• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.45.2015.tde-09112015-104805
Documento
Autor
Nombre completo
Marcos Eduardo Bolelli Broinizi
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2015
Director
Tribunal
Ferreira, João Eduardo (Presidente)
Araújo, Luciano Vieira de
Cesar Junior, Roberto Marcondes
Cristo, Marco Antonio Pinheiro de
Silva, Altigran Soares da
Título en portugués
Ordenação evolutiva de anúncios em publicidade computacional
Palabras clave en portugués
Análise de componentes principais
Análise exploratória de dados
Programação genética
Publicidade computacional
Publicidade contextualizada
Publicidade digital
Publicidade online
Resumen en portugués
Otimizar simultaneamente os interesses dos usuários, anunciantes e publicadores é um grande desafio na área de publicidade computacional. Mais precisamente, a ordenação de anúncios, ou ad ranking, desempenha um papel central nesse desafio. Por outro lado, nem mesmo as melhores fórmulas ou algoritmos de ordenação são capazes de manter seu status por um longo tempo em um ambiente que está em constante mudança. Neste trabalho, apresentamos uma análise orientada a dados que mostra a importância de combinar diferentes dimensões de publicidade computacional por meio de uma abordagem evolutiva para ordenação de anúncios afim de responder a mudanças de forma mais eficaz. Nós avaliamos as dimensões de valor comercial, desempenho histórico de cliques, interesses dos usuários e a similaridade textual entre o anúncio e a página. Nessa avaliação, nós averiguamos o desempenho e a correlação das diferentes dimensões. Como consequência, nós desenvolvemos uma abordagem evolucionária para combinar essas dimensões. Essa abordagem é composta por três partes: um repositório de configurações para facilitar a implantação e avaliação de experimentos de ordenação; um componente evolucionário de avaliação orientado a dados; e um motor de programação genética para evoluir fórmulas de ordenação de anúncios. Nossa abordagem foi implementada com sucesso em um sistema real de publicidade computacional responsável por processar mais de quatorze bilhões de requisições de anúncio por mês. De acordo com nossos resultados, essas dimensões se complementam e nenhuma delas deve ser neglicenciada. Além disso, nós mostramos que a combinação evolucionária dessas dimensões não só é capaz de superar cada uma individualmente, como também conseguiu alcançar melhores resultados do que métodos estáticos de ordenação de anúncios.
Título en inglés
Evolutionary ad ranking for computational advertising
Palabras clave en inglés
Computational advertising
Contextual advertising
Exploratory data analysis
Genetic programming
Learning to advertising
Online advertising
Principal component analysis
Resumen en inglés
Simultaneous optimization of users, advertisers and publishers' interests has been a formidable challenge in online advertising. More concretely, ranking of advertising, or more simply ad ranking, has a central role in this challenge. However, even the best ranking formula or algorithm cannot withstand the ever-changing environment of online advertising for a long time. In this work, we present a data-driven analysis that shows the importance of combining different aspects of online advertising through an evolutionary approach for ad ranking in order to effectively respond to changes. We evaluated aspects ranging from bid values and previous click performance to user behavior and interests, including the textual similarity between ad and page. In this evaluation, we assessed commercial performance along with the correlation between different aspects. Therefore, we proposed an evolutionary approach for combining these aspects. This approach was composed of three parts: a configuration repository to facilitate deployment and evaluation of ranking experiments; an evolutionary data-based evaluation component; and a genetic programming engine to evolve ad ranking formulae. Our approach was successfully implemented in a real online advertising system that processes more than fourteen billion ad requests per month. According to our results, these aspects complement each other and none of them should be neglected. Moreover, we showed that the evolutionary combination of these aspects not only outperformed each of them individually, but was also able to achieve better overall results than static ad ranking methods.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
def_mbroinizi.pdf (6.18 Mbytes)
Fecha de Publicación
2015-11-12
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.