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Resumo

Diogo de Jesus Pina. Priorização de Dívida Técnica: Métodos, Técnicas e um Estudo
Exploratório. Tese (Doutorado). Instituto de Matemática e Estatística, Universidade de

São Paulo, São Paulo, 2023.

Equipes de desenvolvimento de software precisam priorizar o pagamento de itens de dívida técnica para

melhorar a qualidade do software e garantir um ritmo no desenvolvimento de novas funções e manutenção

do código. Ferramentas de identificação são capazes de encontrar milhares de itens de dívida técnica de

código em um repositório. Logo, é inviável pagar todos os itens, pois levaria meses ou até anos. Portanto, o

time precisa decidir quais itens deveram ser pagos e quando realizar o pagamento.

Nós realizamos um mapeamento da literatura para identificar os trabalhos realizados para ajudar

no processo de priorização de dívida técnica. Nós encontramos trabalhos que conceituam o processo,

desenvolvem arcabouços de priorização e aplicação de diversos métodos para realizar a priorização. Apesar

dos esforços realizados, ainda não foi desenvolvido um método de priorização que considera o contexto do

desenvolvimento do software, funcione em várias linguagens de programação, cubram diversos tipos de

dívida técnica e seja integrado a uma ferramenta para aplicá-lo na prática.

A partir do mapeamento, a nossa motivação para esta pesquisa é entender como os desenvolvedores

priorizam itens de dívida técnica em projetos reais de software. Além disso, nós também aplicamos métodos

de aprendizado de máquina para automatizar o processo de priorização.

Nós desenvolvemos a ferramenta Sonarlizer Xplorer para minerar e analisar projetos públicos hospedados

no GitHub suportando nossos estudos. O resultado da aplicação da ferramenta é uma lista com itens de

dívida técnica e métricas de código de um grande número de projetos de software.

Nós aplicamos um questionário para coletar dados de projetos Java públicos para entender quais

critérios os desenvolvedores de software usam para priorizar dívida técnica de código em projetos reais.

Então, analisamos os dados usando Teoria Fundamentada Straussiana e agrupamos os critérios em quinze

categorias, dividindo-as em duas super-categorias relacionadas ao pagamento da dívida técnica e três

relacionadas ao não pagamento. Nós encontramos que quando os desenvolvedores decidiram pagar um item

de dívida técnica, eles querem pagar logo. Quando eles decidem não pagar, geralmente é porque a dívida foi

adquirida intencionalmente e está relacionado a decisões de projeto. Quando eles usaram critérios parecidos,

a níveis de prioridade de pagamento são parecidos. Por fim, nós observamos que cada projeto de software

precisa de regras próprias para identificar seus itens de dívida técnica.

Nós também estudamos a aplicação de métodos de aprendizado de máquina para priorizar os itens de

dívida técnica em projetos reais de software. Nós aplicamos o mesmo questionário do estudo anterior e

obtivemos 2.616 respostas. Com as respostas, criamos um dataset usando três estratégias de rotulação: "pagar

ou não", 3-classes e prioridade. Então, aplicamos nove métodos de machine learning bem-conhecidos sobre

27 métricas de código para construir um modelo para decidir se um item de dívida técnica deve ser pago

(com acurácia de 0,79 e F1 de 0,85) e quando realizar o pagamento, aplicando quatro abordagens atingindo

desempenho de acurácia de 0,57 usando análise tradicional e 0,81 usando análise tunada.

Palavras-chave: Dívida Técnica. Priorização de Dívida Técnica. Gerenciamento de Dívida Técnica. Apren-

dizado de Máquina. Inteligência Artificial.





Abstract

Diogo de Jesus Pina. Technical Debt Prioritization: Methods, Techniques, and a
Large Exploratory Study. Thesis (Doctorate). Institute of Mathematics and Statistics,

University of São Paulo, São Paulo, 2023.

Software development teams need to prioritize the technical debt items payment to improve the software

quality and ensure the new feature and code maintenance development pace. Identification tools can find

thousands of technical debt items in a code repository. Thus, it is infeasible to pay off all items because it

would take months or even years. Therefore, the team must decide which items should be paid off and when

to pay them.

We performed a mapping review to identify studies that assist in the technical debt prioritization process.

We found papers that conceptualized the process, developed prioritization frameworks, and applied various

methods to accomplish prioritization. Despite the efforts, a prioritization method that considers the software

development context, works for several programming languages, covers different types of technical debt,

and is integrated into a tool to apply it in practice still needs to be developed.

Based on the mapping review, our motivation for this research is to understand how developers prioritize

technical debt items in real software projects. Furthermore, we also apply machine learning methods to

automate the prioritization process.

We developed the Sonarlizer Xplorer tool to mine and analyze public projects hosted on GitHub

supporting our studies. The result of applying the tool is a list of technical debt items and code metrics for

many software projects.

We applied a questionnaire to collect data from public Java projects to understand which criteria software

developers use to prioritize code technical debt in real projects. We analyzed the data using Straussian

Grounded Theory. We grouped the criteria into fifteen categories and divided them into two super-categories

related to technical debt payment and three related to non-payment. We have found that when developers

decide to pay off a technical debt item, they want to pay it off soon. When they decide not to pay, it is

usually because the debt was acquired intentionally and is related to design decisions. When they used

similar criteria, the payment priority levels were similar. Finally, we note that each software project needs

its specific rules to identify its technical debt items.

We also study the application of machine learning methods to prioritize technical debt items in real

software projects. We applied the same questionnaire as in the previous study and obtained 2,616 responses.

We create a dataset using three labeling strategies: "pay or not", 3-classes, and priority. We applied nine

well-known machine learning methods on 27 code metrics to build a model for deciding whether a technical

debt item should be paid (with an accuracy mean of 0.79 and F1 mean of around 0.86) and when to pay,

applying four approaches achieving accuracy performance of 0.57 using traditional analysis and 0.81 using

tuned analysis.

Keywords: Technical Debt. Technical Debt Prioritization. Technical Debt Management. Machine Learning.

Artificial Intelligence.
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1

Chapter 1

Introduction

Technical debt is a metaphor for the financial debt. The metaphor is associated with the
idea of interest for non-payment of technical debt items. More formally, technical debt is a
metaphor for immature, incomplete, or inadequate artifacts in the software development
lifecycle (Seaman and Yuepo Guo, 2011).

Acquiring a technical debt could bring benefits (Yuepu Guo, Rodrigo Oliveira Spínola,
et al., 2016) in a short time, such as reducing the time and effort to develop the tasks,
resources, and budget reduction in features development and maintenance, allowing to
keep track of business decisions. However, accumulating a large amount of technical debt
could negatively impact the software’s quality resulting in extra costs to develop new
features and maintain the existing code.

Therefore, it is essential to balance the benefits of acquiring a technical debt and the
cost and interest of paying off (Seaman and Yuepo Guo, 2011). In addition to identifying,
measuring, and monitoring technical debt, prioritization could help software development
teams to make-decision about whether and when technical debt items should be paid and
in which order to make these payments.

Initially, the technical debt prioritization issue was identified during a case study about
technical debt measuring methods (Pina and Goldman, 2016). In the study, technical debt
items were identified using Sonar, and team members were asked to choose some items to
pay off; however, the main question was what items should be chosen to pay off.

Technical debt identification tools like Sonar Qube have evolved over the last few years
and can identify up to thousands of items. Therefore, due to time and budget constraints,
development teams must decide which items should be paid off and in which order made
the payment. We found several works on technical debt prioritization in the literature.
However, many treat the problem conceptually, and those that propose methods are either
for a very restricted set of technical debt types and development context or cannot be
applied automatically.

The advancement of artificial intelligence in the past few years has allowed other areas
to take advantage of its power to build more assertive and autonomous decision-making
systems. The implementation of algorithms and methods to manipulate data and apply
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artificial intelligence techniques has helped developers and researchers to create and
improve software tools Barstow, 1988; Harman, 2012. In special, research areas such as
software engineering can also use these methods to improve the precision of results and
provide insights that would be missed by traditional statistical analyses.

Machine learning is one of the most common approaches used in artificial intelligence
Mitchell et al., 1997; El Naqa and Murphy, 2015. It is been widely used in many applica-
tion domains to create clusters and predict behavior/patterns in data sets. Most machine
learning methods are generic and could result in high performance to analyze data and
make decisions. That is, the same method can be applied to different types of problems
just by adapting the input parameters.

In this thesis, we apply well-known machine learning methods for prioritizing technical
debt items payment. That is, we apply methods to decide whether an item should be paid
off and when to make the payment.

1.1 Motivation

The main motivation for this research is to understand how developers prioritize
technical debt in real software projects and then to develop machine learning methods to
prioritize technical debt automatically.

The technical prioritization problem is an issue faced in academia where several studies
conceptualize it, create frameworks to prioritize it, and apply methods to solve it. On the
other hand, prioritization is also a problem faced in the industry. Development teams
acquire new technical debt items daily. Thus they need to prioritize efficiently the payment
to save resources, avoiding interest payments or paying items that do not significantly
improve the code quality and productivity of development teams.

A good solution to the technical debt prioritization problem may contribute signifi-
cantly to the technical debt management area. The qualitative research will enable a better
understanding of the problem and how developers perform prioritization. The machine
learning methods will also allow researchers, managers, and development teams to decide
which technical debt items to pay off and when the payment should be made.

1.2 Research Problem

The technical debt management process comprises the following steps: identification,
measurement, and decision-making (Kruchten et al., 2012). After identifying and measur-
ing technical debt items, a software project could have hundreds or thousands of items to
pay (Falessi and Voegele, 2015). Therefore, they must choose which technical debt items
should be paid off and in which order to make the payment. If they do not prioritize the
payment of the technical debt or the prioritization is not done efficiently, resources such
as time and money can be wasted due to the difficulty of maintaining and implementing
new features caused by the accumulation of priority items of technical debt.

For example, in a planning meeting, the software development team allocates part of
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the next three weeks to pay off technical debt items. Then, it uses a tool like Sonar Qube
to identify technical debt items and measure the time it takes to pay off each item. The
tool found hundreds of items. Due to time constraints, the team should choose only a
few items to pay off. Then they will need to identify the most critical items to pay first.
Therefore, they need a method to aid them in choosing which technical debt items must
be paid off and deciding the payment order.

1.3 Research Questions

This thesis aims to address the following research questions:

• RQ1. How do developers prioritize technical debt?

– RQ1.1. How do developers decide whether a code technical debt item should
or should not be paid off?

– RQ1.2 How do developers decide when a code technical debt item should be
paid off?

To investigate these questions, we analyzed how developers prioritize technical debt
in real software projects. We invited developers by email to answer two questions about
technical debt items in projects they had contributed to. The first question is "When should
the item be paid off?" (multiple-choice) with six sorted options from Immediately to Never.
The second question is "Why?" (open-text field) so that they can explain the decision in
the first question.

We applied Straussian Grounded Theory to analyze the data and understand the criteria
developers used to prioritize technical debt items. We grouped the criteria into fifteen
categories. Then, we associated them into five super-categories: two related to paying off
the technical debt and three related to not paying off.

Some developers justified non-payment of the technical debt item by a specific software
project decision. However, when they opted to pay the item off, they chose to pay it off
soon. In addition, they chose the same pay priority or a neighboring level when they used
similar prioritization criteria. Finally, we note that each software project needs its criteria
to perform prioritization efficiently.

• RQ2. How to prioritize the payment of technical debt automatically?

– RQ2.1. How effective are Machine Learning models for deciding whether or
not a technical debt item should be paid?

– RQ2.2. How effective are Machine Learning models for deciding when a tech-
nical debt item should be paid?

– RQ2.3. Which are the best Machine Learning algorithms to prioritize technical
debt?

For this second research question, we trained and assessed machine learning methods
to predict whether a technical debt item should be paid off. Then, we applied the same
algorithms using four approaches to classify a technical debt item according to priority.
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For example, we categorized when a technical debt should be paid off into six categories:
immediately, as soon as possible, in the next release, in the next few releases, when there
is free time, or never.

As machine learning had yet to be applied to the technical debt prioritization problem,
as (Tsoukalas, Mittas, et al., 2021) and (Mauricio Aniche et al., 2020), we decided to
apply simple methods to better understand the results. The nine selected methods are
Dummy Classifier, Naive Bayes, K-Nearest Neighbors, Logistic Regression, Ridge Classifier,
Support Vector Machine, Decision Tree, Random Forest, and XGBoost. We applied the
methods over 27 features that describe the source code, such as the number of lines, source
file complexity, and the number of statements.

In all tested approaches, at least one of the methods achieved statistically superior
performance compared to random choice. Specifically, for determining whether a technical
debt item should be paid, they reached an accuracy of 0.86 to decide whether a technical
debt item should be paid off using traditional analysis. When it came to determining when
an item should be paid off, the accuracy reached 0.96 using tuned analysis. K-Nearest
Neighbors and Random Forest consistently performed exceptionally well across all of the
approaches, while Decision Tree and XGBoost also showed strong performance in several
cases.

1.4 Goals

Below we will list the general and specific goals that will guide this research project
throughout its development.

1.4.1 General Goals

This study aims to understand how developers prioritize technical debt and develop
methods to aid that decision. We trained machine learning methods to decide whether a
technical debt item should be paid off and when the payment should be made.

1.4.2 Specific Goals

Below is a list of the main specific objectives:

1. Identify studies on technical debt prioritization methods.

2. Develop or improve a method to identify whether a technical debt item should or
should not be paid off.

3. Improve the how-to classify technical debt items by severity levels.

4. Elaborate the methods of prioritizing the order of payment of technical debt items.

5. Ensure that all methods are computer-assisted, requiring just receiving code metrics
as training data.

6. Evaluate the methods’ performance for each approach.
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1.5 Contributions

In the subsequent subsections, we will outline the contributions that this research
project aims to make for both researchers and practitioners in the field.

1.5.1 For Researchers

The developed technical debt prioritization criteria serve as a base to investigate more
standards for other programming languages, kinds of projects, and paradigms. They also
can use the criteria to create guidelines to assist developers in deciding the payment
priority level for each technical debt item they identify in their software. In addition,
researchers can relate the criteria to software context, such as code metrics and commit
history, to automatically categorize payment of code technical debt.

On the other hand, the machine learning methods that were trained in this study
and performed well could be used to prioritize the technical debt items as input to other
studies, for example, for management or decision-making research. The methods also can
be added as part of prioritization or management frameworks. They also can be a baseline
for developing more complex strategies to prioritize technical debt.

1.5.2 For Practitioners

Practitioners can use the prioritization criteria to pragmatically evaluate and plan
technical debt payments in their software projects. For each criterion, they can verify
and decide about its application to classify the payment priority level in their project. In
addition, they can implement a criteria list in a technical debt management tool to help in
the decision-making process.

On the other hand, the results could assist practitioners in deciding which technical
debt items should be paid off and when the payment should be made. Prioritization will
allow items that caused the most interest and negative impact to be paid off first, improving
the code quality and speeding up the development and maintenance.

1.6 Thesis Structure

This thesis is divided as follows:

• In Chapter 2, we provide the technical debt metaphor concept, classification, prop-
erties, management, and prioritization. We also provide the concepts for machine
learning.

• In Chapter 3, we present the results of a mapping study on technical debt prioritiza-
tion we performed. We develop a taxonomy of technical debt literature divided into
two levels. We classify the prioritization method return into Boolean, Categories,
or Ordered List. We also classify the methods according to context-adaptative, free-
language, variety of technical debt types, and implementation in a tool.
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• In Chapter 4, we describe Sonarlizer Xplorer and InteraSurveyTD tools. Sonarlizer
Xplorer was developed to mine and analyze public software projects hosted at GitHub,
resulting in a technical debt items and code metrics dataset. We also developed
InteraSurveyTD to apply a survey where the developers only see technical debt
items from projects they have worked on. The tool asks them whether/when a
technical debt should be paid off and why.

• In Chapter 5, we present a qualitative study that aims to understand which criteria
software developers use in practice to prioritize code technical debt items in real
software projects. We applied a survey to collect developers’ answers. We analyzed
the answers using Straussian Grounded Theory (Straussian GT) techniques, namely
open coding, axial coding, and selective coding. We grouped the criteria into 15
categories, 2 super-categories related to paying off the technical debt item, and 3
super-categories related to not paying off the item. We found that when developers
chose to pay off a code debt item, they decided to do so soon. When they chose
not to pay it was a project-specific decision. Also, when developers used the same
criterion, the payment priority chosen was in the same neighborhood. Finally, we
noted that each project needs a specific set of criteria to prioritize technical debt.

• In Chapter 6, we present a quantitative study that aims to develop machine learning
methods to prioritize technical debt items. That is, to decide whether and when a
technical debt item should be paid off. We trained nine well-known machine learning
methods over 27 features and assessed their performance using traditional and tuned
analysis. We found KNN and RF had the best performance for all approaches. DT
and XGB are also in the best performance cluster for most of the approaches tested.

• In Chapter 7, we represent the final considerations, contributions, and limitations.
We also presents future research suggestions.
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Chapter 2

Background

In this chapter, we present the main concepts related to technical debt. First of all, we
define and explain the technical debt metaphor. Then, we show ways to classify technical
debt using several criteria, such as intention, prudence, short-term, and long-term. Finally,
we also offer technical debt properties.

In addition, we present the technical debt management process. This process consists of
identifying technical debt and storing the items in a list; measuring each item; monitoring
it; making decisions. Lastly, we present the major concepts related to technical debt
prioritization.

2.1 The Technical Debt Metaphor

In 1992, Ward Cunningham introduced the technical debt metaphor, comparing it with
financial debt. In his narrative (Cunnigham, 1992), Cunningham claims that when the
code quality is compromised, it is the same as incurring a debt. He also said that the debt
is paid when the code is rewritten. In addition, he makes an alert saying that every minute
that debt is not paid, interest is being added to it.

Below is a part of his report:

"Shipping first-time code is like going into debt. A little debt speeds development so
long as it is paid back promptly with refactoring. The danger occurs when the debt is not
repaid. Every minute spent on code that is not quite right for the programming task of the
moment counts as interest on that debt. Entire engineering organizations can be brought
to a stand-still under the debt load of an unfactored implementation, object-oriented or
otherwise." (Cunnigham, 1992).

In Measuring and Monitoring Technical Debt (Seaman and Yuepo Guo, 2011), Seaman
and Guo defined technical debt as a metaphor for an incomplete, immature, or inade-
quate artifact in the software development lifecycle. We mainly use this definition in this
paper.

On April 18-22, 2016, technical debt researchers and specialists met at the Managing
Technical Debt seminar in Dagstuhl. After much discussion, they developed the following
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technical definition:

"In software-intensive systems, technical debt is a design or implementation construct
that is expedient in the short term, but sets up a technical context that can make a future
change more costly or impossible. Technical debt is a contingent liability whose impact is
limited to internal system qualities, primarily maintainability and evolvability." (Managing

Technical Debt 2016)

Acquiring a technical debt item could bring short-term benefits (Yuepu Guo, Ro-
drigo Oliveira Spínola, et al., 2016), such as reducing time, resources, and effort in task
development. On the other hand, in the long term, technical debt could cause negative
impacts on software quality. Technical debt risks the project, causing higher costs to
develop new features and maintain existing code.

The software development teams need to balance the benefits of acquiring technical
debt and the cost to pay it off and its interest (Seaman and Yuepo Guo, 2011). The
uncertainties associated with technical debt make the decision-making process even
more complex. Therefore, technical debt management (identification, measuring, and
monitoring) could provide relevant information to the teams to decide whether and when
a technical debt item should be paid off. This results in greater visibility for the project,
helping to improve the software quality and team productivity to implement new features
and perform maintenance effectively.

Technical debt is a metaphor for financial debt, including the vocabulary used to
express it. It allows different stakeholders involved in the software project (Ernst et al.,
2015) to understand and follow the issues related to technical debt. For this reason, it is
easier to show the importance of keeping technical debt under control during project
development.

Technical debt only happens in the software being developed or already in production
(Yuepu Guo, Rodrigo Oliveira Spínola, et al., 2016). It is impossible to acquire a technical
debt of something that does not exist, or it would not be possible to pay it. Thus, abandoned
software projects do not accumulate more technical debts. Sometimes, the technical debt
acquired during a project is simply canceled. On the other hand, the technical debt may
be linked not only to a project. That is, it may also spread to several related projects or
directly affect the institutions’ capital responsible for its development. Therefore, even
if the project fails, the institutions may have to pay at least part of the debt and interest
related to the project.

2.2 Technical Debt Classification

In this section, we present the proposed classifications for technical debt. Once the tech-
nical debt acquired is known, McConnell (McConnell, 2007) classifies it into short-term
technical debt and long-term, depending on the time that the payment is planned.

As financial debt, technical debt can be repaid in short-term (Brown et al., 2010).
This type of technical debt is often paid to attend to immediate needs or when the team
has extra budget or resources.
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Another characteristic of this technical debt type is the short frequency in which the
payments are made to rehabilitate credit for acquiring new technical debt items. In general,
short-term debt does not require significant planning. It is acquired to attend to immediate
needs and does not produce a significant negative impact or a considerable accumulation
of interest.

In general, long-term technical debt items (Brown et al., 2010) are strategically
acquired, with planning to attend to high-impact needs. In this case, teams can incur
debt for implementing new features, coverage of tests, system failures, lack of adequate
technical support, or any other technical need that requires a great team effort. However,
these technical debt items will need to be paid off in the future. Even the technical debt
payment is planned in the long-term; if the team members have a need, technical debt can
be paid off before or handled for years.

According to Martin Fowler (Fowler, 2009), technical debt can be classified by a
quadrant with the following parts: reckless and inadvertent; reckless and deliberate;
prudent and inadvertent; prudent and deliberate.

Figure 2.1: Technical Debt Quadrant. (Fowler, 2009)

Reckless and Inadvertent Technical Debt occurs when the acquired technical debt
is unknown and comes from inadvertent actions carried out by the development team
without being part of one strategy. It is the most dangerous type of technical debt because
the team does not know about the technical debt items or who added them there. That is,
it can lead to a bankruptcy project without the team taking notice of the causes.

Reckless and Deliberate Technical Debt occurs when the technical debt to be
acquired is known and, even knowing about the negative impact, it is ignored without
any strategic reason. Due to imprudence, the technical debt is not paid off, and there is no
plan to pay it off later.

Prudent and Inadvertent Technical Debt occurs when the technical debt acquired
is unknown, but the development team acknowledges that its actions will accumulate debt.
However, the team decided to keep these actions for some strategic reasons. In this case,
the team will spend some time learning the correct way to do the technical tasks later.
They will also spend time identifying the technical debt that was acquired, being this time



10

2 | BACKGROUND

counted as interest.

Prudent and Deliberate Technical Debt occurs when the technical debt to be
acquired is known and, for some important reason, they decided to acquire it intentionally.
Most of the time, the reasons are external to the development team context. Therefore,
this type of technical debt results from a previously elaborated strategy. In many cases,
the need to assume the debt is mainly related to time. That is the need to deliver a set of
tasks in a shorter time than necessary to do them with the desired quality.

2.3 Technical Debt Properties

Principal is the cost to pay off a technical debt item (Yuepu Guo, Rodrigo Oliveira
Spínola, et al., 2016). This cost could be calculated in work hours needed to rewrite the
code, monetary value, or points. For example, a developer may need to work 4 hours to
reduce the complexity of class A.

Interest is the cost of extra work to be done related to a technical debt item (Curtis
et al., 2012). Typically, the interest is calculated with the units of measurement as the
principal debt. Unlike financial debt, the technical debt interest only is charged when some
extra effort is made, depending on the elapsed time.

Probability of interest is the probability of interest being charged (Yuepu Guo,
Rodrigo Oliveira Spínola, et al., 2016). Due to the uncertainty related to interest on a
technical debt item, there is a need to calculate this probability. For example, a technical
debt item has a probability of interest of 25%. That is, on every four commits, the interest
cost will be charged.

2.4 Technical Debt Management

The technical debt management process consists in identifying technical debt, mea-
suring it, and making-decision about the payment (Seaman and Yuepo Guo, 2011). This
process consists of managing a list of technical debt items.

The technical debt management framework proposed by Carolyn et al. (Seaman and
Yuepo Guo, 2011) helps to organize this process. Figure 2.2 shows the framework proposed
to identify technical debt items (ID, date, responsible, type, location, and description) and
store them in a list. Then, estimating the principal, the interest amount, and the interest
probability for each item is necessary. Finally, the list needs to be prioritized to make
feasible the decision-making process.

2.4.1 Technical Debt Identification

The first step to managing technical debt is identifying the items. In order to find
them, it is possible to use well-defined techniques, methods, and tools. Identifying and

Managing Technical Debt (Zazworka, Rodrigo O Spínola, et al., 2013) and Comparing Four

Approaches for Technical Debt Identification (Zazworka, Izurieta, et al., 2014) proposed
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Figure 2.2: Framework to manage technical debt. (Seaman and Yuepo Guo, 2011)

technical debt daily indicators and used tools to identify the technical debt items in the
source code.

These tools aim to automatically find defects and the absence of patterns in the source
code. These elements could generate technical debt or be false positives. The identification
tools use the following methods to find the defects: static analysis, code smells, design
patterns, modularity violations, and test coverage.

Technical Debt Daily Indicators

The technical debt daily indicators are situations that often happens in the daily
development team. The situations are pieces of evidence that there is technical debt in
the software. These situations could determine specific technical debt, and they could be
easily found in general. However, they also could determine generic technical debt, where
it may take a few hours or even days before it can be identified.

Daily identifiers examples are taken from (Zazworka and Seaman, 2013):

• Do not worry about the documentation now;

• The only one that can change this code is John;

• It is right now, but we will need to refactor it later;

• ToDo e FixMe in the source code;

• We just copy and paste this part;

• Who knows where we stored the database password?;

• I know, if I touch this code it will break;
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• We will finish the tests in the next release.

Code Static Analysis

Code static analysis method search for code problems. The analyzed code could be the
source or binary (Zazworka, Izurieta, et al., 2014). This analysis is based on violations of
best programming practices or design patterns.

By employing static analysis, it is possible to find code snippets that could cause failures.
It could also put some software quality aspects down, mainly source code maintenance.
Follow bellow some technical debt characteristics examples where the violations found
for this method could be associated:

• Bad programming practices;

• Correctness;

• Experimentation;

• Internationalization;

• Malicious code vulnerability;

• Performance;

• Security;

• Multi-thread correctness and

• Style.

Even if the tools find several types of these technical debt items, it is essential to
analyze the software context to decide which is important. Thus, we must exclude false
positives.

The technical debt found with this method could be related to code defects. How-
ever, it also could be related to best pattern violations. This fact directly affects software
maintenance. For this reason, the technical debt found with this method could be very
interesting to pay off because if the software needs to receive maintenance or new features
implementations, there is a high probability of interest being charged. Thus, programmers
need more time and effort to correct bugs or implement new features.

Code Smells

The concept of code smells, coined by Martin Fowler and Kent Beck (Fowler, 1999),
refers to indications of deeper problems within the affected code area. Most of the time,
code smells describe problems related to object-oriented programming and other joint
problems involving sets of code lines.

As it involves a variety of problems, several techniques must be used to achieve a
method that can identify them manually or automatically. Some problems are defined
below:

• Duplicated code.
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• Long methods/functions.

• Long classes/modules.

• Too many parameters.

• Data clump.

• Excessively long identifiers.

• Cyclomatic complexity.

In general, the problems found demand refactoring to be fixed. Therefore, the technical
debt found with this method is strongly related to maintenance, readability, and reuse.
Besides that, many criteria used also related to reliability, security, and efficiency.

This method only allows finding some of the technical debt items automatically. How-
ever, it is possible to find them with computer assistance. It occurs because the techniques
could identify some false positives or be a technical debt only in a specific context.

Design Patterns

The design patterns are intended to make the source code easier to read and understand.
Thus, maintenance is more manageable, and the code is less prone to defects and failures
(Zazworka and Seaman, 2013). The method applies standardization and description of
how classes can work together.

The design patterns violation can be considered as architectural technical debt. Design
pattern concepts are often related to high-level software abstraction involving modules,
classes, and methods. Thus, several times, it is necessary to do a complex analysis to
identify violations in the pattern. Therefore, it is hard to find tools to identify design
patterns violation automatically. However, it is possible to use the design pattern concept
and application to assist in the identification. Guides like (Hunt and Hunt, 2013) can help
you find patterns like:

• Abstract factory;

• Prototype;

• Adapter;

• Facade;

• Strategy;

• Scheduler.

Tests

The test method shows code snippets that do not have the expected behavior in some
situations. Therefore, if a test fails, it can indicate a defect in the software. These defects
could be both errors and property violations. In critical software, it is necessary to test
using formal verification to ensure that the code satisfies the model. On the other hand,
less complex software could be tested using only validation (Delamaro et al., 2007).
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Tests could identify technical debt because they could be written to identify quality
properties validation. Therefore, a test could identify if a code snippet does not behave as
expected.

Besides that, the tests can identify problems in a high-level abstraction called architec-
tural technical debt. For instance, a test could determine if a module complies with the
software architecture or if a class behaves according to the expected.

The test’s absence, low coverage level, incompleteness, or inadequacy may be con-
sidered technical debt. Writing and maintaining tests incur development costs and their
absence or inadequacy could impact software quality writing and maintenance of tests’
principal technical debt calculation.

Other Methods

According to the software context, another identification method can be necessary to
find technical debt items. It could happen because the context may cause a technical debt
type to arise or even new types of technical debt to appear.

2.4.2 Technical Debt Measure

In order to measure the technical debt, one possibility is to apply the method described
in The SQALE Methods (Letouzey, 2012b). This method consists of rules to make the
measure feasible and standardize it. Besides that, it standardizes controls related to source
code and value aggregation rules.

For each rule, it needs to define a function to compute the cost to pay off a technical debt
item. This function is called the remediation function. Computing each item’s technical
debt principal cost is possible by applying the remediation function. With these results, it is
possible to compute either the entire technical debt principal cost of the software or group
them according to criteria and obtain the technical debt of part of the software.

Remediation Function

The purpose of the remediation function is to determine the cost of moving from the
current state to the desired state of quality (Letouzey, 2012b). Therefore, each quality
property or rule is associated with a remediation function. This function can compute the
technical debt principal effectively and in a standard way.

The remediation function parameter is a list with an indicator of whether the quality
property has been violated and the values associated with it if there are. The function
returns a cost value. This cost could be monetary, work-hours cost, or symbolic cost,
according to the need of each project.

The remediation function could be a simple constant function that returns either 0
if no violation occurs or a constant value otherwise. Another possibility is to define a
multiplicative factor to the violation according to the associated values parameters.

The remediation cost function can also define a more complex function, such as expo-
nential, logarithmic, trigonometric, or any other function. The function must adequately
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model the cost of paying the technical debt. The more complex functions usage could help
in this modeling. For example, the software complexity could increase the payment cost
exponentially.

For instance, suppose the quality property is: "Every method must be covered by at
least one unit test". It is possible to define the following remediation cost: 𝑓 (𝑥, 𝑦) = 𝑥𝑙𝑛(𝑦),
where either x is 0 if the method was covered or 1 if the method was not covered. The y is
the number of lines of the method. The function 𝑓 (𝑥, 𝑦) returns the hour-cost to write a
test to cover the method.

It is important to note that any remediation function must be 0 if the quality property
was not violated.

Technical Debt Item Storage

In order to aim to organize and compute the technical debt automatically is necessary
to use a data structure similar to the one proposed in Measuring and Monitoring Technical

Debt (Seaman and Yuepo Guo, 2011). The data structure could be modified for each model
or context to suit the needs.

ID 42
Date - Time 01/06/13 11:30:34

Quality Property All method must be covered by
at least one test.

Place Class ABC : Method XYZ
Principal 2 hours e 30 minutes

Interest 30 minutes
Interest Probability Medium

Payment Priority High

Table 2.1: Technical debt record example

Technical Debt Principal Calculation

According to the SQALE Method (Letouzey, 2012a), in order to compute the entire
technical debt principal precisely, it is necessary the following:

• All quality type is independent. That is, a technical debt item cannot be associated
with two types of quality;

• All the characteristics of the model must be independent;

• All sub-characteristics of the model must be independent;

• All model quality properties must be independent;

• From the quality properties, all technical debt items must be found.

In practice, the above rules are challenging to enforce. Thus, to perform the calculation,
we could compute part of the technical debt of a given quality property, sub-characteristic,
characteristic, or type of quality that meets the requirements.
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If it is not possible to guarantee independence and that all technical debt is found, we
will have:

• Upper boundary: This scenario assumes that all technical debt can be found, but
independence cannot be guaranteed. It is due to the intersection between technical
debt items, causing costs to be added more than once;

• Lower boundary: In this scenario, independence can be guaranteed, but it cannot
be guaranteed that all debt has been found. In this case, the technical debt will be
counted only once and may not be less than the calculated value. On the other hand,
as some items may not have been found, the technical debt may be higher than the
calculated value;

• Approximation: This scenario arises when independence can not be guaranteed and
it is not possible to find all technical debt items. It is not the ideal case but the most
common one. In this case, it can not be a higher boundary since technical debt items
were not found could exceed this limit. On the other hand, it can not be a lower
boundary, as there may be intersections between technical debt items, so the value
found approximates the actual value of technical debt.

The technical debt calculation can be done on different levels, from the lowest quality
properties to the highest, calculating the debt of the software as a whole. The item could
be grouped into several levels to create technical debt indexes. These indexes standardize
the sum of several measures into a set that makes sense and is essential for certain parts of
interest. For example, the debt can be grouped for each module or file; or characteristics
or sub-characteristics.

Step-by-step to Calculate Technical Debt

The technical debt principal (Letouzey, 2012a) can be computed by the following
formula:

𝐷𝑇 =

𝑛

∑

𝑖=1

𝑓𝑖

where 𝑓𝑖 is the cost to do a property 𝑖 to be valid in every items; computed by the following
way:

𝑓𝑖(𝑃1, 𝑃2, ..., 𝑃𝑚𝑖
) =

𝑚𝑖

∑

𝑗=1

ℎ𝑖(𝑃𝑗)

where 𝑃𝑗 is a vector that describes each evaluated technical debt item and

ℎ𝑖 =

{
0, if i was not violated,

𝑥 > 0, otherwise.

represents the cost of making the valuation item (𝑃𝑗 ) satisfy property i.
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Group Technical Debt Items

It is often interesting to know the technical debt for each system characteristic. Group
the technical debt into sub-characteristics directly associated with a characteristic.

In The SQALE Methods (Letouzey, 2012a), an index is created for each characteristic
representing the related properties’ technical debt sum. The sub-characteristics properties
are also included.

The followings characteristics created these indexes:

• Testability (STI);

• Reliability (SRI);

• Changeability (SCI);

• Eficiency (SEI);

• Security (SSI);

• Maintenence (SMI);

• Portability (SPI);

• Reuse (SRuI).

In a software project, we can have several stakeholders. Thus, it could need to group
indexes to reflect something of specific interest to any of these stakeholders.

For instance, a stakeholder might be interested in knowing if the system is working
correctly. Therefore, he might want to see the grouping of technical debt of testability and
reliability together, thus generating a new index:

𝑆𝐶𝑅𝐼 = 𝑆𝑇 𝐼 + 𝑆𝑅𝐼 .

Technical Debt Dimension

It is possible to create density indexes to dimension the technical debt against the
source code. These indexes are defined as the division of the absolute indexes by the
possible total measure for each of the properties associated with the index.

For example, given the absolute testability index 𝑆𝑇 𝐼 = 50, paying all technical debt
items related to testability would cost 50 minutes. Therefore, it is necessary to find the
total hours that would be spent if no test had been performed. Suppose that this value is
500 minutes. Thus, the testability density index 𝑆𝑇 𝐼𝐷 = 50

500
= 0.1, the technical debt of

testability is present in 10% of the code.

This technique could be applied to all absolute indexes. It is possible to apply in a
grouping of indexes. For this reason, it is possible to create a density index for measuring
technical debt.

In practice, small codes may have high-density indices. Large codes may have low-
density indices even having a large number of technical debt items.
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Technical Debt Graphical Representations

The technical debt principal can be represented at several scales or using artifacts such
as graphs and pyramids.

SQALE Rating SQALE (Letouzey, 2012a) uses three rate unities: classification, percent-
age, and color. The rate is typically divided into five or more values, as shown in Figure
2.3. This rate is directly applied to the density indexes and quickly verifies the degree of
technical debt at points of interest.

Figure 2.3: Table of grades and colors of the SQALE rate. (Letouzey, 2012a)

For example: Suppose the testability index (STI) is equal to 18 and that all possible
points add up to 600. Then, the density index STID is equal to 0.03, which in percentage
equals 3%. Thus, its classification is C and its color is yellow.

Kiviat Graph (Letouzey, 2012a) Suppose the testability index (STI) is equal to 18
and all possible points add up to 600. Then, the density index STID equals 0.03, which in
percentage equals 3%. Thus, its classification is C, and its color is yellow.

To assemble this graph, follow these steps:

1. For each characteristic, mark the point where the technical debt is;

2. Link all points of the technical debt, thus obtaining a polygon of the current technical
debt;

3. For each characteristic, mark the point with the maximum wanted the value to the
technical debt and;

4. Link all points of maximum values, obtaining a polygon of the maximum value of
technical debt.

If the polygon of the current technical debt is entirely included within the polygon of
the maximum technical debt means that the technical debt is under control. If part of the
technical debt polygon is out, it means that the characteristic related to the point that is
out has passed the acceptable levels and needs to be paid off.

SQALE Pyramid (Letouzey, 2012a) The characteristics can be placed in importance
order. Then it is possible to construct a pyramid with the following characteristics:
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Figure 2.4: Kiviat Graph for representation of technical debt by characteristics proposed by the SQALE

method. (Letouzey, 2012a)

• Each field of each line receives the technical debt value of the associated characteris-
tic.

• All the debt in the column must be added together in the last line.

This pyramid allows visualizing the accumulated debt of different characteristics, as
shown in Figure 2.5.

2.4.3 Technical Debt Monitor

Technical debt monitoring could be done in two ways. The first is immediate, and the
second is over time. The monitor also could be done in an explicit technical debt in the
item list or to monitor to find implicit technical debt (A. Freire, n.d.). What should be
monitored may vary according to the stakeholders. For example, the system buyer may
only be concerned with the total technical debt of the current project. On the other hand,
the responsible for testing the system may want only to see the technical debt related to
testing and its evolution over time. The technical debt indexes could help in the monitoring.
With them, it is possible to analyze specific software parts quickly. Thus each stakeholder
could analyze the technical debt from their point of view.

Immediate Monitoring

After identifying the technical debt items and processing them using the remediation
functions to compute the principal cost, the result is a technical debt list.

Technical debt immediate monitoring consists of analyzing the technical debt to make
decisions. This monitoring allows for verifying the points with more significant technical
debt problems. That is, where there is a considerable amount of technical debt with the
urgency of payment.

In the immediate monitoring, the indexes are essential to make-decision. They allow
easy verifying of the amount of technical debt at a given point.
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Figure 2.5: Technical debt pyramid of the SQALE methodology. (Letouzey, 2012a)

Figure 2.6: Line chart to monitor technical debt over time. (Kniberg, 2013)
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Monitoring Over Time

Monitoring the technical debt over time consists of gathering the technical debt lists of
different dates to analyze them in different ways. The first goal is to follow the technical
debt evolution.

This type of monitoring is essential to have control of the technical debt. Monitoring
over time allows us to keep it from increasing at critical points where payment priority is
high. This process could prevent the project from going bankrupt.

Indexes are also significant for monitoring over time. With the indexes of different
dates, it is possible to verify the evolution of technical debt at key points. Therefore,
through the indexes, it is possible to take measures to inhibit or even decrease some
specific technical debt growth.

Monitoring Methods Examples

Several methods could be used to monitor technical debt. Some of them are more spe-
cific, monitoring direct technical debt items. Other are more subjective monitoring factors
that could impact the technical debt. Below, we present a list of monitoring methods:

• Tracker has carried out specific monitoring for each technical debt item. For each
item, it is necessary to check some points such as the priority to pay the technical
debt; when the item will be paid off; by whom it will be paid; and additional informa-
tion. The tracker helps to plan the technical debt payment and provide a payment
history.

• Kanban is a tool to track the tasks of a project. With the technical debt identified,
it is possible to place each item, or a group of items, as a task to be performed.
Therefore, monitoring which technical debts have been, are being, or will be paid
off can be done simply usingkanban.

• Customer Happiness Monitor is a subjective method and does not require identi-
fying technical debt. However, customer happiness could be a clue as to whether the
project is going in the right direction and, consequently, without excess technical
debt. When a client begins to get impatient, angry, or disinterested in the project, it
may indicate that the project has too much technical debt that directly affects the
client’s mood.

• Changing Difficult Monitor, when the development team begins having difficulty
changing the project, maintaining or implementing new features, indicates that
technical debt may be high or increasing. This monitoring mainly concerns the
technical debt of the characteristics of reuse, maintenance, and changeability. For this
method, it is necessary to check if the current developers’ capabilities are equivalent
to previous developers. If they are not equivalent, a technical improvement may be
needed.

• Team Monitors, the unhappy team, working overtime, disorganized, having techni-
cal problems, or any other problem may have their projects hampered. In particular,
the source code may be affected by technical debt due to fatigue, inattention, technical
inability, or other factors related to the team members.
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• Retrospectives, conducting retrospectives with those involved in the project is
essential to identify problems and verify that everyone’s expectations have been
met. The problems exposed in these events should be investigated to verify their
impact on the quality of the product. These problems are indications of technical
debt.

• Commits over Time is a method for verifying whether the team is committed to
the project, checking the complexity of implementing new features or performing
maintenance, and tracking the quantity and quality of the commits over time. If the
curve decreases, it may indicate the project has technical debt since writing a line of
code may have become more costly.

It is important to note that many of these methods are intuitive and require human
analysis to identify whether the detected problems are related to technical debt. For
example, the number of commits could drop sharply from month to month as demand for
new features may have declined.

2.5 Technical Debt Prioritization

Prioritization is a crucial aspect of technical debt management as it helps decide
whether and when a technical debt item should be paid off, resulting in an ordered list
of technical debt items (Yuepu Guo, Seaman, et al., 2011). The items that should be paid
first must be on top of the list. Some technical debt prioritization methods could define a
threshold, dividing the list into items that should be paid and the items that not should be
paid. Most of this decision focus on maintenance tasks that have an immediate impact
on the production software, thus it has financial visibility (Seaman, Yuepu Guo, et al.,
2012).

Efficient technical debt management requires technical debt prioritization since it is
not feasible to pay off all items (Charalampidou et al., 2017). According to the context of
the project, some items need to be paid earlier than others, because they have a higher
probability of accruing interest. Besides that, some technical debt items do not even need
to be paid, because they have a low probability of accruing interest.

2.6 Chapter Summary

This chapter presents the main concepts, classifications, and properties related to
technical debt. We also presented the technical debt management process. Lastly, we
presented the significant concepts related to technical debt prioritization.

First of all, this chapter introduced the technical debt metaphor and concepts. We
presented the first definition formulated by Ward Cunningham. We also presented Seaman
et al. and Dagstuhl seminar technical debt definition. Second, we presented the classification
of technical debt and its properties.

We also presented methods to identify, store, measure, and monitor technical debt.
These methods make up the technical debt management process. Lastly, we presented the
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main concepts related to technical debt prioritization.

The next chapter will present a mapping study on prioritizing technical debt.
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Chapter 3

Systematic Mapping Review on

Technical Debt Prioritization

Several methods for identifying, measuring, and monitoring technical debt have been
developed, and new tools have been created to automate the process in the last few years.
Thereby, it is possible to find thousands of technical debt items in each software project
that could take hundreds of days to be paid off (Curtis et al., 2012).

In order to find previous work, we performed a mapping study to find discussions and
methods that aim to help prioritize technical debt. In other words, methods to identify
which technical debt items should be paid and when the payment should be made and
to supply information to the decision-making process. We analyzed the main papers
of the area, providing a classification of them. The main result is to highlight the cur-
rent prioritization methods and to compare them, allowing the improvement of existing
methods.

We based this chapter on (Pina, Goldman, and Tonin, 2021). We updated the search
for the systematic mapping review to May 2023.

3.1 Research Methodology

We followed the steps proposed by Petersen et al. (Petersen et al., 2008) to perform a
systematic mapping in the current literature. We performed all six steps: definition of the
research question; conduct search; screening papers; data extraction and mapping process;
classification schema; and systematic map. Figure 3.1 shows Petersen’s process.

3.1.1 Conduct Search

We used the query ("technical debt") AND (prioritization OR decision-making) to o
search for papers in the principal computer science papers’ bases: ACM Digital Library
(ACM DL), IEEE Xplore, Science Direct, Scopus, Springer Link, and Web of Science. In
IEEE Xplore, we broke down the query into two: (“technical debt") AND (prioritization);
(“technical debt") AND (decision-making).
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Figure 3.1: Petersen’s process to perform a systematic map. (Petersen et al., 2008)

The process of building the search query was iterative. First, we searched only con-
sidering the term ("technical debt"), and several papers were listed, but most were not
related to technical debt prioritization. Then, we changed the query to ("technical debt")
AND (prioritization) to filter only the papers related to prioritization. Analyzing a sample,
we identified that the term “decision-making" is sometimes synonymous with prioritiza-
tion. Then, we added the expression to the query as an alternative to prioritization. The
application of all these processes aids in the completeness of the search.

We searched for them using the default fields: "any field" in ACM DL "metadata only"
in IEEE Xplore; “keywords" in Science Direct; “article title, abstract, keywords" in Scopus;
“with all of the words" in Springer Link and “topic"; in Web of Science.

3.1.2 Screening of Papers

The screening process consisted of two steps. First, we established the minimum
criteria to accept a paper. Then, we established criteria to exclude the ones that were not
relevant.

The inclusion criteria used were:

• The abstract must explicitly refer to at least one prioritization method or decision
criteria regarding the technical debt payment;

• The paper must be written in English;

• The paper must have been published in a journal, conference, or workshop.

The exclusion criterion used was:

• Papers with more than ten years. Before that, the term “technical debt" was not
widely used.

3.1.3 Data Extraction and Mapping Process

The total number of papers found was 1027. After applying the inclusion and exclusion
criteria, we selected 146 papers. Then, we removed the duplicated papers, resulting in 70

unique papers. Table 3.1 shows a search results overview. Figure 3.2 shows the distribution
of selected studies over time.
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Figure 3.2: Distribution of selected studies over time.

Base Total Total Selected

ACM DL 225 21
IEEE Xplore 97 41
Science Direct 271 8
Scopus 140 43
Springer Link 245 5
Web of Science 65 28

Total 462 146

Total of Unique Papers 70

Table 3.1: Search results overview
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3.1.4 Classification Schema

We applied the keywording process described by Peterson et al. (Petersen et al., 2008).
We used the full text of the selected papers instead of only the abstract. We clustered and
linked the keywords to develop a technical debt prioritization taxonomy. Afterward, we
identified some generic codes and classified them in the first level. We also identified more
specific others and classified them into a second level. Also, we related the first level to
the second level. From the clusters, we proposed categories to classify the papers.

3.2 Mapping Review Results

This section presents the results found in the mapping review and the answers to the
following research questions.

3.2.1 RQ1: What methods and techniques were proposed to

prioritize technical debt?

We have grouped methods and techniques to prioritize technical debt from the selected
papers, developing a two-level abstraction with linked categories.

The taxonomy, presented in Figure 3.3, is divided into two levels. The first level is the
immediate classification of the papers. The second level is the specific sub-classification
derived from the secondary aspects of the paper approaches.

The categories of the second level are linked to at least one category in the first level.
A continuous line means that all papers are related to that category. A dashed line means
that only a few papers are related to that category.

Figure 3.3: Technical debt prioritization taxonomy

Each paper is in the best-fit category in the first level. According to their specific
aspects, some papers can also be in one category of the second level.

3.2.2 First Level

We have four categories in the first level: Conceptual / Introductory, Mathematical/Sta-
tistical, Code Metrics, and Financial. Table 3.2 shows the papers mapped into the first-level
taxonomy.
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Classification Papers

Conceptual /Introductory

(Gomes et al., 2011), (Seaman, Yuepu Guo, et al., 2012),
(Morgenthaler et al., 2012), (Falessi, Shaw, et al., 2013),
(Daneva et al., 2013), (Ernst et al., 2015),
(Martini and Bosch, 2015a), (Martini and Bosch, 2015b),
(Leppanen et al., 2015), (Fernández-Sánchez, Garbajosa, et al., 2015),
(Martini, Bosch, and Chaudron, 2015), (Riegel and Doerr, 2015),
(Martini and Bosch, 2016), (Garousi and Mäntylä, 2016),
(Brauer et al., 2017), (Martini and Bosch, 2017),
(Hormann et al., 2017), (Becker et al., 2018),
(R. d. Almeida et al., 2018), (Pina, Seaman, et al., 2022),
(S. Freire, Rios, Pérez, Torres, et al., 2021), (Mandic et al., 2021),
(M. Stochel et al., 2022), (Albuquerque et al., 2022),
(Wiese et al., 2022), (Pérez et al., 2021),
(S. Freire, Rios, Pérez, Castellanos, et al., 2023), (Alfayez, Winn, et al., 2023),
(Costa et al., 2022), (Tsintzira et al., 2020),
(De Toledo et al., 2022)

Mathematical /Statistical

(Schmid, 2013), (Fontana et al., 2015),
(Skourletopoulos, Chatzimisios, et al., 2015),
(Akbarinasaji, 2015), (Mohan et al., 2016),
(Codabux and Williams, 2016)

Code Metrics

(Zazworka, Seaman, and Shull, 2011), (Snipes et al., 2012),
(Falessi and Voegele, 2015), (Chatzigeorgiou et al., 2015),
(Skourletopoulos, Mavromoustakis, et al., 2016),
(Yli-Huumo et al., 2016), (Choudhary and P. Singh, 2016),
(Charalampidou et al., 2017), (L. F. Ribeiro et al., 2017),
(Haendler et al., 2017),
(Mensah et al., 2018), (Plösch et al., 2018),
(Detofeno et al., 2022)

Financial
(Yuepu Guo and Seaman, 2011), (Fernández-Sánchez, Díaz, et al., 2014),
(Abad and Ruhe, 2015), (Brauer et al., 2017)

Table 3.2: Papers mapping into the first level taxonomy
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Papers in the Conceptual/Introductory category discuss the concepts involved in
prioritizing technical debt without specifying an applicable method, both from the point
of view of development teams and management.

Several theoretical surveys and discussions based on interviews, questionnaires, and
observations were carried out to identify the elements related to the prioritization and
decision-making process (Ernst et al., 2015; Martini and Bosch, 2015b; Leppanen et al.,
2015; S. Freire, Rios, Gutierrez, et al., 2020; Pina, Seaman, et al., 2022; S. Freire, Rios,
Pérez, Torres, et al., 2021; S. Freire, Rios, Pérez, Castellanos, et al., 2023; De Toledo et

al., 2022). On the other hand, the papers (Riegel and Doerr, 2015; Garousi and Mäntylä,
2016; Becker et al., 2018; Costa et al., 2022; Tsintzira et al., 2020) did an SLR to synthesize
some aspects of management and prioritization. Alfayez et al. (Alfayez, Winn, et al., 2023)
studied how SonarQube prioritizes technical debt.

Some papers are mainly conceptual. They define formal ways to manage technical debt
and to perform prioritization. (Gomes et al., 2011; Morgenthaler et al., 2012; Martini
and Bosch, 2015a). On the other hand, Falessi et al. (Falessi, Shaw, et al., 2013) and Stochel
et al. (M. Stochel et al., 2022) present a practical way to carry out this process without a
specific method or tool.

Seaman et al. (Seaman, Yuepu Guo, et al., 2012) introduced a possible method to
prioritize technical debt. Other papers try to define a step-by-step method for selecting
technical debt items to be paid off (Leppanen et al., 2015; Martini, Bosch, and Chaudron,
2015; Fernández-Sánchez, Garbajosa, et al., 2015; Martini and Bosch, 2016; Brauer
et al., 2017; Martini and Bosch, 2017; Hormann et al., 2017; R. d. Almeida et al., 2018;
R. R. d. Almeida et al., 2019; R. d. Almeida, 2019; M. G. Stochel, Cholda, et al., 2020;
Wiese et al., 2022), defining a framework for it.

There is only space for papers in the conceptual/introductory category that present
new ways of prioritizing technical debt conceptually.

Papers in the Mathematical/Statistical category use mathematical and statistical
methods to prioritize technical debt. Most papers in this category apply already-known
methods and models used in other areas. Other papers created a new formalization for
technical debt to make the decision-making process feasible (Schmid, 2013).

Some methods are based on well-known techniques, such as arithmetic formulas
(Skourletopoulos, Chatzimisios, et al., 2015) and quantile analysis (Fontana et al.,
2015). On the other hand, some methods use artificial intelligence (Mohan et al., 2016),
and machine learning (Akbarinasaji, 2015; Codabux and Williams, 2016) to predict the
technical debt payment.

Papers in the Code Metrics category use code metrics and historical analysis to
prioritize technical debt. Code metrics are widely used to perform analyses and to make
comparisons in software engineering. Therefore, the methodologies for treating code
metrics are well-known and diffused for academics and practitioners.

These papers use code metrics to quantify each technical debt item’s principal and
interest cost. This quantification is used with other techniques, such as cost-benefit ranking
(Zazworka, Seaman, and Shull, 2011; Yli-Huumo et al., 2016; Plösch et al., 2018), Change
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Control Boards (CCB) (Snipes et al., 2012), and mathematical formulas (L. F. Ribeiro et al.,
2017; Skourletopoulos, Mavromoustakis, et al., 2016) to prioritize the technical debt
items. Data mining and historical analysis are also widely used techniques to prioritize
technical debt (Falessi and Voegele, 2015; Choudhary and P. Singh, 2016; Mensah et al.,
2018; Detofeno et al., 2022; Tsoukalas, Siavvas, et al., 2023; B. d. Lima et al., 2022; Katin
et al., 2022).

Lastly, papers in the Financial category use metaphors to make the relationship
between technical and financial debt. These papers take advantage of the knowledge
and methods developed within the finance area. They apply methods used in finance
and business areas, such as the portfolio approach (Brauer et al., 2017; Yuepu Guo and
Seaman, 2011; Plösch et al., 2018), and options (Fernández-Sánchez, Díaz, et al., 2014;
Abad and Ruhe, 2015; Aldaeej and Seaman, 2018) to prioritize technical debt items. Some
papers (De Almeida et al., 2021; Da Silva et al., 2022; M. G. Stochel, Wawrowski, et al.,
2022) used financial terms to define the prioritization process.

3.2.3 Second Level

The second level has six categories: Framework, Artificial Intelligence, Cost-Benefit,
Historical, Portfolio Approach, and Options. Table 3.3 shows the papers mapped into the
second-level taxonomy.

Classification Papers

Framework

(Leppanen et al., 2015), (Fernández-Sánchez, Garbajosa, et al., 2015),
(Martini, Bosch, and Chaudron, 2015), (Martini and Bosch, 2016),
(Brauer et al., 2017), (Martini and Bosch, 2017),
(Hormann et al., 2017), (R. d. Almeida et al., 2018),
(R. R. d. Almeida et al., 2019), (R. d. Almeida, 2019),
(M. G. Stochel, Cholda, et al., 2020), (S. Freire, Rios, Gutierrez, et al., 2020),
(Mandic et al., 2021), (Wiese et al., 2022)

Artificial Intelligence
(Akbarinasaji, 2015), (Codabux and Williams, 2016),
(Mohan et al., 2016), (Kouros et al., 2019),
(Alfayez and Boehm, 2019)

Cost-Benefit

(Zazworka, Seaman, and Shull, 2011), (Snipes et al., 2012),
(Skourletopoulos, Mavromoustakis, et al., 2016),
(Yli-Huumo et al., 2016), (L. F. Ribeiro et al., 2017),
(Plösch et al., 2018)

Historical
(Falessi and Voegele, 2015), (Choudhary and P. Singh, 2016),
(Charalampidou et al., 2017), (Tornhill, 2018)

Portfolio Approach
(Yuepu Guo and Seaman, 2011),(Plösch et al., 2018)
(Brauer et al., 2017), (Albarak and Bahsoon, 2018)

Options
(Fernández-Sánchez, Díaz, et al., 2014), (Abad and Ruhe, 2015),
(Aldaeej and Seaman, 2018)

Table 3.3: Papers mapping into the second level taxonomy

The papers discuss ways to standardize the technical debt prioritization process in
the Framework category. Most of the frameworks developed consist in finding technical
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debt items, measuring their payment cost and interest (Fernández-Sánchez, Garbajosa,
et al., 2015) (Leppanen et al., 2015) (Martini and Bosch, 2016). Using their steps, or its
preemption, one may prioritize technical debt payment and decide how items must be
paid off.

Some papers deal with a temporal decision, for instance, when-to-release decisions
(Brauer et al., 2017), architectural debt evolution (Martini, Bosch, and Chaudron,
2015), and technical debt evolution and contagious phenomenon (Martini and Bosch,
2017).

All papers in the Framework category are related to Conceptual/Introductory ones
because they also discuss conceptual and introductory aspects to define their framework.
Some papers are related to the Mathematical/Statistical categories because they also use
mathematical formalization to make the process feasible (Martini and Bosch, 2016;
Brauer et al., 2017).

Papers in the Artificial Intelligence category use well-defined methods, such as a
random search, hill-climbing, and simulated annealing, to find solutions to prioritization
(Mohan et al., 2016). Besides that, machine learning algorithms are also used to train
predictors to infer technical debt prioritization (Akbarinasaji, 2015) (Codabux and
Williams, 2016). Search-based methods were also used to prioritize the technical debt
items (Alfayez and Boehm, 2019; Kouros et al., 2019).

The papers in the Artificial Intelligence category are related to the Mathematical/Sta-
tistical ones because they use search methods and machine learning to prioritize technical
debt. The category is also related to Code Metrics because it uses code measures to provide
input to the methods.

Papers in the Cost-Benefit category deal mainly with simple cost-benefit analysis.
The method compares costs related to maintaining a technical debt item and the benefits
of paying it off. Generally, a rank is built with technical debt items where the better cost-
benefit items are on top. All papers in this category are related to Code Metrics because
they also use code measures in their methods.

Papers in the Historical category use historical data to define ranges and parameters.
The papers use code changes, metrics values, and evolution to classify the software and
identify the technical debt (Falessi and Voegele, 2015) (Charalampidou et al., 2017)
(Choudhary and P. Singh, 2016) (Tornhill, 2018) to pay off.

Papers in the Portfolio Approach category use financial concepts and handle the
technical debt items as a bundle of assets held by an investor. Investors use the portfolio
strategy to try to reduce risks.

The method determines which types and the number of assets - in this case, technical
debt items - should be invested. All papers in this category (Yuepu Guo and Seaman, 2011;
Brauer et al., 2017; Plösch et al., 2018; Albarak and Bahsoon, 2018) are related to the
Financial category because they use economic approaches and metaphors to prioritize
technical debt.

Papers in the Options can be seen as an investment decision process. As technical
debt, options take a greater certainty in the short-term and more significant uncertainty
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in the long term. Therefore, paying off a technical debt item is similar to buying an option
to facilitate future changes using available resources.

Fernández-Sánchez et al. (Fernández-Sánchez, Díaz, et al., 2014) created a decision
tree to decide if it is worth paying off the architectural technical debt. Abad and Ruhe
(Abad and Ruhe, 2015) use a binomial model to apply real options in technical debt
management in software engineering requirements. All papers in this category are related
to the Financial category because option decision is a method used in finance. Aldaeej and
Seaman (Aldaeej and Seaman, 2018) use real options analysis to make a decision.

3.2.4 RQ2: What results do technical debt prioritization methods

provide?

We categorized the prioritization methods presented in the selected papers according
to the result provided. We found three kinds of results: boolean, category, and ordered
list.

• Boolean: technical debt items are divided into those that should be paid and those
that should not be paid;

• Categories: technical debt items are divided into categories. For instance, severity
levels: low, medium, and high risk;

• Ordered List: technical debt items are placed in a list and ordered by which payment
should be made first. That is, the first items on the list should be the first ones to be
paid off.

TD Item Pay? Category Order

Item 42 Yes High 1
Item 36 Yes Medium 2
Item 8 Yes Medium 3
Item 17 No Low 4
Item 52 No Low 5

Table 3.4: Technical debt prioritization return example

Table 3.4 shows an example of technical debt prioritization methods returns. The
column "Pay?" indicates if a technical debt should (Yes) or not (No) be paid. The column
Category indicates which payment category the item belongs to. The column Order
indicates the payment order, i.e., Item 42 should be paid before Item 36, and so on.

Table 3.4 shows the result types for each selected paper. Note that for most methods,
only one column will be filled. For example, Guo and Seaman (Yuepu Guo and Seaman,
2011) indicates if an item should be paid, but it does not indicate a category or an or-
der. On the other hand, Schmid (Fontana et al., 2015) uses Category and Ordered List,
and Zazworka et al. (Zazworka, Seaman, and Shull, 2011) uses Boolean and Ordered
List.
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Method Response Method Characteristics
Paper Bool Cat List CA LI Var Tool
(Brauer et al., 2017) X X C C C
(Schmid, 2013) X C
(Fontana et al., 2015) X C C p
(Skourletopoulos, Chatzimisios, et al., 2015) X X p
(Akbarinasaji, 2015) X C C C
(Mohan et al., 2016) X X C C p
(Codabux and Williams, 2016) X p C
(Zazworka, Seaman, and Shull, 2011) X C C
(Snipes et al., 2012) X X C C
(Falessi and Voegele, 2015) X C p p p
(Chatzigeorgiou et al., 2015) X C p
(Skourletopoulos, Mavromoustakis, et al., 2016) X C
(Yli-Huumo et al., 2016) X C C p
(Choudhary and P. Singh, 2016) X X C C p
(Charalampidou et al., 2017) X p C p
(L. F. Ribeiro et al., 2017) X C C p
(Haendler et al., 2017) X p C p
(Mensah et al., 2018) X p C
(Plösch et al., 2018) X C C p
(Yuepu Guo and Seaman, 2011) X C C p
(Fernández-Sánchez, Díaz, et al., 2014) X C C p
(Abad and Ruhe, 2015) X C C p
(Aldaeej and Seaman, 2018) X X C C p
(Albarak and Bahsoon, 2018) X C
(Tornhill, 2018) X p p p
(Alfayez and Boehm, 2019) X C C p
(Kouros et al., 2019) X C C p

Table 3.5: Technical debt prioritization methods response types and characteristics
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3.2.5 RQ3: What are the characteristics of the technical debt

prioritization methods?

We extract the characteristics of the technical debt prioritization on real software
projects by analyzing the papers:

• Context Adaptive (CA), that is, it could be used in different projects varying, for
example, the domain, the methodology of development, the size, and organization
of the development team and technologies;

• Language Independent (LI) to accept multiple programming languages;

• To cover a variety of technical debt types;

• Integrate to a tool that can be easily added into the software development workflow.

Table 3.5 shows each paper its categories. The capital ‘C’ indicates that it covers
completely, while the letter ‘p’ indicates partial coverage.

Most methods are context-adaptive, i.e., they use variables in the prioritization methods
to express the software context. For example, Fontana et al. (Fontana et al., 2015) use
code metrics to detect code smells.

Almost all papers present methods that could be applied to analyze independent
programming languages. For example, Mohan et al. (Mohan et al., 2016) present a reduction
using search-based automated refactoring that could be applied to analyze technical debt
in any programming language.

More than half of the papers cover a variety of technical debt types. However, only
Akbarinasaji (Akbarinasaji, 2015), Bräuer, and Plösch (Brauer et al., 2017) could cover
many types. The first one uses a recommender system to prioritize the technical debt. The
second one uses a two-dimensional portfolio matrix to analyze violations of rules. The
other methods, such as (Yli-Huumo et al., 2016; Charalampidou et al., 2017; Falessi and
Voegele, 2015) apply the method in one or a limited group of technical debt types.

Only two prioritization methods were integrated into a tool. However, both are partially
integrated with a tool. For instance, Skourletopoulos et al. (Skourletopoulos, Chatzimi-
sios, et al., 2015) developed a plugin for SonarQube called Technical Debt Analyzer. The
plugin collects data from several software releases using SonarQube, Issue Tracker, and
version control systems. The data are statistically analyzed using R and WEKA, and with
the results, the tool relates density quality violations with defect-prone.

3.3 Discussion of Findings

In this section, we present a discussion of the results. This systematic mapping review
aimed to identify the methods for prioritizing technical debt. Therefore, through the
mapping, it was possible to contribute to the discussion about how software development
teams may prioritize their technical debt. Contributions from the Conceptual/Introductory
category include practical considerations and challenges about how to handle technical
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debt, requirements for future technical debt tools, tools problems, metaphor dissemination
and understanding, and possible results of prioritizing technical debt.

Besides discussing conceptual aspects involved in technical debt prioritization, some
papers also try to define ways to standardize technical debt prioritization. Prioritiza-
tion is done regardless of the method used, thus developing technical debt prioritization
frameworks.

By analyzing the methods’ approach and techniques presented in the papers, we built
a two-level taxonomy to organize and relate the methods found in the literature. That
taxonomy helps to find the methods that have already been explored in literature, and
it also helps to find gaps in order to try applying new methods to prioritize technical
debt.

We also found that the prioritization methods provide three responses: Boolean, to
pay off the technical debt or not; Categories, which indicates how priority the payment is;
Ordered List, sorted by prioritization order.

Finally, we analyzed practical characteristics in which prioritization methods should
be applied to real software projects. We found out that any method is, at the same time:
context-adaptive, i.e., it could be used in any software development context; language-
independent, i.e., it could be applied to several programming languages; able to cover a
variety of TD types; and to be fully integrated into a tool.

Despite all efforts to prioritize technical debt, there is no practical method to prioritize
many technical debt types in different programming languages and contexts while inte-
grating them into a tool that allows use in practice. In addition, most solutions at some
point during prioritization need manual support to classify items and to define which
should be paid for in the decision-making process.

3.4 Threats to Validity

The results of this systematic mapping study may be affected by bias in paper identifi-
cation, study selection, data extraction, and data synthesis. In this section, we will discuss
these biases.

Identification Bias Some factors can be difficult to ensure, as all relevant papers are
in the search results. The choice of the publication venue may exclude some papers, so
we considered the main digital libraries to minimize this threat. Besides that, the term
“technical debt" in the search query may exclude relevant studies published before the
term was widely used. The term may also exclude papers that only use "debt" or another
similar term.

Selection Bias The definition of the inclusion and exclusion criterion can affect the
selection of papers. To minimize this threat and remove personal bias, all authors revised
each criterion.
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Data Extraction Bias The keywording process may result in the inaccuracy of the
extracted data keywords, which may affect the classification schema and data analysis.
In order to reduce this bias, each author extracts a keyword set for each paper. Then, the
keywords were compared and joined to form the final keyword set.

Data Synthesis Bias In some papers, all the required information was not directly
available or sometimes needed to be clarified. Therefore, we needed to clarify some hidden
information during the synthesis. Besides that, personal bias may affect the synthesis
result. Each author performed a synthesis of the data to minimize this threat. Then the
synthesis was compared, the common synthesis was joined, and the discrepant synthesis
was evaluated to be included or excluded.

3.5 Mapping Conclusion

This study performed a systematic literature mapping following Petersen et al. (Pe-
tersen et al., 2008). We searched for relevant technical debt prioritization studies in six
main computing databases: ACM Digital Library, IEEE Xplore, Science Direct, Scopus,
Springer Link, and Web of Science. Finally, we selected 51 unique papers.

As a result, we built a technical debt prioritization taxonomy with two levels and ten
categories. In the first level, categories are directly related to the approaches of the papers.
In the second level, categories are derived from the first level and aim for specific aspects
addressed in the papers.

Most of the methods can adapt to the contexts, that is, to adapt to different development
methodologies, different numbers of team members, and technologies. In addition, most
of the methods do not need a specific programming language to work or could be applied
to several programming languages. On the other hand, half of the methods are not able
to deal with several technical debt types, and only one method is integrated with the
development tools.

Therefore, as discussed in Section 3.3, the methods found in the literature do not
cover all practical aspects for technical debt prioritization to be used in real projects. For
example, most of the methods are not implemented in a tool or cover only one programming
language.

The main contributions of the mapping literature review are:

• Two-level taxonomy;

• A collection of technical debt prioritization methods;

• Technical debt prioritization result types: boolean, category and ordered list;

• Practical methods characteristics: context-adaptive, language-independency, several
technical debt types, and tool integration.

We also identified some research gaps: methods should consider the development
context methods that work for several programming languages, cover the prioritization of
many technical debt types, and be integrated into a tool to evaluate them in practice.
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Future work should focus on developing a method that could be used in practice. From
this taxonomy and the mapping of the characteristics used in each prioritization method,
it is possible to combine different methods to cover a more significant number of technical
debt types and automate their prioritization, such as with artificial intelligence. This will
facilitate and streamline the method application in software projects as an aid tool in the
prioritization process and consequent technical debt management.

3.6 Related Work for Technical Debt Prioritization

Criteria Study

Technical debt prioritization study 5 is a qualitative Grounded Theory study to under-
stand how developers prioritize technical debt items in real software projects.

We collected developers’ opinions about whether and when to pay a technical debt
item and why they made that decision. We used InteraSurveyTD 4.2 to show only technical
debt items from software projects they have contributed to.

Our qualitative study extends Becker’s (Becker et al., 2018) theoretical process by
studying how prioritization decisions are made in practice. By identifying decision criteria,
our study also builds on Leppanen et al.’s framework (Leppanen et al., 2015).

3.7 Related Work for Technical Debt Prioritization

using Machine Learning

Most of the papers presented in this section are related to our quantitative study
that aims to develop machine learning methods to prioritize technical debt items pay-
ment. In particular, studies in the Mathematical/Statistical, Code Metrics, and Financial
categories.

Tsoukalas et al. (Tsoukalas, Mittas, et al., 2021) used well-known machine learning
methods to classify software modules in high-TD or not. Our work uses almost the same
machine learning methods, but we applied them to classify whether and when a technical
debt item should be paid off.
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Chapter 4

Sonarlizer Xplorer and

InteraSurveyTD

We have developed two tools to support our upcoming studies: Sonarlizer Xplorer and
InteraSurveyTD. Sonarlizer Xplorer is a tool to mine public GitHub repositories and to
identify a large number of technical debt items and code metrics. InteraSurveyTD is a
tool to show developers technical debt items from projects they have contributed to and
ask them whether/when the item should be paid off and optionally why they made the
decision.

4.1 Sonarlizer Xplorer

Sonarlizer Xplorer is a tool to mine and analyzes public GitHub projects resulting in a
dataset with many technical debt items and code metrics. It also includes a list of GitHub
repositories, users, and organizations.

The mining process starts with a repository. The tool finds users and organizations
through the GitHub API. It then finds new repositories using the repositories already
found. Then the tool analyzes each project using SonarQube to identify technical debt
items and extract code metrics.

The primary users of Sonarlizer Xplorer tools are researchers who need large amounts
of data from software projects to use in their investigations, particularly technical debt
items and code metrics. Such a need for large data sets is often associated with using
machine learning as part of the research design.

4.1.1 Use Cases

Sonarlizer Xplorer can collect data and analyze public GitHub projects, that is, to
calculate statistics for technical debt items and code metrics. For example, we can use
it to calculate the mean, median, and standard deviation of the project’s lines of code.
Alternatively, it can also compute the average of a specific technical debt type on projects
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with certain characteristics, such as size (e.g. "on average, how many high-complexity
classes are found in files with less than 1,000 LOC?").

Our tool can also be handy when finding public software projects hosted on GitHub and
their respective developers. After analyzing the SonarQube project, we sent an interactive
survey to the developers, asking when a technical debt item should be paid off. We used the
code metrics collected by the tool and the survey responses to train and evaluate machine
learning methods to try to prioritize the payment of technical debt items.

4.1.2 Architecture, Technologies, and Implementation

Sonar Xplorer consists of two interconnected sub-tools. First, it calls GitHub Xplorer to
walk through the GitHub API mining public repositories, users, and organizations to store
them in a MongoDB database. Then, the tool calls Sonarlizer to analyze each repository
using SonarQube to identify technical debt items and extract code metrics.

Sonarlizer Xplorer is developed in Node.JS and uses MongoDB database to handle large
volumes of non-relational data. In addition, all SonarQube data, including technical debt
items and code metrics, are stored in PostgreSQL. We chose these technologies to allow
distributed computing, large amounts of data, and a simple tool installation. Figure 4.1
shows the tool architecture, where the flow starts on mining GitHub and finishes with
technical debt items and code metrics stored in a PostgreSQL database.

Figure 4.1: Sonarlizer Xplorer architecture.

4.1.3 GitHub Xplorer

GitHub Xplorer is a tool for mining public GitHub repositories to find real software
projects and their related developers and organizations. A repository is a virtual place
to store software project source code. No public dataset is available containing GitHub
repositories, organizations, and developers’ information. For this reason, we used GitHub
Xplorer to collect the data to build this dataset.

Finding Repositories, Developers, and Organizations

A repository is an entity that represents a project codebase, and it is related to many
users (developers) and at most one organization (a group of developers). Examples of
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repositories include Apache Maven 1, Google Kubernetes 2, Microsoft Visual Studio Code
3, and TensorFlow 4. Users can contribute to many repositories. They can also participate
in many organizations. Examples of organizations include Apache Foundation 5, Microsoft
6, and Kubernetes 7. Users and organizations can own repositories, but a repository has
only one owner (user or organization). Figure 4.2 shows GitHub data entities and the
relationships among them.

Figure 4.2: GitHub data entities and relationships.

We used the GitHub REST API 8 to access public GitHub data. We implemented a
feature that uses a list of access tokens to parallelize the data requests and speed up the
mining process.

Each GitHub API call returns only one repository, organization, or user (developer).
For this reason, we had to use entity relationships to find all the data. For example, when
we request a repository, we can access the list of developers who contribute to it and
the owner organization if it exists. When we request an user, we can access the list of
repositories they contribute to and the list of organizations to which they belong.

GitHub Xplorer uses three sets (lists) to store entities to be processed: repositories,
organizations, and users. For each repository, the tool gets the entity data, list of users, and
organizations (if an organization is the repository owner); thus, each repository request
can find new users and one organization. For each user, the tool collects user data, its
repositories, and organizations; thus, each user request can find new repositories and

1 https://github.com/apache/maven
2 https://github.com/kubernetes/kubernetes
3 https://github.com/microsoft/vscode
4 https://github.com/tensorflow/tensorflow
5 https://github.com/apache
6 https://github.com/microsoft
7 https://github.com/kubernetes
8 https://docs.github.com/pt/rest
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organizations. For each organization, the tool gets organization data, its repositories, and
users; thus, each organization request can find new users and repositories.

The following snippet shows the pseudo-code for processing the repository set. The
Git Xplorer similarly treats user and organization sets.

1 SET repositories_to_process, users_to_process, organizations_to_process;
2 SET repositories_set, users_set, organizations_set;
3
4 begin parallel:
5 while repositories_to_process is not empty
6 repository = pop repositories_to_process
7 getGitHubInfo(repository)
8 addUpdate(repository, repositories_set)
9

10 users = getGitHubUsers(repository)
11 push(users, users_to_process)
12
13 organization = getGitHubOrganizations(repository)
14 push(organizations, organizations_to_process)
15 end parallel

Note that a user or organization is stored in the set only if they we not on the processed
or to-be-processed list. This process ensures that an entity is not processed more than
once, avoiding repetitions and wasted time and processing.

The data mining starts by adding a GitHub repository to the repository set. The tool
consumes the user and organization lists iteratively to get the complete entity information
and related entities that have not yet been processed to feed the queues.

On Sonarlizer Xplorer, each repository is stored in a document in a MongoDB collection.
The status property identifies when the project was (status = 1) or not (status = 0) analyzed.
Figure 4.3 shows an example of a repository document in MongoDB.

4.1.4 Sonarlizer

Sonarlizer automatically performs a SonarQube analysis to identify technical debt
items and code metrics in the public software projects hosted on GitHub and discovered
by GitHub Xplorer. For Java projects, Sonarlizer needs to compile the source code before
analyzing it. For that, the tool identifies the builder among the main ones for Java: Apache
Maven9, Apache Ant10, or Gradle11. Then, it uses the build-specific commands for these
tools to compile and send the compiled files to SonarQube to analyze. If no builder is
identified, the standard SonarQube command is performed through the SonarScanner12

tool.

As input, Sonarlizer queries the MongoDB repository collection to retrieve the not
analyzed GitHub repository data. Sonarlizer clones the repository from GitHub to a local

9 https://maven.apache.org
10 https://ant.apache.org
11 https://gradle.org
12 https://docs.sonarqube.org/latest/analyzing-source-code/scanners/sonarscanner
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Figure 4.3: Repository document example.

machine. Then it performs a SonarQube analysis to identify technical debt items such
as naming convention violations, high code complexity, and large code files; and code
metrics, such as number of lines, number of files, complexity average by file, and cognitive
complexity. SonarQube has a list of rules that identify technical debt items, and when one
of these rules is broken, an issue is created. Some examples of rules are Member Name,

Unused Imports, Nested If Depth, and Method Length.

Finally, Sonarlizer goes through the commit list to relate each source file to the users
who have contributed to it.

4.1.5 Results

As a result, Sonarlizer Xplorer provides a list of technical debt items and code metrics
for many public GitHub repositories. Figure 4.4 shows an issue list example on SonarQube
and a code metrics list example on SonarQube.
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Figure 4.4: Left: Example of technical debt items on SonarQube. Right: Example of code metrics on

SonarQube.

We used the tool from July 2021 to October 2021 to mine GitHub. We found 57,382,956
repositories and 4,430,010 users. Table 4.1 shows the number of projects found by pro-
gramming language.

Language # of projects

JavaScript 9,867,584
Python 5,372,460
Java 4,777,964
Ruby 2,031,174
C++ 1,993,982
C 1,468,370
C# 1,466,983

Table 4.1: Example of project quantities mined by programming language.

In parallel with mining, we also extracted 609,884 Java projects where SonarQube
successfully analyzed 45,994 (about 7.5%). The low rate is because to analyze Java code on
SonarQube, it is first necessary to compile projects. Even using a builder, most projects
require specific Java versions, configuration files, or additional parameters to compile
successfully. Table 4.2 shows examples of the number of technical debt items by severity
and projects by ncloc.

Severity # TD items ncloc # Projects

Blocker 467k <1k 27k
Critical 2.4M 1k - 10k 14k
Major 5.2M 10k - 100k 4.6k
Minor 6.6M 100k - 500k 390
Info 400k >500k 17

Table 4.2: Number of technical debt items by severity and projects divided by a non-comment line of

code (ncloc).
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4.1.6 Related Tools

Most GitHub mining tools can mine data from a given repository, such as RepoDriller
(Aniche, 2012), which extracts commits, developers, modifications, diffs, and source code.
GH Torrent (Gousios, 2013) allows querying of GitHub events from public repositories.
GH Crawler (Microsoft GHCrawler n.d.) is a Microsoft project that finds new repositories,
although it was created to retrieve all GitHub entities related to an organization, repository,
user, and team.

All these tools analyze just one project to identify technical debt items and code metrics.
SonarQube (Campbell and Papapetrou, 2013) is one of the tools that can do that. Findbugs
(Ayewah et al., 2008) finds bugs and technical debt items and classifies them according to
their severity. PMD (Araujo et al., 2011) runs a cross-language static code analysis to find
technical debt items.

Although there are many tools to mine a given GitHub repository, and some can be
used to identify technical debt items, they need to find the repositories and analyze them
to identify technical debt items and extract code metrics.

4.1.7 Future Enhancements

The tool can be customized to get more data provided by the GitHub API, such as
commit files, modifications, and comments; GitHub issues; pull requests; events; and topics.
Adding more SonarQube extensions to analyze more aspects such as test coverage, security
vulnerability, code metrics, and more technical debt types is also possible.

A first improvement could be adding new repository integration to GitHub Xplorer,
for example, to allow for mining public projects on Gitlab13, BitBucket14 and Source-
Forge15.

On the other hand, to increase the data types provided by the tool, the GitHub Analyzer
tool could collect other metrics and data related to the hosted project, such as commits and
releases. Besides that, Sonarlizer could use other tools to analyze the code to provide more
code metrics and find new technical debt items, such as FindBugs16 and PMD17.

Sonarlizer can also identify technical debt items using other tools such as Cast 18 and
Squore 19.

13 https://www.gitlab.com
14 https://www.atlassian.com/software/bitbucket
15 https://sourceforge.net
16 http://findbugs.sourceforge.net
17 https://pmd.github.io
18 https://www.castsoftware.com
19 https://www.vector.com/int/en/products/products-a-z/software/squore
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4.1.8 License

The Sonarlizer Xplorer is licensed under the MIT License, a short and simple permissive
free software license to any person obtaining a copy of this software and associated
documentation files20. More details can be found in the license file21.

4.2 InteraSurveyTD

We developed the customer survey tool InteraSurveyTD to show developers technical
debt items from projects they have contributed and ask them whether and when the
item should be paid off, and then explain the decision. We sent invitation emails 22 to the
developers with a project brief and a link to the questionnaire with an identifier to load
the technical debt items specific to that developer. Once the developer(respondent) follows
the link, they are shown a set of instructions for completing the survey and informed
consent for participation 23. Before starting the survey, they had to confirm that they
read and agreed with the consent terms and that to be at least 18 years old. Then, the
InteraSurveyTD tool randomly picked a technical debt item up from all the items of the
respondent’s project.

To preserve anonymity, not all the items shown to a respondent are from files they
have contributed to. InteraSurveyTD randomly chooses an item specific to the developer
respondent only 70% of the time. This avoids a particular file with just one contributor,
so the developer’s responses could be identified. Also, we do not store information about
any relationship between the answer and the participant. All selected projects have three
or more participants, which allows for anonymity and prevents tracking of participant
answers.

Figure 5.1 shows a survey screen presenting a technical debt item and the questions
that capture the developer’s view of when the technical debt item must be paid off.

Question 1 has six possible answers on a descending scale according to how urgent
the item is (these explanations are provided in the instructions to respondents):

• Immediately: pay the item off before developing anything else;

• As soon as possible: pay item off in the current release;

• In the next release: plan item payment for next release;

• In the next few releases: it doesn’t postpone payment indefinitely, but it doesn’t
have to happen in the next release;

• When there is free time: no planning is required, but eventually the item should
be paid;

20 https://github.com/git/git-scm.com/blob/main/MIT-LICENSE.txt
21 https://github.com/diogojpina/sonarlizer-xplorer/blob/master/LICENSE
22 https://zenodo.org/record/6384731/files/email-template-anonymized.pdf?download=1
23 https://zenodo.org/record/6384731/files/research-web-consent-anonymized.pdf?download=1
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Figure 4.5: Questionnaire question example.

• Never: the item is not important for the project or it is not in fact a technical debt
item, or for some other reason, should not be paid.

The answer to question 2 is an open text field where the respondents can explain their
answer to question 1. After storing the answers to both questions, InteraSurveyTD repeats
the process with another TD item.

Respondents can leave the survey at any time, and come back using the email invitation
link. To motivate respondents, there was also a gamification scheme whereby developers
could earn points by answering more questions and by referring other developers to the
study. Points earned allowed respondents to receive prizes at the end of the study.

4.3 Conclusion

Sonarlizer Xplorer is a tool to mine public GitHub repositories and analyze them using
SonarQube to identify technical debt items and code metrics. We describe how the tool
explores GitHub through its API to find a list of public repositories related to an initial
repository. Then it runs a SonarQube analysis to extract a list of technical debt items and
a list of code metrics.

We also show possible applications of the tool in research using conventional statistics
and more complex methods such as machine learning to analyze and predict patterns and
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behaviors for technical debt prioritization.

The tool is in its first version. Thus, several features can be implemented, such as
mining other code repository host platforms, applying other code analysis tools, and
collecting metrics from code repositories.

Sonarlizer Xplorer is a tool that researchers can use to increase the number of technical
debt items for analysis, in order to derive more robust conclusions and find new approaches
and behaviors that cannot be found by analyzing a few projects.

InteraSurveyTD is an interactive survey tool to show technical debt items to which
the developer contributed and collect two answers: when the item should be paid off and
why.
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Technical Debt Prioritization

Criteria

In this chapter, we aim to understand which criteria software developers use in prac-
tice to prioritize code technical debt items in real software projects. This fills a gap in
the literature regarding studies of technical debt prioritization criteria in real software
projects.

We used a survey to collect information from developers about open-source projects
hosted on GitHub. The survey questions were based on code technical debt items on
projects to which the respondent had contributed. After showing each item, the survey
asks the respondent to indicate how soon the item should be paid off and why.

We analyzed the answers using Straussian Grounded Theory (Straussian GT) tech-
niques, namely open coding, axial coding, and selective coding, to identify the cri-
teria developers used to prioritize code technical debt. We grouped the criteria into
15 categories and 2 super-categories related to paying off the technical debt item:
CODE_IMPROVEMENT and COST_BENEFIT; and 3 super-categories related to not
paying off the item PROJECT_SPECIFIC_DECISION, PROBLEM_WITH_RULE, and UN-
USED_CODE.

We found that when developers chose to pay off a code debt item, they decided to do so
soon. When they chose not to pay it was a project-specific decision. Also, when developers
used the same criterion, the payment priority chosen was in the same neighborhood.
Finally, we noted that each project needs a specific set of criteria to prioritize technical
debt.

This work addresses the following research questions:

• RQ1. How do developers prioritize technical debt?

– RQ1.1. How do developers decide whether a code technical debt item should
or should not be paid off?

– RQ1.2 How do developers decide when a code technical debt item should be
paid off?
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5.1 Research Method

In this study, our primary goal is to understand which criteria software developers use
to decide whether and when a code technical debt item should be paid off in real software
projects. For that purpose, we decided to use a survey to reach many projects and multiple
types of code debt rather than applying interviews that would bring more details but for a
smaller number of projects.

We found public Java repositories from Github and analyzed them with SonarQube.
Then we sent a survey to participants asking two questions for each technical debt item
presented. The first is a multiple-choice question on when the item payment should be
made. The second is an open-text question to explain the reason for the priority choice
in the first question. These two questions provided data to understand how developers
decide whether and when a code debt should or not be paid off. Then we analyzed the
data using Straussian Grounded Theory.

5.1.1 Data Collection

We used Sonarlizer Xplorer 4.1 tool to scrap public GitHub software code repositories
to find a large number of Java open-source projects and their developers. We also used
the tool to analyze the projects with SonarQube, resulting in code technical debt items
related to each project. An example of such items is "Remove this "close" call; closing the

resource is handled automatically by the try-with-resources from the HttpProxy repository".
We proceeded to the next step from the identified technical debt items, asking developers
to evaluate those items via our survey.

We used the InteraSurveyTD 4.2 tool to manage and apply the survey. It shows re-
spondents only those technical debt items related to the projects they have worked on.
The tool shows a technical debt item and related information, such as a file, line location,
and description. Then the respondent is asked, "When should the item be paid off?"
(multiple-choice) and "Why?" (open-text field).

The data extraction started by adding the Apache Maven repository to the repository
queue. The tool consumes the developer, organization, and repository queues iteratively
to get the complete entity information and their related entities that have not yet been
processed to feed the queues.

Survey

We used the InteraSurveyTD 4.2 tool to show developers technical debt items from
projects they have contributed to and ask them whether and when the item should be paid
off.

We sent invitation emails 1 to the developers with a project brief and a link to the survey
with an identifier to load the technical debt items specific to that developer. Once the
developer (respondent) follows the link, they are shown a set of instructions for completing

1 https://zenodo.org/record/6384731/files/email-template-anonymized.pdf?download=1
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the survey and informed consent for participation 2. Before starting the survey, they had
to confirm, read and agree with the consent terms and be at least 18 years old. Then, the
InteraSurveyTD tool randomly chooses a technical debt item from all the items of the
respondent’s project.

As detailed in Section 4.2, not all the items shown to a respondent are from files they
have contributed to, preserving anonymity. Avoiding a particular file has just one contrib-
utor, so the developer’s responses could be identified. Also, we do not store information
about any relationship between the answer and the participant. All selected projects
have three or more participants, which allows for anonymity and prevents tracking of
participant answers.

Figure 5.1 shows a survey screen presenting a technical debt item and the questions,
which capture the developer’s view of when the technical debt item needs to be paid
off.

Figure 5.1: Questionnaire question example.

Question 1 has six possible answers on a descending scale according to how urgent
the item is (these explanations are provided in the instructions to respondents):

• Immediately: pay the item off before developing anything else;

• As soon as possible: pay item off in the current release;

• In the next release: plan item payment for next release;

2 https://zenodo.org/record/6384731/files/research-web-consent-anonymized.pdf?download=1
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• In the next few releases: it doesn’t postpone payment indefinitely, but it doesn’t
have to happen in the next release;

• When there is free time: no planning is required, but eventually the item should
be paid;

• Never: the item is not important for the project or it is not in fact a technical debt
item, or for some other reason, should not be paid.

The answer to question 2 is an open-text field where the respondents can explain why
they decided on that priority. After storing the answers to both questions, InteraSurveyTD
repeats the process with another TD item.

Respondents can leave the survey anytime, and return using the email invitation link.
There was also a gamification scheme whereby developers could earn points by answering
more questions and by referring other developers to the study. Points earned allowed
respondents to receive prizes at the end of the study.

Pilot Study

We conducted a pilot study to evaluate and improve the data collection flow. The pilot
study included 15 students who developed open-source software in Java in an Extreme
Programming course from the University of São Paulo. We sent the invites through email
and Facebook Messenger with the link to the survey.

After one week, we sent an evaluation survey to understand how easy it was to
respond to the original survey, if the website and invite email provided clear and complete
information about the research and technical debt, and concerning the gamification. For
each of these areas, we asked for improvement suggestions. Five students answered the
evaluation survey.

We used the collected suggestions to improve parts of the text, add more information,
improve the interface, and change the survey flow - for example, by adding a button to
skip a question.

5.1.2 Data Analysis

We applied Straussian GT Strauss and Corbin, 1994; Anselm Strauss and Juliet
Corbin, 1998 to analyze the survey data qualitatively. We decided on Straussian GT
because we defined the research questions upfront and derived from the literature Stol
et al., 2016, and they are broad and open-ended.

We started data analysis as soon as we had data available. We applied open, axial, and
selective coding. Every time we added a new code, we would write a memo describing it.
Otherwise, we tried to improve the existing one. We applied these techniques iteratively
for each new response. We stopped collecting data when we identified that the answers
did not produce new codes.

From the beginning of the data collection, we constantly compared data, memos, codes,
subcategories, categories, and super-categories to ensure that the data were correctly
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interpreted and in the categories that best fit them. The time between sending the first
invitation by e-mail and closing the survey was around six weeks.

We applied open coding to the survey responses. This process involves segmenting the
answers into excerpts with a singular meaning and expressing that meaning with a code.
For each answer to question 1, we applied a unique code based on the multiple-choice
option. For example, for the answer "As soon as possible" we used the code ASAP. For
answers to question 2, we applied between one and three codes for each answer. Like in
"This code is correct. Lint rules cannot be applied blindly.", where we applied two codes:
RULE_SHOULD_NOT_BE_APPLIED and LINT_RULES. That was an iterative process
where we added, changed, and removed codes with each answer analyzed.

We reassembled the open codes in new ways to form categories during axial coding.
Our goal was to create a higher abstraction level. Thus, we grouped codes to form subcate-
gories, and in turn, we organized them into categories. In addition, we also tried to find
relationships between the categories to form super-categories. This process was highly
iterative, with codes and categories forming and re-forming as more data was incorporated
into the evolving understanding. We wrote a memo to explain each category and provide
examples of the answers that motivated its creation.

We applied selective coding to refine and integrate categories, revealing the main cate-
gories and indicating the developers’ criteria to prioritize code debt and their relationships.
We identified the technical debt prioritization criteria used by the developers from the
categories and their relationships.

5.2 Results

In this section, we describe our results and findings. Although applying the Gaussian
GT techniques has been made iteratively, and all the steps were taken simultaneously, in
order to improve reading, we divided them into open, axial, and selective coding.

We sent invite emails to 2,471 developers distributed in 855 projects. From the total,
1,869 developers opened the invitation email, and 341 accessed the survey; however, only
39 developers from 21 projects 3 answered it.

The developers chose 11 times to pay off the technical debt item immediately, 30 times
as soon as possible, 7 in the next release, and 66 never; thus, 42% chose to pay off the
technical debt, and 58% chose not to pay it off.

5.2.1 Open Coding

We organized the collected data in a spreadsheet 4. Each row contained one participant’s
answer related to one technical debt item. Besides the developers’ answers, each row has
columns to describe the technical debt item based on SonarQube data. All open codes were
created in vivo, meaning they were derived directly from the collected data.

3 https://zenodo.org/record/6384731/files/projects.csv?download=1
4 Our data is available at https://zenodo.org/record/6384731/files/answers.csv?download=1
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5.2.2 Axial Coding

We organized and assembled the open codes to form two levels of categories: the
first level contains categories that group open codes, and the second level contains super-
categories that group the first-level categories. For each open code, we tried to add it to
an existing category that encompassed its meaning. We created a new category when
it was not possible. We performed this step iteratively, constantly revisiting and eval-
uating the group of categories. We performed the same iterative process to group the
categories into super-categories. Below we list and briefly discuss the categories and
super-categories.

Super-Category PROJECT_SPECIFIC_DECISION includes the following cate-
gories:

DESIGN_DECISION: More experienced developers often use design patterns to create
the software architecture and write the code. However, some of these design patterns
break quality rules that generally apply to only a code snippet and not the architecture of
the software as a whole. Therefore, it makes sense to break some quality rules to keep a
design standard for some software architectures. Thus it is easier to read, maintain, scale,
and improve the performance of the software.

When developers needed to choose between paying a technical debt item or not
touching the design, they always chose to preserve the design and Never pay off the debt.
One developer refers to another Lint rule: “This code is correct. Lint rules cannot be applied
blindly”, and for another item, he referred to Javadocs to explain his decision: “This file is
correct per the Javadoc documentation”.

MEANINGFUL_NAMES: Some developers prefer to use their naming conventions
for software projects or modules. For example, Java convention defines variable names
using the following regular expression: ’[̂a-z][a-zA-Z0-9]*$’, that is, the first character
must be a lowercase letter followed by zero or more alphanumeric characters. Using other
conventions triggers a TD item.

One developer explained that the names came from reflection: “I suspect this code has
to interface with generated code that gets those names via reflection.” Another developer
preferred using their naming convention: “I prefer the way I name variables/parameters
to the Java convention”. Another one uses specific names for that project: “The name is
specific to the project”. Another developer explained: “There are reasons for the names. I
likely will never fix them.”

KEEP_READABILITY: Sometimes giving up standards to make the code more read-
able and easier to understand is the best choice. Some problem solutions are complex, and
trying to reduce or fit them into code patterns can make the solution hard to read and un-
derstand, so it is best to leave the pattern aside so that the code is easier to maintain.

Two developers chose Never to pay off the technical debt items to keep the code easy
to read: “GitException is used to carry failure information and declaring it makes it clear
that it can be thrown.”, and “No. Code is more readable the way it is.”.

BREAK_SOMETHING_ELSE: Sometimes paying off a technical debt item could
break something else; that is, changing a snippet could break functionality or compatibility.
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For this reason, sometimes paying off a technical debt item is not worth it because its
principal could be very high, costing several days of development.

One respondent chose to pay off an item As soon as possible because changing the code
can break the existing code: “This TODO should be treated with more care, because it
can break existing code.” For two technical debt items, another developer chose Never to
pay off the technical debt items because: “Removing this code would break functionality
and compatibility”. And for the other: “Deprecation in Jenkins does not mean "remove the
code". If we remove the code, it will break compatibility. One of the compelling values of
Jenkins is that it retains compatibility so that plugins compiled many years ago continue
to operate with current releases.”

Super-Category PROBLEM_WITH_RULE includes the following categories:

RULE_SHOULD_NOT_BE_APPLIED: Some projects use their standards, so not all
quality rules should apply.

Every time a respondent explained that a rule should not be applied, they decided
Never pay off the technical debt item. They explained that the rule application did not
precisely identify a technical debt item, e.g. “This is a stupid rule. Sometimes verifying that
the given code executes without throwing is all you need.” They also explained that some
rules are wrong based on program language documentation, as in the previous example
about Javadoc documentation.

ARBITRARY_RULE: For some developers, some rules should not be applied because
they believe that the kind of technical debt found by the rule is not technical debt. Thus,
the rule should be ignored - for instance, rules that try to anticipate possible runtime
errors.

All developers that indicated an arbitrary rule chose Never to pay off the technical
debt item, such as in: “This evaluation seems very wrong — how can a static method call
throw an NPE?”, and “The rule is wrong, it actually throws NoSuchElementException,
but the linter is unable to detect it. It probably has an incomplete type system and flow
analysis.”

FALSE_POSITIVE: In some contexts, a technical debt item is considered a false
positive. Unlike the rules that should not be applied to a project or the rules that wrongly
identify technical debt items, this code refers to cases in which, in another code snippet,
the item might be considered technical debt. However, it does not make sense as technical
debt for that snippet of code.

Every time a respondent indicated a false positive, they chose Never to pay the technical
debt. Many used the term "false positive", but others said more, e.g. “Once again, default
case may or may not make sense: in cases where it is omitted it is literally useless.”

Super-Category UNUSED_CODE: includes the following categories:

UNUSED_CODE: Code to test a concept or idea, but later, is replaced by some better
code or, after writing it, the developer realizes it is not a good concept/idea. Some code is
considered useless because it was written as an example to show or teach.
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All developers chose Never to pay off technical debt where the code was unused. In
some cases, the item was inside a test class, or private, or just never used.

Super-Category CODE_IMPROVEMENT includes the following categories:

PERFORMANCE: Code written by a developer is not always the one with the best
performance. To improve performance the developer could spend hours or even days
to rewrite the code to reduce complexity. They can also simply use some programming
language features, such as built-in or call methods that perform processing in parallel,
resulting in significant improvement in the performance of the software.

One respondent chose to pay off a technical debt item As soon as possible because they
saw it specifically to be a performance issue.

REMOVE_BUG: When developers write code, they cannot cannot always see all
possible situations. So sometimes there is a need to rewrite the code in order to remove
bugs that are generated by the wrong use of logic or because the code is not covering
every possible case.

One respondent decided to pay off the technical debt item As soon as possible because:
“A better exception here would be a good idea. This might even be a bug.”.

TEST_FAIL: Sometimes code can break the tests. This happens because the code was
written incorrectly and therefore returns unexpected behavior, in which case the code
must be rewritten to behave as the test expects. It may also have been written with a
different structure than expected by the tests and therefore the test also fails. In this case
the code structure can be changed to adapt to the test or the test can be changed to adapt
to the code structure.

One respondent chose to pay off the technical debt Immediately because it broke a test:
“It should be paid immediately because the test is broken. The expected value is "Number
of created files" and the files.size() is an integer.”

IMPROVE_READABILITY: A code needs to be rewritten to be easier to read. Gener-
ally, rewriting can be done by renaming variables, classes, methods/functions. It can also
be done by decreasing complexity, such as removing "if", "for" and "while" statements. It
can also be done through refactoring the code or using methods that encapsulate part of it.
These techniques make the code easier for other developers to understand.

A respondent decided to correct one of the identical sub-expressions on both sides of
operator "||" C because he thought it was “Confusing”. Another developer decided to use
isEmpty() As soon as possible to check whether the collection is empty or not to make it
“clearer”.

INCOMPLETE_CODE: The code is incomplete when some implementation is missing
for the method/function to work as expected. Most of the time, developers annotate these
missing parts with the following comment: "TODO: explanation", where TODO means the
code needs to be written, and sometimes there is an explanation about what needs to be
written and/or how.

Sometimes this code leads to Immediate payment and sometimes the payment should
be done As soon as possible. A developer chose to pay two technical debt items Immediately
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because he considered that TODO annotation should be paid off urgently: “From my
point of view, TODOs should be urgent, otherwise people are going to leave it there and
procrastinate as much as they can.”

Super-Category COST_BENEFIT includes the following categories:

LOW_PRINCIPAL: The code is easy to modify, that is, in a few minutes a developer
is able to fix the problem or complete the logic. Therefore, the technical debt item has a
low principal cost.

Respondents tended to pay off these items either Immediately or As soon as possible.
They used terms such as "trivial", "easy and safe", and "easy change". In one case, the
respondent thought that the change could even be automated.

HIGH_PRINCIPAL: The code is hard to modify, that is, a developer could take several
hours or even days to (re)write the code to fix the problem or complete the logic. Therefore,
the technical debt item has a high principal cost.

In one case, a developer thought that the technical debt item should be paid off As

soon as possible, but “This TODO should be treated with more care because it can break
the existing code”. Another developer chose Never to pay the debt because the effect was
minimal and the complexity to remove the item was huge: “This TL works as part of
injected code during test runs. The overhead is minimal and the complexity of calling
remove is huge.”

LOW_INTEREST: The code is almost never called by other methods/functions, that
is, it has a low probability of causing extra effort if the item is not paid off. Therefore, the
technical debt has a low interest.

One respondent chose to pay off an item In the next release because he did not face that
issue at that moment: “Since it might define other method interfaces, I would prioritize
this issue to the next release. In this code, we do not face this issue at the moment because
the method is private and the public methods do not re-throw the exception.” The same
developer also chose to pay off In the next release another technical debt item because
it had a minor impact: “Good catch. Minor impact/nit.” Another developer chose Never

to pay the technical debt item because it had a low impact and high effort to pay off:
“This TL works as part of injected code during test runs. The overhead is minimal and the
complexity of calling remove is huge.”. Another developer also chose not to pay off an
item because it is inside a private method.

5.2.3 Selective Coding

We performed selective coding to refine and integrate categories. Our main goal was
to understand the main criteria developers use to decide whether a technical debt item
should be paid off and when to make the payment. We used abstraction to incorporate
all aspects related to the collected data and coding Anselm Strauss and Juliet Corbin,
1998.

The codes and categories fell naturally into those representing influences on the
decision to pay off technical debt and those influencing the decision not to pay off technical
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Figure 5.2: Codes and categories for not paying off technical debt items.

debt. The super-categories PROJECT_SPECIFIC_DECISION, PROBLEM_WITH_RULE and
UNUSED_CODE represent the codes describing decisions not to pay off the technical debt
item. Figure 5.2 shows the categories and super-categories related to decisions not to pay
off the technical debt item.

In some situations, a PROJECT_SPECIFIC_DECISION is made to keep the current
solution (i.e. not pay off the debt) instead of rewriting the code to follow the rules. These
are project-specific decisions because a similar situation in a different project might
lead to a different decision about paying off the debt. Sometimes these decisions are
related to architectural design (DESIGN_DECISION); for example, when a generic inter-
face is designed to propagate any checked exception or singletons are used as constants.
Another type of project-specific decision is related to naming conventions (MEANING-
FUL_NAMES), i.e. when a project prefers to use a different way to name variables, methods,
functions, and classes than conventions commonly used. Another type of project-specific
decision is related to a concern about readability (KEEP_READABILITY); the decision is
not to change the code and follow the rules because that would make the code harder to
read. Finally, developers also decided not to pay the technical debt item when it would
break compatibility or functionality (BREAK_SOMETHING_ELSE); fixing a code snippet
would imply changing a lot of other code snippets that depend on the first one. The
only exception is when it breaks something else, but it is essential to pay off a debt
(TODO_SHOULD_BE_TREATED_CAREFULLY) as soon as possible; that is when a missing
snippet needs to be written to provide the expected behavior.

The PROBLEM_WITH_RULE category describes cases where a respondent cites a
problem in a rule used to detect technical debt items in SonarQube. Respondents felt some
rules should not be applied (RULE_SHOULD_NOT_BE_APPLIED) because they identified
irrelevant technical debt. Others felt some rules were arbitrary (ARBITRARY_RULE), not
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logical, or incorrectly evaluated a technical debt item. Some cases were cited as false
positives (FALSE_POSITIVE); that is, the respondent considered the found item not to be
a technical debt item, at least in the specific situation.

Developers sometimes wished not to remove or change code that exists just as an
example, even though the code has been superseded by other code or is no longer used.
Sometimes, developers want to keep the UNUSED_CODE for future comparison. Some
projects are created as proof-of-concept or just to teach software development.

Figure 5.3: Codes and categories for paying off technical debt items.

The super-categories CODE_IMPROVEMENT and COST _BENEFIT summarize the
influences for developers deciding to pay off the technical debt item, as shown in Figure
5.3.

When a developer’s reason for paying off a technical debt item fell into one of the
CODE_IMPROVEMENT categories, there are interesting relationships between the spe-
cific reason and how quickly they wanted to pay off the debt (i.e. "immediately" or "as
soon as possible"). When the reason to pay off the debt is to improve the performance
(PERFORMANCE) or remove bugs (REMOVE_BUGS), developers indicated that it should
be paid off as soon as possible. On the other hand, they decided to pay off the tech-
nical debt immediately when the reason was a failed test (TEST_FAIL) or incomplete
code (INCOMPLETE_CODE). Finally, when the motivation is to improve readability (IM-
PROVE_READABILITY), they want to pay off the debt immediately when the code is
confusing, and as soon as possible when they want to clarify the code.

The other super-category describing cases where the technical debt item should be paid
off is COST_BENEFIT. There are also variations in how quickly the debt should be paid off
in these cases. When the criteria used were low principal (LOW_PRINCIPAL), respondents
immediately chose to pay off the technical debt item because they considered it a trivial
change, an easy and safe payment. However, when the debt item was considered an easy
change or low impact, they decided to pay it off in the next release. When the criteria used
was low interest (LOW_INTEREST), respondents chose to pay off the technical debt item
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in the next release, except when overhead was minimal (OVERHEAD_MINIMAL), and the
complexity to remove it was huge. About (HIGH_PRINCIPAL), they decided not to pay it
when there was a huge complexity to do so, and to pay off as soon as possible when there
is a TODO tag that should be treated carefully.

5.3 Discussion of the Results

The developers used a wide array of criteria to decide whether and when a code
technical debt item should be paid off. They had different motivations when deciding to
pay off a technical debt item in different situations. We grouped these criteria into three
super-categories that define when a technical debt item should not be paid off and two
that define when an item should be paid off.

Another interesting observation is that when developers decide to pay a technical debt
item off they want to do it soon: immediately, as soon as possible, or in the next release.
However, we could not determine through data if this decision was technically based or if
personal feelings (worry, anxiety, fear of the reputation) made them choose higher priority
actions.

In addition, they used specific criteria for each priority level. This means that when
they use the same criterion in different instances, they choose the same priority level
or a neighboring one. For instance, when the technical debt item was about improving
readability, participants always decided to pay off those debts immediately or as soon as
possible, i.e. they chose neighboring categories. The codes OVERHEAD_MINIMAL and
HUGE_COMPLEXITY_IF_REMOVE are the exceptions to that observation, as there was
more variety in developers’ answers related to these criteria.

Another finding is that each software project needs a specific set of rules to identify
technical debt items that are relevant to the project. More than half of the answers were
never to pay off the technical debt item. For many of these cases, the respondents explained
they were using their preferred pattern than the one identified as technical debt by the
SonarQube detection rules.

We identified categories similar to the decision-making criteria presented by Riegel and
Doerr Riegel and Doerr, 2015 and Ribeiro et al. L. Ribeiro et al., 2016. Like Leppanen et
al. Leppanen et al., 2015, we present a framework to decide on the payment of a technical
debt item, but our model is based on the decision criteria of the respondents. The first and
fourth findings presented in this discussion confirm the literature. However, the second
and third findings are new completely new.

5.3.1 Implications for Researchers and Practitioners

The results of this study could be used as the basis for researchers to identify other
criteria that developers use to decide whether and when to pay off a technical debt item.
This study could be replicated in other software project groups to identify new decisions
and prioritization criteria, such as applying it to projects that use other programming
languages and non-OSS projects. Besides that, other methods, such as interviews, could be
used to identify and better understand the criteria.
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After defining criteria, researchers could study the scenarios in which they are used,
that is, to define when and how each criterion is used based on project variables like a
programming language, project patterns, project size, development methodology, devel-
opment team size, and others. With these definitions, it is possible to create guidelines
to assist developers in deciding the payment priority level for each technical debt item
they identify in their software. In addition, researchers can relate the criteria to software
context, such as code metrics and commit history, to automatically categorize payment of
code technical debt items using, for instance, machine learning.

Practitioners can use the criteria we have found to evaluate and plan technical debt
payment pragmatically in their projects. That is, they could verify that the criterion applies
to the project, and if so, they use it to define its priority level of payment. In addition,
practitioners who develop technical debt management tools could use the criteria list
identified here to improve the technical debt identification tools. After further research,
they could use the criteria to tune technical debt management software for each project
established context based on the guidelines.

5.3.2 Threats to Validity

In this study, we adopted a careful approach to mitigate possible biases and misinter-
pretations. Below, we describe the steps we took to reduce threats to validity.

Construct validity: We conducted a pilot study by applying the questionnaire to fifteen
developers. First, they answered the survey about their projects, then they answered
questions about their experience using the survey tool and suggested improvements.
Based on the review answers, we fixed some issues in the tool and applied improvements
to ensure the data items reflected a consistent interpretation of the study constructs.

External validity: This study can be replicated in other software projects. For that,
analyzing the project with SonarQube and using the survey tool to identify technical debt
items and collect answers will be necessary. We have collected answers from 21 open-source
Java projects with many sizes and features. Future replication should be conducted on more
projects, other programming languages, and non-OSS projects. Applying an interview can
also help understand the prioritization criteria and make them more general.

Internal validity: We analyzed the answers one by one and applied codes to them. After
that, we tried to improve and interpret the codes through grouping. Then, we reviewed
them several times to ensure they accurately represented the answers. We extracted the
conclusions and verified that they all were derived from the data. We followed the standard
guidelines for qualitative coding reviewed by other authors. The iterative approach helps
to mitigate analysis biases. In addition, we specifically designed the survey to capture the
relationship between criteria and decisions to pay off or not technical debt items. Thus
the conclusions about that relationship come directly from the data.

Reliability: We followed Straussian GT analysis techniques to interpret the data. Initially,
one author conducted the coding and analysis. Then, the other authors revised, discussed,
and iteratively improved the codes and analysis. We carefully documented all steps.
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5.4 Conclusions and Future Work

In this study, we performed a survey to collect data on open-source Java software
projects hosted on GitHub to understand which criteria software developers use in practice
to decide whether and when code technical debt items should be paid off. We asked the
participants questions about technical debt items from the projects they had contributed
to.

We analyzed the data using Straussian GT techniques to identify developers’ criteria for
prioritizing technical debt. We grouped the criteria into 15 categories. Then, we grouped
them into two super-categories related to paying off the technical debt item; and three
super-categories related to not paying off the item.

We observed that some participants decided not to pay off a technical debt that had
occurred because of a specific project decision. However, when participants decide to pay
off an item, they want to do it soon. Another observation is that all respondents who use a
particular criterion choose the same priority level or a neighboring one. Finally, we noted
that each software project needs specific rules to identify its technical debt.

In future work, it will be essential to expand the number of projects and participants
to cover more kinds of projects (industrial projects, different programming languages, for
instance) and types of technical debt (architectural debt, for instance).
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Chapter 6

Technical Debt Prioritization using

Machine Learning

In this chapter, we aim to prioritize the payment of technical debt items in real software
projects in an automated way. To achieve that goal, we applied a machine learning method
approach to decide whether a TDI should or not be paid off and when the payment should
be made. Using an iterative survey, we collected 2,616 answers from 276 developers over
207 Java public software projects hosted on GitHub regarding payment priority technical
debt items.

We used Sonarlizer Xplorer 4.1 tool to find the software projects repositories, analyze
them to find technical debt items, and relate the projects to their respective developers.
We extracted 27 code metrics from the project’s source code. We used the metrics as
methods features to apply to the supervised ML methods to prioritize technical debt items.
Finally, we performed an experiment to evaluate the effectiveness of using ML to prioritize
technical debt items.

The research question for this study is:

• RQ2. How to prioritize the payment of technical debt automatically?

We split the main question into three subquestions:

• RQ2.1. How effective are Machine Learning models for deciding whether or not a
technical debt item should be paid?

• RQ2.2. How effective are Machine Learning models for deciding when a technical
debt item should be paid?

• RQ2.3. Which are the best Machine Learning algorithms to prioritize technical debt?

6.1 Methodology

In this study, we developed and evaluated context-adaptive machine learning methods
to assist in technical debt prioritization. First, we used the Sonarlizer Xplorer (Pina,
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Goldman, and Seaman, 2022) to build a dataset with code technical debt items from Java
projects hosted on public GitHub repositories. We used InterasurveyTD (Pina, Goldman,
and Seaman, 2022) to apply a survey to the project developers. The survey asked developers
about the payment priority level for technical debt items for software projects they have
contributed. Finally, we trained and tested well-known supervised machine learning
methods to decide whether and when a technical debt item should be paid off.

6.1.1 Data Collection

The data collection process comprised four main steps: mining Java software projects
hosted on public GitHub repositories related to the contributed projects and files, identi-
fying technical debt items and code metrics, and applying a survey to developers about
technical debt prioritization. Figure 6.1 shows the data collection process.

Project Selection and Independent Variables

In our study, we employed the Sonarlizer Xplorer tool 4 to conduct data mining on
public Java software repositories and developers sourced from GitHub. This tool identifies
code technical debt items and extracts code metrics using SonarQube. Furthermore, it
enabled the establishment of associations between developers and the code files they
contributed to.

In addition, we used the InteraSurveyTD tool 4 to conduct a survey in which developers
responded to questions regarding prioritizing technical debt items for projects they actively
contributed to.

Figure 6.1: Data collection process.

Our analysis encompassed 45,944 Java software projects, openly available on GitHub
repositories. We identified 15,217,381 technical debt items using SonarQube. We sent an
email invitation to 145,091 developers to answer our survey, of which 276 developers of
207 projects provided answers for 2,616 technical debt items.

The selected projects are diverse with respect to the number of non-commented lines
of code (ncloc), number of developers, amount and type of technical debt, and complexity.
For example, Figure 6.2 shows the distribution of complexity (on the top) and ncloc (on
the bottom) for selected projects for which we have at least one developer response. Our
set includes Nginx Java Parser, Fast Login, and SQLite JDBC projects.
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Figure 6.2: Complexity and ncloc distribution for selected projects where a developer answered.

SonarQube uses quality rules to identify technical debt items. When a rule is violated,
it creates an item. In this study, the "technical debt type" refers to the quality rule that
generated the technical debt item. Our dataset has 31 different technical debt types, all
related to code technical debt. Below are some examples of the types of technical debt:

• File names should comply with a naming convention;

• Child class methods named for parent class methods should be overrides;

• Cognitive Complexity of methods should not be too high.
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We used 27 code metrics extracted from SonarQube as features (independent variables)
to train the machine learning models. Table 6.1 shows the selected code metrics used as
features, short descriptions, and statistics.

Our final dataset1 used for training and assessment was composed of columns for these
27 metrics and 1 column containing the developer response (the dependent variables).
It also includes other columns extracted from SonarQube for administrative purposes
(e.g. filename, project name), that are unsuitable for use in machine learning algorithms
but may be useful to future researchers. This dataset has 2,616 rows, one for each survey
answer.

Survey and Dependent Variable

We used the InteraSurveyTD tool 4 to apply an interactive survey to the software
project developers showing technical debt items from projects they contributed and asking
about technical debt prioritization. We sent emails 2 to invite the developers containing a
project brief and a link to the survey with an identifier to load the technical debt items
related to that developer. Once he followed the link, they saw instructions for the survey
and informed consent document3, approved by the UMBC Institutional Review Board.
They had to confirm having read and agreed with consent terms and to be at least 18 years
old before starting the survey. Then, the survey tool chose a random technical debt item
to show the developer.

InteraSurveyTD doesn’t show all the items from the developer’s files to preserve
anonymity. It randomly picked up a technical debt item for the developer only 70% of the
time. This technique avoids identifying the developers in files with only one contributor.
It also didn’t store the relationship between the answer and the developer. Finally, all
selected projects have at least three participants to ensure anonymity and prevent the
participants’ answers from being tracked.

The survey technical debt prioritization question had six answer options on a descend-
ing scale according to how urgently the item should be paid off:

• Immediately: pay the item off before developing anything else;

• As soon as possible: pay item off in the current release;

• In the next release: plan item payment for next release;

• In the next few releases: it doesn’t postpone payment indefinitely, but it doesn’t
have to happen in the next release;

• When there is free time: no planning is required, but eventually the item should
be paid;

• Never: the item is not important for the project, or it is not in fact, a technical debt
item, or for some other reason, should not be paid.

1 https://zenodo.org/record/7709535/files/dataset.csv
2 https://zenodo.org/record/7709535/files/email-template-anonymized.pdf
3 https://zenodo.org/record/7709535/files/research_web_consent-final.pdf
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Metric Description M SD Q1 Mdn Q3 Skew

tdtype Technical debt type. - - - - - -

ncloc
Number of non commented lines
of code of the TDI file. 350 781 41 106 342 5.3

lines Number of lines of the TDI file. 494 1081 70 148 475 5.4
classes Number of classes in the TDI file. 2 14 1 1 1 24.5
functions Number of functions in the TDI file. 26.7 93.4 3 7 20 8.8
statements Number of statements in TDI the file. 146.7 362.1 10 38 138 7.1
comment_lines Number of lines commented. 55.4 193.9 1 6 33 7.9
comment_lines
_density

Number of lines commented over
number of lines in the TDI file. 10.1 12.6 0 5 15 2.0

complexity
Cyclomatic complexity in
the TDI class. 75.0 219.4 5 17 60 9.3

complexity_file Cyclomatic complexity in the TDI file. 75.0 219.4 5 17 60 9.3
cognitive
_complexity Cognitive complexity in the TDI file. 71.8 257.9 1 11 46 10.2

duplicated_lines
Number of duplicate lines in
the TDI file. 18.3 97.5 0 0 0 7.9

duplicated_blocks
Number of duplicate lines blocks
in the TDI file. 1.2 9.8 0 0 0 17.0

duplicated_lines
_density

Number of duplicate line
over number of lines in the TDI file. 3.2 11.2 0 0 0 4.5

violations Number of TDIs in the TDI file. 133.5 829.6 3 8 27 8.4

blocker_violations
Number of TDIs classified as blocker
in the TDI file. 0.5 1.8 0 0 0 8.3

critical_violations
Number of TDIs classified as critical
in the TDI file. 9.6 73.6 0 0 3 14.2

major_violations
Number of TDIs classified as major
in the TDI file. 106.2 826.0 1 2 7 8.6

minor_violations
Number of TDIs classified as minor
in the TDI file. 16.6 52.1 0 2 8 6.7

code_smells Number of code smells in the TDI file. 131.0 829.5 3 7 24 8.4
bugs Number of bugs in the TDI file. 0.8 4.2 0 0 1 21.9

sqale_index
Total effort in hours to fix all
the issues on the TDI file. 1234.3 8163.7 20 60 216 8.4

sqale_rating
1-to-5 rating based on the
technical debt ratio. 1 0 1 1 1 3.2

sqale_ratio

Ratio of the actual technical debt
compared to the estimated cost to
develop the whole source code from
scratch.

3.5 8.8 0 1 3 6.1

reliability_rating Reliability rating of the TDI file. 1 1 1 1 2 1.8
security_rating Security rating of the TDI file. 1 0 1 1 1 3.5
security_review
_rating Security review of the TDI file. 1 1 1 1 1 2.2

Table 6.1: Selected code metrics
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Figure 6.3 shows the statics about survey invitations, access, and answers.

Figure 6.3: Survey Process Flow Statistics

6.1.2 Data Preparation

Table 6.2 shows the answers labels and count. Once the data was collected, we cat-
egorized the survey responses into three distinct label types: "priority," which directly
associates the answer with a specific label; "3-classes," consisting of high, medium, and
low labels indicating when the payment should occur; and "pay or not," represented by yes
or no labels, determining whether a payment should be made. The distribution of answers
for each label type can be observed in Figure 6.4.

Priority 3-classes Pay? Answer Count

1 (1) High (1) Yes Immediately 240
2 (1) High (1) Yes As soon as possible 272
3 (2) Medium (1) Yes In the next release 318
4 (2) Medium (1) Yes In the next few releases 227
5 (3) Low (1) Yes When there is free time 698
6 (3) Low (0) No Never 861

Total 2,616

Table 6.2: Answer labels and count

In order to create the "pay or not" label we set the label 0 (No) when the answer is 6
(Never). Otherwise, it means it should be paid off; we set the label to 1 (Yes).

In addition, we grouped the answers into three priority categories: (1) high, with the
answers "Immediately" and "As soon as possible"; (2) medium, with "In the next release" and
"In the next few releases"; and (3) low, with "When there is free time" and "Never".

In addition, we grouped the answers into three priority categories:

1. High, with the answers "Immediately" and "As soon as possible";

2. Medium, with "In the next release" and "In the next few releases";



6.1 | METHODOLOGY

69

Figure 6.4: Answers distributions by Label

3. Low, with "When there is free time" and "Never".

After investigating manually several cases related to empty values for some metrics,
we figured out that when the value is empty, no occurrence of that metric was found. For
example, the number of critical violations or complexity. For this reason, we set the empty
values to 0.

We intentionally chose very diverse software projects in terms of the types of projects
and their context. Therefore, we did not expect the independent variables to follow normal
distributions. For the same reason, we decided not to withdraw outliers to avoid removing
the diversity of contexts we purposely included.

6.1.3 Exploratory Analysis

We need to verify the existence of a relationship between each of the selected metrics
and the dependent variable to use the metrics as independent variables in our machine
learning classification models. In this study, we worked with three dependent variables
(priority, 3-classes, and pay or not label). Thus, we had to investigate the relationship
between each label’s selected metrics. For this reason, our exploratory analysis was done
by studying the discriminative power of the chosen metrics using hypothesis testing.

We tested the null hypothesis that the distributions of each metric for each label class
are equal to perform the exploratory analysis and hence to determine whether the 27
selected metrics can discriminate between label classes. For example, for the 3-classes
label, the null hypothesis will verify whether the number of non-commented line metric
(ncloc) distributions is equivalent to high, medium, or low distribution.

We applied a Shapiro-Wilk (Shapiro and Wilk, 1965; Razali, Wah, et al., 2011) test for
normality, resulting in a normal distribution for each metric distribution. For this reason,
we used the non-parametric Mann-Whitney U test and tested our hypothesis at a 95%
confidence level (𝛼 = 0.05). For each dependent variable and all selected metrics, the p-value
from Mann-Whitney U test (Mann and Whitney, 1947) was less than 𝛼 = 0.05. Thus,
in all tests, we rejected the null hypothesis. The test suggested a statistically significant
difference between each metric and the dependent variable. Thus, no metric describes
the dependent variable completely. Therefore, all of these metrics can discriminate and
potentially be used as predictors of technical debt prioritization. Table 6.3 shows the
discriminative power analysis result for the Mann-Whitney U test.



70

6 | TECHNICAL DEBT PRIORITIZATION USING MACHINE LEARNING

Metrics
Mann-Whitney U test (p-value)

Priority 3-class Pay or Not
rule_id 0.0 0.0 0.0
ncloc 0.0 0.0 0.0
lines 0.0 0.0 0.0

classes 0.0 0.0 1.538e-165
functions 7.177e-80 3.421e-230 0.0

statements 0.0 0.0 0.0
complexity 1.676e-253 0.0 0.0

file_complexity 1.676e-253 0.0 0.0
cognitive_complexity 4.452e-55 3.837e-108 4.879e-296

comment_lines 1.573e-22 2.586e-81 1.640e-290
comment_lines_density 3.157e-10 5.751e-51 1.278e-233

duplicated_lines 0.0 0.0 7.5837e-203
duplicated_blocks 0.0 0.0 2.693e-236

duplicated_lines_density 0.0 0.0 3.969e-213
violations 1.087e-133 0.0 0.0

blocker_violations 0.0 0.0 3.941e-232
critical_violations 0.0 7.392e-200 0.0001
major_violations 1.593e-38 0.440 9.932e-282
minor_violations 4.355e-47 8.979e-06 1.235e-163

bugs 0.0 0.0 1.101e-120
code_smells 4.279e-99 1.981e-260 0.0
sqale_index 0.0 0.0 0.0

sqale_debt_ratio 1.0127e-289 2.447e-150 8.456e-92
sqale_rating 0.0 0.0 8.204e-294

reliability_rating 0.0 0.0 0.0
security_rating 0.0 0.0 0.0

security_review_rating 0.0 0.0 7.758e-277

Table 6.3: Discriminative power analysis using Mann-Whitney U test
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6.1.4 Model Building

The process of building machine learning models to predict a technical debt payment
item involves three key steps: model selection (6.1.4), testing methods and parameters to
identify optimal configurations for prediction in different contexts (6.1.4), and evaluating
the performance of the models to address the specific research questions (6.1.4). These
sequential steps ensure the systematic development and assessment of the machine learning
approaches for accurate prediction of payment prioritization outcomes.

Model Selection

The data collection process takes time and resources. Even with tens of thousands of
projects analyzed and emails sent, it resulted in only over two thousand survey answers.
Therefore, we initially rejected deep learning and other techniques requiring a large data
volume.

We decided to use machine learning methods for technical debt item payment pri-
oritization because they have not been previously explored. We also decided to select
well-known supervised machine learning methods that have already been used to solve
similar problems in software engineering, e.g., identifying TD (Tsoukalas, Mittas, et al.,
2021), predicting refactoring (Mauricio Aniche et al., 2020), and determining bug severity
(Chaturvedi and V. Singh, 2012). The hyperparameters were selected based on previous
work and references in the literature (Yang and Shami, 2020; Tsoukalas, Mittas, et al.,
2021; Mauricio Aniche et al., 2020).

Table 6.4 describes the nine selected machine learning methods and the hyperparameter
values we tested to tune the algorithm.

We can infer from Figure 6.4 and Table 6.2, the answer distributions are imbalanced
for all three label types. That is, the number of instances for each answer class is not the
same. When applying machine learning methods to imbalanced data, there is a risk of
generating biased results due to the algorithms favoring the majority class. In the case of
the "pay or not" label, selecting the majority pay class would yield an average accuracy of
67%, whereas a random choice would result in 50% accuracy. To mitigate this issue, we
employed a technique called oversampling (Mohammed et al., 2020) to address the class
imbalance. Unlike undersampling, which discards data, oversampling randomly duplicates
instances of the minority classes until they are equal to the majority class. This approach
ensures a more balanced class distribution and helps prevent data loss, thereby improving
the reliability of the machine learning analysis (Mohammed et al., 2020).

Model Testing

We performed the training-validation-test approach to evaluate the methods and verify
which ones are the best for each scenario. We randomly partitioned the dataset into two
sets: training/validation with 80% of the data and testing with 20%. We used the first
partition to train the machine learning methods varying the hyperparameters to find and
validate the combination that maximizes accuracy and F1 (as a tier). Then, we retrained
the methods using the training/validation dataset and the hyperparameters, resulting in
the highest accuracy to assess their performance on the test dataset.
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Method Name Description Hiperparameter values

Dummy
Classifier (DC)

It serves as a baseline for comparison,
its behaviors are based on strategy
parameters.

strategy: most_frequent, prior,
stratified, uniform, constant;
constants: 0, 1;
random_state: [0, 100]

Gaussian Naive
Bayer (NB)

It uses Bayes’ theorem to calculate
the probability of each class based
on the data from feature values.

var_smoothing: [0, 10−9]

K-Nearest
Neighbors (KNN)

It classifies based on the distances
between the data points.

n_neighbors: [1, 20],
weights: uniform, distance;
algorithm: auto, ball_tree, kd_tree,
brute;
p: [1, 40]

Logistic
Regression (LR)

It is a linear model that implements
a logic function to predict the
probability of a target class belonging
to a certain class.

solver: newton-cg, lbfgs, liblinear,
sag, saga;
penalty: l1, l2, elasticnet, none;
C: [0.01, 100]

Ridge
Classifier (RC)

It converts the target values
into [−1, 1] and then treats the problem
as a regression.

alpha: [0, 10] ;
solver: auto, svd, cholesky, lsqr,
sparse_cg, sag, saga, lbfgs

Support Vector
Machine (SVM)

It looks for the best hyper-plane in
high-dimensional space to separate
the data into classes.

C: [0.01, 10];
kernel linear, poly, rbf, sigmoid

Decision
Tree (DT)

It uses a tree-structure model to define
a set of classification rules from
the data.

criterion: gini, entropy, log_loss;
max_depth: [5, 50];
min_samples_split: [2, 11];
min_samples_leaf: [1, 11];
max_features: auto, sqrt, log2;
spliter: best, random;
min_weight_fraction_leaf:
[0, 1, 2, 4, 8];
max_leaf_nodes:
[𝑁𝑜𝑛𝑒, 20, 100, 500, 1000]

Random
Forest (RF)

It fits several DT classifiers on
many sub-samples of the dataset
and uses averaging to improve the
predictive accuracy and control
over-fitting.

All DT values +
n_estimators: [10, 100]

XGBoost (XGB)
It is based on multiple DTs
and uses gradient boosting to
minimize loss.

objective: binary:logistic;
booster: gbtree, gblinear, dart;
n_estimators: [10, 200];
max_depth: [5, 50];
learning_rate: [0.01, 1];
subsample: [0.01, 1];
colsample_bytree: [0.01, 1]

Table 6.4: Selected Machine Learning methods, description, and hyperparameter values
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Before starting the training/validation phase, we apply oversampling to the training
dataset statistically maintain the data balance among labels. Then, we performed a stratified
5-fold cross-validation (Refaeilzadeh et al., 2009). It randomly divides the dataset into
five folds. This involved partitioning the dataset into five subsets or folds, where each
fold was used as the test set while the remaining four folds were used for training. The
training and validation process was repeated for each of the five folds, ensuring that every
subset served as both training and test data. During this iterative process, we computed
the mean accuracy and F1 score as performance metrics to compare the effectiveness of
different hyperparameters and machine learning methods. These measures allowed us to
assess and compare the overall predictive performance across the various configurations
and methods.

We also vary the hyperparameters to find the parameter values that increase the
predictive power for each machine learning method in each case. We based our experiment
on prior work (Yang and Shami, 2020; Tsoukalas, Mittas, et al., 2021; Mauricio Aniche
et al., 2020) to select which parameters to vary and which values to use in our tuning
process. However, some methods could take months to combine parameters and run tests
for many values. Therefore, we chose to use Random Search (Yang and Shami, 2020),
which randomly picks a predefined number of combinations of hyperparameter values to
evaluate. We defined the search space size at #𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∗ 1.3, if #𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 < 210;
𝑚𝑖𝑛(#𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∗ 0.5, 212), otherwise. We tried to set a large enough search space to
detect the global optimal solution, or at least their approximations (Bergstra and Bengio,
2012). To validate the optimal value, we used accuracy as a performance measure, because,
in our study context, false positives and false negatives are equally bad for technical debt
prioritization. That is, paying for a non-priority item wastes time unnecessarily, and not
paying for a priority item affects code quality and may take longer to develop new features
or maintain the code. As a tiebreaker, we used the F1 measure, the harmonic mean between
precision and recall.

The last step during the training/validation phase was a Min-Max (Jayalakshmi and
Santhakumaran, 2011) data transformation by scaling and translating each feature value
individually to the [0, 1] range. The purpose of Min-Max normalization is to address the
issue of features measured at different scales, which can lead to an unequal contribution
to model fitting and potential bias. This normalization technique aims to prevent larger
magnitude features from dominating others. However, our study found that Min-Max
normalization was not efficient in most cases we tested. It did not yield significant improve-
ments and, in some cases, even led to losses in performance. Due to these observations,
we decided not to utilize Min-Max normalization in our study.

We repeated the training/validation process five times to avoid bias related to the
selected data. During the test phase, we retrained each classifier five times using the
training/validation dataset using fine-tuned hyperparameters, resulting in the highest
accuracy for each approach. Then, we applied the trained methods to the test dataset. As
the classifiers are applied to data they have never touched before, this step simulates the use
of machine learning methods in a real case. During this phase, the methods’ performance
was assessed in different aspects (see Section 6.1.4) so that we can analyze which ones can
be used to prioritize technical debt.
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Performance Assessment

For training/validation purposes, we chose the machine learning method that achieved
the highest accuracy (using F1 as a tiebreaker) for each approach. Then, we computed and
evaluated the main traditional performance assessment metrics for the chosen method:
accuracy, precision, recall, and F1-score. All these metrics are essential to a complete
evaluation of the methods because we are interested in how well the model predicts the
correct answers (accuracy), how well it correctly indicates the class of interest (precision),
and how well it finds a class of interest (recall). F1-score is a harmonic mean between
precision and recall providing a value that reflects their combination.

We computed the performance metrics using traditional formulas when we were
predicting between two outcome labels (pay or not). For example, accuracy is the ratio of
the number of correct predictions divided by the number of all predictions. The formula to
calculate the accuracy of a machine learning method among 𝑛 prediction values is:

ℎ𝑖𝑡𝐴(𝑝𝑟𝑒𝑑, 𝑒𝑥𝑝𝑒𝑐𝑡) =

{

1 if 𝑝𝑟𝑒𝑑 = 𝑒𝑥𝑝𝑒𝑐𝑡

0 if 𝑝𝑟𝑒𝑑 ≠ 𝑒𝑥𝑝𝑒𝑐𝑡

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑝𝑟𝑒𝑑, 𝑒𝑥𝑝𝑒𝑐𝑡) =
∑

𝑛

𝑖=1 ℎ𝑖𝑡𝐴(𝑝𝑟𝑒𝑑𝑖, 𝑒𝑥𝑝𝑒𝑐𝑡𝑖)

𝑛

The priority and 3-classes labels are scalars. That is, as the label number increases,
the payment priority decreases. Thus, the smaller the distance between the expected and
predicted label, the better the method’s accuracy. Therefore, we can write the hit function
as follows:

ℎ𝑖𝑡𝐴(𝑝𝑟𝑒𝑑, 𝑒𝑥𝑝𝑒𝑐𝑡) = 1 −
|𝑝𝑟𝑒𝑑 − 𝑒𝑥𝑝𝑒𝑐𝑡 |

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑙𝑎𝑏𝑒𝑙_𝑡𝑦𝑝𝑒𝑠 − 1

ℎ𝑖𝑡𝐴(1, 1) = 1 −
|1 − 1|

6 − 1
= 1 −

0

5
= 1 − 0 = 1

But when, for example, the predicted label is 2 (As soon as possible) and the expected
label is 1 (Immediately), the hit function returns:

ℎ𝑖𝑡𝐴(2, 1) = 1 −
|2 − 1|

6 − 1
= 1 −

1

5
= 1 − 0.2 = 0.8

On the other hand, when the predicted label is 6 (Never) and the expected label is 1
(Immediately), the hit function returns its minimum:

ℎ𝑖𝑡𝐴(6, 1) = 1 −
|6 − 1|

6 − 1
= 1 −

5

5
= 1 − 1 = 0

A similar process can be applied to produce tuned precision and tuned recall val-
ues.
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Precision is a metric that measures the proportion of correctly predicted positive
instances out of the total instances predicted as positive. Similar to accuracy, we can
calculate a distance between the predicted and expected values. However, when dealing
with multiple labels, we need to compute the mean precision for each label. We consider all
the rows where the predicted value matches the label to calculate precision for a specific
label. The function to compute precision is:

1 def precision_tuned(target_expected, target_predicted, labels):
2 hit_sum = 0
3 for labelIdx in range(len(labels)):
4 class_label = labels[labelIdx]
5 hit_count = hit = 0
6 for i in range(len(target_expected)):
7 if (target_predicted[i] == class_label):
8 diff = abs(target_expected[i] - target_predicted[i])
9 penalty = diff / (class_labels_size - 1)

10 hit = hit + (1 - penalty
11 hit_count = hit_count + 1
12
13 if (hit_count > 0):
14 precision = hit / hit_count
15 hit_sum = hit_sum + precision
16 return hit_sum / len(labels)

The recall is the ratio of correctly predicted when the expected is positive. Such as
precision, we can compute a distance between predicted and expected. We also can calculate
recall as the mean of recalls for each label. The function to compute recall is:

1 def recall_tuned(target_expected, target_predicted, labels):
2 hit_sum = 0
3 for labelIdx in range(len(labels)):
4 class_label = labels[labelIdx]
5 hit_count = hit = 0
6 for i in range(len(target_expected)):
7 if (target_expected[i] == class_label):
8 diff = abs(target_expected[i] - target_predicted[i])
9 penalty = diff / (class_labels_size - 1)

10 hit = hit + (1 - penalty
11 hit_count = hit_count + 1
12
13 if (hit_count > 0):
14 precision = hit / hit_count
15 hit_sum = hit_sum + precision
16 return hit_sum / len(labels)

Finally, F1 is automatically changed with the idea of the distance between predicted
and expected labels because it is a harmonic mean between precision and recall. F1 formula
is
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𝐹1 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

We call this way of calculating considering the distance between what was predicted
and what was expected as tuned accuracy, tuned precision, tuned recall, and tuned F1.

We used traditional metrics for all approaches we tried to prioritize TDI payment. We
also applied the tuned analysis metrics for cases with more than two labels because if there
are only two labels, the traditional and the tuned analysis result in the same values.

In addition, we employed the Scott-Knott algorithm Jelihovschi et al., 2014 to evaluate
the performance of different machine learning methods for each approach. The Scott-Knott
algorithm is a hierarchical clustering technique used to identify distinct and homogeneous
groups based on the means of the evaluated measures. It is advantageous in scenarios where
a significant F-test indicates notable differences between the groups. Our study applied
the Scott-Knott algorithm to assess performance measures such as accuracy, precision,
recall, and F1 score. We utilized this algorithm to address potential gaps and discrepancies
among these measures, ensuring a balanced evaluation. The Scott-Knott clusters were
ranked in descending order from A to subsequent clusters (B, C, and so on), indicating
that methods within cluster A demonstrated statistically superior performance compared
to those in cluster B and subsequent clusters.

6.2 Results

We will answer each of this study’s research questions in the following subsections.
For each scenario, we selected the hyperparameters that achieved the highest accuracy/F1-
score in the training/validation phase. Then, we used the parameter values to retrain and
assess the machine learning methods’ performance in the test phase. In this last step, we
calculated accuracy, precision, recall, F1, and Scott-Knott (SK).

All tables presented in the following subsections have seven columns: machine learn-
ing method code (Method), accuracy mean for the training/validation phase (ACC T/V),
accuracy, precision, recall, F1-score (F1), and Scott-Knott for the test phase. Accuracy,
precision, and recall are the mean values collected in the repetitions.

6.2.1 RQ2.1: How effective are ML models for deciding whether or

not a technical debt item should be paid?

We trained the machine learning methods using the "pay or not" label as the dependent
variable to indicate whether a technical debt item should or not be paid off. Table 6.5 shows
the performance results using traditional analysis.

We can see from Table 6.5 that NB, KNN, DT, RF, and XGB (Cluster A) are the best
machine learning methods for deciding whether or not a technical debt item should be
paid off, followed by DC, LR, RC, and SVM (Cluster B). In Cluster A, accuracy ranged
between 0.69 and 0.88, and F1 ranged between 0.80 and 0.84.
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Method Acc T/V Accuracy Precision Recall F1-score Scott-Knott

DC 0.523 0.516 0.6769 0.519 0.5873 B
NB 0.5604 0.6927 0.6866 0.9885 0.8104 A

KNN 0.854 0.8004 0.8558 0.8414 0.8485 A
LR 0.5951 0.6221 0.818 0.7098 0.7138 B
RC 0.5868 0.6302 0.7049 0.7621 0.7324 B

SVM 0.5847 0.5363 0.7419 0.4661 0.5681 B
DT 0.8499 0.7919 0.867 0.8247 0.8404 A
RF 0.8715 0.8267 0.8533 0.8925 0.8724 A

XGB 0.8829 0.8393 0.854 0.9114 0.8831 A

Table 6.5: To pay or not to pay machine learning performance

6.2.2 RQ2.2: How effective are ML models for deciding when a

technical debt item should be paid?

This section shows the results of applying four approaches to prioritize when a technical
debt item should be paid off. They are 3-classes, the most common TD types, simple, and
two-layers.

6.2.3 3-Classes Approach

Our initial approach employed machine learning methods using the 3-classes label to
determine when to pay off a technical debt item. This involved categorizing the outcome
values, represented by survey responses indicating the preferred payment timing, into
three groups: high, medium, and low (as described in Section 6.1.2). By grouping these
values, we aimed to enhance the performance of the models by increasing the data volume
available for each class defined by the high/medium/low labels.

Method Acc T/V Accuracy Precision Recall F1-score Scott-Knott

DC 0.3411 0.3302 0.3377 0.3355 0.3054 C
NB 0.3746 0.2786 0.4632 0.3848 0.2618 C

KNN 0.8542 0.6679 0.6145 0.6121 0.6136 A
LR 0.4833 0.4637 0.4387 0.4604 0.4256 B
RC 0.4623 0.4446 0.4267 0.4434 0.41 B

SVM 0.4561 0.3898 0.3892 0.3888 0.3692 C
DT 0.8483 0.6855 0.636 0.6371 0.6349 A
RF 0.8686 0.721 0.6816 0.6533 0.6645 A

XGB 0.8858 0.7229 0.6856 0.6493 0.663 A

Table 6.6: 3-classes approach performance

The performance outcomes of the 3-classes approach using traditional analysis are
displayed in Table 6.6. We can observe that methods within Cluster A exhibit an accuracy
nearly twice higher than that of Cluster C, including the method that makes "random"
choices. Within Cluster A, accuracy ranges from 0.67 to 0.72.
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Method Acc T/V Accuracy Precision Recall F1-score Scott-Knott

DC 0.8667 0.8401 0.2001 0.6666 0.3078 A
NB 0.8608 0.8464 0.656 0.6716 0.6622 A

KNN 0.9597 0.9099 0.7445 0.7453 0.7449 A
LR 0.8628 0.843 0.6195 0.6351 0.6272 A
RC 0.8531 0.8287 0.5958 0.6068 0.6001 A

SVM 0.8525 0.8194 0.5703 0.5781 0.5742 A
DT 0.9593 0.9115 0.7494 0.7594 0.7543 A
RF 0.9618 0.9201 0.7794 0.7586 0.7688 A

XGB 0.9691 0.9217 0.783 0.7601 0.7714 A

Table 6.7: 3-classes approach tuned performance

The tuned performance results, as described in Section 6.1.4, are presented in Table 6.7.
The results are organized in only one cluster (Cluster A).

Although the difference between the mean of measures of DC (the worst) and XGB (the
best) is 0.25, they are in the same cluster their accuracy and recalls are close; in addition, the
other methods’ measures mean are increasing closely; thus Scott-Knott cannot distinguish
between then. Even if the DC precision is low, the other measures do compensation to add
it to Cluster A.

Most Common TD Types Approach

In the second approach, we adopted a filtering strategy that focused on the most
common technical debt item types instead of applying the selected machine learning
methods to the entire dataset. Specifically, we removed rows associated with technical
debt types that appeared fewer than ten times. The rationale behind this filtering was
to retain only the types with sufficient occurrences. By doing so, the machine learning
methods could provide more cases for each value of this independent variable, enabling
better learning and potentially leading to improved performance.

In this approach, we employed machine learning methods across all six priority labels in
the data. We did not combine the labels into classes but treated them as individual entities.
By considering the full range of priority labels, we aimed to capture the variations in the
prioritization of technical debt items, thereby allowing the machine learning methods
to understand better and differentiate the different levels of priority associated with the
items.

Table 6.8 shows the performance results of the most common TD types approach using
traditional analysis. The results show that the best methods to prioritize when the payment
of a TDI should be made in the TD types that appeared the most in the dataset are KNN,
DT, RF, and XGB (Cluster A), followed by LR, RC, and SVM (Cluster B), then DC and NB
(Cluster C). The results show that the performance of Class A methods is more than three
times better than Class C’s "random" method. In Cluster A, accuracy ranged between 0.55
and 0.60, and F1 ranged between 0.50 and 0.55. For Cluster A, the accuracy, precision, and
recall are close.
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Method Acc T/V Accuracy Precision Recall F1-score Scott-Knott

DC 0.1768 0.1876 0.1877 0.1822 0.1738 C
NB 0.2357 0.1721 0.3077 0.223 0.151 C

KNN 0.8299 0.5543 0.4966 0.4986 0.4958 A
LR 0.3504 0.2963 0.2818 0.3008 0.2792 B
RC 0.3322 0.2616 0.2634 0.2863 0.2549 B

SVM 0.3234 0.2767 0.2891 0.2983 0.2659 B
DT 0.7766 0.5671 0.5241 0.5353 0.5268 A
RF 0.8156 0.5799 0.5486 0.5298 0.5367 A

XGB 0.8495 0.6041 0.5703 0.5405 0.5521 A

Table 6.8: Most common technical debt types approach performance

Method Acc T/V Accuracy Precision Recall F1-score Scott-Knott

DC 0.6333 0.5142 0.0857 0.6333 0.151 B
NB 0.5894 0.4243 0.6816 0.5436 0.6042 B

KNN 0.9243 0.8045 0.7845 0.7772 0.7808 A
LR 0.7062 0.6574 0.6534 0.6801 0.6665 A
RC 0.6918 0.6272 0.6349 0.6635 0.6489 A

SVM 0.7134 0.6434 0.1425 0.4061 0.211 B
DT 0.9204 0.808 0.7926 0.7942 0.7934 A
RF 0.9355 0.8327 0.8196 0.808 0.8137 A

XGB 0.9394 0.8357 0.8311 0.7988 0.8146 A

Table 6.9: Most common technical debt types approach tuned performance

Table 6.9 presents the results obtained from the tuned performance analysis, as dis-
cussed in Section 6.1.4. The results are categorized into five clusters: Cluster A includes
KNN, RC LR, DT, RF, and XGB; Cluster B includes DC, NB, and SVM.

Simple Approach

We employed a simple approach to determine when to pay off a technical debt item. In
this approach, we applied machine learning methods directly to the priority labels and the
complete dataset, resulting in one of the six categories: immediately, as soon as possible,
in the next release, in the next few releases, when there is free time, or never.

Although more straightforward than the previous approaches, this simple approach
provides a more realistic evaluation of the performance of ML methods in a context closer
to real-world scenarios. It does not involve any pre-processing steps related to the number
of classes or the quality of the collected data.

Table 6.10 shows the performance results of the simple approach using traditional
analysis. We see that the best methods of classifying when TDI should be paid in general
are KNN, DT, RF, and XGB (Cluster A), followed by NB, LR, RC, and SVM (Cluster B), and
finally DC (Cluster C). We also see from the results that the performance of Cluster A
methods is around four times better than the "random" method of Cluster C. In Cluster A,
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Method Acc T/V Accuracy Precision Recall F1-score Scott-Knott

DC 0.1713 0.1527 0.1327 0.1619 0.1273 C
NB 0.2262 0.1653 0.3676 0.2054 0.1356 B

KNN 0.818 0.5527 0.4931 0.4914 0.4892 A
LR 0.3249 0.2943 0.3138 0.3142 0.283 B
RC 0.305 0.2534 0.2944 0.287 0.2474 B

SVM 0.3114 0.271 0.3194 0.3069 0.2577 B
DT 0.809 0.5508 0.5014 0.5035 0.5002 A
RF 0.814 0.5679 0.5145 0.5145 0.5127 A

XGB 0.8399 0.5943 0.5487 0.5203 0.5296 A

Table 6.10: Simple approach performance

accuracy ranged between 0.55 and 0.59, and F1 ranged between 0.49 and 0.53.

Method Acc T/V Accuracy Precision Recall F1-score Scott-Knott

DC 0.6333 0.5169 0.8511 0.6333 0.1501 B
NB 0.5807 0.4235 0.7022 0.5448 0.6134 B

KNN 0.9202 0.8021 0.7766 0.7785 0.7775 A
LR 0.6824 0.6035 0.6615 0.6619 0.6617 B
RC 0.305 0.2534 0.2944 0.287 0.2474 B

SVM 0.6781 0.6038 0.6904 0.6754 0.6828 B
DT 0.9264 0.8088 0.7857 0.7903 0.788 A
RF 0.9306 0.8226 0.8076 0.7996 0.8036 A

XGB 0.9371 0.8251 0.8123 0.7922 0.8021 A

Table 6.11: Simple approach tuned performance

When we applied the tuned analysis to assess the performance of the machine learning
methods, Table 6.11 displays that only two clusters were formed. Cluster A comprises
KNN, DT, RF, and XGB, while Cluster B comprises DC, NB, RC, and SVM. Cluster A’s
accuracy ranged between 0.80 and 0.82, with F1 scores falling from 0.78 to 0.80.

The methods within the highest-performing cluster remained unchanged during the
tuned analysis. However, the remaining three clusters from the traditional analysis merged
into a single cluster in the tuned analysis. The methods within Cluster B exhibit an accuracy
of approximately 0.55, and their F1 scores, precision, and recall follow a similar range. It
is meaningful that Cluster A’s accuracy is approximately 1.5 times better than Cluster
B’s.

2-layers Approach

Lastly, we developed a two-layers approach taking advantage of the binary machine
learning classifier performance to decide whether to pay off or not a technical debt in the
first level. Then, in the second layer, apply a method to decide when to make the payment
only for cases where the first layer returns the decision for payment.

In the first layer, we apply the DT method with the values of the same hyperparameters
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used to infer either pay or not. If the prediction is 6 (Never), the method returns 6. Otherwise,
it goes to the second layer. We chose DT because it is in the best-performing cluster (see
Table 6.5), is more sophisticated than KNN, and takes much less training time than RF
and XGB. In addition, we applied the SK analyses to cluster A of the Pay or Not label and
the Simple Approach. The Pay or Not label is in Cluster A, and the Simple Approach is in
Cluster B.

Moving on to the second layer, we applied one of the nine methods (including DT) to
the data, excluding the instances predicted as Never in the first layer. This subset of data
was utilized to predict the remaining five labels, indicating when to pay off the debt.

Method Acc T/V Accuracy Precision Recall F1-score Scott-Knott

DC 0.1728 0.166 0.167 0.1667 0.1557 C
NB 0.2251 0.1615 0.37 0.2008 0.1289 B

KNN 0.8181 0.5519 0.4899 0.4905 0.4889 A
LR 0.3253 0.2912 0.3102 0.3108 0.2798 B
RC 0.3046 0.2527 0.2902 0.2836 0.2452 B

SVM 0.3163 0.3069 0.3407 0.3255 0.2952 B
DT 0.7768 0.5176 0.4691 0.4775 0.4704 A
RF 0.8268 0.5916 0.5403 0.5302 0.5336 A

XGB 0.8395 0.576 0.5256 0.5063 0.5131 A

Table 6.12: 2-layers approach performance

Table 6.12 presents the performance results of the two-layers approach using traditional
analysis. The findings reveal that the most effective methods for prioritizing when to pay
off a technical debt item are KNN, RF, and XGB, which are classified under Cluster A. The
performance of Cluster A methods surpasses that of the "random" DC method in Cluster
C by approximately five times. Cluster A’s accuracy ranged between 0.55 and 0.59, with F1
scores falling within the range of 0.49 to 0.53.

Method Acc T/V Accuracy Precision Recall F1-score Scott-Knott

DC 0.6353 0.4791 0.0798 0.6067 0.1411 C
NB 0.5833 0.4127 0.7148 0.5385 0.6138 B

KNN 0.9234 0.8033 0.7763 0.7809 0.7786 A
LR 0.6816 0.6037 0.6617 0.662 0.6618 B
RC 0.6613 0.5854 0.6505 0.6506 0.653 B

SVM 0.6781 0.6116 0.6778 0.6697 0.6737 A
DT 0.905 0.7963 0.7756 0.7857 0.7805 A
RF 0.9326 0.8252 0.813 0.7966 0.8047 A

XGB 0.9372 0.8247 0.8131 0.7912 0.802 A

Table 6.13: 2-layers approach tuned performance

Table 6.13 provides the results obtained from the tuned performance analysis. The
outcomes are categorized into three clusters. Cluster A (consisting of KNN, SVM, DT, RF,
and XGB) demonstrated accuracy reaching 0.82, with F1 scores falling within 0.80.
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Comparing the tuned analysis to the traditional analysis, we observe that the SVM
method changed from Cluster B to Cluster A. Even though its accuracy is lower than other
cluster methods, the precision, recall, and F1-score caused the method to change cluster.
The mean of accuracies of algorithms within Cluster A was approximately 1.5 times better
than the DC method in Cluster C, and their F1 scores mean were approximately five times
better.

6.2.4 RQ2.3: Which are the best Machine Learning algorithms to

prioritize technical debt?

Based on the results presented in the tables, we can conclude that KNN, DT, RF, and
XGB are the best-performing methods for prioritizing the payment of technical debt
items. Additionally, DT and RF consistently demonstrate superior performance across all
approaches when determining when to make the payment.

Hence, DT and RF are the most effective machine learning algorithms for technical debt
prioritization. Although their performance may vary depending on the chosen approach
and the number of response classes and technical debt types, they consistently belong to
the best-performing cluster and outperform random choices significantly.

6.3 Discussion of the Results

In this section, we discuss the findings presented in the previous section, which aimed
to evaluate the effectiveness of well-known machine learning methods in determining
whether and when a technical debt item should be paid off in real software projects.

We evaluated nine machine learning methods for the classification task of determining
whether a TDI should be paid off. The results indicate that KNN, DT, RF, and XGB are
suitable for this task and can assist in making payment decisions regarding technical debt
items in real-world software projects.

Regarding predicting when a technical debt item should be paid off, we evaluated the
nine machine learning methods using four approaches: the 3-classes approach, the most
common TD types approach, the simple approach, and the 2-layers approach. Additionally,
we performed two types of performance analysis: traditional and tuned.

The 3-classes approach, while reducing the granularity of the payment values, achieved
high accuracy values of approximately 0.7 and precision, recall, and F1 scores of 0.65 in
traditional analysis. On the other hand, in the tuned analysis, all methods are in the same
cluster; even the XGB is almost 10% better for accuracy than the DC (random choice). The
traditional analysis revealed that KNN, DT, RF, and XGB could effectively determine the
priority of TDIs as high, medium, or low. However, for tuned analysis, all methods are
similarly efficient, implying that any method, including a random choice, results in the
same value.

The most common TD types approach focused on the dataset’s best-represented
technical debt types. The methods in the best-performing group attained an accuracy
of around 0.58 and an F1-score of 0.53 in the traditional analysis and accuracy and an
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F1-score of 0.76 in the tuned analysis. As in the 3-classes approach, KNN, DT, RF, and XGB
emerged as the best-performing methods, with XGB demonstrating high performance in
the traditional analysis.

The simple approach preserved the data on technical debt items of all types and
maintained the full granularity of the response scale indicating when the item should be
paid. The highest-performing machine learning methods in this approach achieved an
average accuracy of 0.57 (0.81 in the tuned analysis), average precision of 0.51 (0.8 in the
tuned analysis), and average recall of 0.51 (0.76 in the tuned analysis). Once again, KNN,
DT, RF, and XGB stood out as the best performers, outperforming random choices by a
factor of five.

The 2-layers approach takes advantage of the high performance of DT in classifying
non-payment technical debt items (answer "Never") in the first (binary) approach. It then
applies another machine learning method to differentiate among the remaining five classes.
The best-performing cluster achieved an average accuracy of 0.56 and an F1-score of 0.5,
which improved to 0.77 accuracy and 0.78 F1-score in the tuned analysis. Despite its greater
complexity and additional computational effort, the 2-layers approach yielded results very
close to the simple approach, suggesting that the added complexity may need to be more
worthwhile.

Analyzing the machine learning method results allows us to conclude that at least KNN,
DT, RF, and XGF can assist in prioritizing technical debt in determining whether it should
be paid off and when with the highest accuracy, precision, recall, and F1 score. Moreover,
cluster analysis demonstrates that high-performance methods consistently outperform a
method that employs random choices.

6.4 Implications for Researchers and Practitioners

Our findings provide a foundation for future research to enhance machine learning
methods and parameters, enabling even more precise determination of whether and when
a technical debt item should be paid off. These technical debt prioritization methods
developed in our study could also be applied in other domains that rely on prioritization,
such as management research involving decision-making. Additionally, our approaches can
be customized to specific contexts, enhanced through pre-processing data preparation steps,
or integrated into existing technical debt management frameworks. These routes present
promising opportunities for further exploration and development in this field.

For practitioners, our results can offer valuable support in the decision-making process
regarding TDI payments. Improved prioritization can help avoid unnecessary payments,
leading to enhanced development speed. Furthermore, optimizing the task of technical
debt payment enables tackling the most critical items first, which have the most significant
impact on code quality and future software development.
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6.5 Threats to Validity

This study took careful measures to mitigate potential biases and misinterpretations.
Below, we outline the steps we took to reduce threats to validity, discuss the remaining
threats, and their potential impact on result interpretation.

Construct validity: To enhance construct validity, we conducted a pilot study with
developers and improved the survey tool based on their feedback. However, the accuracy
of responses could still be a concern. Practitioners looking to adopt our approaches should
consider collecting their data to train models in their specific context. Using SonarQube as
a tool for identifying technical debt items poses a potential threat, as it may not detect all
types of technical debt. Other tools or additional data sources could be explored to address
this limitation. We assumed equidistance between the labels to calculate the tuned metrics
but we didn’t validate this hypothesis.

External validity: Our dataset included a diverse set of projects, developers, and TDIs,
which increases the generalizability of our findings. However, the generalization to non-
public software projects and other programming languages may be limited. Replication
studies in different settings, including commercial projects and other programming lan-
guages, would help enhance external validity.

Internal validity: The selection of independent variables could introduce a threat if
they do not truly relate to the most appropriate payment time for technical debt items.
We mitigated this using a comprehensive set of source code metrics widely used in the
literature. However, omitting project and lifecycle metrics could present a potential threat.
The non-uniform distribution of collected data was addressed through oversampling
techniques to normalize the distribution while retaining data.

Reliability: We provide a research package4 containing the dataset and a GitHub
repository5 containing the data preparation and ML model training and evaluation scripts
to replicate the results with minimum effort.

To ensure reliability and facilitate replication, we provide a research package6 contain-
ing the dataset and a GitHub repository7 with data preparation, machine learning model
training, and evaluation scripts. Researchers can replicate our results easily using these
resources.

While we tried to mitigate threats to validity, we must consider these limitations when
interpreting and applying our findings. Future research should explore alternative tools,
consider additional data sources, replicate the study in different contexts, and validate the
approaches using independent datasets.

4 https://zenodo.org/record/7709535
5 https://github.com/diogojpina/td-ml-prioritization
6 https://zenodo.org/record/7709535
7 https://github.com/diogojpina/td-ml-prioritization
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6.6 Conclusion and Future Work

In this study, we developed technical debt prioritization methods using well-known
machine learning algorithms to determine whether a technical debt item should be paid
off and when the payment should be made. We collected data through a survey from 276
developers working on 207 Java public projects hosted on GitHub. Each survey respondent
provided their opinion on when each item should be paid off, selecting from six response
options.

Using the survey data and 27 source code metrics as features, we trained machine
learning methods using a training-validation-test strategy. We evaluated various methods,
including DC, NB, KNN, LR, RC, SVM, DT, RF, and XGB, to classify whether and when to
pay off a technical debt item.

To determine whether to pay off a TDI, KNN, DT, RF, and XGB consistently achieved
the highest performance, with an average accuracy of around 0.79. This performance
was significantly better than a random choice, indicating that these methods effectively
prioritize whether to pay off a TDI.

Regarding when to pay off a TDI, we applied four different approaches: 3-classes,
common TD types, simple, and 2-layers. We evaluated the methods using both tradi-
tional and tuned analysis. Across all approaches, KNN, DT, RF, and XGB had the highest
performance.

As we increase the number of labels or do not apply restrictions to the data, the
performance of the methods decreases from an average accuracy of 0.7 to 0.57 in the
traditional analysis and from 0.87 to 0.81 in the tuned analysis. These results show that using
traditional analysis machine learning methods has good results compared to a random
choice; however, it does not perform close to 90%, being efficient but ineffective. For the
tuned analysis, KNN, DT, RF, and XGB methods proved to be efficient and effective.

The results indicate that the selected machine learning methods exceeded a random
choice in prioritizing technical debt items across all approaches. However, future research
should expand the dataset to include other programming languages and incorporate
commercial software projects. Additionally, exploring alternative technical debt iden-
tification tools such as CAST and Squore could uncover new types of code technical
debt. Investigating other types of technical debt, such as architectural and self-admitted
debt, would also be valuable. Lastly, advanced artificial intelligence techniques, like deep
learning, could be explored for prioritization.

By considering these directions for future research, we can further refine the technical
debt prioritization methods and extend their applicability to a broader range of software
projects and technical debt types.
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Chapter 7

Conclusions

Although there are several works on technical debt prioritization in the literature,
this is an open topic and needs more effort to make feasible prioritization in a more
comprehensive and automated way. It would allow making-decision on which technical
debt items to be paid off and in which order in an easy and integrated way into software
development environments.

In this work, we perform two main studies that help to close the technical debt prioriti-
zation gaps. The first is a qualitative study to understand software developers’ criteria for
prioritizing technical debt items. The second is a quantitative study to develop machine
learning methods to prioritize whether a technical debt item should be paid and when to
pay.

In addition to the two major studies, we also performed a systematic literature mapping
to find studies that directly or indirectly addressed the topic of technical debt prioritization.
We also created a tool to mine software projects on GitHub and analyzed them in Sonar
Qube to identify technical debt items.

7.1 Summary of Findings

In this section, we will revisit the research questions of this thesis to bring the main
findings.

The first research question and its subquestions are:

• RQ1. How do developers prioritize technical debt?

– RQ1.1. How do developers decide whether a code technical debt item should
or should not be paid off?

– RQ1.2 How do developers decide when a code technical debt item should be
paid off?

The developers used a variety of criteria to prioritize whether a technical debt should
be paid off and when. Depending on the situation, they had several motivations when
deciding to pay off a technical debt item or not. We grouped these criteria into three
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super-categories to express when technical debt should not be paid off and two to express
when an item should be paid off.

Every time a developer decided to pay off the technical debt, he wanted to make that
soon: immediately, as soon as possible, or in the next release. However, it needs to be
clarified from the data if this decision is technical or personal feeling based.

They also used distinct criteria for each priority level. When developers choose the
same criterion in different cases, they use the same priority level or a neighbor one. There
are only two code exceptions to that assertion, as there was more variety in developers’
answers related to these criteria.

In addition, we found that each software project needs a specific set of rules to identify
technical debt items that are relevant to the project. For most of the never answer, devel-
opers explained they were using their pattern resulting in a technical debt item in Sonar
Qube.

Finally, we presented a framework to prioritize technical debt items based on the
decision criteria of the respondents.

• RQ2. How to prioritize the payment of technical debt automatically?

– RQ2.1. How effective are ML models for deciding whether or not a technical
debt item should be paid?

– RQ2.2. How effective are ML models for deciding when a technical debt item
should be paid?

– RQ2.3. Which are the best Machine Learning algorithms to prioritize technical
debt?

We tested nine well-known machine learning methods over 27 features to build models
to prioritize whether a technical debt item should be paid off. We found KNN, DT, RF, and
XGB achieved the highest performance, averaging 0.86 for accuracy, 0.92 for precision,
and 0.86 for recall. These results indicate that methods can be used to decide about pay or
not a technical debt item.

We also tested the same nine machine learning methods over same 27 features to
build models to prioritize when a technical debt item should be paid off. We applied four
approaches: 3-classes, most common technical debt types, simple, and 2-layers, described
in section 6.2.2. We assessed the performance of the methods using a traditional analysis
with accuracy, precision, and recall around 0.85 for 3-classes and most common TD types
and more than 0.80 for simple and 2-layers approach. We performed the tuned analysis and
the metric results were around 0.95. KNN and RF achieved high-performance results in all
four approaches. DT and XGB also achieved high performance for most of them.

Finally, KNN and RF are always in the cluster of methods that achieved the best
performance for deciding whether and when a technical debt item should be paid. Also,
DT and XGB are also presented in the best performance cluster for most of the approaches
tested.
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7.2 Future Work

For the technical debt prioritization criteria study, the main improvement is increasing
the number of software projects and developers to cover more project kinds (industrial
projects, distinct programming languages, and development paradigms, for instance) and
types of technical debt (architectural and testing, for example).

Further research for the machine learning study should add other programming lan-
guages besides Java and include industrial software projects. They also could use other
technical debt identification tools to find new types of technical debt not identified by
Sonar Qube. Another possibility is adding other types of technical debt. Besides that, other
artificial intelligence methods, such as deep learning, could be investigated to prioritize
technical debt.

The Sonarlizer Xplorer tool could add new source code repositories integration, such as
GitLab, BitBucket, and Source Forge. The mining tool also could collect other metrics and
data related to the software project, such as commits and releases. In addition, Sonarlizer
could add other code analysis tools to provide new code metrics and types of technical
debt.





91

References

[Abad and Ruhe 2015] Zahra Shakeri Hossein Abad and Guenther Ruhe. “Using real
options to manage technical debt in requirements engineering”. In: Requirements

Engineering Conference (RE), 2015 IEEE 23rd International. IEEE. 2015, pp. 230–235
(cit. on pp. 29, 31, 33, 34).

[Akbarinasaji 2015] Shirin Akbarinasaji. “Toward measuring defect debt and de-
veloping a recommender system for their prioritization”. In: Proceedings of the

13th International Doctoral Symposium on Empirical Software Engineering. 2015,
pp. 15–20 (cit. on pp. 29–32, 34, 35).

[Albarak and Bahsoon 2018] MashelAlbarak and Rami Bahsoon. “Prioritizing tech-
nical debt in database normalization using portfolio theory and data quality
metrics”. In: Proceedings of the 2018 International Conference on Technical Debt.
2018, pp. 31–40 (cit. on pp. 31, 32, 34).

[Albuquerque et al. 2022] Danyllo Albuquerque et al. “Comprehending the use of
intelligent techniques to support technical debt management”. In: Proceedings of

the International Conference on Technical Debt. 2022, pp. 21–30 (cit. on p. 29).

[Aldaeej and Seaman 2018] Abdullah Aldaeej and Carolyn Seaman. “From lasagna to
spaghetti: a decision model to manage defect debt”. In: 2018 IEEE/ACM International

Conference on Technical Debt (TechDebt). IEEE. 2018, pp. 67–71 (cit. on pp. 31, 33,
34).

[Alfayez and Boehm 2019] Reem Alfayez and Barry Boehm. “Technical debt prioriti-
zation: a search-based approach”. In: 2019 IEEE 19th International Conference on

Software Quality, Reliability and Security (QRS). IEEE. 2019, pp. 434–445 (cit. on
pp. 31, 32, 34).

[Alfayez, Winn, et al. 2023] Reem Alfayez, Robert Winn, Wesam Alwehaibi, Elaine
Venson, and Barry Boehm. “How sonarqube-identified technical debt is prior-
itized: an exploratory case study”. Information and Software Technology (2023),
p. 107147 (cit. on pp. 29, 30).

[R. d. Almeida 2019] Rodrigo de Almeida. “Business-driven technical debt prioritiza-
tion”. In: 2019 IEEE International Conference on Software Maintenance and Evolution

(ICSME). IEEE. 2019, pp. 605–609 (cit. on pp. 30, 31).



92

REFERENCES

[R. d. Almeida et al. 2018] Rodrigo de Almeida, Uirá Kulesza, Christoph Treude,
Aliandro Lima, et al. “Aligning technical debt prioritization with business ob-
jectives: a multiple-case study”. In: 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE. 2018, pp. 655–664 (cit. on pp. 29–31).

[R. R. d. Almeida et al. 2019] Rodrigo Rebouças de Almeida, Christoph Treude, and
Uirá Kulesza. “Tracy: a business-driven technical debt prioritization framework”.
In: 2019 IEEE International Conference on Software Maintenance and Evolution

(ICSME). IEEE. 2019, pp. 181–185 (cit. on pp. 30, 31).

[Aniche 2012] M Aniche. Repodriller. 2012. url: https://github.com/mauricioaniche/
repodriller (cit. on p. 45).

[Mauricio Aniche et al. 2020] Mauricio Aniche, Erick Maziero, Rafael Durelli, and
Vinicius Durelli. “The effectiveness of supervised machine learning algorithms
in predicting software refactoring”. IEEE Transactions on Software Engineering

(2020) (cit. on pp. 4, 71, 73).

[Araujo et al. 2011] Joao Eduardo M Araujo, Silvio Souza, and Marco Tulio Valente.
“Study on the relevance of the warnings reported by java bug-finding tools”. IET

software 5.4 (2011), pp. 366–374 (cit. on p. 45).

[Ayewah et al. 2008] Nathaniel Ayewah, William Pugh, David Hovemeyer, J David
Morgenthaler, and John Penix. “Using static analysis to find bugs”. IEEE software

25.5 (2008), pp. 22–29 (cit. on p. 45).

[Barstow 1988] David Barstow. “Artificial intelligence and software engineering”.
In: Exploring artificial intelligence. Elsevier, 1988, pp. 641–670 (cit. on p. 2).

[Becker et al. 2018] Christoph Becker, Ruzanna Chitchyan, Stefanie Betz, and Cur-
tis McCord. “Trade-off decisions across time in technical debt management: a
systematic literature review”. In: Proceedings of the 2018 International Conference

on Technical Debt. ACM. 2018, pp. 85–94 (cit. on pp. 29, 30, 38).

[Bergstra and Bengio 2012] James Bergstra and Yoshua Bengio. “Random search
for hyper-parameter optimization.” Journal of machine learning research 13.2 (2012)
(cit. on p. 73).

[Brauer et al. 2017] Johannes Brauer, Matthias Saft, Reinhold Plosch, and Christian
Korner. “Improving object-oriented design quality: a portfolio-and measurement-
based approach”. In: Proceedings of the 27th International Workshop on Software

Measurement and 12th International Conference on Software Process and Product

Measurement. ACM. 2017, pp. 244–254 (cit. on pp. 29–32, 34, 35).

[Brown et al. 2010] Nanette Brown et al. “Managing technical debt in software-reliant
systems”. In: Proceedings of the FSE/SDP workshop on Future of software engineering

research. ACM. 2010, pp. 47–52 (cit. on pp. 8, 9).

https://github.com/mauricioaniche/repodriller
https://github.com/mauricioaniche/repodriller


REFERENCES

93

[Campbell and Papapetrou 2013] G Ann Campbell and Patroklos P Papapetrou.
SonarQube in action. Manning Publications Co., 2013 (cit. on p. 45).

[Charalampidou et al. 2017] Sofia Charalampidou, Apostolos Ampatzoglou,
Alexander Chatzigeorgiou, and Paris Avgeriou. “Assessing code smell interest
probability: a case study”. In: Proceedings of the XP2017 Scientific Workshops. ACM.
2017, p. 5 (cit. on pp. 22, 29, 31, 32, 34, 35).

[Chaturvedi and V. Singh 2012] Krishna Kumar Chaturvedi and VB Singh. “De-
termining bug severity using machine learning techniques”. In: 2012 CSI sixth

international conference on software engineering (CONSEG). IEEE. 2012, pp. 1–6
(cit. on p. 71).

[Chatzigeorgiou et al. 2015] Alexander Chatzigeorgiou, Apostolos Ampatzoglou,
Areti Ampatzoglou, and Theodoros Amanatidis. “Estimating the breaking point
for technical debt”. In: Managing Technical Debt (MTD), 2015 IEEE 7th International

Workshop on. IEEE. 2015, pp. 53–56 (cit. on pp. 29, 34).

[Choudhary and P. Singh 2016] Aabha Choudhary and Paramvir Singh. “Minimiz-
ing refactoring effort through prioritization of classes based on historical, archi-
tectural and code smell information”. CEUR Workshop Proceedings 1771 (2016),
pp. 76–79 (cit. on pp. 29, 31, 32, 34).

[Codabux and Williams 2016] Zadia Codabux and Byron J Williams. “Technical
debt prioritization using predictive analytics”. In: Software Engineering Companion

(ICSE-C), IEEE/ACM International Conference on. IEEE. 2016, pp. 704–706 (cit. on
pp. 29–32, 34).

[Costa et al. 2022] Alex Costa, Anna Marques, Ismayle Santos, and Rossana An-
drade. “Towards a process to manage usability technical debts”. In: Proceedings

of the XXXVI Brazilian Symposium on Software Engineering. 2022, pp. 241–246
(cit. on pp. 29, 30).

[Cunnigham 1992] Ward Cunnigham. Vídeo de Ward Cunnigham sobre dívida téc-

nica, transcrito por June Kim e Lawrence Wang. http : / / c2 . com / cgi / wiki ?
WardExplainsDebtMetaphor. Acesso em 10 de Novembro de 2018. 1992 (cit. on
p. 7).

[Curtis et al. 2012] Bill Curtis, Jay Sappidi, and Alexandra Szynkarski. “Estimating
the size, cost, and types of technical debt”. In: Proceedings of the Third International

Workshop on Managing Technical Debt. IEEE Press. 2012, pp. 49–53 (cit. on pp. 10,
25).

[Da Silva et al. 2022] Filipe Da Silva, Ewertton De Souza, Rodrigo De Almeida, and
Wylliams Santos. “Business-driven technical debt prioritization: a replication
study”. In: 2022 17th Iberian Conference on Information Systems and Technologies

(CISTI). IEEE. 2022, pp. 1–6 (cit. on p. 31).

http://c2.com/cgi/wiki?WardExplainsDebtMetaphor
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor


94

REFERENCES

[Daneva et al. 2013] Maya Daneva et al. “Agile requirements prioritization in large-
scale outsourced system projects: an empirical study”. Journal of systems and

software 86.5 (2013), pp. 1333–1353 (cit. on p. 29).

[De Almeida et al. 2021] Rodrigo De Almeida, Rafael Ribeiro, Christoph Treude, and
Uirá Kulesza. “Business-driven technical debt prioritization: an industrial case
study”. In: 2021 IEEE ACM International Conference on Technical Debt (TechDebt).
IEEE. 2021, pp. 74–83 (cit. on p. 31).

[De Toledo et al. 2022] Saulo Soares De Toledo, Antonio Martini, Phu Nguyen, and
Dag Sjoberg. “Accumulation and prioritization of architectural debt in three
companies migrating to microservices”. IEEE Access 10 (2022), pp. 37422–37445
(cit. on pp. 29, 30).

[Delamaro et al. 2007] Márcio Eduardo Delamaro, José Carlos Maldonado, and
Mário Jino. Introdução ao teste de software. Editora Campus, 2007 (cit. on p. 13).

[Detofeno et al. 2022] Thober Detofeno, Andreia Malucelli, and Sheila Reinehr.
“Priortd: a method for prioritization technical debt”. In: Proceedings of the XXXVI

Brazilian Symposium on Software Engineering. 2022, pp. 230–240 (cit. on pp. 29,
31).

[El Naqa and Murphy 2015] Issam El Naqa and Martin J Murphy. “What is machine
learning?” In: machine learning in radiation oncology. Springer, 2015, pp. 3–11
(cit. on p. 2).

[Ernst et al. 2015] Neil A Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L Nord,
and Ian Gorton. “Measure it? manage it? ignore it? software practitioners and
technical debt”. In: Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering. ACM. 2015, pp. 50–60 (cit. on pp. 8, 29, 30).

[Falessi, Shaw, et al. 2013] Davide Falessi, Michele A Shaw, Forrest Shull, Kathleen
Mullen, and Mark Stein Keymind. “Practical considerations, challenges, and
requirements of tool-support for managing technical debt”. In: Managing Technical

Debt (MTD), 2013 4th International Workshop on. IEEE. 2013, pp. 16–19 (cit. on
pp. 29, 30).

[Falessi and Voegele 2015] Davide Falessi and Alexander Voegele. “Validating and
prioritizing quality rules for managing technical debt: an industrial case study”.
In: Managing Technical Debt (MTD), 2015 IEEE 7th International Workshop on. IEEE.
2015, pp. 41–48 (cit. on pp. 2, 29, 31, 32, 34, 35).

[Fernández-Sánchez, Díaz, et al. 2014] Carlos Fernández-Sánchez, Jessica Díaz,
Jennifer Pérez, and Juan Garbajosa. “Guiding flexibility investment in agile
architecting”. In: System Sciences (HICSS), 2014 47th Hawaii International Confer-

ence on. IEEE. 2014, pp. 4807–4816 (cit. on pp. 29, 31, 33, 34).



REFERENCES

95

[Fernández-Sánchez, Garbajosa, et al. 2015] Carlos Fernández-Sánchez, Juan
Garbajosa, and Agustin Yague. “A framework to aid in decision making for
technical debt management”. In: Managing Technical Debt (MTD), 2015 IEEE 7th

International Workshop on. IEEE. 2015, pp. 69–76 (cit. on pp. 29–32).

[Fontana et al. 2015] Francesca Arcelli Fontana, Vincenzo Ferme, Marco Zanoni, and
Riccardo Roveda. “Towards a prioritization of code debt: a code smell intensity
index”. In: Managing Technical Debt (MTD), 2015 IEEE 7th International Workshop

on. IEEE. 2015, pp. 16–24 (cit. on pp. 29, 30, 33–35).

[Fowler 1999] Martin Fowler. Refactoring: improving the design of existing code. Pear-
son Education India, 1999 (cit. on p. 12).

[Fowler 2009] Martin Fowler. Technical Debt Quadrant. http://martinfowler.com/
bliki/TechnicalDebtQuadrant.html. Acesso em 10 Novembro de 2018. 2009 (cit. on
pp. viii, 9).

[A. Freire n.d.] Alexandre Freire. Dívida Técnica: precisando de crédito? Ou “Como

evitar que o cobrador bata na sua porta. http://ccsl.ime.usp.br/pt-br/divida-tecnica-
precisando-de-credito-ou-como-evitar-que-o-cobrador-bata-na-sua-porta.
Acesso em 10 de Novembro de 2018 (cit. on p. 19).

[S. Freire, Rios, Gutierrez, et al. 2020] Sávio Freire, Nicolli Rios, Boris Gutierrez,
et al. “Surveying software practitioners on technical debt payment practices and
reasons for not paying off debt items”. In: Proceedings of the Evaluation and

Assessment in Software Engineering. 2020, pp. 210–219 (cit. on pp. 30, 31).

[S. Freire, Rios, Pérez, Castellanos, et al. 2023] Sávio Freire, Nicolli Rios, Boris
Pérez, Camilo Castellanos, et al. “Software practitioners’ point of view on
technical debt payment”. Journal of Systems and Software 196 (2023), p. 111554
(cit. on pp. 29, 30).

[S. Freire, Rios, Pérez, Torres, et al. 2021] Sávio Freire, Nicolli Rios, Boris Pérez,
Darío Torres, et al. “How do technical debt payment practices relate to the effects
of the presence of debt items in software projects?” In: 2021 IEEE International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE. 2021,
pp. 605–609 (cit. on pp. 29, 30).

[Garousi and Mäntylä 2016] Vahid Garousi and Mika V Mäntylä. “When and what
to automate in software testing? a multi-vocal literature review”. Information and

Software Technology 76 (2016), pp. 92–117 (cit. on pp. 29, 30).

[Gomes et al. 2011] RebekaGomes et al. “An extraction method to collect data on defects
and effort evolution in a constantly modified system”. In: Proceedings of the 2nd

Workshop on Managing Technical Debt. ACM. 2011, pp. 27–30 (cit. on pp. 29, 30).

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://ccsl.ime.usp.br/pt-br/divida-tecnica-precisando-de-credito-ou-como-evitar-que-o-cobrador-bata-na-sua-porta
http://ccsl.ime.usp.br/pt-br/divida-tecnica-precisando-de-credito-ou-como-evitar-que-o-cobrador-bata-na-sua-porta


96

REFERENCES

[Gousios 2013] Georgios Gousios. “The GHTorrent dataset and tool suite”. In: Pro-

ceedings of the 10th Working Conference on Mining Software Repositories. MSR. San
Francisco, CA, May 2013, pp. 233–236. url: http://www.gousios.gr/bibliography/
G13.html (cit. on p. 45).

[Yuepu Guo and Seaman 2011] Yuepu Guo and Carolyn Seaman. “A portfolio ap-
proach to technical debt management”. In: Proceedings of the 2nd Workshop on

Managing Technical Debt. ACM. 2011, pp. 31–34 (cit. on pp. 29, 31–34).

[Yuepu Guo, Seaman, et al. 2011] Yuepu Guo, Carolyn Seaman, et al. “Tracking tech-
nical debt—an exploratory case study”. In: Software Maintenance (ICSM), 2011 27th

IEEE International Conference on. IEEE. 2011, pp. 528–531 (cit. on p. 22).

[Yuepu Guo, Rodrigo Oliveira Spínola, et al. 2016] Yuepu Guo, Rodrigo Oliveira
Spínola, and Carolyn Saman. “Exploring the costs of technical debt management–
a case study”. Empirical Software Engineering 21.1 (2016), pp. 159–182 (cit. on
pp. 1, 8, 10).

[Haendler et al. 2017] Thorsten Haendler, Stefan Sobernig, and Mark Strembeck.
“Towards triaging code-smell candidates via runtime scenarios and method-call
dependencies”. In: Proceedings of the XP2017 Scientific Workshops. ACM. 2017, p. 8
(cit. on pp. 29, 34).

[Harman 2012] Mark Harman. “The role of artificial intelligence in software engineer-
ing”. In: 2012 First International Workshop on Realizing AI Synergies in Software

Engineering (RAISE). IEEE. 2012, pp. 1–6 (cit. on p. 2).

[Hormann et al. 2017] Peter Hormann et al. “Making ict decommissioning sexy!: chal-
lenges and opportunities”. Australian Journal of Telecommunications and the Digital

Economy 5.2 (2017), p. 151 (cit. on pp. 29–31).

[Hunt and Hunt 2013] John Hunt and John Hunt. “Gang of four design patterns”.
Scala Design Patterns: Patterns for Practical Reuse and Design (2013), pp. 135–136
(cit. on p. 13).

[Jayalakshmi and Santhakumaran 2011] T Jayalakshmi and A Santhakumaran.
“Statistical normalization and back propagation for classification”. International

Journal of Computer Theory and Engineering 3.1 (2011), pp. 1793–8201 (cit. on
p. 73).

[Jelihovschi et al. 2014] Enio G Jelihovschi, José Cláudio Faria, and Ivan Bezerra Al-
laman. “Scottknott: a package for performing the scott-knott clustering algorithm
in r”. TEMA (São Carlos) 15 (2014), pp. 3–17 (cit. on p. 76).

[Katin et al. 2022] Andrej Katin, Valentina Lenarduzzi, Davide Taibi, and Vladimir
Mandic. “On the technical debt prioritization and cost estimation with sonarqube
tool”. In: Proceedings on 18th International Conference on Industrial Systems–IS’20:

Industrial Innovation in Digital Age. Springer. 2022, pp. 302–309 (cit. on p. 31).

http://www.gousios.gr/bibliography/G13.html
http://www.gousios.gr/bibliography/G13.html


REFERENCES

97

[Kniberg 2013] Henrik Kniberg. Good and Bad Technical Debt (and how TDD helps).
https://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt.
Acesso em 10 de Novembro de 2018. 2013 (cit. on pp. viii, 20).

[Kouros et al. 2019] Panagiotis Kouros et al. “Jcaliper: search-based technical debt
management”. In: Proceedings of the 34th ACM/SIGAPP Symposium on applied

computing. 2019, pp. 1721–1730 (cit. on pp. 31, 32, 34).

[Kruchten et al. 2012] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. “Techni-
cal debt: from metaphor to theory and practice”. Ieee software 29.6 (2012), pp. 18–21
(cit. on p. 2).

[Leppanen et al. 2015] Marko Leppanen et al. “Decision-making framework for refac-
toring”. In: Managing Technical Debt (MTD), 2015 IEEE 7th International Workshop

on. IEEE. 2015, pp. 61–68 (cit. on pp. 29–32, 38, 60).

[Letouzey 2012a] Jean-Louis Letouzey. The SQALE Method - Definition Document. 2012
(cit. on pp. viii, 15–20).

[Letouzey 2012b] Jean-Louis Letouzey. “The sqale method for evaluating technical
debt”. In: Proceedings of the Third International Workshop on Managing Technical

Debt. IEEE Press. 2012, pp. 31–36 (cit. on p. 14).

[B. d. Lima et al. 2022] Bruno de Lima, Rogerio Garcia, and Danilo Eler. “Toward
prioritization of self-admitted technical debt: an approach to support decision to
payment”. Software Quality Journal 30.3 (2022), pp. 729–755 (cit. on p. 31).

[Managing Technical Debt 2016] Managing Technical Debt. https://mtd2016dagstuhl.
org/. Acesso em 10 Novembro de 2018. Dagstuhl Seminar, 2016 (cit. on p. 8).

[Mandic et al. 2021] Vladimir Mandic et al. “Technical and nontechnical prioritization
schema for technical debt: voice of td-experienced practitioners”. IEEE Software

38.6 (2021), pp. 50–58 (cit. on pp. 29, 31).

[Mann and Whitney 1947] Henry B Mann and Donald R Whitney. “On a test of
whether one of two random variables is stochastically larger than the other”. The

annals of mathematical statistics (1947), pp. 50–60 (cit. on p. 69).

[Martini and Bosch 2015a] Antonio Martini and Jan Bosch. “The danger of architec-
tural technical debt: contagious debt and vicious circles”. In: Software Architecture

(WICSA), 2015 12th Working IEEE/IFIP Conference on. IEEE. 2015, pp. 1–10 (cit. on
pp. 29, 30).

[Martini and Bosch 2015b] Antonio Martini and Jan Bosch. “Towards prioritizing
architecture technical debt: information needs of architects and product owners”.
In: Software Engineering and Advanced Applications (SEAA), 2015 41st Euromicro

Conference on. IEEE. 2015, pp. 422–429 (cit. on pp. 29, 30).

https://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt
https://mtd2016dagstuhl.org/
https://mtd2016dagstuhl.org/


98

REFERENCES

[Martini and Bosch 2016] Antonio Martini and Jan Bosch. “An empirically devel-
oped method to aid decisions on architectural technical debt refactoring: ana-
condebt”. In: Software Engineering Companion (ICSE-C), IEEE/ACM International

Conference on. IEEE. 2016, pp. 31–40 (cit. on pp. 29–32).

[Martini and Bosch 2017] Antonio Martini and Jan Bosch. “On the interest of ar-
chitectural technical debt: uncovering the contagious debt phenomenon”. Journal

of Software: Evolution and Process 29.10 (2017) (cit. on pp. 29–32).

[Martini, Bosch, and Chaudron 2015] Antonio Martini, Jan Bosch, and Michel
Chaudron. “Investigating architectural technical debt accumulation and refac-
toring over time: a multiple-case study”. Information and Software Technology 67
(2015), pp. 237–253 (cit. on pp. 29–32).

[McConnell 2007] Steve McConnell. Managing Technical Debt. http://www.construx.
com/10x_Software_Development/Technical_Debt. Acesso em 10 Novembro de
2018. 2007 (cit. on p. 8).

[Mensah et al. 2018] Solomon Mensah, Jacky Keung, Jeffery Svajlenko, Kwabena Ebo
Bennin, and Qing Mi. “On the value of a prioritization scheme for resolving self-
admitted technical debt”. Journal of Systems and Software 135 (2018), pp. 37–54
(cit. on pp. 29, 31, 34).

[Microsoft GHCrawler n.d.] Microsoft GHCrawler. url: https://github.com/Microsoft/
ghcrawler (cit. on p. 45).

[Mitchell et al. 1997] Tom M Mitchell et al. “Machine learning” (1997) (cit. on p. 2).

[Mohammed et al. 2020] Roweida Mohammed, Jumanah Rawashdeh, and Malak Ab-
dullah. “Machine learning with oversampling and undersampling techniques:
overview study and experimental results”. In: 2020 11th international conference on

information and communication systems (ICICS). IEEE. 2020, pp. 243–248 (cit. on
p. 71).

[Mohan et al. 2016] Michael Mohan, Des Greer, and Paul McMullan. “Technical
debt reduction using search based automated refactoring”. Journal of Systems and

Software 120 (2016), pp. 183–194 (cit. on pp. 29–32, 34, 35).

[Morgenthaler et al. 2012] J DavidMorgenthaler, MishaGridnev, Raluca Sauciuc,
and Sanjay Bhansali. “Searching for build debt: experiences managing technical
debt at google”. In: Proceedings of the Third International Workshop on Managing

Technical Debt. IEEE Press. 2012, pp. 1–6 (cit. on pp. 29, 30).

[Pérez et al. 2021] Boris Pérez et al. “Technical debt payment and prevention through
the lenses of software architects”. Information and Software Technology 140 (2021),
p. 106692 (cit. on p. 29).

http://www.construx.com/10x_Software_Development/Technical_Debt
http://www.construx.com/10x_Software_Development/Technical_Debt
https://github.com/Microsoft/ghcrawler
https://github.com/Microsoft/ghcrawler


REFERENCES

99

[Petersen et al. 2008] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael
Mattsson. “Systematic mapping studies in software engineering.” In: EASE. Vol. 8.
2008, pp. 68–77 (cit. on pp. viii, 25, 26, 28, 37).

[Pina and Goldman 2016] Diogo Pina and Alfredo Goldman. “Gerenciando dívida
técnica: estado atual e novas propostas em métodos de medida”. In: Dissertação

(Mestrado). USP. 2016 (cit. on p. 1).

[Pina, Goldman, and Seaman 2022] Diogo Pina, Alfredo Goldman, and Carolyn Sea-
man. “Sonarlizer xplorer: a tool to mine github projects and identify technical debt
items using sonarqube”. In: 2022 IEEE/ACM International Conference on Technical

Debt (TechDebt). IEEE. 2022, pp. 71–75 (cit. on pp. 63, 64).

[Pina, Goldman, and Tonin 2021] Diogo Pina, AlfredoGoldman, and Graziela Tonin.
“Technical debt prioritization: taxonomy, methods results, and practical character-
istics”. In: 2021 47th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA). IEEE. 2021, pp. 206–213 (cit. on p. 25).

[Pina, Seaman, et al. 2022] Diogo Pina, Carolyn Seaman, and Alfredo Goldman.
“Technical debt prioritization: a developer’s perspective”. In: 2022 IEEE/ACM Inter-

national Conference on Technical Debt (TechDebt). IEEE. 2022, pp. 46–55 (cit. on
pp. 29, 30).

[Plösch et al. 2018] Reinhold Plösch, Johannes Brauer, Matthias Saft, and Christian
Korner. “Design debt prioritization: a design best practice-based approach”. In:
2018 IEEE/ACM International Conference on Technical Debt (TechDebt). IEEE. 2018,
pp. 95–104 (cit. on pp. 29–32, 34).

[Razali, Wah, et al. 2011] Nornadiah Mohd Razali, Yap Bee Wah, et al. “Power com-
parisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling
tests”. Journal of statistical modeling and analytics 2.1 (2011), pp. 21–33 (cit. on
p. 69).

[Refaeilzadeh et al. 2009] Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Cross-
validation.” Encyclopedia of database systems 5 (2009), pp. 532–538 (cit. on p. 73).

[L. Ribeiro et al. 2016] L Ribeiro, M Farias, M Mendonça, and R Spínola. “Deci-
sion criteria for the payment of technical debt in software projects: a systematic
mapping study.” In: ICEIS (1). 2016, pp. 572–579 (cit. on p. 60).

[L. F. Ribeiro et al. 2017] Leilane Ferreira Ribeiro, Nicolli Souza Rios Alves, Manoel
Gomes de Mendonca Neto, and Rodrigo Oliveira Spínola. “A strategy based on
multiple decision criteria to support technical debt management”. In: Software

Engineering and Advanced Applications (SEAA), 2017 43rd Euromicro Conference

on. IEEE. 2017, pp. 334–341 (cit. on pp. 29, 31, 34).



100

REFERENCES

[Riegel and Doerr 2015] Norman Riegel and Joerg Doerr. “A systematic literature
review of requirements prioritization criteria”. In: International Working Confer-

ence on Requirements Engineering: Foundation for Software Quality. Springer. 2015,
pp. 300–317 (cit. on pp. 29, 30, 60).

[Schmid 2013] Klaus Schmid. “A formal approach to technical debt decision making”.
In: Proceedings of the 9th international ACM Sigsoft conference on Quality of software

architectures. ACM. 2013, pp. 153–162 (cit. on pp. 29, 30, 34).

[Seaman and Yuepo Guo 2011] Carolyn Seaman and YuepoGuo. “Measuring and mon-
itoring technical debt”. Advances in Computers 82.6810 (2011), pp. 25–46 (cit. on
pp. viii, 1, 7, 8, 10, 11, 15).

[Seaman, Yuepu Guo, et al. 2012] Carolyn Seaman, Yuepu Guo, et al. “Using technical
debt data in decision making: potential decision approaches”. In: Proceedings of

the Third International Workshop on Managing Technical Debt. IEEE Press. 2012,
pp. 45–48 (cit. on pp. 22, 29, 30).

[Shapiro and Wilk 1965] Samuel Sanford Shapiro and Martin B Wilk. “An analysis of
variance test for normality (complete samples)”. Biometrika 52.3/4 (1965), pp. 591–
611 (cit. on p. 69).

[Skourletopoulos, Chatzimisios, et al. 2015] Georgios Skourletopoulos, Periklis
Chatzimisios, et al. “A fluctuation-based modelling approach to quantification of
the technical debt on mobile cloud-based service level”. In: Globecom Workshops

(GC Wkshps), 2015 IEEE. IEEE. 2015, pp. 1–6 (cit. on pp. 29, 30, 34, 35).

[Skourletopoulos, Mavromoustakis, et al. 2016] Georgios Skourletopoulos, Con-
standinos Mavromoustakis, et al. “Quantifying and evaluating the technical
debt on mobile cloud-based service level”. In: Communications (ICC), 2016 IEEE

International Conference on. IEEE. 2016, pp. 1–7 (cit. on pp. 29, 31, 34).

[Snipes et al. 2012] Will Snipes, Brian Robinson, Yuepu Guo, and Carolyn Seaman.
“Defining the decision factors for managing defects: a technical debt perspective”.
In: Managing Technical Debt (MTD), 2012 Third International Workshop on. IEEE.
2012, pp. 54–60 (cit. on pp. 29, 31, 34).

[M. Stochel et al. 2022] Marek Stochel, Piotr Cholda, and Mariusz Wawrowski.
“Adopting devops paradigm in technical debt prioritization and mitigation”. In:
2022 48th Euromicro Conference on Software Engineering and Advanced Applications

(SEAA). IEEE. 2022, pp. 306–313 (cit. on pp. 29, 30).

[M. G. Stochel, Cholda, et al. 2020] Marek G Stochel, Piotr Cholda, and Mariusz R
Wawrowski. “Continuous debt valuation approach (codva) for technical debt
prioritization”. In: 2020 46th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA). IEEE. 2020, pp. 362–366 (cit. on pp. 30, 31).



REFERENCES

101

[M. G. Stochel, Wawrowski, et al. 2022] Marek G Stochel, Mariusz Wawrowski,
and Piotr Cholda. “Technical debt prioritization in telecommunication appli-
cations: why the actual refactoring deviates from the plan and how to remediate
it? case study in the covid era”. Applied Sciences 12.22 (2022), p. 11347 (cit. on
p. 31).

[Stol et al. 2016] K Stol, P Ralph, and B Fitzgerald. “Grounded theory in software
engineering research: a critical review and guidelines”. In: ICSE. 2016, pp. 120–131
(cit. on p. 52).

[Strauss and Corbin 1994] A Strauss and J Corbin. “Grounded theory methodology:
an overview.” (1994) (cit. on p. 52).

[Anselm Strauss and Juliet Corbin 1998] Anselm Strauss and Juliet Corbin. Basics

of Qualitative Research: Techniques and Procedures for Developing Grounded Theory.
Sage 2nd Ed, 1998 (cit. on pp. 52, 57).

[Tornhill 2018] Adam Tornhill. “Prioritize technical debt in large-scale systems
using codescene”. In: Proceedings of the 2018 International Conference on Technical

Debt. 2018, pp. 59–60 (cit. on pp. 31, 32, 34).

[Tsintzira et al. 2020] Angeliki-Agathi Tsintzira, Elvira-Maria Arvanitou, Aposto-
los Ampatzoglou, and Alexander Chatzigeorgiou. “Applying machine learning
in technical debt management: future opportunities and challenges”. In: Quality

of Information and Communications Technology: 13th International Conference,

QUATIC 2020, Faro, Portugal, September 9–11, 2020, Proceedings 13. Springer. 2020,
pp. 53–67 (cit. on pp. 29, 30).

[Tsoukalas, Mittas, et al. 2021] Dimitrios Tsoukalas, Nikolaos Mittas, et al. “Ma-
chine learning for technical debt identification”. IEEE Transactions on Software

Engineering (2021) (cit. on pp. 4, 38, 71, 73).

[Tsoukalas, Siavvas, et al. 2023] Dimitrios Tsoukalas, Miltiadis Siavvas, Dionysios
Kehagias, Apostolos Ampatzoglou, and Alexander Chatzigeorgiou. “A prac-
tical approach for technical debt prioritization based on class-level forecasting”.
Journal of Software: Evolution and Process (2023), e2564 (cit. on p. 31).

[Wiese et al. 2022] Marion Wiese, Paula Rachow, Matthias Riebisch, and Julian
Schwarze. “Preventing technical debt with the tap framework for technical debt
aware management”. Information and Software Technology 148 (2022), p. 106926
(cit. on pp. 29–31).

[Yang and Shami 2020] Li Yang and Abdallah Shami. “On hyperparameter optimiza-
tion of machine learning algorithms: theory and practice”. Neurocomputing 415
(2020), pp. 295–316 (cit. on pp. 71, 73).



102

REFERENCES

[Yli-Huumo et al. 2016] Jesse Yli-Huumo, Andrey Maglyas, Kari Smolander, Johan
Haller, and Hannu Törnroos. “Developing processes to increase technical debt
visibility and manageability–an action research study in industry”. In: Interna-

tional Conference on Product-Focused Software Process Improvement. Springer. 2016,
pp. 368–378 (cit. on pp. 29–31, 34, 35).

[Zazworka, Izurieta, et al. 2014] Nico Zazworka, Clemente Izurieta, et al. “Com-
paring four approaches for technical debt identification”. Software Quality Journal

22.3 (2014), pp. 403–426 (cit. on pp. 10, 12).

[Zazworka and Seaman 2013] Nico Zazworka and Carolyn Seaman. Identifying and

Managing Technical Debt. http://www.slideshare.net/zazworka/identifying-and-
managing-technical-debt. Acesso em 10 de Novembro de 2018. 2013 (cit. on pp. 11,
13).

[Zazworka, Seaman, and Shull 2011] Nico Zazworka, Carolyn Seaman, and Forrest
Shull. “Prioritizing design debt investment opportunities”. In: Proceedings of the

2nd Workshop on Managing Technical Debt. ACM. 2011, pp. 39–42 (cit. on pp. 29–31,
33, 34).

[Zazworka, Rodrigo O Spínola, et al. 2013] Nico Zazworka, Rodrigo O Spínola, An-
tonio Vetro, Forrest Shull, and Carolyn Seaman. “A case study on effectively
identifying technical debt”. In: Proceedings of the 17th International Conference on

Evaluation and Assessment in Software Engineering. ACM. 2013, pp. 42–47 (cit. on
p. 10).

http://www.slideshare.net/zazworka/identifying-and-managing-technical-debt
http://www.slideshare.net/zazworka/identifying-and-managing-technical-debt

	Introduction
	Motivation
	Research Problem
	Research Questions
	Goals
	General Goals
	Specific Goals

	Contributions
	For Researchers
	For Practitioners

	Thesis Structure

	Background
	The Technical Debt Metaphor
	Technical Debt Classification
	Technical Debt Properties
	Technical Debt Management
	Technical Debt Identification
	Technical Debt Measure
	Technical Debt Monitor

	Technical Debt Prioritization
	Chapter Summary

	Systematic Mapping Review on Technical Debt Prioritization
	Research Methodology
	Conduct Search
	Screening of Papers
	Data Extraction and Mapping Process
	Classification Schema

	Mapping Review Results
	RQ1: What methods and techniques were proposed to prioritize technical debt?
	First Level
	Second Level
	RQ2: What results do technical debt prioritization methods provide?
	RQ3: What are the characteristics of the technical debt prioritization methods?

	Discussion of Findings
	Threats to Validity
	Mapping Conclusion
	Related Work for Technical Debt Prioritization Criteria Study
	Related Work for Technical Debt Prioritization using Machine Learning

	Sonarlizer Xplorer and InteraSurveyTD
	Sonarlizer Xplorer
	Use Cases
	Architecture, Technologies, and Implementation
	GitHub Xplorer
	Sonarlizer
	Results
	Related Tools
	Future Enhancements
	License

	InteraSurveyTD
	Conclusion

	Technical Debt Prioritization Criteria
	Research Method
	Data Collection
	Data Analysis

	Results
	Open Coding
	Axial Coding
	Selective Coding

	Discussion of the Results
	Implications for Researchers and Practitioners
	Threats to Validity

	Conclusions and Future Work

	Technical Debt Prioritization using Machine Learning
	Methodology
	Data Collection
	Data Preparation
	Exploratory Analysis
	Model Building

	Results
	RQ2.1: How effective are ML models for deciding whether or not a technical debt item should be paid?
	RQ2.2: How effective are ML models for deciding when a technical debt item should be paid?
	3-Classes Approach
	RQ2.3: Which are the best Machine Learning algorithms to prioritize technical debt?

	Discussion of the Results
	Implications for Researchers and Practitioners
	Threats to Validity
	Conclusion and Future Work

	Conclusions
	Summary of Findings
	Future Work

	References

