• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.2020.tde-12052020-005232
Document
Auteur
Nom complet
Guilherme Jun Yoshimura
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2020
Directeur
Jury
Queiroz, Marcelo Gomes de (Président)
Tavares, Tiago Fernandes
Wertzner, Haydée Fiszbein
Titre en portugais
Processamento de fala para triagem de distúrbios fonológicos
Mots-clés en portugais
Classificação
Coeficientes Mel-Cepstrais
Distúrbio do som da fala
Dynamic Time Warping
Processamento de fala
Resumé en portugais
Este trabalho apresenta dois classificadores originais para sinais de voz que objetivam auxiliar profissionais da fonoaudiologia no diagnóstico de pessoas com alterações de fala. Comparamos os classificadores propostos com três técnicas conhecidas: Modelos de Markov Escondidos (HMM), bag-of-words e classificador baseado em Earth Mover's Distance (EMD). Utilizamos três bases de dados, sendo duas disponibilizadas pelo Departamento de Fisioterapia, Fonoaudiologia e Terapia Ocupacional (FOFITO) da Faculdade de Medicina da Universidade de São Paulo (FMUSP) que contêm gravações de crianças que têm alterações de fala que ocorrem durante o desenvolvimento da fala, e a terceira é a base pública UA-Speech que contém gravações de indíviduos adultos com disartria. O intuito deste trabalho é criar classificadores de fala capazes de distinguir um áudio sem alteração de fala de um áudio com alteração de fala. Além de estudar as técnicas conhecidas citadas anteriormente, propusemos dois classificadores baseados em Coeficientes Mel-Cepstrais (MFCC). O primeiro utiliza uma reformulação da distância DTW entre registros de fala e conjuntos de gravações sem alteração de fala, enquanto o outro combina a informação de curvas de dissimilaridades construídas a partir da comparação do registro de fala a ser classificado com as gravações de referência (sem alterações de fala).
Titre en anglais
Speech processing for screening off phonological disorders
Mots-clés en anglais
Classification
Dynamic Time Warping
Mel Frequency Cepstral Coefficients
Speech processing
Speech sound disorder
Resumé en anglais
This work presents two novel speech classifiers which aim to aid speech therapy professionals in the diagnosis of individuals with speech disorders. We compared the proposed classifiers with three well-known techniques: Hidden Markov Models (HMM), Bag-of-Words (BoW) and a classifier based on the Earth Mover's Distance. In this work we used three databases, two of which were provided by the School of Medicine at the University of São Paulo, and a third one which is a public database (UA-Speech) containing recordings of individuals with dysarthria. The goal of this project is to develop speech classifiers which are able to distinguish recordings from patients with and without speech disturbances. Besides studying the well-known techniques mentioned above, we proposed two techniques that are based on Mel Frequency Cepstral Coefficients (MFCC). The first one defines the classification problem over relative embeddings based on point-to-set distances, while the second one combines information from dissimilarity curves built from the comparison of the speech recording to be classified and the reference recordings (without speech disorders).
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2020-05-27
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.