• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2013.tde-13082014-141746
Document
Auteur
Nom complet
Reynaldo Caceres Villena
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2013
Directeur
Jury
Terada, Routo (Président)
Campos, Geraldo Lino de
Gubitoso, Marco Dimas
Titre en portugais
Reconstrução da chave secreta do RSA multi-primo
Mots-clés en portugais
ataques cold-boot
criptossistema RSA multi-primo
reconstrução da chave secreta
Resumé en portugais
Em 2009, N. Heninger e H. Shacham apresentaram um algoritmo de reconstrução que permite recuperar a chave secreta sk do criptossistema RSA básico em tempo polinomial tendo em forma aleatória 27 % dos seus bits. Sabemos que podemos obter uma versão com erros (bits modicados) da chave secreta RSA graças aos ataques cold boot. O algoritmo apresentado por Heninger-Shacham corrige esses erros fazendo uso das relações matemáticas que existe entre as chaves pública e secreta do criptossistema RSA básico. O objetivo deste trabalho é estudar esse algoritmo para implementar e analisar seu análogo para o criptossistema RSA multi-primo. Os resultados obtidos mostram que para reconstruir a chave secreta sk do criptossistema RSA u-primos é preciso ter uma fração de bits corretos maior a 2 - 2^((u+2)/(2u+1)), mostrando assim que a segurança oferecida pelo criptossistema RSA multi-primo (u>/ 3) é maior com relação ao criptossistema RSA básico (u = 2).
Titre en anglais
Reconstructing the secret key of RSA multi-prime
Mots-clés en anglais
cold boot attacks
multi-prime RSA cryptosystem
secret key reconstructing
Resumé en anglais
In 2009, N. Heninger and H. Shacham presented an algoritm for reconstructing the secret key sk of the basic RSA cryptosystem in polynomial time With a fraction of random bits greater or equal to 0.27 of its bits. We know that secret key with errors sk can be obtained from DRAM using cold-boot attacks. The Heninger and Shacham's algorithm xes these errors using the redundancy of secret and public key of basic RSA cryptosystem. In this work, the topic is to study this algoritm to implement and analyze its analogous for the multi-prime RSA cryptosystem. Our obtained results show the secret key sk of multi-prime RSA cryptosystem can be Reconstructed having a fraction equal or greater than 2 - 2^((u+2)/(2u+1)) of random bits. therefore the security of multi-prime RSA cryptosystem (u >/ 3) is greater than basic RSA cryptosystem (u = 2).
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Tese_7259609.pdf (1.22 Mbytes)
Date de Publication
2014-11-03
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.