• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2013.tde-11032014-153552
Documento
Autor
Nombre completo
Joel Edu Sanchez Castro
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2013
Director
Tribunal
Hashimoto, Ronaldo Fumio (Presidente)
Barrera, Junior
Sussner, Peter
Título en portugués
Decomposição sequencial a partir da sup-representação de W-operadores
Palabras clave en portugués
Base de um W-Operador
Imagens binárias
Morfologia matemática
Sup-Decomposição
W-operadores
Resumen en portugués
Os W-operadores são operadores invariantes por translação e localmente definidos dentro de uma janela W. Devido a sua grande utilidade em análise de imagens, estes operadores foram extensamente pesquisados, sendo que uma abordagem para o seu estudo é a partir da Morfologia Matemática. Uma propriedade interessante de W-operadores é que eles possuem uma sup-decomposição, ou seja, um W-operador pode ser decomposto em termos de uma família de operadores sup-geradores que, por sua vez, são parametrizados por elementos da base desse $W$-operador. No entanto, a sup-decomposição tem uma estrutura intrinsecamente paralela que não permite uma implementação eficiente em máquinas de processamento sequencial. Em um trabalho publicado em 2001, Hashimoto e Barrera formalizaram o problema de transformar a sup-decomposição em decomposições puramente sequenciais como um problema de encontrar soluções discretas de uma equação. Neste texto, estendemos o trabalho desenvolvido por eles. Estudamos e exploramos as propriedades matemáticas do problema, e desenvolvemos estratégias heurísticas para encontrar uma decomposição sequencial de um $W$-operador a partir de sua base que seja eficiente ao ser executado.
Título en inglés
Sequential decomposition from Sup-Representation of W-operators
Palabras clave en inglés
Binary images
Mathematical Morphology
Sup-Decomposition
W-Operator basis
W-operators
Resumen en inglés
W-operators are defined as operators which are translation invariant and locally defined within a finite window W. Due to their great contribution to image processing, these operators have been widely researched and used, specially in Mathematical Morphology. An interesting property of W-operators is that they have a sup-decomposition in terms of a family of sup-generating operators, that are parameterized by their basis. However, the sup-decomposition has a parallel structure that is not efficient in sequential machines. In a paper published in 2001, Hashimoto and Barrera formalized the problem of transforming sup-decompositions into purely sequential decompositions as a problem of finding discrete solutions of an equation. In this work, we extend Hashimoto and Barrera's approach. We study and explore mathematical properties of this problem and we elaborate heuristic strategies to find a sequential decomposition of a $W$-operator from its basis that can be executed efficiently.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2014-03-25
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.