-to-date, one expressing users’ preferences towards
audio features (audio profile), and one expressing users’ preferences towards tran-
sitions between those audio features (transition profile). When consulted with an
audio feature associated with a current track, the method selects among all tracks,
which are the ones that fit better with both users’ audio profiles. The original method
selects candidate tracks from pseudo-randomly generated listening sessions, but
this strategy turned out to be too time-consuming for the dataset applied in our
experiments. Instead, the method was adapted for using the MLAII structure for
retrieving candidate tracks given the users’ audio profiles. At each recommendation
round, the tracks that share the same top codeword histogram index with the user
audio profile are retrieved from MLAII, as well as the tracks that match with the
most likely transition observed in the user transition profile. All tracks are gathered
and ordered according to the number of occurrences in the tracks returned by the
MLAII structure.

And finally, storing one transition profile for each user turned out to be too expensive
as well. Instead, we considered one single transition profile that is shared among all
users. This alleviated the memory requirements and improved the recommendation
results.

4.4.3 Experiments
We now present some details on the implementation of the ATTREC method, and the

algorithm used for evaluating the stream-based recommendation methods. The ATTREC
method is somehow related to the transition profiles presented in the DJ-MC method,

92

4 | EXPERIMENTS AND RESULTS

and to the retrieval stage of the SATAREC method. In the new stream-based method,
track/track transitions are associated with transitions between their respective codeword
histograms, histograms are summarized as their top-N most relevant indexes, and this
information is stored in the memory. In DJ-MC personalized transition profiles were also
built with information about transitions between the most relevant bins of audio features
involved in the transition. Now, N transition matrices are built for storing the transitions
between the N most relevant indexes of audio features, and the transitions between audio
contents are shared among users. The new N transition matrices, or a transition tensor,
are then used to predict an upcoming track within a listening session by looking up the
most likely N indexes stored in the memory, given the top-N indexes associated with the
current track. The process for obtaining candidate tracks given potential top-N codeword
histogram indexes is the same one applied in SATAREC.

The stream-based recommendation methods were evaluated according to a simulation
in which listening sessions are revealed one by one and starting from the second position of
each session, models are consulted for the upcoming track (target track), given the current
track or the previous tracks from the session (query tracks). A successful prediction round
is one in which the target track is among the top-K tracks returned by the methods.

• Audio Transition Tensor for Recommendation (ATTREC)18. The method as-
sumes that there are temporal patterns in audio features associated with tracks
composing listening sessions and that these patterns can be used for suggesting
tracks to users. The method also assumes an auxiliary inverted index structure, from
which tracks can be retrieved given their respective audio features, and to which
new tracks can be added asynchronously.

More specifically, ATTREC was evaluated with codeword histograms associated
with tracks from the LFM-1b_2013 dataset. At each prediction round, the current
codeword histogram is summarized as the indexes corresponding to its N most
relevant values, and this summarized version is submitted to a prediction stage.
In this stage, each of these N values is consulted in the transition tensor for the
most likely transitions in that specific index, and the candidate transitions are
retrieved from the MLAII structure. For example, if the current histogram’s highest
value is located in position 10, then the 10-th row of the first transition matrix
(corresponding to N=1) is consulted for the most likely transitions. Imagine that in
most of the transitions observed previously, the most relevant histogram position
moves from index 10 to indexes 5 and 11. The tracks whose most relevant histogram
positions are located in 5 and 11 are retrieved from the MLAII structure, and the
same procedure is repeated N times. All tracks retrieved from the MLAII structure
are ordered by occurrence, and the tracks that repeat the most are considered the
best candidates for the next track within the listening session.

When a session is finished, the codeword histograms associated with all its transitions
are used to update the transition tensor. For each transition, the corresponding
transition matrix is updated by summing one to the value located in the row that
matches the corresponding position of the previous track, and the column that

18 https://github.com/rcaborges/ATTREC

https://github.com/rcaborges/ATTREC

4.4 | STREAM-BASED

93

matches the corresponding position of the next track. The ATTREC method has two
parameters whose values will be tested during the experiments, the first one is the
size of the summarized version of the audio feature, referred to as 𝑁 , and the second
is the number of potential transitions considered in the prediction stage, referred
to as 𝛼 . The parameter 𝛼 is defined within the interval [0, 1], as a threshold above
which all transitions are considered candidate transitions.

The stream-based methods were evaluated according to an Algorithm 3, which reveals
listening sessions, one by one, and updates the recommendation models after each session.
Starting from line 5 of the algorithm, listening sessions are selected one by one, from the
least to the most recent. A counter is triggered for counting from 1 to the length of the
session, for simulating a user that listens to tracks one after the other (line 7). Each iteration
of the counter is interpreted as a moment in time when song 𝑗 − 1 of the session is being
listened to. All previous tracks within the session are considered as a query (line 8), and the
next one 𝑗 is considered as a prediction target (line 10). The audio feature is obtained from
the most recent track in the query (line 9), and all the information, query, target and audio
feature, are submitted to a method that retrieves the candidates for the upcoming track
(line 11). HitRate@K is measured with Equation 3.20 (line 12), and MRR@K is measured
with Equation 3.21 (line 13). When a listening session ends, the model is updated with the
information of the current session (line 15).

Algorithm 3: Algorithm for the stream-based recommendation evaluation.
Data: set 𝑆 of all sessions

1 int ℎ𝑟 = 0 ;
2 int 𝑚𝑟𝑟 = 0 ;
3 int 𝑘 = 10 ;
4

5 for 𝑖 = 0 ∶ 50, 000 do
6 session = S[i];
7 for 𝑗 = 1 ∶ length(session) do
8 𝑞𝑢𝑒𝑟𝑦 = 𝑠𝑒𝑠𝑠𝑖𝑜𝑛[∶ 𝑗] ;
9 𝑎𝑢𝑑𝑖𝑜_𝑞𝑢𝑒𝑟𝑦 = model.Retrieve_Audio(𝑞𝑢𝑒𝑟𝑦[−1]) ;

10 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑠𝑒𝑠𝑠𝑖𝑜𝑛[𝑗] ;
11 𝐼𝑘 = model.Retrieve_TopK_Suggestions(𝑞𝑢𝑒𝑟𝑦, 𝑎𝑢𝑑𝑖𝑜_𝑞𝑢𝑒𝑟𝑦, 𝑘);
12 ℎ𝑟 + = len(𝐼𝑘 ∩ 𝑡𝑎𝑟𝑔𝑒𝑡) ;
13 𝑚𝑟𝑟 + = 1/𝑟𝑎𝑛𝑘(𝐼𝑘 , 𝑡𝑎𝑟𝑔𝑒𝑡, 𝑘) ;
14 end
15 model.train(𝑠𝑒𝑠𝑠𝑖𝑜𝑛);
16 end

The average HR@K and average MRR@K measured for the first 50,000 is reported
in the results. Rating-based methods are not prepared for suggesting tracks that never
took part in any listening sessions, i.e. cold-start. In order to evaluate the performance of
audio-based methods in transitions to cold-start tracks, we measured the proportion of
right predictions when considering only these tracks.

94

4 | EXPERIMENTS AND RESULTS

4.4.4 Results
The ATTREC method has two parameters that should be defined before its application

to the final recommendation task, the 𝑁 and the 𝛼 parameters. The former defines the
number of indexes that will be considered in the simplified audio feature. The latter defines
the proportion of potential transitions that will be considered in the prediction task. We
tested the 𝑁 parameter assuming values 10, 100 and 500, and we tested the 𝛼 parameter
assuming values 0.1, 0.5 and 0.99. We evaluated all parameter combinations, and the results
are presented in Table 4.6.

HR@1 HR@10 HR@100 MRR@1 MRR@10 MRR@100

𝛼=0.1
N=10 0.210 0.240 0.262 0.210 0.219 0.220
N=100 0.362 0.385 0.400 0.362 0.370 0.370
N=500 0.362 0.385 0.400 0.362 0.370 0.370

𝛼=0.5
N=10 0.294 0.323 0.356 0.294 0.304 0.305
N=100 0.429 0.461 0.476 0.429 0.442 0.442
N=500 0.429 0.461 0.476 0.429 0.442 0.442

𝛼=0.99
N=10 0.337 0.562 0.571 0.337 0.421 0.421
N=100 0.389 0.566 0.572 0.389 0.458 0.458
N=500 0.389 0.566 0.572 0.389 0.458 0.458

Table 4.6: ATTREC recommendation results measured for the first 50,000 listening sessions with dif-
ferent 𝑁 and 𝛼 parameters. The best results are highlighted in boldface.

The new stream-based recommendation method seems to be sensitive to 𝑁 and to 𝛼 ,
and interestingly enough, there are no parameter values that perform better according to
all performance metrics. Smaller 𝛼 values seem to provide better results for HR@1 and
MRR@1, while greater 𝛼 values generate better results in the metrics considering more
positions in the recommendation list. In the case of parameter 𝑁 , simplified audio features
of higher dimensions seem to perform better than smaller ones, but only up to a certain
upper limit, after which results stabilize. We decided to set N equal to 100, and 𝛼 equals to
0.99 based on these observations.

All stream-based recommendation methods are submitted to an evaluation algorithm,
shown in Algorithm 3, and are evaluated according to the task of predicting the next track
within a listening session, given all information associated with the previous tracks of that
same session. The results are shown in Table 4.7.

The MC method is more effective at predicting the correct track in the first position of
the predictions list, expressed in HR@1 and MRR@1. The method is also more effective
in predicting the correct tracks in better positions in longer prediction lists, expressed in
MRR@10 and MRR@100. The VSKNN method is the most efficient in retrieving the right
next track among the first 100 most likely tracks, expressed in HR@10.

The ATTREC presented results that are surprisingly good, taking into account that
it is an exclusively audio-based method that is being compared to rating-based methods.
The ATTREC method presented the second best result in five out of six performance
metrics.

4.4 | STREAM-BASED

95

One possible explanation for these results is the fact that the ATTREC method can be
understood as an equivalent version of the MC method, transposed to the audio domain.
Both methods rely on the assumption that transitions that were observed more frequently
in the past are the most likely transitions to happen in the future. With a substantial
difference: one operates with track indexes (MC), and the other with audio feature indexes
associated with these tracks (ATTREC).

HR@1 HR@10 HR@100 MRR@1 MRR@10 MRR@100
DMC 0.517 0.566 0.567 0.517 0.538 0.537

Rating- SKNN 0.028 0.503 0.674 0.027 0.137 0.147
Based VSKNN 0.034 0.557 0.687 0.034 0.161 0.168

STAN 0.004 0.606 0.660 0.004 0.216 0.458
Audio- DJ-MC 0.005 0.031 0.078 0.005 0.012 0.013
Based ATTREC 0.389 0.566 0.572 0.389 0.458 0.458

Table 4.7: Recommendation results measured for the first 50,000 listening sessions according to a
simulation of a dynamic recommendation environment. ATTREC is evaluated with N=100 and 𝛼=0.99.
The best results are highlighted in boldface and the second best results are highlighted underlined.

The experiments considered codeword histograms as audio features, and this might
be another reason for the obtained results. Codeword histograms were calculated with
a significantly high number of centroids, which generates sparse histograms that are
unique to each track. The experiments conducted for evaluating the MLAII structure,
shown in Table 4.4, revealed that the two most relevant values of a histogram were enough
information for retrieving the right track from the inverted index structure among the
first 20 positions (REC@20 with N=2).

Finally, we submitted the two audio-based methods, DJ-MC and ATTREC, to the same
cold-start evaluation procedure applied to the SA methods. The methods were trained with
a data slice separated for training and were tested in overall, warm-start and cold-start
scenarios. The results are presented in Table 4.8.

HR@1 HR@10 HR@100 MRR@1 MRR@10 MRR@100

Overall
DJ-MC 0.002 0.010 0.026 0.002 0.004 0.004

ATTREC 0.443 0.667 0.684 0.443 0.535 0.536
Warm- DJ-MC 0.002 0.011 0.027 0.002 0.004 0.004
Start ATTREC 0.431 0.662 0.680 0.431 0.528 0.529
Cold- DJ-MC 0.000 0.000 0.002 0.000 0.000 0.000
Start ATTREC 0.622 0.795 0.804 0.622 0.697 0.698

Table 4.8: Recommendation results are measured for the audio-based methods in the task of next-
track prediction. Results are separated into overall, warm-start and cold-start scenarios. ATTREC is
evaluated with N=100 and 𝛼=0.99.

The DJ-MC method presented a low performance in the three scenarios, and the
ATTREC presented surprisingly good results, in particular, when evaluated in the cold-
start scenario.

97

Chapter 5

Conclusions

In this study, we explored the use of audio features as an alternative for mitigating
the cold-start problem, widely known in the recommendation domain. The study was
separated into three parts, corresponding to three categories of recommendation methods:
collaborative filtering (CF), sequence-aware (SA) and stream-based (SB) methods. The first
two categories correspond to two formulations of the recommendation task, while the third
one corresponds more closely to the circumstances in which recommendations are being
made. One could argue that CF and SA are two ways formulations for the recommendation
task and that both formulations can be evaluated in static or SB scenarios. If seen from this
perspective, this study reports results for the static evaluation of both CF and SA methods,
and for the SB evaluation of SA methods.

In the CF case, recommendation was tackled as a ranking task, i.e. positioning the right
users who interacted with tracks in lower positions than the ones who haven’t interacted,
whereas most studies previously published considered the task as a matrix completion
task, i.e. predicting the values that are missing in a rating matrix. In order words, here the
evaluation process considered the top-K elements from the prediction list on the evaluation
process, while most of the previous studies adopted RMSE or AUC metrics for measuring
the methods’ performances. The approximation error measured with RMSE expresses the
quality of the approximation, which is not directly related to the recommendation quality,
and AUC evaluates the task as a binary classification. In our favour, methods designed for
ranking the predicted values according to target values can not be evaluated in a binary
classification task, while the methods designed for matrix completion can be evaluated
according to ranking performance metrics.

The DCMF and the HLDBN methods, adopted as reference methods, were implemented
with some particularities. In the case of DCMF, limited information about the model’s
architecture is provided, and parameters like the number of layers used in the network, the
kernel size and the hyperparameters were not mentioned in the original articles, which
led us to adapt the CNN architecture according to the architectures proposed here. In the
HLDBN method, the user ratings and the user embeddings are modelled as normal distri-
butions, whose parameters are supposed to be learned during the optimization process. We
were not able to reproduce these formulations, and instead, both variables were modelled
as real numbers. The HLDBN results, then, still have space for improvement.

98

5 | CONCLUSIONS

The AGRU4REC method was proposed as a baseline method, and it performed sur-
prisingly well in the next-track prediction task. The method was proposed motivated by
the question if temporal patterns are reflected in audio features associated with tracks,
and if these audio features can be used to predict an upcoming track within a listening
session. In its best version, the method was able to predict approximately 60% of the
upcoming tracks among the first 100 predicted values, given the audio feature associated
with the current track. The AGRU4REC method, however, is limited by the cold-start
problem, not being able to predict tracks that were never exposed to the model, which led
us to propose the SATAREC method. The SATAREC method was designed to mitigate the
cold-start limitation, but it presented a limited performance in the next-track prediction
task when compared to rating-based and AGRU4REC methods. As future work, we plan
to try different architectures and new parameters in order to improve its performance.
Nevertheless, the SATAREC method outperformed its competitor ALMM in the standard
next-track prediction evaluation.

Incorporating new tracks to SA music recommenders is a challenging task, and incor-
porating new tracks to SA music recommenders dynamically is even more challenging.
An audio-based SB method, named ATTREC, was proposed for recommending tracks
dynamically, whose performance in the next-track prediction task is comparable to rating-
based methods. The method was evaluated according to an algorithm that simulates an
online environment, by revealing listening sessions one by one, according to which the
prediction accuracy was measured. The performance of ATTREC under the cold-start
scenario was measured according to the SA methodology, which separates a subset of
recent listening sessions for evaluation, which is considered more realistic than in the
dynamic methodology. In this dynamic methodology tracks would be considered as new
tracks only the first time they participate in a listening session, but thie considerably
restricts the notion of new tracks.

In the three cases, CF, SA and SB, recommendation methods were proposed, which are
able to suggest tracks to users based on the tracks’ audio contents. We haven’t proposed,
however, a methodology for integrating audio-based predictions into rating-based methods
in such a way that new tracks can be included in rating-based methods that are already
operating. This specific task will be addressed in future work.

When starting this study, no dataset was available containing user/track interaction
data and audio excerpts associated with the corresponding tracks. Our decision was to
select the biggest dataset publicly available (LFM-1b) and to download the corresponding
audio files from the Spotify website using an available API. As far as we know no other
study has applied the same dataset and audio files to a similar task, which prevented us
from comparing our results with previously reported results.

Finally, scalability, diversity, fairness, and coverage are well-known challenges and
established research topics in the area of recommender systems, but they were not men-
tioned here. Scalability is especially problematic in the case of music recommenders due
to the size of the catalogue available for a recommendation, which is usually much bigger
than in other domains. Introducing these challenges as extra tasks to be addressed together
with cold-start are proposed as future work.

99

Appendix A

Appendix

A.1 Rating-Based Collaborative Filtering

PRECISION RECALL
@1 @10 @100 @1 @10 @100

Lin/100/1e-05 0.062 0.040 0.017 0.014 0.080 0.304
Lin/100/0.001 0.062 0.040 0.017 0.014 0.081 0.305
Lin/100/0.1 0.063 0.040 0.018 0.014 0.080 0.303
Lin/200/1e-05 0.062 0.040 0.017 0.014 0.080 0.304
Lin/200/0.001 0.062 0.040 0.017 0.014 0.081 0.305
Lin/200/0.1 0.063 0.040 0.018 0.014 0.080 0.303
Log/100/1e-05 0.054 0.037 0.017 0.014 0.080 0.312
Log/100/0.001 0.054 0.038 0.017 0.013 0.080 0.313
Log/100/0.1 0.054 0.038 0.017 0.013 0.080 0.312
Log/200/1e-05 0.054 0.037 0.017 0.013 0.080 0.312
Log/200/0.001 0.054 0.038 0.017 0.013 0.080 0.313
Log/200/0.1 0.054 0.038 0.017 0.013 0.080 0.312
None/100/1e-05 0.064 0.040 0.018 0.014 0.079 0.297
None/100/0.001 0.065 0.040 0.017 0.014 0.079 0.298
None/100/0.1 0.065 0.040 0.017 0.014 0.079 0.298
None/200/1e-05 0.064 0.040 0.018 0.014 0.079 0.297
None/200/0.001 0.065 0.040 0.017 0.014 0.079 0.298
None/200/0.1 0.065 0.040 0.017 0.014 0.079 0.298

Table A.1: Recommendation results obtained for the WMF recommendation method. The results are
presented in the following format: confidence type/𝛼/𝜆.

100

APPENDIX A

A.2 Cold-Start Collaborative Filtering Results

0 20 40 60 80 100
K

0.00

0.01

0.02

0.03

0.04

RE
C@

K

0 20 40 60 80 100
K

0.050

0.075

0.100

0.125

0.150

0.175

0.200

PR
EC

@
K

DCMF(CODE)
ACVAE(CODE)
HLDBN(CODE)
ACRE(CODE)

Two-Step
One-Step

0 20 40 60 80 100
K

0.00

0.01

0.02

0.03

0.04

0.05

RE
C@

K

0 20 40 60 80 100
K

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250
PR

EC
@

K
DCMF(MEL)
ACVAE(MEL)
HLDBN(MEL)
ACRE(MEL)

Two-Step
One-Step

0 20 40 60 80 100
K

0.00

0.01

0.02

0.03

0.04

0.05

RE
C@

K

0 20 40 60 80 100
K

0.100

0.125

0.150

0.175

0.200

0.225

PR
EC

@
K

DCMF(RAW)
ACVAE(RAW)
HLDBN(RAW)
ACRE(RAW)

Two-Step
One-Step

0 20 40 60 80 100
K

0.00

0.01

0.02

0.03

0.04

0.05

0.06

RE
C@

K

0 20 40 60 80 100
K

0.05

0.10

0.15

0.20

0.25

PR
EC

@
K

DCMF(CODE)
DCMF(MEL)
DCMF(RAW)
ACVAE(CODE)
ACVAE(MEL)
ACVAE(RAW)
HLDBN(CODE)
HLDBN(MEL)
HLDBN(RAW)
ACRE(CODE)
ACRE(MEL)
ACRE(RAW)

Two-Step
One-Step

Figure A.1: Results measured for the track profile prediction task, in the context of collaborative
filtering. Results are presented separately for each audio feature. (First) Results measured for code-
word histograms. (Second) Results measured for Mel-spectrogram. (Third) Results measured for raw
waveform. (Fourth) Results measured for all audio features and methods.

A.3 | AUDIO-BASED ARTIST CLUSTERS

101

A.3 Audio-Based Artist Clusters

(a) first (b) second

(c) third (d) fourth

(e) fifth (f) sixth

Figure A.2: Six hand-made clusters obtained from audio-based representations of songs from the
LFM-1b dataset.

102

APPENDIX A

A.4 Sequence-Aware Recommendation Results

0 20 40 60 80 100
K

0.65

0.70

0.75

0.80

0.85

RE
C@

K

0 20 40 60 80 100
K

0.62

0.64

0.66

0.68

0.70

0.72

M
RR

@
K

GRU4REC
MARKOV
NARM

0 20 40 60 80 100
K

0.3

0.4

0.5

0.6

RE
C@

K

0 20 40 60 80 100
K

0.22

0.24

0.26

0.28

0.30

0.32

0.34
M

RR
@

K
AGRU4REC (CODE)
AGRU4REC (MEL)
AGRU4REC (RAW)

0 20 40 60 80 100
K

0.00

0.05

0.10

0.15

0.20

RE
C@

K

0 20 40 60 80 100
K

0.00

0.02

0.04

0.06

0.08

0.10

M
RR

@
K

ALMM
SATAREC (CODE)
SATAREC (MEL)
SATAREC (RAW)

0 20 40 60 80 100
K

0.0

0.2

0.4

0.6

0.8

RE
C@

K

0 20 40 60 80 100
K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
RR

@
K

GRU4REC
MARKOV
NARM
AGRU4REC (CODE)
AGRU4REC (MEL)
AGRU4REC (RAW)
ALMM
SATAREC (CODE)
SATAREC (MEL)
SATAREC (RAW)

Rating-Based
Audio-Based
Audio-Based (CS)

Figure A.3: Results measured for the next-track prediction task. (First) Results measured for rating-
based methods. (Second) Results measured for audio-based methods. (Third) Results measured for
audio-based methods designed for mitigating the cold-start problem. (Fourth) Results measured for
all methods.

A.5 | STREAM-BASED RECOMMENDATION RESULTS

103

A.5 Stream-Based Recommendation Results

0 10 20 30 40 50
0

5000

10000

15000

20000

25000

HR
@

1

MARKOV
SKNN
VSKNN
STAN
DJ-MC
ATTREC

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

Av
g.

 H
R@

1

0 10 20 30 40 50
0

5000

10000

15000

20000

25000

M
RR

@
1

0 10 20 30 40 50
Sessions (x 1,000)

0.0

0.1

0.2

0.3

0.4

0.5

Av
g.

 M
RR

@
1

Figure A.4: Results measured for the stream-based recommendation methods, with K=1 and for 50,000
listening sessions. (First) Accumulated HR@1 along the 50,000 listening sessions. (Second) The accu-
mulated HR@1 is divided by the number of sessions. (Third) Accumulated MRR@1 along the 50,000
listening sessions. (Fourth) The accumulated MRR@1 is divided by the number of sessions.

104

APPENDIX A

0 10 20 30 40 50
0

5000

10000

15000

20000

25000

30000
HR

@
10

MARKOV
SKNN
VSKNN
STAN
DJ-MC
ATTREC

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
g.

 H
R@

10

0 10 20 30 40 50
0

5000

10000

15000

20000

25000

M
RR

@
10

0 10 20 30 40 50
Sessions (x 1,000)

0.0

0.1

0.2

0.3

0.4

0.5

Av
g.

 M
RR

@
10

Figure A.5: Results measured for the stream-based recommendation methods, with K=10 and for
50,000 listening sessions. (First) Accumulated HR@10 along the 50,000 listening sessions. (Second) The
accumulated HR@10 is divided by the number of sessions. (Third) Accumulated MRR@10 along the
50,000 listening sessions. (Fourth) The accumulated MRR@10 is divided by the number of sessions.

A.5 | STREAM-BASED RECOMMENDATION RESULTS

105

0 10 20 30 40 50
0

10000

20000

30000

HR
@

10
0

MARKOV
SKNN
VSKNN
STAN
DJ-MC
ATTREC

0 10 20 30 40 50
0.0

0.2

0.4

0.6

Av
g.

 H
R@

10
0

0 10 20 30 40 50
0

5000

10000

15000

20000

25000

M
RR

@
10

0

0 10 20 30 40 50
Sessions (x 1,000)

0.0

0.1

0.2

0.3

0.4

0.5

Av
g.

 M
RR

@
10

0

Figure A.6: Results measured for the stream-based recommendation methods, with K=100 and for
50,000 listening sessions. (First) Accumulated HR@100 along the 50,000 listening sessions. (Second) The
accumulated HR@100 is divided by the number of sessions. (Third) Accumulated MRR@100 along the
50,000 listening sessions. (Fourth) The accumulated MRR@100 is divided by the number of sessions.

106

APPENDIX A

A.6 List of Publication

Journal Articles
• TOFANI, A.; BORGES, R.; QUEIROZ M. . Dynamic session-based music recom-

mendation using information retrieval techniques. User Modeling and User-Adapted
Interaction (Accepted for publication).

• SIMURRA, I; BORGES, R. . Analysis of Ligeti’s Atmosphères by Means of Compu-
tational and Symbolic Resources. Revista Música, 21(1), 369-394. https://doi.org/10.
11606/rm.v21i1.188846.

• BORGES, R.; QUEIROZ, M. . Automatic Music Recommendation Based on Acoustic
Content and Implicit Listening Feedback. Revista Música Hodie, [S.l.], v. 18, n. 1, p.
31 - 43, jun. 2018. ISSN 1676-3939 https://doi.org/10.5216/mh.v18i1.53569.

Proceedings
• QUEIROZ, M.; BORGES, R. C. . Chroma Interval Content as a Key-Independent

Harmonic Progression Feature. Proceedings of MMRP 2019.

• BORGES, R. C.; QUEIROZ, M. . Evolution of timbre diversity in a dataset of brazilian
popular music: 1950-2000. Proceedings of SYSMUS 2018.

• SIMURRA, I. E.; BORGES, R. C. . Combining Automatic Segmentation and Symbolic
Analysis based on Timbre Features – A Case Study from Ligeti’s Atmosphères.
Proceedings of SYSMUS 2018.

• BORGES, R. C.; QUEIROZ, M. . A Probabilistic Model For Recommending Music
Based on Acoustic Features and Social Data. Proceedings of SBCM 2017.

https://doi.org/10.11606/rm.v21i1.188846
https://doi.org/10.11606/rm.v21i1.188846
https://doi.org/10.5216/mh.v18i1.53569

107

References

[Ahmad Wasfi 1998] Ahmad M. Ahmad Wasfi. “Collecting user access patterns for
building user profiles and collaborative filtering”. In: Proceedings of the 4th Inter-
national Conference on Intelligent User Interfaces. IUI ’99. Los Angeles, California,
USA, 1998, pp. 57–64. isbn: 1581130988. doi: 10.1145/291080.291091. url: https:
//doi.org/10.1145/291080.291091 (cit. on p. 32).

[Auer et al. 2019] Peter Auer et al. “Achieving optimal dynamic regret for non-
stationary bandits without prior information”. In: Proceedings of the Thirty-Second
Conference on Learning Theory. Vol. 99. Proceedings of Machine Learning Research.
PMLR, 2019, pp. 159–163. url: https://proceedings.mlr.press/v99/auer19b.html
(cit. on p. 40).

[Barkan et al. 2019] Oren Barkan, Noam Koenigstein, Eylon Yogev, and Ori Katz.
“Cb2cf: a neural multiview content-to-collaborative filtering model for completely
cold item recommendations”. In: Proceedings of the 13th ACM Conference on Recom-
mender Systems. RecSys ’19. Copenhagen, Denmark: Association for Computing
Machinery, 2019, pp. 228–236. isbn: 9781450362436. doi: 10.1145/3298689.3347038.
url: https://doi.org/10.1145/3298689.3347038 (cit. on p. 5).

[Bellogín et al. 2017] Alejandro Bellogín, Pablo Castells, and Iván Cantador. “Sta-
tistical biases in information retrieval metrics for recommender systems”. In: Inf.
Retr. J. 20.6 (2017), pp. 606–634. url: https://doi.org/10.1007/s10791-017-9312-z
(cit. on p. 70).

[Bengio et al. 1994] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term de-
pendencies with gradient descent is difficult”. In: IEEE Transactions on Neural
Networks 5.2 (1994), pp. 157–166. doi: 10.1109/72.279181 (cit. on p. 30).

[Bogdanov, Haro, et al. 2013] Dmitry Bogdanov, Martín Haro, et al. “Semantic au-
dio content-based music recommendation and visualization based on user prefer-
ence examples”. In: Information Processing and Management 49.1 (2013), pp. 13–
33. issn: 0306-4573. doi: https://doi.org/10.1016/j.ipm.2012.06.004. url: https:
//www.sciencedirect.com/science/article/pii/S0306457312000763 (cit. on pp. 5, 9).

https://doi.org/10.1145/291080.291091
https://doi.org/10.1145/291080.291091
https://doi.org/10.1145/291080.291091
https://proceedings.mlr.press/v99/auer19b.html
https://doi.org/10.1145/3298689.3347038
https://doi.org/10.1145/3298689.3347038
https://doi.org/10.1007/s10791-017-9312-z
https://doi.org/10.1109/72.279181
https://doi.org/https://doi.org/10.1016/j.ipm.2012.06.004
https://www.sciencedirect.com/science/article/pii/S0306457312000763
https://www.sciencedirect.com/science/article/pii/S0306457312000763

108

REFERENCES

[Bogdanov, Serrà, et al. 2011] Dmitry Bogdanov, Joan Serrà, Nicolas Wack, Per-
fecto Herrera, and Xavier Serra. “Unifying low-level and high-level music sim-
ilarity measures”. In: IEEE Transactions on Multimedia 13.4 (2011), pp. 687–701.
doi: 10.1109/TMM.2011.2125784 (cit. on pp. 16, 43).

[Bonnin and Jannach 2014] Geoffray Bonnin and Dietmar Jannach. “Automated
generation of music playlists: survey and experiments”. In: ACM Comput. Surv.
47.2 (2014). issn: 0360-0300. doi: 10.1145/2652481. url: https://doi.org/10.1145/
2652481 (cit. on p. 7).

[Borges and Queiroz 2018] Rodrigo Borges and Marcelo Queiroz. “Automatic music
recommendation based on acoustic content and implicit listening feedback”. In:
Revista Música Hodie 18.1 (2018), pp. 31–43. issn: 1676-3939. doi: 10.5216/mh.
v18i1.53569. url: https://www.revistas.ufg.br/musica/article/view/53569 (cit. on
p. 5).

[Breese et al. 1998] John S. Breese, David Heckerman, and Carl Kadie. “Empirical
analysis of predictive algorithms for collaborative filtering”. In: Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelligence. UAI’98. Madison,
Wisconsin, 1998, pp. 43–52. isbn: 155860555X (cit. on p. 32).

[Burton et al. 1983] D. Burton, J. Shore, and J. Buck. “A generalization of isolated
word recognition using vector quantization”. In: ICASSP ’83. IEEE International
Conference on Acoustics, Speech, and Signal Processing. Vol. 8. 1983, pp. 1021–1024.
doi: 10.1109/ICASSP.1983.1171915 (cit. on p. 14).

[Campos et al. 2014] Pedro G. Campos, Fernando Diez, and Iván Cantador. “Time-
aware recommender systems: a comprehensive survey and analysis of existing
evaluation protocols”. In: User Model. User Adapt. Interact. 24.1-2 (2014), pp. 67–119.
doi: 10.1007/s11257-012-9136-x. url: https://doi.org/10.1007/s11257-012-9136-x
(cit. on p. 7).

[Cano et al. 2005a] Pedro Cano, Markus Koppenberger, and Nicolas Wack. “Content-
based music audio recommendation”. In: Proceedings of the 13th Annual ACM
International Conference on Multimedia. MULTIMEDIA ’05. Hilton, Singapore,
2005, pp. 211–212. isbn: 1595930442. doi: 10.1145/1101149.1101181. url: https:
//doi.org/10.1145/1101149.1101181 (cit. on p. 43).

[Cano et al. 2005b] Pedro Cano, Markus Koppenberger, and Nicolas Wack. “Content-
based music audio recommendation”. In: Proceedings of the 13th ACM International
Conference on Multimedia, Singapore, November 6-11, 2005. ACM, 2005, pp. 211–
212. url: https://doi.org/10.1145/1101149.1101181 (cit. on p. 2).

[Cardoso et al. 2016] João Paulo V. Cardoso et al. “Mixtape: direction-based naviga-
tion in large media collections”. In: Proceedings of the 17th International Society for
Music Information Retrieval Conference, ISMIR 2016, New York City, United States,
August 7-11, 2016. 2016, pp. 454–460 (cit. on p. 8).

https://doi.org/10.1109/TMM.2011.2125784
https://doi.org/10.1145/2652481
https://doi.org/10.1145/2652481
https://doi.org/10.1145/2652481
https://doi.org/10.5216/mh.v18i1.53569
https://doi.org/10.5216/mh.v18i1.53569
https://www.revistas.ufg.br/musica/article/view/53569
https://doi.org/10.1109/ICASSP.1983.1171915
https://doi.org/10.1007/s11257-012-9136-x
https://doi.org/10.1007/s11257-012-9136-x
https://doi.org/10.1145/1101149.1101181
https://doi.org/10.1145/1101149.1101181
https://doi.org/10.1145/1101149.1101181
https://doi.org/10.1145/1101149.1101181

REFERENCES

109

[Chen et al. 2012] Shuo Chen, Josh L. Moore, Douglas Turnbull, and Thorsten
Joachims. “Playlist prediction via metric embedding”. In: Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’12. Beijing, China, 2012, pp. 714–722. isbn: 9781450314626. doi: 10.1145/
2339530.2339643. url: https://doi.org/10.1145/2339530.2339643 (cit. on p. 7).

[Cho et al. 2014] Kyunghyun Cho et al. “Learning phrase representations using RNN
encoder-decoder for statistical machine translation”. In: Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar. ACL, 2014, pp. 1724–1734. doi: 10.3115/v1/d14-
1179. url: https://doi.org/10.3115/v1/d14-1179 (cit. on p. 30).

[Choi et al. 2017] Keunwoo Choi, György Fazekas, Mark B. Sandler, and Kyunghyun
Cho. “Transfer learning for music classification and regression tasks”. In: Proceed-
ings of the 18th International Society for Music Information Retrieval Conference,
ISMIR 2017, Suzhou, China, October 23-27, 2017. 2017, pp. 141–149. url: https :
//ismir2017.smcnus.org/wp-content/uploads/2017/10/12%5C_Paper.pdf (cit. on
p. 21).

[Chorowski et al. 2019] Jan Chorowski, Ron J. Weiss, Samy Bengio, and Aäron van
den Oord. “Unsupervised speech representation learning using wavenet autoen-
coders”. In: IEEE/ACM Transactions on Audio, Speech, and Language Processing
27.12 (2019), pp. 2041–2053. doi: 10.1109/TASLP.2019.2938863 (cit. on p. 21).

[Chou et al. 2016] Szu-Yu Chou, Yi-Hsuan Yang, Jyh-Shing Roger Jang, and Yu-Ching
Lin. “Addressing cold start for next-song recommendation”. In: Proceedings of the
10th ACM Conference on Recommender Systems. RecSys ’16. Boston, Massachusetts,
USA, 2016, pp. 115–118. isbn: 9781450340359. doi: 10.1145/2959100.2959156. url:
https://doi.org/10.1145/2959100.2959156 (cit. on pp. 7, 47, 48).

[Chung et al. 2014] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and
Yoshua Bengio. “Empirical evaluation of gated recurrent neural networks on
sequence modeling”. In: CoRR abs/1412.3555 (2014). arXiv: 1412 . 3555. url:
http://arxiv.org/abs/1412.3555 (cit. on pp. 7, 21).

[Devooght and Bersini 2016] Robin Devooght and Hugues Bersini. “Collaborative
filtering with recurrent neural networks”. In: CoRR abs/1608.07400 (2016). arXiv:
1608.07400. url: http://arxiv.org/abs/1608.07400 (cit. on p. 7).

[Dieleman and Schrauwen 2014] S. Dieleman and B. Schrauwen. “End-to-end
learning for music audio”. In: 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2014, pp. 6964–6968. doi: 10.1109/ICASSP.
2014.6854950 (cit. on p. 21).

[Duchi et al. 2011] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradi-
ent methods for online learning and stochastic optimization”. In: J. Mach. Learn.
Res. 12.null (July 2011), pp. 2121–2159. issn: 1532-4435 (cit. on p. 24).

https://doi.org/10.1145/2339530.2339643
https://doi.org/10.1145/2339530.2339643
https://doi.org/10.1145/2339530.2339643
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/12%5C_Paper.pdf
https://ismir2017.smcnus.org/wp-content/uploads/2017/10/12%5C_Paper.pdf
https://doi.org/10.1109/TASLP.2019.2938863
https://doi.org/10.1145/2959100.2959156
https://doi.org/10.1145/2959100.2959156
https://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1608.07400
http://arxiv.org/abs/1608.07400
https://doi.org/10.1109/ICASSP.2014.6854950
https://doi.org/10.1109/ICASSP.2014.6854950

110

REFERENCES

[Elahi et al. 2019] Ehtsham Elahi, Wei Wang, Dave Ray, Aish Fenton, and Tony Je-
bara. “Variational low rank multinomials for collaborative filtering with side-
information”. In: Proceedings of the 13th ACM Conference on Recommender Systems.
RecSys ’19. Copenhagen, Denmark: Association for Computing Machinery, 2019,
pp. 340–347. isbn: 9781450362436. doi: 10 . 1145 /3298689 . 3347036. url: https :
//doi.org/10.1145/3298689.3347036 (cit. on p. 5).

[Flexer et al. 2010] Arthur Flexer, Martin Gasser, and Dominik Schnitzer. “Limi-
tations of interactive music recommendation based on audio content”. In: AM
’10, The 5th Audio Mostly Conference, Piteå, Sweden, September 15-17, 2010. ACM,
2010, p. 13. doi: 10.1145/1859799.1859812. url: https://doi.org/10.1145/1859799.
1859812 (cit. on pp. 9, 43).

[Forbes and Zhu 2011] Peter Forbes and Mu Zhu. “Content-boosted matrix factor-
ization for recommender systems: experiments with recipe recommendation”.
In: Proceedings of the Fifth ACM Conference on Recommender Systems. RecSys ’11.
Chicago, Illinois, USA, 2011, pp. 261–264. isbn: 9781450306836. doi: 10 .1145/
2043932.2043979. url: https://doi.org/10.1145/2043932.2043979 (cit. on pp. 5, 7,
43, 44).

[Fressato et al. 2018] Eduardo Pereira Fressato, Arthur Fortes da Costa, and Marcelo
Garcia Manzato. “Similarity-based matrix factorization for item cold-start in
recommender systems”. In: 7th Brazilian Conference on Intelligent Systems, BRACIS
2018, São Paulo, Brazil, October 22-25, 2018. IEEE Computer Society, 2018, pp. 342–
347. doi: 10.1109/BRACIS.2018.00066. url: https://doi.org/10.1109/BRACIS.2018.
00066 (cit. on p. 5).

[Ganchev et al. 2005] Todor Ganchev, Nikos Fakotakis, and Kokkinakis George.
“Comparative evaluation of various mfcc implementations on the speaker verifi-
cation task”. In: Proceedings of the SPECOM 1 (Jan. 2005) (cit. on p. 19).

[Garg et al. 2019] Diksha Garg, Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig,
and Gautam Shroff. “Sequence and time aware neighborhood for session-based
recommendations: stan”. In: Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval. SIGIR’19. Paris,
France, 2019, pp. 1069–1072. isbn: 9781450361729. doi: 10.1145/3331184.3331322.
url: https://doi.org/10.1145/3331184.3331322 (cit. on pp. 40, 42).

[Al-Ghossein, Abdessalem, and BARRÉ 2021] Marie Al-Ghossein, Talel Ab-
dessalem, and Anthony BARRÉ. “A survey on stream-based recommender
systems”. In: ACM Comput. Surv. 54.5 (May 2021). issn: 0360-0300. doi: 10.1145/
3453443. url: https://doi.org/10.1145/3453443 (cit. on p. 8).

https://doi.org/10.1145/3298689.3347036
https://doi.org/10.1145/3298689.3347036
https://doi.org/10.1145/3298689.3347036
https://doi.org/10.1145/1859799.1859812
https://doi.org/10.1145/1859799.1859812
https://doi.org/10.1145/1859799.1859812
https://doi.org/10.1145/2043932.2043979
https://doi.org/10.1145/2043932.2043979
https://doi.org/10.1145/2043932.2043979
https://doi.org/10.1109/BRACIS.2018.00066
https://doi.org/10.1109/BRACIS.2018.00066
https://doi.org/10.1109/BRACIS.2018.00066
https://doi.org/10.1145/3331184.3331322
https://doi.org/10.1145/3331184.3331322
https://doi.org/10.1145/3453443
https://doi.org/10.1145/3453443
https://doi.org/10.1145/3453443

REFERENCES

111

[Al-Ghossein, Abdessalem, and Barré 2018] Marie Al-Ghossein, Talel Ab-
dessalem, and Anthony Barré. “Dynamic local models for online recom-
mendation”. In: Companion Proceedings of the The Web Conference 2018. WWW
’18. Lyon, France: International World Wide Web Conferences Steering Committee,
2018, pp. 1419–1423. isbn: 9781450356404. doi: 10.1145/3184558.3191586. url:
https://doi.org/10.1145/3184558.3191586 (cit. on p. 39).

[Goldberg et al. 1992] David Goldberg, David Nichols, Brian M. Oki, and Douglas
Terry. “Using collaborative filtering to weave an information tapestry”. In: Com-
mun. ACM 35.12 (1992), pp. 61–70. issn: 0001-0782. doi: 10.1145/138859.138867.
url: https://doi.org/10.1145/138859.138867 (cit. on pp. 1, 4, 32).

[Goodfellow et al. 2016] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. http://www.deeplearningbook.org. MIT Press, 2016 (cit. on pp. 27–
29).

[Gouvert et al. 2018] Olivier Gouvert, Thomas Oberlin, and Cédric Févotte. “Ma-
trix co-factorization for cold-start recommendation”. In: Proceedings of the 19th
International Society for Music Information Retrieval Conference, ISMIR 2018, Paris,
France, September 23-27, 2018. 2018, pp. 792–798. url: http://ismir2018.ircam.fr/
doc/pdfs/142%5C_Paper.pdf (cit. on p. 5).

[Hamel and Eck 2010] Philippe Hamel and Douglas Eck. “Learning features from mu-
sic audio with deep belief networks”. In: Proceedings of the 11th International
Society for Music Information Retrieval Conference, ISMIR 2010, Utrecht, Nether-
lands, August 9-13, 2010. International Society for Music Information Retrieval,
2010, pp. 339–344. url: http://ismir2010.ismir.net/proceedings/ismir2010-58.pdf
(cit. on p. 21).

[Hansen et al. 2020] Casper Hansen et al. “Contextual and sequential user embed-
dings for large-scale music recommendation”. In: Fourteenth ACM Conference on
Recommender Systems. RecSys ’20. Virtual Event, Brazil, 2020, pp. 53–62. isbn:
9781450375832. doi: 10.1145/3383313.3412248. url: https : / /doi .org/10 .1145/
3383313.3412248 (cit. on p. 7).

[Hariri et al. 2015] Negar Hariri, Bamshad Mobasher, and Robin Burke. “Adapting
to user preference changes in interactive recommendation”. In: Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015. AAAI Press, 2015, pp. 4268–4274 (cit. on
p. 8).

[He et al. 2017] Xiangnan He et al. “Neural collaborative filtering”. In: Proceedings of the
26th International Conference on World Wide Web, WWW 2017, Perth, Australia,
April 3-7, 2017. 2017, pp. 173–182. doi: 10 . 1145 / 3038912 . 3052569. url: https :
//doi.org/10.1145/3038912.3052569 (cit. on p. 32).

https://doi.org/10.1145/3184558.3191586
https://doi.org/10.1145/3184558.3191586
https://doi.org/10.1145/138859.138867
https://doi.org/10.1145/138859.138867
http://www.deeplearningbook.org
http://ismir2018.ircam.fr/doc/pdfs/142%5C_Paper.pdf
http://ismir2018.ircam.fr/doc/pdfs/142%5C_Paper.pdf
http://ismir2010.ismir.net/proceedings/ismir2010-58.pdf
https://doi.org/10.1145/3383313.3412248
https://doi.org/10.1145/3383313.3412248
https://doi.org/10.1145/3383313.3412248
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569

112

REFERENCES

[Hidasi et al. 2016] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and
Domonkos Tikk. “Session-based recommendations with recurrent neural net-
works”. In: 4th International Conference on Learning Representations, ICLR. 2016
(cit. on pp. 7, 29, 36, 37, 57, 58).

[G. E. Hinton and R. R. Salakhutdinov 2006] G. E. Hinton and R. R. Salakhutdi-
nov. “Reducing the dimensionality of data with neural networks”. In: Science
313.5786 (2006), pp. 504–507. doi: 10.1126/science.1127647. eprint: https://www.
science.org/doi/pdf/10.1126/science.1127647. url: https://www.science.org/doi/
abs/10.1126/science.1127647 (cit. on p. 24).

[Hochreiter and Schmidhuber 1997] Sepp Hochreiter and Jürgen Schmidhuber.
“Long short-term memory”. In: Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780.
issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735. url: https://doi.org/10.1162/
neco.1997.9.8.1735 (cit. on p. 30).

[Hoffman et al. 2008] Matthew D. Hoffman, David M. Blei, and Perry R. Cook.
“Content-based musical similarity computation using the hierarchical dirichlet pro-
cess”. In: ISMIR 2008, 9th International Conference on Music Information Retrieval,
Drexel University, Philadelphia, PA, USA, September 14-18, 2008. 2008, pp. 349–354.
url: http://ismir2008.ismir.net/papers/ISMIR2008%5C_130.pdf (cit. on p. 43).

[Hoffman et al. 2009] Matthew D. Hoffman, David M. Blei, and Perry R. Cook. “Easy
as CBA: A simple probabilistic model for tagging music”. In: Proceedings of the 10th
International Society for Music Information Retrieval Conference, ISMIR 2009, Kobe
International Conference Center, Kobe, Japan, October 26-30, 2009. International
Society for Music Information Retrieval, 2009, pp. 369–374. url: http://ismir2009.
ismir.net/proceedings/OS5-2.pdf (cit. on pp. 16, 20).

[Hosseinzadeh Aghdam et al. 2015] Mehdi Hosseinzadeh Aghdam, Negar Hariri,
Bamshad Mobasher, and Robin Burke. “Adapting recommendations to contex-
tual changes using hierarchical hidden markov models”. In: Proceedings of the
9th ACM Conference on Recommender Systems. RecSys ’15. Vienna, Austria, 2015,
pp. 241–244. isbn: 9781450336925. doi: 10 . 1145 /2792838 . 2799684. url: https :
//doi.org/10.1145/2792838.2799684 (cit. on p. 7).

[Hu et al. 2008] Yifan Hu, Yehuda Koren, and Chris Volinsky. “Collaborative filtering
for implicit feedback datasets”. In: Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining. ICDM ’08. 2008, pp. 263–272. isbn: 978-0-7695-3502-9
(cit. on pp. 4, 33, 47, 73).

[Ioffe and Szegedy 2015] Sergey Ioffe and Christian Szegedy. “Batch normalization:
accelerating deep network training by reducing internal covariate shift”. In: Pro-
ceedings of the 32nd International Conference on International Conference on Ma-
chine Learning - Volume 37. ICML’15. Lille, France: JMLR.org, 2015, pp. 448–456
(cit. on p. 74).

https://doi.org/10.1126/science.1127647
https://www.science.org/doi/pdf/10.1126/science.1127647
https://www.science.org/doi/pdf/10.1126/science.1127647
https://www.science.org/doi/abs/10.1126/science.1127647
https://www.science.org/doi/abs/10.1126/science.1127647
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://ismir2008.ismir.net/papers/ISMIR2008%5C_130.pdf
http://ismir2009.ismir.net/proceedings/OS5-2.pdf
http://ismir2009.ismir.net/proceedings/OS5-2.pdf
https://doi.org/10.1145/2792838.2799684
https://doi.org/10.1145/2792838.2799684
https://doi.org/10.1145/2792838.2799684

REFERENCES

113

[Jaitly and G. Hinton 2011] N. Jaitly and G. Hinton. “Learning a better representa-
tion of speech soundwaves using restricted boltzmann machines”. In: 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2011,
pp. 5884–5887. doi: 10.1109/ICASSP.2011.5947700 (cit. on p. 21).

[Jannach and Ludewig 2017] Dietmar Jannach and Malte Ludewig. “When Recur-
rent Neural Networks meet the Neighborhood for Session-Based Recommenda-
tion”. In: Proceedings of the Eleventh ACM Conference on Recommender Systems.
New York, NY, USA: ACM, 2017, pp. 306–310. isbn: 9781450346528. doi: 10.1145/
3109859.3109872. url: https://dl.acm.org/doi/10.1145/3109859.3109872 (cit. on
pp. 7, 40).

[Jannach, Mobasher, et al. 2020] Dietmar Jannach, Bamshad Mobasher, and
Shlomo Berkovsky. “Research directions in session-based and sequential
recommendation”. In: User Model. User Adapt. Interact. 30.4 (2020), pp. 609–616
(cit. on p. 35).

[Kaufmann et al. 2012] Emilie Kaufmann, Olivier Cappe, and Aurelien Garivier. “On
bayesian upper confidence bounds for bandit problems”. In: Proceedings of the
Fifteenth International Conference on Artificial Intelligence and Statistics. Vol. 22.
Proceedings of Machine Learning Research. 2012, pp. 592–600 (cit. on pp. 9, 40,
44).

[Kim et al. 2018] Taejun Kim, Jongpil Lee, and Juhan Nam. “Sample-level cnn architec-
tures for music auto-tagging using raw waveforms”. In: International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2018 (cit. on pp. 6, 21,
70, 74).

[Kingma and Welling 2014] Diederik P. Kingma and Max Welling. “Auto-encoding
variational bayes”. In: 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. 2014.
url: http://arxiv.org/abs/1312.6114 (cit. on pp. 25, 27, 54, 55).

[Kingma and Welling 2019] Diederik P. Kingma and Max Welling. “An introduction
to variational autoencoders”. In: Foundations and Trends® in Machine Learning
12.4 (2019), pp. 307–392. issn: 1935-8237. doi: 10 .1561/2200000056. url: http :
//dx.doi.org/10.1561/2200000056 (cit. on p. 25).

[Knees et al. 2006] Peter Knees, Tim Pohle, Markus Schedl, and Gerhard Widmer.
“Combining audio-based similarity with web-based data to accelerate automatic
music playlist generation”. In: Proceedings of the 8th ACM International Workshop
on Multimedia Information Retrieval. MIR ’06. Santa Barbara, California, USA,
2006, pp. 147–154. isbn: 1595934952. doi: 10.1145/1178677.1178699. url: https:
//doi.org/10.1145/1178677.1178699 (cit. on p. 5).

[Koren et al. 2009a] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix factor-
ization techniques for recommender systems”. In: Computer 42.8 (2009), pp. 30–37.
doi: 10.1109/MC.2009.263 (cit. on pp. 1, 4, 15).

https://doi.org/10.1109/ICASSP.2011.5947700
https://doi.org/10.1145/3109859.3109872
https://doi.org/10.1145/3109859.3109872
https://dl.acm.org/doi/10.1145/3109859.3109872
http://arxiv.org/abs/1312.6114
https://doi.org/10.1561/2200000056
http://dx.doi.org/10.1561/2200000056
http://dx.doi.org/10.1561/2200000056
https://doi.org/10.1145/1178677.1178699
https://doi.org/10.1145/1178677.1178699
https://doi.org/10.1145/1178677.1178699
https://doi.org/10.1109/MC.2009.263

114

REFERENCES

[Koren et al. 2009b] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix factor-
ization techniques for recommender systems”. In: Computer 42.8 (2009), pp. 30–37.
issn: 0018-9162. doi: 10.1109/MC.2009.263. url: https://doi.org/10.1109/MC.
2009.263 (cit. on p. 15).

[Korzeniowski and Widmer 2016] Filip Korzeniowski and Gerhard Widmer. “Fea-
ture learning for chord recognition: the deep chroma extractor”. In: Proceedings
of the 17th International Society for Music Information Retrieval Conference, ISMIR
2016, New York City, United States, August 7-11, 2016. 2016, pp. 37–43. url: https:
//wp.nyu.edu/ismir2016/wp-content/uploads/sites/2294/2016/07/178%5C_Paper.
pdf (cit. on p. 16).

[Kramer 1991] Mark A. Kramer. “Nonlinear principal component analysis using au-
toassociative neural networks”. In: AIChE Journal 37.2 (1991), pp. 233–243. doi:
https://doi.org/10.1002/aic.690370209. eprint: https://aiche.onlinelibrary.wiley.
com/doi/pdf/10.1002/aic.690370209. url: https://aiche.onlinelibrary.wiley.com/
doi/abs/10.1002/aic.690370209 (cit. on p. 24).

[Latifi et al. 2021] Sara Latifi, Noemi Mauro, and Dietmar Jannach. “Session-aware
recommendation: a surprising quest for the state-of-the-art”. In: Information Sci-
ences 573 (2021), pp. 291–315. issn: 0020-0255. doi: https://doi.org/10.1016/j.ins.
2021.05.048 (cit. on p. 7).

[J. Li et al. 2017] Jing Li et al. “Neural attentive session-based recommendation”. In:
Proceedings of the 2017 ACM on Conference on Information and Knowledge Manage-
ment. CIKM ’17. Singapore, Singapore, 2017, pp. 1419–1428. isbn: 9781450349185.
doi: 10.1145/3132847.3132926. url: https://doi.org/10.1145/3132847.3132926
(cit. on pp. 7, 37, 38).

[L. Li et al. 2010] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. “A
contextual-bandit approach to personalized news article recommendation”. In:
Proceedings of the 19th International Conference on World Wide Web, WWW 2010,
Raleigh, North Carolina, USA, April 26-30, 2010. ACM, 2010, pp. 661–670. doi: 10.
1145/1772690.1772758. url: https://doi .org/10.1145/1772690.1772758 (cit. on
p. 40).

[Q. Li et al. 2004] Qing Li, Byeong Man Kim, Dong Hai Guan, and Duk whan Oh. “A
music recommender based on audio features”. In: Proceedings of the 27th Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Re-
trieval. SIGIR ’04. Sheffield, United Kingdom, 2004, pp. 532–533. isbn: 1581138814.
doi: 10.1145/1008992.1009106. url: https://doi.org/10.1145/1008992.1009106
(cit. on pp. 5, 43).

https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://wp.nyu.edu/ismir2016/wp-content/uploads/sites/2294/2016/07/178%5C_Paper.pdf
https://wp.nyu.edu/ismir2016/wp-content/uploads/sites/2294/2016/07/178%5C_Paper.pdf
https://wp.nyu.edu/ismir2016/wp-content/uploads/sites/2294/2016/07/178%5C_Paper.pdf
https://doi.org/https://doi.org/10.1002/aic.690370209
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690370209
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690370209
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209
https://doi.org/https://doi.org/10.1016/j.ins.2021.05.048
https://doi.org/https://doi.org/10.1016/j.ins.2021.05.048
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145/1008992.1009106
https://doi.org/10.1145/1008992.1009106

REFERENCES

115

[S. Li et al. 2016] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. “Collabo-
rative filtering bandits”. In: Proceedings of the 39th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. SIGIR ’16. Pisa, Italy:
Association for Computing Machinery, 2016, pp. 539–548. isbn: 9781450340694.
doi: 10.1145/2911451.2911548. url: https://doi.org/10.1145/2911451.2911548
(cit. on p. 41).

[Liang et al. 2018] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony
Jebara. “Variational autoencoders for collaborative filtering”. In: Proceedings of
the 2018 World Wide Web Conference on World Wide Web, WWW. 2018, pp. 689–
698. doi: 10.1145/3178876.3186150 (cit. on pp. 4, 34, 73).

[Liebman et al. 2015] Elad Liebman, Maytal Saar-Tsechansky, and Peter Stone. “DJ-
MC: A reinforcement-learning agent for music playlist recommendation”. In:
Proceedings of the 2015 International Conference on Autonomous Agents and Multi-
agent Systems, AAMAS 2015, Istanbul, Turkey, May 4-8, 2015. ACM, 2015, pp. 591–
599. url: http://dl.acm.org/citation.cfm?id=2772954 (cit. on pp. 9, 48, 49).

[Lipton 2015] Zachary Chase Lipton. “A critical review of recurrent neural networks
for sequence learning”. In: CoRR abs/1506.00019 (2015). url: http://arxiv.org/abs/
1506.00019 (cit. on pp. 22, 29).

[Q. Liu et al. 2018] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. “Stamp:
short-term attention/memory priority model for session-based recommendation”.
In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. KDD ’18. London, United Kingdom, 2018, pp. 1831–1839.
isbn: 9781450355520. doi: 10.1145/3219819.3219950. url: https://doi.org/10.1145/
3219819.3219950 (cit. on p. 7).

[X. Liu and Aberer 2014] Xin Liu and Karl Aberer. “Towards a dynamic top-n rec-
ommendation framework”. In: Proceedings of the 8th ACM Conference on Recom-
mender Systems. RecSys ’14. Foster City, Silicon Valley, California, USA: Asso-
ciation for Computing Machinery, 2014, pp. 217–224. isbn: 9781450326681. doi:
10.1145/2645710.2645720. url: https://doi.org/10.1145/2645710.2645720 (cit. on
p. 9).

[Logan and Salomon 2001] B. Logan and A. Salomon. “A music similarity function
based on signal analysis”. In: IEEE International Conference on Multimedia and
Expo, 2001. ICME 2001. 2001, pp. 745–748. doi: 10 . 1109 / ICME . 2001 . 1237829
(cit. on p. 43).

[Ludewig and Jannach 2018] Malte Ludewig and Dietmar Jannach. “Evaluation of
session-based recommendation algorithms”. In: User Modeling and User-Adapted
Interaction 28.4-5 (2018), pp. 331–390. issn: 15731391. doi: 10.1007/s11257-018-
9209-6. arXiv: 1803.09587 (cit. on pp. 7, 40, 41).

https://doi.org/10.1145/2911451.2911548
https://doi.org/10.1145/2911451.2911548
https://doi.org/10.1145/3178876.3186150
http://dl.acm.org/citation.cfm?id=2772954
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019
https://doi.org/10.1145/3219819.3219950
https://doi.org/10.1145/3219819.3219950
https://doi.org/10.1145/3219819.3219950
https://doi.org/10.1145/2645710.2645720
https://doi.org/10.1145/2645710.2645720
https://doi.org/10.1109/ICME.2001.1237829
https://doi.org/10.1007/s11257-018-9209-6
https://doi.org/10.1007/s11257-018-9209-6
https://arxiv.org/abs/1803.09587

116

REFERENCES

[Ludewig, Mauro, et al. 2021] Malte Ludewig, Noemi Mauro, Sara Latifi, and Diet-
mar Jannach. “Empirical analysis of session-based recommendation algorithms:
A comparison of neural and non-neural approaches”. In: User Modeling and User-
Adapted Interaction 31.1 (2021), pp. 149–181. issn: 15731391. doi: 10.1007/s11257-
020-09277-1 (cit. on p. 7).

[Makhzani and Frey 2014] Alireza Makhzani and Brendan J. Frey. “K-sparse autoen-
coders”. In: 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun. 2014. url: http://arxiv.org/abs/1312.5663 (cit. on p. 24).

[B. McFee et al. 2012] B. McFee, L. Barrington, and G. Lanckriet. “Learning content
similarity for music recommendation”. In: IEEE Transactions on Audio, Speech, and
Language Processing 20.8 (2012), pp. 2207–2218. doi: 10.1109/TASL.2012.2199109
(cit. on pp. 16, 20, 43, 71).

[Brian McFee and Lanckriet 2011] Brian McFee and Gert R. G. Lanckriet. “The nat-
ural language of playlists”. In: Proceedings of the 12th International Society for
Music Information Retrieval Conference, ISMIR 2011, Miami, Florida, USA, October
24-28, 2011. 2011, pp. 537–542. url: http://ismir2011.ismir.net/papers/PS4-11.pdf
(cit. on p. 7).

[Miranda and Jorge 2009] Catarina Miranda and Alípio Mário Jorge. “Item-based
and user-based incremental collaborative filtering for web recommendations”.
In: Progress in Artificial Intelligence. Ed. by Luís Seabra Lopes, Nuno Lau, Pedro
Mariano, and Luís M. Rocha. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 673–684. isbn: 978-3-642-04686-5 (cit. on p. 39).

[Müller 2015] Meinard Müller. Fundamentals of Music Processing: Audio, Analysis,
Algorithms, Applications. 1st. Springer Publishing Company, Incorporated, 2015
(cit. on p. 18).

[Müller et al. 2011] Meinard Müller, Daniel P. W. Ellis, Anssi Klapuri, and Gaël
Richard. “Signal processing for music analysis”. In: IEEE Journal of Selected Topics
in Signal Processing 5.6 (2011), pp. 1088–1110. doi: 10.1109/JSTSP.2011.2112333
(cit. on pp. 16, 18).

[Nair and Geoffrey E. Hinton 2010] Vinod Nair and Geoffrey E. Hinton. “Rectified
linear units improve restricted boltzmann machines”. In: Proceedings of the 27th In-
ternational Conference on International Conference on Machine Learning. ICML’10.
Haifa, Israel: Omnipress, 2010, pp. 807–814. isbn: 9781605589077 (cit. on p. 22).

[Ning et al. 2015] Xia Ning, Christian Desrosiers, and George Karypis. “A compre-
hensive survey of neighborhood-based recommendation methods”. In: Recom-
mender Systems Handbook. Boston, MA: Springer US, 2015, pp. 37–76. isbn: 978-1-
4899-7637-6. doi: 10.1007/978-1-4899-7637-6_2. url: https://doi.org/10.1007/978-
1-4899-7637-6_2 (cit. on p. 4).

https://doi.org/10.1007/s11257-020-09277-1
https://doi.org/10.1007/s11257-020-09277-1
http://arxiv.org/abs/1312.5663
https://doi.org/10.1109/TASL.2012.2199109
http://ismir2011.ismir.net/papers/PS4-11.pdf
https://doi.org/10.1109/JSTSP.2011.2112333
https://doi.org/10.1007/978-1-4899-7637-6_2
https://doi.org/10.1007/978-1-4899-7637-6_2
https://doi.org/10.1007/978-1-4899-7637-6_2

REFERENCES

117

[Oord et al. 2013] Aäron van den Oord, Sander Dieleman, and Benjamin Schrauwen.
“Deep content-based music recommendation”. In: Proceedings of the 26th Interna-
tional Conference on Neural Information Processing Systems - Volume 2. NIPS’13.
2013, pp. 2643–2651 (cit. on pp. 5, 6, 45, 71, 73, 74).

[Oppenheim and Schafer 2009] Alan V. Oppenheim and Ronald W. Schafer. Discrete-
Time Signal Processing. 3rd. USA: Prentice Hall Press, 2009. isbn: 0131988425 (cit.
on pp. 16, 18).

[Oramas et al. 2017] S. Oramas, O. Nieto, M. Sordo, and Xavier Serra. “A deep mul-
timodal approach for cold-start music recommendation”. In: 2nd Workshop on
Deep Learning for Recommender Systems, at RecSys 2017. Como, Italy, 2017. url:
https://arxiv.org/abs/1706.09739 (cit. on p. 5).

[Papagelis et al. 2005] Manos Papagelis, Ioannis Rousidis, Dimitris Plexousakis, and
Elias Theoharopoulos. “Incremental collaborative filtering for highly-scalable
recommendation algorithms”. In: Foundations of Intelligent Systems. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2005, pp. 553–561. isbn: 978-3-540-31949-8
(cit. on p. 39).

[Pereira et al. 2019] Bruno L. Pereira, Alberto Ueda, Gustavo Penha, Rodrygo L. T.
Santos, and Nivio Ziviani. “Online learning to rank for sequential music recom-
mendation”. In: Proceedings of the 13th ACM Conference on Recommender Systems.
RecSys ’19. Copenhagen, Denmark: Association for Computing Machinery, 2019,
pp. 237–245. isbn: 9781450362436. doi: 10 . 1145 /3298689 . 3347019. url: https :
//doi.org/10.1145/3298689.3347019 (cit. on p. 8).

[Platt 2017] Devin Platt. “Content-Based Music Recommendation with the LFM-1b
Dataset and Sample-Level Deep Convolutional Neural Networks”. MA thesis. UC
San Diego, 2017 (cit. on pp. 6, 74).

[Purwins et al. 2019] H. Purwins et al. “Deep learning for audio signal processing”. In:
IEEE Journal of Selected Topics in Signal Processing 13.2 (2019), pp. 206–219. doi:
10.1109/JSTSP.2019.2908700 (cit. on p. 21).

[Quadrana et al. 2018] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jan-
nach. “Sequence-aware recommender systems”. In: ACM Comput. Surv. 51.4
(2018). issn: 0360-0300. doi: 10 .1145 /3190616. url: https : / /doi . org /10 . 1145 /
3190616 (cit. on pp. 1, 6, 35).

[Rendle 2012] Steffen Rendle. “Factorization machines with libfm”. In: ACM Trans.
Intell. Syst. Technol. 3.3 (2012). issn: 2157-6904. doi: 10.1145/2168752.2168771.
url: https://doi.org/10.1145/2168752.2168771 (cit. on p. 47).

[Rendle, Freudenthaler, et al. 2010] Steffen Rendle, Christoph Freudenthaler,
and Lars Schmidt-Thieme. “Factorizing personalized markov chains for next-
basket recommendation”. In: Proceedings of the 19th International Conference on
World Wide Web. WWW ’10. 2010, pp. 811–820 (cit. on pp. 7, 36, 47).

https://arxiv.org/abs/1706.09739
https://doi.org/10.1145/3298689.3347019
https://doi.org/10.1145/3298689.3347019
https://doi.org/10.1145/3298689.3347019
https://doi.org/10.1109/JSTSP.2019.2908700
https://doi.org/10.1145/3190616
https://doi.org/10.1145/3190616
https://doi.org/10.1145/3190616
https://doi.org/10.1145/2168752.2168771
https://doi.org/10.1145/2168752.2168771

118

REFERENCES

[Rendle and Schmidt-Thieme 2008] Steffen Rendle and Lars Schmidt-Thieme.
“Online-updating regularized kernel matrix factorization models for large-scale
recommender systems”. In: Proceedings of the 2008 ACM Conference on Recom-
mender Systems. RecSys ’08. Lausanne, Switzerland: Association for Computing
Machinery, 2008, pp. 251–258. isbn: 9781605580937. doi: 10.1145/1454008.1454047.
url: https://doi.org/10.1145/1454008.1454047 (cit. on p. 40).

[Rennie and Srebro 2005] Jasson D. M. Rennie and Nathan Srebro. “Fast maximum
margin matrix factorization for collaborative prediction”. In: Proceedings of the
22nd International Conference on Machine Learning. ICML ’05. Bonn, Germany,
2005, pp. 713–719. isbn: 1595931805. doi: 10.1145/1102351.1102441. url: https:
//doi.org/10.1145/1102351.1102441 (cit. on p. 15).

[Ricci et al. 2011] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor,
eds. Recommender Systems Handbook. Springer, 2011. isbn: 978-0-387-85819-7 (cit.
on p. 4).

[Rifai et al. 2011] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and
Yoshua Bengio. “Contractive auto-encoders: explicit invariance during feature
extraction”. In: Proceedings of the 28th International Conference on International
Conference on Machine Learning. ICML’11. Bellevue, Washington, USA: Omni-
press, 2011, pp. 833–840. isbn: 9781450306195 (cit. on p. 24).

[Rumelhart et al. 1986] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learn-
ing internal representations by error propagation”. In: Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations. Cambridge,
MA, USA: MIT Press, 1986, pp. 318–362. isbn: 026268053X (cit. on p. 23).

[R. Salakhutdinov and Mnih 2007] Ruslan Salakhutdinov and Andriy Mnih.
“Probabilistic matrix factorization”. In: Proceedings of the 20th International Con-
ference on Neural Information Processing Systems. NIPS’07. 2007, pp. 1257–1264.
isbn: 9781605603520 (cit. on p. 15).

[Sanz-Cruzado et al. 2019] Javier Sanz-Cruzado, Pablo Castells, and Esther López.
“A simple multi-armed nearest-neighbor bandit for interactive recommendation”.
In: Proceedings of the 13th ACM Conference on Recommender Systems. RecSys ’19.
2019, pp. 358–362 (cit. on pp. 40, 41).

[Sarwar et al. 2001] Badrul Sarwar, George Karypis, Joseph Konstan, and John
Riedl. “Item-based collaborative filtering recommendation algorithms”. In: Pro-
ceedings of the 10th International Conference on World Wide Web. WWW ’01. Hong
Kong, Hong Kong, 2001, pp. 285–295. isbn: 1581133480. doi: 10 .1145/371920 .
372071. url: https://doi.org/10.1145/371920.372071 (cit. on p. 32).

https://doi.org/10.1145/1454008.1454047
https://doi.org/10.1145/1454008.1454047
https://doi.org/10.1145/1102351.1102441
https://doi.org/10.1145/1102351.1102441
https://doi.org/10.1145/1102351.1102441
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071

REFERENCES

119

[Schedl 2016] Markus Schedl. “The lfm-1b dataset for music retrieval and recommen-
dation”. In: Proceedings of the 2016 ACM on International Conference on Multimedia
Retrieval. ICMR ’16. New York, New York, USA, 2016, pp. 103–110. isbn: 978-1-
4503-4359-6. doi: 10.1145/2911996.2912004. url: http://doi.acm.org/10.1145/
2911996.2912004 (cit. on p. 69).

[Schedl et al. 2015] Markus Schedl, Peter Knees, Brian McFee, Dmitry Bogdanov,
and Marius Kaminskas. “Music recommender systems”. In: Recommender Systems
Handbook. Boston, MA: Springer US, 2015, pp. 453–492. isbn: 978-1-4899-7637-6.
doi: 10.1007/978-1-4899-7637-6_13. url: https://doi.org/10.1007/978-1-4899-
7637-6_13 (cit. on p. 1).

[Schein et al. 2002] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and
David M. Pennock. “Methods and metrics for cold-start recommendations”. In:
SIGIR 2002: Proceedings of the 25th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, August 11-15, 2002, Tam-
pere, Finland. ACM, 2002, pp. 253–260. doi: 10.1145/564376.564421. url: https:
//doi.org/10.1145/564376.564421 (cit. on p. 2).

[Sedhain et al. 2015] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lex-
ing Xie. “Autorec: autoencoders meet collaborative filtering”. In: Proceedings of
the 24th International Conference on World Wide Web. WWW ’15 Companion. Flo-
rence, Italy, 2015, pp. 111–112. isbn: 9781450334730. doi: 10.1145/2740908.2742726.
url: https://doi.org/10.1145/2740908.2742726 (cit. on p. 24).

[Seyerlehner et al. 2008] Klaus Seyerlehner, Gerhard Widmer, and Peter Knees.
“Frame level audio similarity - a codebook approach”. In: Proceedings of the 11th
International Conference on Digital Audio Effects (DAFx-08). 2008 (cit. on pp. 16,
20).

[Shao et al. 2009] B. Shao, D. Wang, T. Li, and M. Ogihara. “Music recommendation
based on acoustic features and user access patterns”. In: IEEE Transactions on
Audio, Speech, and Language Processing 17.8 (2009), pp. 1602–1611. doi: 10.1109/
TASL.2009.2020893 (cit. on p. 43).

[Slaney et al. 2008] Malcolm Slaney, Kilian Q. Weinberger, and William White.
“Learning a metric for music similarity”. In: ISMIR 2008, 9th International Con-
ference on Music Information Retrieval, Drexel University, Philadelphia, PA, USA,
September 14-18, 2008. 2008, pp. 313–318. url: http://ismir2008.ismir.net/papers/
ISMIR2008%5C_148.pdf (cit. on p. 43).

[Srivastava et al. 2014] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. “Dropout: a simple way to prevent
neural networks from overfitting”. In: J. Mach. Learn. Res. 15.1 (2014), pp. 1929–
1958. issn: 1532-4435 (cit. on p. 24).

https://doi.org/10.1145/2911996.2912004
http://doi.acm.org/10.1145/2911996.2912004
http://doi.acm.org/10.1145/2911996.2912004
https://doi.org/10.1007/978-1-4899-7637-6_13
https://doi.org/10.1007/978-1-4899-7637-6_13
https://doi.org/10.1007/978-1-4899-7637-6_13
https://doi.org/10.1145/564376.564421
https://doi.org/10.1145/564376.564421
https://doi.org/10.1145/564376.564421
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1145/2740908.2742726
https://doi.org/10.1109/TASL.2009.2020893
https://doi.org/10.1109/TASL.2009.2020893
http://ismir2008.ismir.net/papers/ISMIR2008%5C_148.pdf
http://ismir2008.ismir.net/papers/ISMIR2008%5C_148.pdf

120

REFERENCES

[Stevens et al. 1937] S. S. Stevens, J. Volkmann, and E. B. Newman. “A scale for
the measurement of the psychological magnitude pitch”. In: The Journal of the
Acoustical Society of America 8.3 (1937), pp. 185–190. doi: 10.1121/1.1915893. url:
https://doi.org/10.1121/1.1915893 (cit. on p. 19).

[Vall et al. 2019] Andreu Vall et al. “Feature-combination hybrid recommender sys-
tems for automated music playlist continuation”. In: User Modeling and User-
Adapted Interaction 29.2 (Apr. 2019), pp. 527–572. issn: 0924-1868. doi: 10.1007/
s11257-018-9215-8. url: https://doi.org/10.1007/s11257-018-9215-8 (cit. on p. 40).

[Volkovs et al. 2017] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen.
“Dropoutnet: addressing cold start in recommender systems”. In: Advances
in Neural Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran
Associates, Inc., 2017. url: https : / / proceedings . neurips . cc / paper / 2017 / file /
dbd22ba3bd0df8f385bdac3e9f8be207-Paper.pdf (cit. on p. 5).

[H. Wang et al. 2015] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. “Collaborative
deep learning for recommender systems”. In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’15. Syd-
ney, NSW, Australia, 2015, pp. 1235–1244. isbn: 9781450336642. doi: 10.1145/
2783258.2783273. url: https://doi.org/10.1145/2783258.2783273 (cit. on p. 32).

[X. Wang and Ye Wang 2014] Xinxi Wang and Ye Wang. “Improving content-based
and hybrid music recommendation using deep learning”. In: Proceedings of the
22nd ACM International Conference on Multimedia. MM ’14. 2014, pp. 627–636.
isbn: 9781450330633. doi: 10.1145/2647868.2654940. url: https://doi.org/10.1145/
2647868.2654940 (cit. on pp. 6, 21, 45, 73).

[X. Wang, Yi Wang, et al. 2014] Xinxi Wang, Yi Wang, David Hsu, and Ye Wang. “Ex-
ploration in interactive personalized music recommendation: a reinforcement
learning approach”. In: ACM Trans. Multimedia Comput. Commun. Appl. 11.1
(2014) (cit. on pp. 9, 43).

[Williams and Zipser 1989] Ronald J. Williams and David Zipser. “A Learning Al-
gorithm for Continually Running Fully Recurrent Neural Networks”. In: Neural
Computation 1.2 (June 1989), pp. 270–280. issn: 0899-7667. doi: 10.1162/neco.1989.
1.2.270. eprint: https://direct.mit.edu/neco/article-pdf/1/2/270/811849/neco.1989.
1.2.270.pdf. url: https://doi.org/10.1162/neco.1989.1.2.270 (cit. on p. 30).

[Wu et al. 2019] Shu Wu et al. “Session-based recommendation with graph neural net-
works”. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI. 2019,
pp. 346–353. doi: 10.1609/aaai.v33i01.3301346. url: https://doi.org/10.1609/aaai.
v33i01.3301346 (cit. on p. 7).

https://doi.org/10.1121/1.1915893
https://doi.org/10.1121/1.1915893
https://doi.org/10.1007/s11257-018-9215-8
https://doi.org/10.1007/s11257-018-9215-8
https://doi.org/10.1007/s11257-018-9215-8
https://proceedings.neurips.cc/paper/2017/file/dbd22ba3bd0df8f385bdac3e9f8be207-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/dbd22ba3bd0df8f385bdac3e9f8be207-Paper.pdf
https://doi.org/10.1145/2783258.2783273
https://doi.org/10.1145/2783258.2783273
https://doi.org/10.1145/2783258.2783273
https://doi.org/10.1145/2647868.2654940
https://doi.org/10.1145/2647868.2654940
https://doi.org/10.1145/2647868.2654940
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://direct.mit.edu/neco/article-pdf/1/2/270/811849/neco.1989.1.2.270.pdf
https://direct.mit.edu/neco/article-pdf/1/2/270/811849/neco.1989.1.2.270.pdf
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1609/aaai.v33i01.3301346
https://doi.org/10.1609/aaai.v33i01.3301346
https://doi.org/10.1609/aaai.v33i01.3301346

REFERENCES

121

[Xing et al. 2014] Zhe Xing, Xinxi Wang, and Ye Wang. “Enhancing collaborative
filtering music recommendation by balancing exploration and exploitation”. In:
Proceedings of the 15th International Society for Music Information Retrieval Con-
ference, ISMIR 2014, Taipei, Taiwan, October 27-31, 2014. 2014, pp. 445–450 (cit. on
pp. 9, 43).

[Xu et al. 2019] Chengfeng Xu et al. “Recurrent convolutional neural network for se-
quential recommendation”. In: The World Wide Web Conference. WWW ’19. San
Francisco, CA, USA: Association for Computing Machinery, 2019, pp. 3398–3404.
isbn: 9781450366748. doi: 10.1145/3308558.3313408. url: https://doi.org/10.1145/
3308558.3313408 (cit. on p. 7).

[Yoshii et al. 2006] Kazuyoshi Yoshii, Masataka Goto, Kazunori Komatani, Tetsuya
Ogata, and Hiroshi G. Okuno. “Hybrid collaborative and content-based music
recommendation using probabilistic model with latent user preferences”. In: ISMIR
2006, 7th International Conference on Music Information Retrieval, Victoria, Canada,
8-12 October 2006, Proceedings. 2006, pp. 296–301 (cit. on p. 5).

[Zhang et al. 2019] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. “Deep learning
based recommender system: a survey and new perspectives”. In: ACM Comput.
Surv. 52.1 (2019). issn: 0360-0300. doi: 10.1145/3285029. url: https://doi.org/10.
1145/3285029 (cit. on pp. 21, 33).

[Zhao et al. 2013] Xiaoxue Zhao, Weinan Zhang, and Jun Wang. “Interactive collab-
orative filtering”. In: Proceedings of the 22nd ACM International Conference on
Information & Knowledge Management. CIKM ’13. San Francisco, California, USA,
2013, pp. 1411–1420. isbn: 9781450322638. doi: 10.1145/2505515.2505690. url:
https://doi.org/10.1145/2505515.2505690 (cit. on pp. 1, 8, 40).

[Zimdars et al. 2001] Andrew Zimdars, David Maxwell Chickering, and Christopher
Meek. “Using temporal data for making recommendations”. In: Proceedings of
the Seventeenth Conference on Uncertainty in Artificial Intelligence. UAI’01. 2001,
pp. 580–588. isbn: 1558608001 (cit. on p. 36).

[Zölzer 2008] Udo Zölzer. “Digital audio signal processing”. In: John Wiley & Sons,
Ltd, 2008. Chap. 2, pp. 21–62. isbn: 9780470680018. doi: https : / / doi . org / 10 .
1002/9780470680018.ch2. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9780470680018.ch2 (cit. on p. 14).

https://doi.org/10.1145/3308558.3313408
https://doi.org/10.1145/3308558.3313408
https://doi.org/10.1145/3308558.3313408
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1145/3285029
https://doi.org/10.1145/2505515.2505690
https://doi.org/10.1145/2505515.2505690
https://doi.org/https://doi.org/10.1002/9780470680018.ch2
https://doi.org/https://doi.org/10.1002/9780470680018.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470680018.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470680018.ch2

	Introduction
	Context and Motivation
	Related Work
	Collaborative Filtering
	Sequence-Aware
	Stream-Based

	Research Questions
	Contributions
	Organization

	Background
	Basic Concepts
	Vector Quantization
	Matrix Factorization
	Markov Models

	Audio Representation
	Time Domain
	Frequency Domain
	Task Specific Representations

	Deep Learning Methods
	Neural Networks
	Autoencoders
	Convolutional Networks
	Recurrent Networks

	Rating-Based Recommendation
	Collaborative Filtering
	Sequence-Aware
	Stream-Based

	Audio-Based Music Recommendation
	Collaborative Filtering
	Sequence-Aware
	Stream-Based

	Methodology
	Collaborative Filtering
	Problem Definition
	Audio-Based Convolutional Variational Autoencoder Recommender
	Audio-Based Convolutional Regularized Embedding Recommender
	Evaluation Metrics

	Sequence-Aware
	Problem Definition
	Audio-Based GRU4REC
	Multi-Level Audio Feature Inverted-Index
	Sequential Audio-Based Top-N Autoencoder Recommender
	Metrics

	Stream-Based
	Problem Definition
	Audio Transition Tensor Recommender
	Metrics

	Experiments and Results
	Datasets
	Collaborative Filtering
	Data Preparation
	Methods
	Experiments
	Results

	Sequence-Aware
	Data Preparation
	Methods
	Experiments
	Results

	Stream-Based
	Data Preparation
	Methods
	Experiments
	Results

	Conclusions
	Appendix
	Rating-Based Collaborative Filtering
	Cold-Start Collaborative Filtering Results
	Audio-Based Artist Clusters
	Sequence-Aware Recommendation Results
	Stream-Based Recommendation Results
	List of Publication

	References

