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Abstract

Cell signaling pathways are composed of a set of biochemical reactions that are associated with
signal transmission within the cell and its surroundings. From a computational perspective,
those pathways are identified through statistical analyses on results from biological assays, in
which involved chemical species are quantified. However, once generally it is measured only a
few time points for a fraction of the chemical species, to effectively tackle this problem it is re-
quired to design and simulate functional dynamic models. Recently, a method was introduced
to design functional models, which is based on systematic modifications of an initial model
through the inclusion of biochemical reactions, which in turn were obtained from the interac-
tome repository KEGG. Nevertheless, this method presents some shortcomings that impair the
estimated model; among them are the incompleteness of the information extracted from KEGG,
the absence of rate constants, the usage of sub-optimal search algorithms and an unsatisfac-
tory overfitting penalization. In this work, we propose a new methodology for identification of
cell signaling pathways, based on the aforementioned method, with modifications on the cost
function that aims to solve the unsatisfactory overfitting penalization. To this end, we use a
cost function based on the marginal likelihood of a model producing the observed experimen-
tal data. We show how this new cost function automatically penalize complex models, since
marginal likelihood approaches tend to select models with intermediate complexity. The new
methodology was tested on artificial instances of model selection; for one of the experiments,
we solved the model selection problem as a feature selection problem, walking on the space of
solutions to get a glance of the surface induced by the defined cost function. With this work,
we expect to contribute towards the solution of the cell signaling pathway identification prob-
lem, by providing the implementation of a cost function that can be used in a feature selection
approach.
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Resumo

Vias de sinalização celular são compostas por um conjunto de reações bioqúımicas que estão
associadas à transmissão de informação no interior de uma célula e suas imediações. Em uma
perspectiva computacional, essas vias são identificadas com análises estat́ısticas sobre resulta-
dos de ensaios biológicos que quantificam espécies qúımicas envolvidas. Todavia, como geral-
mente são medidos apenas alguns instantes de tempo de uma fração dessas espécies qúımicas,
para efetivamente abordar esse problema é necessário o desenho e a simulação de modelos
dinâmicos funcionais. Recentemente, foi introduzido um método para desenho de modelos
funcionais baseado em modificações sistemáticas de um modelo inicial através da inclusão de
reações bioqúımicas extráıdas do repositório de interatomas KEGG. Entretanto, este método
apresenta limitações que comprometem o modelo estimado; entre elas, a incompletude das in-
formações extráıdas do KEGG, a ausência de constantes de velocidade, o uso de algoritmos de
busca subótimos e uma penalização insatisfatória para sobre-ajuste. Neste trabalho, propomos
uma nova metodologia para identificação de vias de sinalização celular, baseada no método
citado, com modificações na função de custo que tem como objetivo penalizar complexidade
de modelos satisfatoriamente. Para isso, utilizamos uma função de custo baseada na verossim-
ilhança marginal de um modelo reproduzir dados experimentais. Produzimos experimentos e
mostramos como a nova função de custo automaticamente penaliza modelos mais complexos,
o que é esperado pois abordagens baseadas em verossimilhança marginal tendem a selecionar
modelos de complexidade intermediária. Nossa metodologia foi testada em instancias artifi-
ciais de seleção de modelos; em um dos experimentos, realizamos a seleção de modelos como
um problema de seleção de caracteŕısticas, caminhando pelo espaço de soluções para se obter
ind́ıcios sobre a superf́ıcie induzida pela função de custo sobre o espaço de busca. Com este
trabalho, esperamos contribuir para a elucidação do problema de seleção modelos de vias de
sinalização celular, fornecendo uma função de custo que possa ser utilizada em uma abordagem
baseada em seleção de caracteŕısticas.
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Chapter 1

Introduction

Cell signaling pathways can be seen as cascades of chemical interactions that allow the com-
munication between the cell environment and the cell itself [Lau00]. These pathways are also
able to regulate many cell functions, including DNA replication, cell division and death. We
can observe the functioning of signaling pathways as a mechanism that can conform the cell
behavior with signals that come from the environment conditions in which the cell is placed.
The studies of cell signaling pathways can lead to determining how cells can respond to different
stimuli; for instance, with the studies of signaling pathways activated by a chemical species,
one could determine how an unhealthy cell would respond to a drug containing this species.

It is possible to construct mathematical models to represent a set of chemical reactions and
consequently a signaling pathway. One approach on the modeling of those interactions is based
on the law of mass action [Che+09]. This law proposes that the rate of a chemical reaction is
proportional to the product of reactant concentrations, i.e., we can calculate the concentration
change rate of a species in an interaction by calculating the product of reactant concentrations
up to a multiplying constant. If we consider the set of interactions of a signaling pathway, we
can then come up with a system of ordinary differential equations (ODEs) that can model the
dynamics of the concentration of each chemical species from the pathway [CNS10]. Generally,
those systems are complex and cumbersome, if not impossible, to be solved analytically; there-
fore, we resort on computational tools that apply numerical methods to approximate solutions
of these systems [CNS10].

In this work, we are interested in computational models that can reproduce the behavior
of signaling pathways, comparing simulations generated by those models to experimental mea-
sures, generally based on an analytical technique for protein detection called Western blot.
Figure 1.1 shows a set of interactions as well as parameters of a model of a signaling pathway.
To create computational models that are able to simulate the behavior of a signaling pathway,
two main tasks need to be accomplished, which will be described in the following.

The first task one must complete to create a model is to determine a set of interactions that
will be considered in the ODE system. Searching for pathway maps on the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [KG00] is a good start for this task. The KEGG PATHWAY
Database provides manually drawn diagrams that represent signaling pathways created with
experimental evidences. However, it is possible that there is no pathway on KEGG that is able
to correctly represent the biological experiment of interest; for those situations, it is necessary
to modify the pathway by adding or removing interactions. One might reason that we should
use as many interactions as we can to get a better simulation. Indeed, a model that consider
more reactions is more general and might be able to reproduce different sets of experimental
data. However, being more general may imply in poor or computationally unfeasible models
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Figure 1.1: The above diagram show a hypothesis for a signaling pathway that flows through Raf-MEK-
ERK cascade. Names in bold represent chemical species. Names in italic represent parameters of the
ordinary differential equation of each interaction.Horizontal arrows represent phosphorylation when
directed from left to right or dephosphorylation when directed in the opposite direction. Other arrows
represent positive feedback if they are directed downwards or negative feedback otherwise. Original
image of Marcelo S. Reis et al. (2017) [Rei+17a].

due to two reasons: first, complex models will require more time for a numerical solution
computation, which may be unfeasible due to limited computational resources; and second,
when considering many interactions, we are also considering many parameters (constants of
the differential equations system), and finding appropriate values for them becomes harder as
we increase the number of parameters.

The second task is to find values for all the model parameters. We can highlight two
approaches for this task; one can either fetch values for these constants from the literature, or
find values that make the model output approximate the experimental observations. For the first
approach, repositories such as BioModels [LN+06] can be used; for the second, statistical and
optimization methods are needed. For optimization, it is necessary to define a metric that can
evaluate how close a set of parameters brings the simulation to the experimental observation.
Only after that, it is possible to search for the optimal parameter in the parameter space.
Statistical inference, on the other hand, will usually try to maximize some likelihood function
(find parameters that makes the data more likely to happen) on a more classical approach,
while in a Bayesian approach the goal is usually to compute some posterior distribution for the
model parameters (the probability of parameter values given the experimental observation).

After completing both tasks, however, as we mentioned before, we might still not have
found a pair of model and parameter values that fairly approximates the biological experiment
of interest. That could indicate that the set of chemical interactions chosen for the model is
incomplete or has interactions that are not relevant for the biological experiment. Therefore,
it is desirable to construct a systematic method of modifying the set of chemical reactions of
the model in order to find a good set to represent the signaling pathway.

With the title “A method to modify molecular signaling pathways through examination of
interactome databases” [Wu15], Lulu Wu presented in her masters dissertation a methodology
to systematically modify computational models of signaling pathways to better simulate bio-
logical experiments. Starting with a model that does not approximate well the biological data,
this methodology proposes to include into the model a set of chemical interactions that are
relevant for the biochemical experiment, and consequently approximate the model simulation

2
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to experimental data. This set of interactions is a subset of interactions from a database created
by Wu, joining information from many static maps of signaling pathways available on KEGG.
The choice of this subset can be modeled as a combinatorial optimization problem, the feature
selection problem, in which the search space is the set of all possible subsets of interactions
(features) to be added. The cost function of this problem, however, is not as simple to de-
fine as the search space. Note that points from the search space do not fully define models,
because there is still need to define parameter values to produce a simulation. Therefore, to
analyze the quality of a model, the cost function must take into account the set of values for the
model parameters. As an example, we could define the cost as the minimum distance between
experimental and model measures considering all possibilities of parameter values; however,
unfortunately, finding parameter values that minimizes such cost is a NP-hard problem.

Once this is a hard problem, the method presented by Wu implements a heuristic version of
this cost function; moreover, the algorithm used to traverse the search space is also a heuristics.
The cost function heuristics is based on a simulated annealing procedure that searches for a
set of parameter values trying to minimize (as much as possible) the distance between model
and experimental measures. The best found distance times −1 is then considered as the cost
of the model. The size of the search space is the number of all possible subsets of interactions
to be added, and this number grows exponentially on the number of interactions from the
database. That explains the need of a heuristic to traverse the search space. This heuristic
is based on the greedy algorithm called Sequential Forward Selection (SFS) [Whi71]. The
heuristic implemented by Wu selects a fixed number of interactions from the database and then
creates candidate models by adding to the current solution the respective interaction; then,
after evaluating the cost function for each model, the algorithm moves to the best candidate.

The results presented on Wu’s dissertation show that the method is useful when there
are only a few differences between the starting model and a model that closely approximates
the biological experiment. This limitation could be explained by the intrinsic difficulty of
the problem, which demands fitting complex models with few experimental data; however, we
would like to highlight three aspects of the work that contributes to its limitations. The first
aspect is that the constructed database could be more nearly complete, adding information from
other interactome databases, such as STRING [Szk+10], and also by adding information about
model parameters, i.e. chemical reaction constants, that are available in other databases, e.g.
the SABIO-RK [Wit+11] database. Second, the search algorithm used to modify the models
can only add interactions, therefore, if the algorithm starts with (or add along the search)
a spurious interaction on the topology, then the algorithm will not be able to “regret” that
interaction even though there might be similar solutions without it with a better fit. Third, the
cost function does not include a proper penalization of complex models; the used penalization
is based on a execution time limit on the simulated annealing procedure, implying on a random
penalization for more complex models, which typically demand more execution time. Without
a proper penalization, the algorithm is doomed to select overly complex models that, even with
a good fit to the experimental data, are not likely to reproduce the same experiment conduced
with any kind of perturbation to the biological environment or to the data collected.

Despite the limitations showed in Wu’s work, we consider that the methodology proposed
in their work allows potential advances in model selection since it reduces the problem to a
feature selection problem. The last problem is a famous combinatoric problem, with a great
myriad of optimal and suboptimal algorithms, and also a framework for benchmarking of such
algorithms [Rei+17b]. More than that, in instances where chains of the feature selection search
space describe U shaped curves, it is possible to use algorithms for the U-Curve problem,
including high parallelizable algorithms [Est+20].

3



1.1. OBJECTIVES Chapter 1

For these reasons, in this work, we designed and tested a new method for modifying models
of signaling pathways, based on the work of Wu, and including a possible solution for the third
aspect mentioned on the last paragraph. Although the first and second aspects have potential
of improvements, we did not prioritize them and, because of the complexity of the third aspect,
we decided that including the first and second aspect would excessively enlarge the scope of this
work. Therefore, we limit our work to a few known cell signaling pathways, and we only include
simple algorithms for traversing the search space. To the last aspect, which considers the cost
function, as our major concern in this work, we intend to use Bayesian approaches to rank
models [VG07], based on the likelihood of them to reproduce the observed data. A Bayesian
approach on the definition of the cost function has as an advantage the fact that models are
not ranked using a single value for parameters, instead, the cost considers all possibilities of
parameters, integrating over the parameter space. Another advantage of this cost function is
that, since it is based on likelihoods of the model to reproduce data, overly complex models are
automatically penalized [Bis06].

1.1 Objectives

In this dissertation, we propose a methodology that allows us to solve the problem of identifi-
cation of cell signaling pathways as a feature selection problem, using a Bayesian approach for
the cost function. This cost function should be able to rank models according to the likelihood
of the experimental data being generated by them. Moreover, we built small examples of model
selection of cell signaling pathways, and perform simple searches on their search spaces, using
our chosen cost function, thus enabling us to get a glance on the surface that the chosen cost
function induces over the search space of the model selection problem. To achieve these goals,
we had to accomplish the following tasks:

1. Study state of the art Bayesian algorithms for signaling pathway model se-
lection. We have chosen two methodologies to study: the first, a work of Liepe et
al. [Lie+14], uses an Approximate Bayesian Computation approach for ranking models;
the second, a work of Xu et al. [Xu+10], uses an estimative of the marginal likelihood
p(D|M) to rank models.

2. Implementation and testing of cost functions. We proposed to compare both the
cost functions used by Liepe and Xu. To test the cost function used by Liepe, we used
the software ABC-SMC, and to test the cost function used by Xu, we implemented our
own software, SigNetMS. After the preparation of instances, tested the performance of
both software.

3. Preparation of instances of the identification of cell signaling pathway prob-
lem. After comparing both cost functions, we constructed instances to test our feature
selection approach on identification of cell signaling pathway. These instances were com-
posed by a base model, a small database of candidate reactions, and a set of measurements
to which our candidate models should fit.

4. Traversal of the search space. We performed walks and runs of simple search algo-
rithms over the search space of candidate models for the instances we created. Those
runs provided us information regarding the surface that the used cost function induces
over the search space. This type of information shall be useful for defining new search
algorithms for the identification of cell signaling pathways.

4



Chapter 1 1.2. ORGANIZATION

1.2 Organization

The remainder of this dissertation is organized as the following.

• Chapter 2 (Fundamental Concepts): we will give more details about the identification of
signaling pathway problem. We will show how to obtain experimental data for signaling
pathways and how a chain of chemical reactions can be modeled as a system of differential
equations. We close the chapter presenting briefly state-of-the-art methods of model
ranking and also the Metropolis-Hastings algorithm, which is a useful tool for methods
of model ranking.

• Chapter 3 (Model Selection Methods): we will present two methodologies that are the state
of the art in model selection. Both methods are Bayesian approaches; the first one is based
on Approximate Bayesian Computation, whereas the second one uses Thermodynamic
Integration to create an estimate of the marginal likelihood of a model.

• Chapter 4 (Development of SigNetMS, a Software for Model Ranking): we present the
development of SigNetMS, a software that allows model selection by creating an estimate
of the marginal likelihood of a model. We show the main difficulties in implementing this
software and how we were able to improve its performance.

• Chapter 5 (Experiments and Results): we show two different experiments. The first ex-
periment compares two software for model selection: the first, ABC-SysBio, uses ideas
of Approximate Bayesian Computation to rank models; the second, SigNetMS, is im-
plemented by us and uses ideas of Thermodynamic Integration to create estimates of
Marginal Likelihood. After comparing both, we create an instance of Model Selection
problem in terms of a Feature Selection problem, and then we proceed to use the chosen
software as a score function. With the results of such experiment, we are able to get a
glance of the surface induced by the score function over the search space.

• Chapter 6 (Conclusion): we review all the content presented in the previous chapters.
We also include a list of contributions related to this work. Finally, we include a list of
possible suggestions of future work related to this dissertation.

5



Chapter 2

Fundamental concepts

In this section, we provide concepts that are fundamental to understand the biological and
computational problems, methodologies and results that we will present throughout this work.
We start this chapter by presenting what is a cell signaling pathway and how one can take
measures to identify its activity on the cell. Later, we present how it is possible to represent
chemical interactions as differential equations, and how that allows to model a cell signaling
pathway with a system of ordinary differential equations. Then, we present more formally the
problem we are trying to solve in this work, the identification of cell signaling pathways, as well
as the state of the art methods of model ranking. Finally, we present the basics of posterior
distribution sampling, which is a useful tool when dealing with Bayesian approaches, such as
the ones used here to rank models.

2.1 Cell signaling pathways

Cell signaling pathways are part of the complex cell communication system, and allow the cell
to perceive the conditions of the environment in which it is placed and to change its behaviour
accordingly. Signaling pathways participate in the regulation of many cell functions, including
development, division and cell death [Han17]. The dynamics of a signaling pathway can also
be related to diseases, as in many cases of cancer.

A signal perceived by a cell is often due to signaling molecules that can either come from cells
that are close (including the same cell that produced the signal), as in synapses, or originate
far away and travel long distances in the organism, as in hormones. When a signaling molecule
reaches a cell, it binds to a specific receptor in the membrane, and once that happens, the
receptor triggers a sequence of chemical interactions that can include conformation changes of
proteins, activation or inactivation of proteins, and concentration changes of chemical species in
the cell. Ultimately, this chain of chemical reactions caused by the signal can alter the behavior
of the cell, what is called signal transduction [Lau00].

Once signaling pathways participate in many of the cell functions, and are also related to
diseases, it is important to study those structures in order to get a better understanding of the
cell mechanisms and diseases. One approach on the study of the cell signaling pathways is to
measure the concentration change of proteins and how they interact to produce those changes.

6



Chapter 2 2.2. MEASUREMENTS OF PROTEINS IN CELL SIGNALING PATHWAYS

2.2 Measurements of proteins in cell signaling pathways

Western blot is a laboratory technique that can indicate the amount of a specific protein that
is present in a mixture [TSG79]. This technique shows the presence of a protein in a mixture
by “blotting” a membrane where the molecules of interest are located. We can summarize the
procedure in the following steps: first a mixture containing a sample of cells of interest must
be created; second, proteins from the mixture should be fixed on the blotting membrane; third,
an antibody should bind to the target protein molecules; and finally, a method for highlighting
the bound antibody should be applied. An image of the resulting membrane can then be
analyzed with computer programs to quantify the relative concentration (with respect to some
other protein, usually a control protein that has fairly the same concentration during the whole
experiment) of the protein of interest.

By repeating this procedure in different times it is possible to create time-course observations
of proteins throughout the biological experiment. With this tool, a researcher can choose a
set of relevant proteins from a signaling pathway and gain knowledge about the dynamics of
such chemical species during the experiment. For instance, in a signaling pathway experiment
in which it is desired to understand how the change of concentrations of a species at the
beginning of the pathway changes the concentration of some species at the end of the cascade,
measurements of both are relevant to understand the underlying dynamics. Figure 2.1 presents
an example of time-course Western blot for an experiment where it is desirable to understand
how extracellular signal-regulated kinase (ERK) is activated (phosphorylated) as a function of
levels of Rat sarcoma bound to guanosine triphosphate (Ras-GTP).

Figure 2.1: Figure a shows time-course measurements of ERK, phosphorylated ERK (p-ERK) and
hypoxanthine-guanine phosphoribosyltransferase (HPRT). HPRT is a “loading” protein, that means
that its concentration is fairly the same throughout the experiment, and therefore it is used as a
normalizing factor to total ERK concentration. Figure b shows values of phosphorylated ERK that
are obtained after processing Figure a. Original image of Reis et al. (2017) [Rei+17a].

Those measurements alone do not always provide means for researchers to understand a cell
signaling pathway experiment. However, if we create a computational model for this signaling
pathway that is able to reproduce experimental data, then we might use this model as a
summary of the signaling pathway, which can provide to researchers evidences of the biological
phenomena.

2.3 Dynamic modeling of cell signaling pathways

One approach for modeling cell signaling pathways is to model the dynamics of the concen-
trations of the involved chemical species. This can be accomplished when using the law of

7



2.3. DYNAMIC MODELING OF CELL SIGNALING PATHWAYS Chapter 2

mass action [VV10]. This law states that, in an elementary reaction, the speed (or rate) of
a chemical reaction is proportional to the product of the concentration of all reactants. An
elementary reaction is a reaction in which there is no participation or need of an intermediate
reaction to describe the first in a molecular level. We call the order of a reaction the number
of reactants with changing concentration. Reactions are more commonly from zeroth to third
order [SFH99].

2.3.1 Modeling elementary reaction rates

A first-order reaction is composed of one reactant only. Suppose A is the only reactant and B
is the only product of a reaction, then we can write this reaction as:

A −−→ B. (2.1)

The reaction rate of this reaction, according to the law of mass action, is

k1[A], (2.2)

where k1 is some constant and [A] is the concentration of A. It is important to note that the
constant k1 is a rate coefficient of the reaction and, therefore, it can only assume positive values.

A second-order reaction is composed of two reactants. Suppose C and D are both reactants
and F is the product of a reaction, then we can write this reaction as:

C + D −−→ F. (2.3)

The reaction rate of this reaction is
k2[C][D], (2.4)

where k2 is a (positive) constant and [C] and [D] are the concentrations of C and D, respectively.
Using these two laws to calculate the speed of reactions, we are able to describe how the

concentration of chemical species in a system change through time using differential equations.
To illustrate this and future concepts of this section, we are going to consider a minimal system
composed of a simple enzymatic reaction:

E + S
kf−−⇀↽−−
kr

ES
kcat−−→ E + P, (2.5)

where E is an enzyme, S is a substrate, ES is the enzyme-substrate complex, and P is the
product.

Each arrow in Equation 2.5 represents one elementary reaction, and the labels over or
under arrows represent reaction rate constants. All three reactions can be represented by the
equations:

E + S
kf−−→ ES (2.6a)

ES
kr−−→ E + S (2.6b)

ES
kcat−−→ E + P (2.6c)

and they have, respectively, reaction rates of:

kf [E][S]

kr[ES]

kcat[ES].

(2.7)
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Now, to determine a model of the concentration dynamics for Reaction 2.5, we will write a
system of ordinary differential equations. To do so, we should take each chemical species and
calculate its concentration change rate based on the rate of each reaction that it participates.
For instance, the enzyme E is a reactant on Reaction 2.6a and is also a product on reactions 2.6b
and 2.6c, then we consider that E changes its concentration over time (t) according to the
differential equation:

d[E]

dt
= −kf [E][S] + (kr + kcat)[ES] (2.8)

Note that we are adding reaction rates in which the species is a product and we are subtracting
reaction rates in which the species is a reactant. Repeating this procedure for every other species
of the enzymatic reaction leads to the following system of ordinary differential equations:

d[E]

dt
= −kf [E][S] + (kr + kcat)[ES] (2.9a)

d[S]

dt
= −kf [E][S] + kr[ES] (2.9b)

d[ES]

dt
= kf [E][S]− (kr + kcat)[ES] (2.9c)

d[P]

dt
= kcat[ES]. (2.9d)

2.3.2 Simplification of dynamic models

System 2.9 can be simplified if we apply properties of enzymatic reactions together with alge-
braic simplifications. We will show then how to derive the quasi-steady state Michaelis–Menten
model for enzymatic reactions [MM13]. With the correct assumptions, this model is able to
reproduce the behavior of an enzymatic reaction without considering the intermediate enzyme-
substrate complex, leading to simpler models.

A basic principle we need to apply to our system in order to derive the Michaelis–Menten
model is the principle of mass conservation [Lom70]. This principle is valid if we assume that
the reactions 2.5 are isolated, meaning that the chemicals on these reactions are not involved
in other reactions at the same time. Applying this principle to the enzyme chemical, produces
the following equation:

[E0] = [E] + [ES]. (2.10)

If we apply this equation to the derivative of the concentration of ES, we will get the following
equation:

d[ES]

dt
= kf ([E0]− [ES])[S]− (kr + kcat)[ES]. (2.11)

One more assumption is necessary to derive the simplification. This assumption states
that the concentration of substrate-enzyme complex does not change over time, i.e. d[ES]

dt
= 0,

and it was first proposed in 1925 by Briggs and Haldane [BH25]. Generally, this assumption is
applicable whenever [S]� [E]. If we apply this assumption together with the mass conservation
assumption on the Equation 2.11, we get:

[ES](kr + kcat) = kf ([E0]− [ES])[S],

[ES] =
[E]0[S]

Km + [S]
,

(2.12)

9
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in which Km = kcat+kr
kf

is known as Michaelis constant. Considering this, we can rewrite the

rate of [P] as:
d[P]

dt
= kcat

[E]0[S]

Km + [S]
. (2.13)

And finally, if we apply mass conservation to the substrate, we will get the following equation:

[S0] = [S] + [ES] + [P], (2.14)

then, we can differentiate this equation on t and use the quasi-steady-state assumption (d[ES]
dt

=
0) to obtain:

d[S]

dt
= −d[P]

dt
. (2.15)

Now, with equations 2.13 and 2.15 we are able to reproduce the dynamics of the substrate
and product of the enzymatic reaction. Therefore, using the Michaelis–Menten model, we could
simplify the System2.9 that had four equations and three parameters to a new model that has
only two equations and two parameters (kcat and Km). Figure 2.2 shows a comparison between
the dynamics of the complete and Michaelis–Menten models of enzymatic reactions.
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Figure 2.2: An example of the dynamics produced by two models of enzymatic reactions. The Fig-
ure 2.2(a) presents the dynamics of the model 2.9 and Figure 2.2(b) presents the dynamics of the
Michaelis–Menten simplification to the same model. For this simulations, it is necessary to define
initial concentrations of the chemical species involved, and it is used: 10 molecules/(µm)3 for the
enzyme (E); 100 molecules/(µm)3 is used for the substrate (S); and 0 molecules/(µm)3 is used for
the other species. In addition to this, it is also necessary to define model parameter values, and it
is used: 0.06 (µm)3(molecules∗s)−1 for kf ; 0.1 (s−1) for kr; 0.2 (s−1) for kcat; and, following the
Michalis-Menten model, 5 molecules/(µm)3 is used for Km.

2.4 Identification of cell signaling pathways

To identify a signaling pathway, we need to find the components of a signaling pathway and
how they interact in order to reproduce a cell behavior that has been previously measured
experimentally. The input of this problem is usually a description of the biological experiment,
containing previous information about the signaling pathway, such as known reactions and
parameters, and a set of measurements, commonly Western blot data, which is the only type of
measurement we consider in this work. The output to this problem is then composed of a set of
interactions that are actively controlling the behavior of interest of the cell, and also the set of
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parameter values that should be used on these interactions to create a model that approximates
the experimental observations; it is possible to output a single value for each parameter, as it
was presented in [Wu15], or output information about these values, using a posterior (to the
experimental data) distribution, as it was presented in [Lie+14] and [Xu+10].

Two main tasks must be completed to produce such output. The first task is to find
candidate topologies for the pathway model, i.e. different set of interactions that are relevant
to the pathway of interest. The second task is to rank those models according to their ability
to simulate the pathway, approximating the experimental measurements.

The second task is also known as the model selection problem and even though it is a broad
area, there are works in the literature that treat specifically the problem in a biochemical
context. Solutions to this problem should be able to choose model candidates according to
their ability to reproduce observed data, penalizing overly complex models to avoid overfitting.

One approach on setting the score of a model is to search for the set of parameter values that
make the model measurements the closest to the experimental data, and then define a distance
between these two measurements; then it is possible to use this distance, plus a penalty for
complexity, to create a ranking of the models. Note that a penalty function is needed because
complex and more general models can overfit, producing models that cannot represent the same
signaling pathway with small perturbations to biological experiment. We can write this scoring
function as:

score1(M) = −min{θ∈Θ′⊂Θ}dist(φ(M,θ),D) +R(M), (2.16)

where M is the model, Θ is the parameter space for model M , Θ′ is the subset of the parameter
space where the search for the best parameter values was conduced, D is a list of experiment
measurement (each measurement is a time-course observation of the biological phenomena of
interest), φ is a function that determines the simulated measurement on the model, and R is a
regularization function that penalizes model complexity. This approach was implemented on the
work of Lulu Wu [Wu15], using a simulated annealing procedure to search for parameter values
that minimize the distance between simulation and experiment. The Simulated Annealing
procedure used is available on the software SigNetSim (Signaling Network Simulator), which is
based on the of the work of Chu et al. [CDR99]. However, Wu’s methodology showed limitations
when testing the ability to reconstruct models from experiments, and this could be related to
the used penalization term. In fact, choosing a good regularization function is crucial to the
performance of this methodology.

Another approach to setting the model score is to consider the model parameters as random
variables and then marginalize the probability of the model and parameters to reproduce the
observed data, i.e. estimate (because calculating is usually hard) the marginal probability:

p(D|M) =

∫
Θ

p(D|M,θ)p(θ|M)dθ, (2.17)

where D is the observed data, M is the model and Θ is the parameter space for model M .
The function p(θ|M) is the prior probability function of the parameter θ on model M . The
function p(D|M,θ) is the likelihood of observing the data D when simulating the model M
using parameters θ. Sometimes, however, the likelihood function is unknown or computation-
ally intractable; for these cases, it is possible to use an alternative Bayesian approach, called
Aproximate Bayesian Computation (ABC), to estimate the probability p(M |D) and use it as
a ranking score [Ton+09].

For the first task of identification of signaling pathways we described (the creation of model
candidates), there are not as many works on the literature as there are for the second task.
Commonly, researchers must resort on their own knowledge on the biological experiment and

11



2.5. STATE OF THE ART IN SELECTION OF BIOCHEMICAL MODELS Chapter 2

consult interactome maps available on repositories such as KEGG and BioModels to construct
manually the hypothesis of models for a signaling pathway. That enlightens the importance to
create a methodology that systematically creates candidate models of signaling pathways, as
we propose on this project.

2.5 State of the art in selection of biochemical models

The Bayesian approaches provide the benefits of ranking models with statistical formalism, and
automatically penalizes overly complex models. More than that, through the prior distribution
of the parameters, the researcher is able to input prior knowledge about interactions constants;
this type of information can facilitate the parameter inference of models since it tends to
concentrate the search.

Bayesian approaches consider that model parameters are random variables, instead of fixed
unknown constants. We can argue that this modeling is fair to the reality in biochemical
processes because interactions constants can vary depending on the cell conditions. There-
fore, in a biological experiment in which there might be perturbations to the cell environment,
it should be more adequate to rank models integrating the models score over a probability
space of parameters instead of fitting the model to data using a single point of the parameter
space. We will now present the basic concept of two methods that use this idea for model
selection, the Annealing-Melting Integration (AMI) [VG07] and Approximate Bayesian Com-
putation (ABC) [Ton+09]. We selected those methods after a non exhaustive research on the
literature.

The Annealing-Melting Integration is a method that estimates the integral 2.17 using con-
cepts of thermodynamics. With thermodynamic integration, it is possible to write the logarithm
of this integral as:

ln p(D|M) =

∫ 1

0

Eqβ(θ)[ln p(D|M, θ)]dβ (2.18)

where p(D|M, θ) is the likelihood function (the probability of observing the data D when M is
the correct model, with parameters θ); and Eqβ(θ) is an expectation taken over the probability
space of qβ(θ) ∝ p(D|M,θ)βp(θ|M). The variable β works in the integral as a temperature
term, determining the probability functions qβ(θ), β ∈ [0, 1]; note that when β = 0 then

q0(θ) = p(θ|M), (2.19)

the prior distribution of the parameters; also, and when β = 1 then

q1(θ) =
p(D,θ|M)∫
Θ
p(D,θ|M)

=
p(θ|D,M)p(D|M)

p(D|M)
= p(θ|D,M), (2.20)

the posterior distribution of parameters (demonstration is provided on Chapter 3). Therefore,
the integral 2.18 takes the expected value of the likelihood function of D over a sequence of
probability distributions that is a “bridge of distributions” connecting the prior and posterior
distributions of parameters. Calculating this integral is usually infeasible, hence in practice it
is needed to estimate this integral using samples of a finite number of tempered distributions,
qβ(θ).

As we mentioned before, the likelihood function p(D|M,θ) may be very hard to calculate
if not impossible. For those cases it is possible to use a parameter inference approach that is
likelihood-free, called Approximate Bayesian Computation (ABC). This method has the goal
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of producing a sample of parameters that brings the model simulations close to the observed
data. A generic ABC algorithm starts proposing a candidate parameter θ∗ from a proposal
distribution; then, a simulation, φ(M,θ∗) of the model using the candidate parameters is
produced; if, for some distance function d, it is true that d(φ(M,θ∗),D) < ε, then we accept
θ∗ as part of the sample. If ε is sufficiently small, then the produced samples approximates well
the posterior distribution. To use ABC methods for model selection it is enough to add a model
indicator parameter to the parameter array, then it is possible to extract model distribution
from the accepted parameters.

2.6 Metropolis–Hastings to generate samples

We will show on Chapter 3 that both methods for model selection, based on ABC or using
thermodynamics integration, need to generate samples of probability distributions. Generating
samples of distributions is simple for many well known distributions, however, for some other
distributions this task may not be as simple. Metropolis–Hastings algorithms are capable
of generating a sample that has some probability distribution p, which is called the target
distribution [CG95]. In fact, the method can be used even when it is not possible to access
the target function directly; for those cases, a distribution that is proportional to the target is
necessary.

Being able to generate a sample of a target distribution without accessing the probability
function itself is useful for our applications in Bayesian model ranking. Consider that we
need to create a sample of the parameters posterior distribution p(θ|M,D). Calculating this
probability function is very hard because

p(θ|M,D) =
p(D|θ,M)p(θ|M)

p(D|M)
, (2.21)

and this equation has the term p(D|M), which is only known (through some estimation) at
the end of the model ranking. However, if we can access the likelihood function p(D|θ,M)
and the prior p(θ|M), then we can calculate the product of these two, which is proportional to
the posterior distribution (since p(D|M) is only a constant because it does not depend on θ).
Therefore, using the likelihood and the prior distributions together with a Metropolis–Hastings
algorithm provides a mean to generate a sample of the posterior.

A generic Metropolis–Hastings algorithm that creates a sample of a target distribution p(λ)
proceeds as follows:

1. Choose some starting point λ0 for which p(λ0) is not zero. Also set t = 1.

2. Sample a candidate point λ∗ from a proposal (or jumping) distribution with probability
Jt(λ

∗|λt−1).

3. Calculate the ratio:

r =
p(λ∗)Jt(λ

t−1|λ∗)
p(λt−1)Jt(λ∗|λt−1)

(2.22)

4. With probability min(1, r) set θt = θ∗ and set θt = θt−1 otherwise.

5. Increase t by one and, if not reached limit number of iterations, go back to step 2.
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Note that if the target p(λ) is not available, and rather another function q(λ) = 1
c
p(λ) is

available, then the ratio 2.22 can be calculated as:

r =
p(λ∗)Jt(λ

t−1|λ∗)
p(λt−1)Jt(λ∗|λt−1)

=
(q(λ∗)c)Jt(λ

t−1|λ∗)
(q(λt−1)c)Jt(λ∗|λt−1)

=
q(λ∗)Jt(λ

t−1|λ∗)
q(λt−1)Jt(λ∗|λt−1)

(2.23)

More than that, if the proposal distribution is symmetric (Jt(λa|λb) = Jt(λb|λa) for all λa, λb and
t), the produced algorithm is called Metropolis algorithm and has the ratio r = p(λ∗)/p(λt−1).

Different implementations of the Metropolis–Hastings algorithm are possible. The possible
changes include the choice of starting point, the choice of proposal distributions and number
of iterations. As an example, some algorithms are adaptive in the sense that they can change
the proposal distribution according to the acceptance rate of proposed points [Gel+13]. These
types of algorithms are handy when we are not sure of how spread the proposal distribution
should be: with larger variance, we are likely to stay in a local minima for a longer time,
rejecting most of the proposed jumps; in the other hand, if the proposal distribution has small
variance, then the algorithm needs more time to explore the parameter space.
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Chapter 3

Model selection methods

a
In this chapter, we will define the model selection problem in the context of this work and

will also present two state-of-the-art methodologies that can be used to rank models, both of
them are Bayesian approaches. Those methods create estimates of p(D|M) or p(M |D) and
use these values as model scores.

The first approach is to estimate the marginal likelihood of the data D being reproduced
by a model M , p(D|M). To use this method, it is necessary to define a likelihood func-
tion, p(D|M,θ), and prior distributions of model parameters p(θ|M). The estimation of this
probability is done by taking samples of tempered posteriors (to experimental data) of model
parameters. These tempered posterior distributions construct a bridge of distributions con-
necting the prior and posterior parameter distributions, allowing an estimation of the marginal
likelihood.

Another method is to use Approximate Bayesian Computation. ABC methods are used to
estimate posterior (also to experimental data) distributions of parameters. On this method, a
sequence of populations of parameters is created, and for each generation, the distance between
experimental data and data simulated by the population is decreased, leading to a population
that tends to be closer to a posterior distribution. In our case, we add to θ a model indicator
parameter M, and then we create a sample of p(θ,M |D). If we marginalize this sample, we can
calculate an estimative of the probability p(M |D). ABC methods allow simpler algorithms,
and they also allow selecting models without the need of a likelihood function, although defining
the prior distribution of parameters is still needed.

3.1 Elements of model selection

The model selection problem we consider in this work consists in the selection of a biochemical
model that can best simulate the dynamics of concentrations of chemical species, measured
previously on a biological experiment. The models we consider are mathematically represented
by a system of ordinary differential equations that contains parameters related to reaction rates
and experimental errors. We can list three main entities of this problem: the set of models,
the parameter space of each model, and the biological experimental data. We shall then define
how we represent these entities along this text.

We indicate a model with a random variable that assume natural values, M : Ω → N. We
consider that a model is not only bound to a set of chemical reactions and its mathematical rep-
resentation, but also bound to initial concentrations of chemical species and a prior distribution
of model parameters, which we represent as p(θ|M).
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Once we are using a Bayesian approach, we consider that list of model parameters is a
random vector θ|M : Ω→ Rn

+, where n equals to the number of parameters in M plus one, so
we can also represent one parameter related to experimental error. This parameter represents
the standard deviation of errors in the observation of the experiment. It is important to
note that all parameters are positive, since reaction rates and standard deviations can only be
positive. That is an important information to choose a prior distribution for model parameters.

The experimental data is a vector of values that describe the dynamics of some measurement
made on the biological phenomena of interest. We represent data as D ∈ Rd. As we described
in Section 2.2, these measurements are often produced with Western Blot experiments, and the
values of D usually represent the ratio of concentrations of proteins.

3.2 Model ranking using marginal likelihood

The marginal likelihood of an experiment measurement D being reproduced by a model M ,
p(D|M), can be used as a model ranking metric as it determines which model makes the ex-
perimental observations more likely to happen. Before defining how to calculate the marginal
likelihood, we must define some likelihood function. To understand our chosen likelihood func-
tion p(D|M,θ), we must understand that conditioning the observation to a model and a set
of parameters means that, in the probability space from which D is taken, the model M is
the “real” model and it has the parameter values of θ; i.e. the model M with parameters θ
controls the behavior of the system from which D was observed. Now, after understanding in
which probability space we are, we can assume that:

p(D|M,θ) = pN(~0,Σ)
(φ(M,θ)−D), (3.1)

where φ(M,θ) ∈ Rd is the experimental measurement on the simulation generated by the
model M with parameters θ, and pN(~0,Σ)

(·) is the probability density function of a multivariate
normal random variable with mean ~0 and covariance matrix Σ. Note that we are considering
that simulations of a model are deterministic, as φ is function, and therefore the randomness
of the model arises from observation experimental error. We consider this random error follows
a Gaussian distribution, similarly to Xu et al. and Vyshemirsky et al. [Xu+10; VG07].

As it is done in the work of Xu et al. [Xu+10], we can consider that the observation error
is independent for each time step, therefore we can simplify 3.1 to:

p(D|M,θ) =
d∏
i=1

pN(0,σ2)
(φi(M,θ)−Di). (3.2)

The σ2 used in Equation 3.2 is also a parameter of the model, and as we explained on the
last section, this parameter is incorporated into θ, which means that, for some k ∈ {1, . . . , n},
θk = σ2.

Now that we defined the likelihood function, we can write the marginal likelihood; as this
name suggests, this value comes from the marginalization of the likelihood function over the
parameter space. We can write it as:

p(D|M) =

∫
Θ

p(D|M,θ)p(θ|M)dθ. (3.3)

However, calculating this integral analytically is only possible in very special cases and, usu-
ally, it would depend on knowing models for the distributions associated to these probability
functions, which is generally not possible in our case.
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Even though this integral is very hard to be calculated, there are methods that allow us to
estimate its value. A straightforward method to estimate this integral value is using Importance
Sampling Estimators [NR93]. This method uses the Monte Carlo integral estimation method
that can estimate integrals of the form

∫
g(λ)p(λ)dλ using the estimator:

Î =
m∑
i=1

wig(λi)/
m∑
i=1

wi, (3.4)

where wi = p(λ)/p∗(λ), and p∗(·) is known as the importance sampling function. If we set
λ = θ|M and use the prior (p(θ|M)) or the posterior (p(θ|M,D)) as importance sampling
functions, then we would get respectively the estimators:

1

m

m∑
i=1

p(D|M,θ(i)) (with θ(i) ∼ p(θ|M)),(
1

m

m∑
i=1

p(D|M,θ(i))−1

)−1

(with θ(i) ∼ p(θ|M,D)).

(3.5)

However, as showed by Vyshemirsky et al. [VG07], those estimators might produce very large
variances and may not perform well for biochemical model selection applications. Hence, new
methods with ideas of thermodynamics were proposed. These methods are based on rewriting
the marginal likelihood equation using intermediate distributions of parameters between the
prior and posterior distributions [FP08].

3.2.1 Thermodynamic integration for marginal likelihood

The Thermodynamic Integration is a method that proposes to rewrite the Integral 3.3 using
ideas of thermodynamics, thus providing new estimators for the marginal likelihood. This
method is able to rewrite the marginal likelihood integral in a way that it marginalizes the
likelihood through many intermediate probability spaces of parameters, bridging the prior and
posterior distributions of parameters. These distributions are also called tempered distributions
or power posteriors [FP08].

Given a parameter prior distribution p(θ|M) and a posterior distribution p(θ|D,M), then
we define a power posterior distribution for some β as:

pβ(θ) =
p(D|θ,M)βp(θ|M)

z(β)
, (3.6)

where

z(β) =

∫
Θ

p(D|θ,M)βp(θ|M)dθ. (3.7)

Note that when β = 0, then pβ=0 = p(θ|M), the prior distribution of the parameters; also,
when β = 1, then

pβ=1(θ) =
p(D|θ,M)p(θ|M)

z(β)
=

p(D,θ|M)∫
Θ
p(D,θ|M)dθ

=
p(θ|D,M)p(D|M)

p(D|M)
= p(θ|D,M), (3.8)

the posterior distributions of the parameters. Therefore, if we vary the value of β from 0 to 1 we
can create a path of probability distributions that connect the prior and posterior distributions.
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We will explain now, how this sequence of distributions are applied to calculate the marginal
likelihood.

Consider the derivative of ln z(β).

d

dβ
ln z(β) =

1

z(β)

d

dβ
z(β)

=
1

z(β)

d

dβ

∫
Θ

p(D|θ,M)βp(θ|M)dθ

(using that d
dx
cx = cx ln c)

=
1

z(β)

∫
Θ

p(D|θ,M)βp(θ|M) ln p(D|θ,M)dθ

=

∫
Θ

p(D|θ,M)βp(θ|M)

z(β)
ln p(D|θ,M)dθ

=

∫
Θ

pβ(θ) ln p(D|θ,M)dθ

= Epβ(θ)[ln p(D|θ,M)]. (3.9)

And it is not hard to see that:

z(0) =

∫
Θ

p(θ|M)dθ = 1

z(1) =

∫
Θ

p(D,θ|M)dθ = p(D|M)

(3.10)

Using equations 3.10 and Equality 3.9 we can write that:∫ 1

0

Epβ(θ)[ln p(D|θ,M)]dβ =

∫ 1

0

d

dβ
ln z(β)dβ

=
[

ln z(β)
]∣∣∣∣1

0

= ln p(D|M). (3.11)

Then we have written an expression for the logarithm of the marginal likelihood. This expression
is still hard to be calculated analytically; however, from this equation we will be able to find
estimators for the logarithm of the marginal likelihood, and consequently for the likelihood. To
calculate those estimators, we will need to generate samples for a series of power posteriors of
parameters, in a way that will be explained in the next section.

3.2.2 Estimation of the marginal likelihood

There are multiple approaches on estimating the Integral 3.11; usually, it is necessary to find
samples of pβt(θ|M,D) for a sequence of values of βt that vary from zero to one [Xu+10; VG07;
FP08]. The methods that create such samples can take different approaches on the choice of the
sequence β1 < β2 < . . . < βT , on the Metropolis-Hastings (MH) algorithms used, and finally
on the estimator.

We are now going to show one possible methodology to estimate parameter values. First,
we assume that there is a chosen sequence of β1 < β2 < . . . < βT , so we can explain how to
generate samples of power posterior distributions with these values of β. After that, we will
explain how to choose the sequence of β values and, finally, present two possible estimators for
p(D|M).
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Power posteriors sampling

Given a sequence of β values, the method we present to sample from the power posteriors
has three different steps, and all of them use Metropolis-Hastings algorithms, similarly to
what is done by Xu et al. [Xu+10]. For each of the T β values, the first two phases are run
independently, generating T chains that are samples of the power posteriors. Then, on the
third phase, each chain continues to grow, but not independently, because two random chains
will have their last accepted points swapped. This exchange leads to a mixture of chains of
samples of different power posteriors; this approach is called Populational Markov chain Monte
Carlo (Populational MCMC) [FP08].

The first step of sampling is run independently for each power posterior and we call it
naive burn-in. The Metropolis-Hastings performed on this step is started by taking a sample
from the parameter priors. For each step, the proposal distribution has to generate positive
values and the covariance matrix should be a diagonal covariance matrix, i.e. parameters are
proposed independently. This covariance matrix is updated after every predefined number of
iterations to adapt the proposal distribution according to the current sample. This type of
MCMC algorithm, that updates its rules according to its trace is also called adaptive MCMC
algorithm. This update is performed as proposed in Gelman et al. (2013):

• if the acceptance rate of parameter points in the last iterations is greater than 0.44, then
increase the variance of the jump;

• if the acceptance rate is lower than 0.23, then decrease the variance of the jump.

This rule is a golden rule for Metropolis-Hastings calibration since the work of Roberts et
al. [RGG97]. The rationale behind this rule is that chains generated with small variance tend
to need more steps to cover the space, while chains generated with larger variance tend to reject
more proposed parameters, staying at the same point of the chain for many iterations.

Given that we are taking a sample from a power posterior of parameter βt, the target
function is pβt(θ). Hence, if the current point is θ(t,i), the probability of accepting a proposed
parameter θ∗ ∼ J(t,i)(θ

∗|θ(t,i)), is min(1, r) with

r =
pβt(θ

∗)

pβt(θ
(t,i))

J(t,i)(θ
(t,i)|θ∗)

J(t,i)(θ∗|θ(t,i))
, (3.12)

with J(t,i) being the proposal jump distribution on iteration i on chain of power posterior βt.
Since we do not have direct access to the pt(θ|M,D) distribution, and considering the definition
of power posterior we presented on Equation 3.6, and that pβt(θ) ∝ p(D|M,θ)βtp(θ|M), we
can rewrite this equation as:

r =
p(D|M,θ∗)βt

p(D|M,θ(t,i))βt
p(θ∗|M)

p(θ(t,i)|M)

J(t,i)(θ
(t,i)|θ∗)

J(t,i)(θ∗|θ(t,i))
. (3.13)

After a predetermined number of iterations, we stop the naive burn-in to move to the next
sampling algorithm. By the end of the naive burn-in, we expect to have generated a sample that
nearly approximates a sample of the posterior distribution. However, the sampled points might
still be very correlated. To reduce this correlation and improve the posterior approximation,
we will need the next two steps of sampling. We call the sampling algorithm that follows naive
burn-in as posterior shaped burn-in.

The posterior shaped burn-in has this name because the used proposal distribution has a
covariance matrix similar to an estimate of the covariance of the posterior distribution. To
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create this estimate, we use, for each chain, the current sample of the posterior generated. On
the first iteration of posterior shaped burn-in, we estimate the covariance of the posterior using
the last half points sampled in the naive burn-in (we discard the first half of the chain because
we assume that these points can have very low probability on the posterior distribution). For
the second and further iterations of the posterior shaped burn-in, we estimate the covariance
of the posterior considering the second half of sampled points of the first iterations plus all the
points accepted after that.

The proposal distribution chosen on the posterior shaped burn-in must be multivariate
with a covariance that is similar to the one estimated from the current sample of the posterior,
differently from the naive burn-in, in which pairs of parameters (θi,θj), i, j ∈ {1, . . . , n}, i 6= j,
were sampled independently. Similarly to the first sampling phase, we also sample each chain
(for each βt value) separately, and we also scale the covariance matrix according to the number
of accepted parameters (as the golden rule for MCMC suggests). The probability of accepting a
proposed parameter on this sampling phase is the same as it was on the first phase, as described
by Equation 3.13.

By the end of the posterior shaped burn-in it is expected that the created sample is more
likely to be a sample of the posterior distribution. However, there might still exist big corre-
lations between sampled points of the same chain. To solve this problem, we need the third
and last sampling phase: the Populational Markov chain Monte Carlo. This algorithm
continues the chains for each value of βt, and after each step, a couple of chains have their last
sampled value exchanged. This procedure mixes the chains and reduces correlation of sampled
points.

At the beginning of the Populational MCMC phase, we will have T chains of sampled
parameters, containing the selected parameters of the first and second steps. For each of these
chains there is a covariance matrix that was being used to determine the covariance of the
proposal distribution of the respective power posterior. On the third phase, we fix all of these
matrices and, for each iteration, two steps are performed. The first step is to iterate all chains,
using the respective fixed covariance matrix, identically to how it was done in the posterior
shaped burn-in. The second step consists in choosing two different chains βi and βj, with
i 6= j and i, j ∈ {1, . . . , T}, and exchange the last sampled parameters of these chains with a
certain probability. The value of i is chosen randomly and uniformly over {1, . . . , T}. Once
i is chosen, the second chain, of power posterior βj, is chosen following a Discrete Laplacian
distribution given i, with probability function p(j|i) ∝ e|i−j|/2. This algorithm, as we described,
was proposed by Friel et al. (2008) and can be summarized in the following steps:

1. For each power posterior βt, t ∈ {1, . . . , T}, update the t-th chain using MCMC with a
proposal distribution that has the same covariance matrix used on the last iteration of
the same chain, on the last sampling phase.

2. Choose uniformly i from {1, . . . , T}. Then, choose j with probability density function
p(j|i) ∝ e|i−j|/2. Finally, swap the last sampled points of the chains of power posteriors
βi and βj, θ

(i,k) and θ(j,k), with probability min{1, r}, where:

r =
pβi
(
θ(j,k)

)
pβi (θ(i,k))

pβj
(
θ(i,k)

)
pβj (θ(j,k))

p(j|i)
p(i|j)

(3.14)

which can be simplified to:

r =

[
p
(
D|θ(j,k)

)
p (D|θ(i,k))

]βi [
p
(
D|θ(i,k)

)
p (D|θ(j,k))

]βj
p(j|i)
p(i|j)

(3.15)
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After finishing the third step of sampling, the samples obtained on the first two phases are
discarded and only the samples from the last phase are used to estimate the marginal likelihood.

Estimators of the marginal likelihood

The sampling procedure explained on the Section 3.2.2 produces samples of the power poste-
riors pβ1(θ), . . . , pβT (θ), and these samples can be used to estimate logarithm of the marginal
likelihood:

ln p(D|M) =

∫ 1

0

Epβ(θ)[ln p(D|θ,M)]dβ. (3.16)

This can be achieved using both numerical integration or creating an unbiased estimator. The
choice of either approach of estimation will imply in a method for choosing the sequence of
power posteriors β1, . . . , βT .

The method proposed by Friel et al. uses a numerical integration method to estimate the
Integral 3.16 [FP08]. Given that T power posteriors, 0 = β1 < β2 < . . . < βT = 1, were selected
and samples of its respective distributions posteriors were generated, then using trapezoidal
rule over the β values allows us to estimate the integral as:

log p(D|M) ≈
T−1∑
t=0

(βt+1 − βt)
Epβt+1

(θ)[log p(D|M,θ)] + Epβt (θ)[log p(D|M,θ)]

2
(3.17)

and if the sample of power posterior of βt has Lt parameter points, then we can rewrite this
equation as:

log p(D|M) ≈
T−1∑
t=0

(βt+1 − βt)
1

Lt+1

∑Lt+1

i=1 log p(D|M,θ(t+1,i)) + 1
Lt

∑Lt
i=1 log p(D|M,θ(t,i))

2

(3.18)
According to the work of Friel et al. (2008), a good power posterior schedule for β1, . . . , βT
that can be used in this approach is:

βt =

(
t− 1

T − 1

)c
, (3.19)

with t ∈ 1, . . . , T ; with better results achieved when T is between 20 and 100 and c is between
3 and 5.

Another method, proposed by Xu et al. [Xu+10], considers that β can be treated as a
random variable, and therefore we can rewrite Integral 3.16 as:

Ep(β)

[Epβ(θ)[ln p(D|θ,M)]

p(β)

]
(3.20)

The author uses this ideas to derive the following estimator. First, the interval [0, 1] is dis-
cretized into S − 1 disjoint intervals ∆βi = [ti+1, ti] such that

∑S−1
i=1 (ti+1 − ti) = 1. Then,

for each interval ∆βi, Ti value of β are taken randomly from the uniform distribution on the
interval [ti+1, ti]. Finally, the estimator of the logarithm of the marginal likelihood is given by:

S−1∑
s=1

|∆βk|
Tk

Mk∑
i=1

log p(D|M,θ(βk,i)) (3.21)

where βk,i is the i-th sampled element from the interval ∆βk; θ
(βk,i) is a parameter sampled

from the power posterior pβk,i(θ); and |∆βk| = tk+1 − tk. However, Xu et al. do not provide
information about the discretization method of the interval [0, 1].
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3.3 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) is an approach that allows generating samples from
the posterior distribution without accessing the likelihood function. Adding a model indicator
parameter to parameters being sampled also allows us to create an approximate sample of
the posterior p(θ,M |D), and from this sample it is possible to estimate p(M |D), which can
be used as a model ranking metric. The main idea of ABC methods is to generate a sample
from posterior by generating parameter points that, when plugged into a model, generates
simulations that differ from the experimental measurements at most by some small ε.

A generic ABC method that generates a sample of the posterior p(θ,M |D) is composed of
the following steps:

1. Sample a parameter candidate (θ∗,M∗) from some proposal distribution.

2. Simulate the model M∗ with parameter values θ∗, generating simulated measurements
φ(M∗,θ∗) = D∗.

3. Calculate, for some distance function d, the value of d(D∗, D). If d(D∗, D) < ε for some
previously specified ε, then add (θ∗,M∗) to the sample.

4. Repeat until some iteration limit.

The simplest ABC algorithm is the ABC Rejection, and it goes very similarly to the
generic algorithm we just presented, with the specification that on step 1 the proposal dis-
tribution is the prior distribution. The output of this algorithm is a sample of the distribution
p(θ,M |d(φ(M,θ),D) ≤ ε). When ε→∞ this is then a sample of the prior distribution, and as
ε→ 0 then this sample tends to be a sample of the posterior distribution [Pri+99]. This algo-
rithm, however, does not perform well when the posterior distribution is very different from the
prior distribution. For that reason, new ABC methods using Markov chain Monte Carlo were
created [Mar+03]. The ABC MCMC method proposed by Marjoram et al. (2003) produces
a Markov chain whose stationary distribution is p(θ,M |d(φ(M,θ),D) ≤ ε). Nonetheless, this
algorithm might still suffer from correlation in samples or even get stuck in regions of local
peaks of probability. For that reason, the ABC sequantial Monte Carlo (ABC SMC) method
was proposed [Ton+09].

The ABC SMC method creates a sequence of samples with the goal of getting closer to a
posterior sample in each step. Let we simplify the notation by saying that d(φ(M,θ),D) is
just ρM,θ. From a predefined sequence ε1, . . . , εT the algorithm generates a sequence of samples
that represents the distributions p(θ,M |ρM,θ ≤ ε1), p(θ,M |ρM,θ ≤ ε2), . . . , p(θ,M |ρM,θ ≤ εT ).
At the first generation, a sample of p(θ,M |ρM,θ ≤ ε1) is created by proposing points from
the prior distribution. Then, for next generations the candidates to the sample are proposed
based on the points of the last generation and their weight, plus some noise determined by
a perturbation Kernel; the weight of a point (θ∗,M∗) on generation t is an estimative of
p(θ = θ∗,M = M∗|ρM,θ ≤ εt). Algorithm 1 presents a pseudo-code of the ABC SMC algorithm.

The ABC SMC algorithm is implemented in Python language in a software called ABC-
SysBio [Lie+14].
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ABC SMC (M, D)

1: Define the sequence ε1, . . . , εT .
2: Define N , the sample size for each generation.
3: Sample {(θ(1,1),M (1,1)), (θ(1,2),M (1,2)), . . . , (θ(1,N),M (1,N))} from p(θ,M |D).
4: Set w(1,i) = 1, ∀i ∈ 1, . . . , N .
5: for t ∈ {1, . . . , T} do
6: i← 1
7: while i ≤ N do
8: Sample M∗ from p(M |D), the model prior.
9: Sample (θ(t−1,k),M∗) from the last generation with weight w(t−1,k).

10: Create (θ∗,M∗) by perturbing θ(t−1,k); θ∗ ∝ Kt(θ|θ(t−1,k)).
11: if p(θ∗|M∗) = 0 then
12: Continue to next iteration.
13: end if
14: D∗ ← φ(M∗,θ∗)
15: if d(D∗, D) ≤ ε then
16: i← i+ 1
17: (θ(t,i),M (t,i))← (θ∗,M∗)
18: end if
19: end while
20: Calculate the weights of the population: w(t,i) = p(θ(t,i)|M(t,i))∑N

j=1 w
(t−1,j)pKt (θ

(t−1,j),θ(t,i))

21: end for
22: return

Algorithm 1: Pseudo-code of ABC SMC.
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Chapter 4

Development of SigNetMS, a software
for model selection

In this chapter we present the development process and implementation details of the SigNetMS
software, which stands for Signaling Network Model Selection. This software is capable of
producing an estimate of the marginal likelihood of a model given experimental data, using
the ideas of Thermodynamic Integration. Besides implementation details, in this chapter we
also present the main difficulties of creating a computationally efficient implementation of this
software, and also how we tackled these difficulties.

In order to support some of our implementation choices and also to explore limitations of our
software, a few experiments were performed and are shown in this chapter. All the experiments
of this chapter were conduced in a server with an Intel Xeon E5-2690 CPU, and 252GB of RAM
memory.

4.1 The SigNetMS software

SigNetMS is a Python program that can be used as a tool for model selection, producing an
estimate of the marginal likelihood of a model given experimental observations. The source
code is available on Github1 and it is open source, under the GNU General Public License.

This program expects as the input: a signaling pathway model, represented by a Systems
Biology Markup Language (SBML) file [Huc+03b], with the definition of reactions, kinetic laws
and initial concentrations of chemical species; an Extensible Markup Language (XML) file with
experimental data, including time series measurements of the biological phenomena of interest;
another XML file with definitions of prior distributions of reaction rate constants (defined by
users, according to their personal prior knowledge); and, finally, a set of parameter values that
determine the sampling process of model parameters. There are also optional parameters on
SigNetMS, used to control random number generator seeds, number of execution threads, and
verbose runs.

The output of the program is composed by an estimate of the marginal likelihood of the
model given experimental data, p(D|M), and a list of parameter values (θ1,θ2, . . .θl) that
represent a sample of the distribution p(θ|M,D). If one simulates the model M with parameter
values from the sample, we expect that, the higher the marginal likelihood, the closer the created
simulation are to the experimental data.

1https://github.com/gustavoem/SigNetMS
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To calculate the marginal likelihood estimate, we use the ideas of Thermodynamic Inte-
gration we presented in Section 3.2. Before implementing SigNetMS, we also considered using
another software, called BioBayes [VG08], that has a very similar approach to produce an es-
timate of the marginal likelihood. However, we did not proceed to use this software because
there was only a graphical user interface version of the software, which made the process of
running instances and collecting results cumbersome. We have also tried contacting the authors
to obtain the source code, however they could not provide us that.

4.2 Creating an estimate of the marginal likelihood

To create estimates of the marginal likelihood using the Thermodynamic Integration approach,
we need to define a likelihood function p(D|M,θ) and also samples power posterior distributions
pβ(θ) for a sequence of values of β. After samples are produced, we use them to produce the
estimate, and on SigNetMS, we use the trapezoidal rule to approximate the marginal likelihood,
given by the equation 3.18. Inspired by the work of Friel et al. [FP08], we discretize the
interval [0, 1] of power posteriors using the schedule: βi =

(
i−1
T−1

)c
, where T = 20, c = 4 and

i ∈ {1, 2, . . . , T}. In the following sections, we explain how we implemented the likelihood
function, and how samples of power posteriors are produced.

4.2.1 Implementing the likelihood function

The likelihood function we used is the same as we defined in equation 3.1:

p(D|M,θ) = pN(~0,Σ)
(φ(M,θ)−D),

where D is the experimental measurement, M is the model, θ is a set of parameter values, Σ is
the variance of the error of experimental observations, and, finally, φ is a function that calculates
an approximation of the results of the experiment that produced D, applied to the simulated
environment of model M with parameter values θ. This simulation of the model is created
by deriving a system of ordinary differential equations, and then numerically integrating this
system over the time steps defined by the experimental measurements. To reproduce the same
experiment that generated D, SigNetMS expects that the XML file containing experimental
data also contains a mathematical representation of which quantity was measured, in terms of
concentrations of chemical species of the system.

The numerical integration of the system is itself a hard problem, and therefore, we used
third-party software to produce such integrations. The most popular software available for
this problem conduce iterative algorithms that, step by step, approximate the state of the
system for a time interval. It is important to know that some instances of the problem can be
stiff, meaning that they may make the integration algorithm be unstable, since it may need
consecutive iterations with really small steps. Since we did not have time to go in details
of when such cases occur, we chose third-party software that can adapt the used algorithm
according to the stiffness of the instance.

After the implementation of the function φ, most of the work to implement the likelihood
function is done. The remaining work is to calculate the value of the probability density function
pN(~0,Σ)

and that can easily be accomplished using statistical packages such as SciPy [Vir+20].

25



4.3. FAST SYSTEM INTEGRATION AND PARAMETER SAMPLING Chapter 4

4.2.2 Sampling parameters from power-posteriors

After implementing the likelihood function, we can move to the creation of samples of power
posteriors. The methodology we used to generate such samples is identical to the one we
presented on section 3.2.2. And for this reason, we divided the sampling process in three phases:
naive burn-in, adaptive burn-in and Populational MCMC; all of them are types of a Metropolis-
Hastings procedure. The number of iterations of each phase is determined by SigNetMS’s
arguments, and each phase has a different scheme to determine the proposal distribution.

On the first phase, we start the sample of every chain (for each value of β) with a random
draw from the prior distribution of parameters. Before the first iteration, we also create an
estimate of the variance of the logarithm of each model parameter, independently. These
estimates compose the first covariance matrix of the jumping distribution; we use a diagonal
matrix where the diagonal elements are set as the estimated variance of the logarithm scaled
sample of the associated parameter. This matrix is re-scaled according to the acceptance
rate, as described in Section 3.2.2, after a number of iterations that is defined in one of the
arguments of SigNetMS. For each iteration, we determine that the jumping distribution is a
multivariate lognormal (µ,Σ) distribution, with covariance matrix as explained before, and
with µ = loge(θ

t), where θt is the current sample point, i.e., we take a sample X of the
multivariate normal N (µ,Σ) and then we set our sampled value as Y = exp(X), which is a
standard procedure to produce samples of log-normal distributions.

On the second phase, the posterior shaped burn-in phase, we also use a log-normal as
the proposal distribution, however the covariance matrix is not diagonal. Half of the sample
produced in the first phase is discarded, and for each step of the second phase, we calculate the
covariance of the log-scaled current sample (the latter half of samples of the first phase plus
the current sample of the second phase), producing the matrix used as the covariance matrix
for the proposal distribution. Similarly to the first phase, the proposal distribution also uses
µ = loge(θ

t). It is important to remember that up to the end of this sampling phase, each
power posterior sample is created independently.

At the third and last phase, a Populational Markov chain Monte Carlo procedure is per-
formed. In this procedure, we iterate each chain of power posterior samples using the same
algorithm of the second phase (except we do not update the covariance matrix anymore), fol-
lowed by an exchange of the last sampled points on two random selected power posteriors. At
the end of this phase, we discard parameters sampled on previous phases and we set the actual
sample as all the parameters sampled in this phase. Note that, differently from the first two
phases, the third phase depends on a synchronism of different power posteriors in order to mix
different power posterior samples.

4.3 Fast system integration and parameter sampling

The numerical integration of a system of ordinary differential equations is one of the most
computationally expensive processes for the estimation of the marginal likelihood. Besides
being computationally expensive, the integration is also performed numerous times; for each
calculation of the likelihood function, one integration is necessary. Note that the likelihood
function is evaluated for all proposed jumps in the sampling, for each of the power posterior
distributions. Even in basic experiments, we may evaluate this function hundreds of thousands
of times. This is the main reason why our first implementation of SigNetMS did not cope
even with toy models. Therefore, we needed to add optimizations to our software before
experimenting with more complex instances.
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Since most of the computational time spent by SigNetMS is concentrated in the generation
of samples of power posteriors, we decided to focus optimizations on two different aspects of the
sampling. The first aspect is to reduce the required time to integrate a model, exploring different
approaches to represent the model; the second one is to take advantage of the independence of
the sampling of different power posteriors, in the first two phases of sampling.

4.3.1 Optimizing the integration of a system of ordinary differential
equations

The first consideration that was taken into account when optimizing the integration of the
model was to use different algorithms because, in general, algorithms prepared for non-stiff
instances are less time consuming. However, because of the different nature of instances of the
problem, we could not choose between algorithms prepared for stiff or non-stiff instances, and
then we chose to use the odeint integrator, offered by SciPy, which can adapt according to the
stiffness of the instance. The integrator odeint is actually a wrapper to the LSODA integrator,
which is part of the FORTRAN package called ODEPACK [Hin82].

One common approach to reduce the computational time needed on the integration (and
improve accuracy) is to provide the Jacobian matrix of the system. This matrix is essential to
many integration methods to determine the next value of the unknown function (with a certain
accuracy), and if this matrix is not provided, algorithms like LSODA will approximate this
function, decreasing the computational efficiency. Considering the types of chemical reactions
we consider on this work (first-order reaction, second-order reaction, and Michaelis–Menten-
modeled reaction), we could implement a function that produces the Jacobian function of a
system of ordinary differential equations that represents the model of interest.

However, after implementing such matrix derivation, and providing it to the integrator,
the computational time used to produce integrations increased. That led us to believe that
our computational representation of functions, the one that represents the system and the
Jacobian, was not efficient. At this point of the development of the software, the representation
of both system and Jacobian were an array of strings (since there is one function for each
chemical species, to determine concentration change); then, the evaluation of these functions
was equivalent to interpreting the strings of all the functions and then evaluating them. Even
though that was the simplest implementation to evaluate functions, it was clear for us that
some pre-processing was necessary to create a better representation.

To improve the computational time needed to evaluate these functions, we considered using
SymPy, a Python package that allows symbolic mathematics. The idea was to provide the same
strings of the functions to SymPy and create objects that represent such functions symbolically.
After that, we could also remove our differentiation method, since SymPy offers one (which
should be more generic and efficient than ours). However, the ‘odeint‘ package is not prepared to
receive a SymPy object to perform integrations, instead, it expects to receive a Python function.
Fortunately, SymPy offers methods to symbolic functions that allows code generation, and more
specifically, Python code generation.

Then, we experimented two ways of using SymPy function objects to produce Python
functions to represent the system and its Jacobian. The first one is to use lambdify, which
creates a Python function that represents the SymPy object. The second one, is to generate
C language code, and then use Cython to compile, import and wrap it as a Python function.
Fortunately, again, SymPy provides an utility function that does all the work, called autowrap.
We proceeded comparing all of these approaches on representing the model with the repeated
integration of a simple model, composed by five reactions and five chemical species. On this
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Average time (seconds) to perform a sequence of integrations
Number of Integrations String Evaluation sympy.lambdify sympy.autowrap

10 2.98 0.8 0.9
100 35.3 5.9 6.6
200 72.1 15.8 13.1
400 139.1 33.1 26.9

Table 4.1: The average time spent by different approaches on a sequence of integrations of a signaling
pathway model containing five reactions and five chemical species. Each entry is an average taken after
50 runs of this experiment. It is important to state that the integrations using autowrap produce the C
code and its Python wrapper only once (in a single experiment repetition), on the first integration. The
String Evaluation column represents the string evaluation approach, without providing the Jacobian
matrix, since we previously found out that in this approach, providing such matrix slows down the pro-
cedure. Note that with 10 integrations, the execution time with ‘sympy.lambdify‘ and ‘sympy.autowrap‘
are similar, however, with 400 hundred integrations, the compilation overhead is washed off making
the C code approach faster.

experiment, we performed multiple integrations of the model; it is important to note that our
goal is to reduce the overall time of many integrations, therefore, comparing the time of only
one integration is not enough to determine the best choice. This is important because the last
two approaches have a pre-processing stage where the system function is created, wrapped or
even compiled, and this stage is only necessary to be ran once, before the first integration.

As we can see on Table 4.1, the approach where a C code is generated is the best option for
our application, where multiple integrations are needed. If the number of integrations needed
are very small, the simpler sympy.lambdify should be the best fit, since it does not have the
C code compilation overhead as sympy.autowrap has. Finally, this table also shows how bad
string evaluation is, compared to generating a Python function to represent the system.

4.3.2 Parallel sampling of power posteriors

Parallel processing is a common approach to promote a better use of computational resources
and, consequently, to reduce an algorithms execution time. Parallelization is usually successful
when there are multiple tasks to be done, with few communication and synchronization. In the
case of SigNetMS, during the first two phases of sampling, naive burn-in and posterior shaped
burn-in, the sampling process occurs independently between different power posteriors. In the
last phase, however, different power posteriors need to be synchronized every iteration, because
of the mixing procedure that takes the last sampled parameter of two different chains.

Therefore, we proceeded to create a parallelization of both first and second phases of sam-
pling. We achieved parallelization using the map pattern, where a function, passed to a map
framework, is applied to a list of elements. In our application, the list of elements is a list of
power posteriors values to be sampled, and the function is the first two phases of the sampling
procedure. The parallelization arises when we consider that there is a pool of workers, each
one in a different process (that can be ran by different CPU threads), that can be assigned to
apply the sampling function to a power posterior. The size of this pool is defined by the user
as one of the SigNetMS parameters; if the user does not define a value, the algorithm sets the
number of workers as the number of CPU cores available on the machine.

To understand how this parallelization affects the execution time of SigNetMS, we designed
an experiment where a sequence of 500 sampling steps (of the first phase) are performed, for 40
power posteriors, for a model with 5 chemical reactions and 5 chemical species. The results are
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Figure 4.1: Average execution time of 500 steps of the burn-in sampling, with varying number of
workers. The average values are taken over 50 repetitions of the experiment. The model being sampled
on this experiment contains 5 chemical reactions and 5 chemical species.

shown on Figure 4.1, and as we can see, we could reduce the execution time as we increased the
number of workers. There is however, some saturation in time execution improvement after a
number of workers. That is explained by the number of jobs that the pool receives to be done,
which is the number of power posterior values to be sampled, 40 in our experiment (and also
on SigNetMS). Even though we have this limitation, we believe that this simple parallelization
is enough, and more up to standard solutions can be proposed in future works.
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Chapter 5

Experiments and results

In this chapter, we present experiments of model selection of cell signaling pathways; to this
end, we divide the contents of this chapter in two sections. The first section presents ex-
periments to compare two model selection software: ABC-SMC and SigNetMS, both of them
described in Chapter 3. To make this comparison, we use an instance of model selection with
only four candidate models, evaluating the score of each one of them. The following section
presents experiments of another instance of model selection; however, this time model selection
is formulated as a feature selection problem. We will then analyze the search produced by the
feature selection algorithm and how it relates to a “correct” model, which was used to create
the experimental measurements.

5.1 Choosing a software for model selection

To compare results of SigNetMS and ABC-SysBio, we performed a simple model selection
experiment. This experiment, originally performed on the work of Vyshemirsky and Giro-
lami [VG07], consists in creating artificial experimental data from a model of cell signaling
pathway, and then selecting between four different models, including the correct one. Using
SigNetMS and ABC-SysBio we should be able to create a ranking of the four models, in which
we expect to see as the best, the model we used to create the experimental data. More than
that, we should analyze the produced results to check if simpler models are preferred over
complex models; we should also check if the simulations produced by the models, with the
estimated sample of the posterior distribution of parameters, approximates experimental data.

5.1.1 A simple instance of the model selection problem

We start describing our model selection problem with the correct model, which is a signaling
pathway composed by five reactions and five chemical species. Figure 5.1 shows a diagram of
this model. This model represents a common motif, and has as the input signal the chemical
species S, and as the output the chemical species Rpp. The experimental measurement is the
concentration of the output chemical species, which we denote as [Rpp].

In this experiment, for the sake of simplicity, we neglected the units of both reaction rates
constants and initial concentrations. The used initial concentrations were: S = 1, R = 1, dS
= 0, RS = 0, Rpp = 0. To create the experimental data, the used reaction rate constants had
the values: k1 = 0.07, k2 = 0.6, k3 = 0.05, k4 = 0.3, V = 0.017, and Km = 0.3. It is important
to remember that we discarded reaction rate constant values during model selection; initial
concentrations, however, are still provided during this phase. To generate experimental data,
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Figure 5.1: A diagram that represents the correct model our simple model selection experiment. This
model represents a common motif, and has S and Rpp as input and output, respectively. This model
contains five reactions: the decay of S to dS with k1 as reaction rate constant; the reversible reaction

S + R
k1−−⇀↽−−
k2

RS; the first order reaction RS
k4−−→ Rpp; and the Michaelis–Menten reaction A

V,Km−−−−→ B.

we simulated the dynamics of this model, using these parameter values, on the time steps of:
2, 10, 20, 40, 60 and 100 seconds. Three simulations were created, and for each one of them we
added, for each time measurement, a Gaussian error with mean 0 and standard deviation 0.01.
A representation of the three experimental replicates are showed in Figure 5.2.

To assess the ranking produced by each of the model selection software, we compared the
first model with three other models, all of them built as modifications of the “correct” model: a
simplified model; an overly simplified model, which should not be able to generate the observed
dynamics; and, finally, a generalization (more complex) model. Figure 5.3 shows diagrams that
represent the three alternative models.

Before talking about results produced by different Bayesian methods, we should note that
this choice of candidate models are made so we can analyze more than the ability of a given
method to correctly rank the correct model as the best model. First, consider that we introduced
a spurious model, represented in Figure 5.3(b), which neglects a crucial reaction, making it
impossible to reproduce the experimental data; we expect this model to be ranked last between
all models. Then, there are two options to the correct model, one being a simplification, and
the other one a generalization. For these models, we expect that the experimentally observed
dynamics is feasible; however, we should be observant of how they are ranked according to their
complexity. That is important because one of the goals on using a Bayesian approach for model
selection is that these approaches tend to automatically penalize overly complex models.

5.1.2 Solving a simple model selection instance using ABC-SysBio
and SigNetMS

After defining the candidate models and producing the artificial experimental data, we pro-
ceeded to perform the experiment of model selection. The instance information provided to
SigNetMS and ABC-SysBio is the same: a model, with predefined initial concentrations of
chemical species; a set of experiments, with the same time steps and measurements of Rpp
concentration; and a file containing prior distributions for each one of the model parameters.
It is important to remember that the output produced by each software is different. SigNetMS
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Figure 5.2: The dynamics produced by the correct model, with predefined reaction rate constants plus
a small Gaussian error (standard deviation 0.01), for each time point. The measurement taken from
the model is the concentration of the Rpp species, which we denote as [Rpp]. We linearly interpolate
the experimental measure points to produce a continuous dynamics from 2s to 100s.

produces an estimate of p(D|M) and also a sample of the posterior distribution of parameters
p(θ|M,D) which is, in fact, composed of samples of all power posterior distributions pβ(θ), as
we described in Section 4.2. ABC-SysBio, on the other hand, produces estimates of p(θ,M |D)
that tend to be closer to this target distribution on each iteration. Note that in this experiment
we need to run SigNetMS for every model, whereas using ABC-SysBio we only need to run the
software once for all four candidate models.

The prior distribution of parameters are the same as used by Vyshemirsky and Giro-
lami [VG07]. All model parameters priors are gamma(1, 3), where the first and second ar-
guments are shape and scale, respectively. Gamma and log-normal distributions are often used
as prior for parameters because they have a zero probability density for negative values.

For ABC-SysBio, we decided to use its feature of automatically choosing the schedule of
threshold values, which is based on the acceptance of produced individuals on each iteration.
For SigNetMS, we used the following parameters values: 15,000 iterations of the naive burn-in,
and 5,000 iterations of the posterior shaped burn-in, with 1,000 iterations between covariance
matrices re-scales, and 3,000 iterations of the Populational MCMC. We used an empirical
approach to determine these parameter values, observing similar results when the number of
iterations are greater than these.

The ranking produced by ABC-SysBio and SigNetMS

The ABC-SysBio run created 26 populations of parameter values, each of them with 100 in-
dividual parameters values. At the last iteration, the algorithm stopped with ε = 1 and the
following estimates:
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Figure 5.3: The diagrams of three other candidate models, based on the correct model that was presented
before on Figure 5.1. The model 5.3(a) is a simplification where we neglect the chemical species RS
and use the Michaelis–Menten to represent the reaction R −−→ Rpp with S working as a catalyst.
Model 5.3(b) is the over simplified model, as it neglects the decay of S; we do not expect this model to
reproduce experimental data, since the constant concentration level of S tend to continuously produce
Rpp, a species that, after 20 seconds, has a monotonic decreasing concentration. Finally, Model 5.3(c)
is a generalization of the correct model, as it generalizes the reaction Rpp −−→ R, as instead of using
the Michaelis–Menten kinetics, we use the enzymatic reaction Rpp+PhA −−⇀↽−− RppPhA −−→ R+PhA;
even though we expect this model to be able to reproduce observed dynamics, we also expect that the
complexity of this model gets penalized.

• p̂(M = Correct Model|D, ε = 1) = 0.005;

• p̂(M = Simplified Model|D, ε = 1) = 0.014;

• p̂(M = Incorrect Model|D, ε = 1) = 0.976;

• p̂(M = Generalization Model|D, ε = 1) = 0.003.

These estimates induce the ranking: Incorrect Model ≺ Simplified Model ≺ Correct Model ≺
Generalization Model.

After running the SigNetMS software four times, one for each model, we were able to get
the following estimates:

• log p̂(D|M = Correct Model) = −26

• log p̂(D|M = Simplified Model) = −21

• log p̂(D|M = Incorrect Model) = 1
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• log p̂(D|M = Generalization Model) = −19

These estimates induce the ranking: Correct Model ≺ Simplified Model ≺ Generalization Model
≺ Incorrect Model.

Comparing the ranking produced by ABC-SysBio and SigNetMS

Before comparing the model ranking produced by ABC-SysBio and SigNetMS, we should state
that the ranking achieved by Vyshemirsky and Girolami [VG07], on the original work that
introduced this instance, is: Correct Model ≺ Generalization Model ≺ Simplified Model ≺
Incorrect Model. On this work, a methodology similar to SigNetMS was used.

On ABC-SysBio results, we see that the Correct Model was not ranked first, and, surpris-
ingly, the Incorrect Model was ranked first. More than that, when the algorithm stopped, other
candidate models were considered with low probability of being the “true” model, and therefore
we cannot strongly state a ranking between the other three candidates.

On SigNetMS results, we see that the Correct Model was ranked first and the Incorrect
Model is ranked last as expected. For these two models, SigNetMS results are equal to the
results of Vyshemirsky and Girolami, and for the other two models, the ranking is the oppo-
site [VG07]. On SigNetMS, we ranked the Simplified Model as better than the Generalization
Model. It is important to note here that, in fact, the Generalization Model, which is more com-
plex, was actually ranked worse than the Correct Model; that is an evidence that this approach
does penalize the complexity of models.

Analyzing the posterior distributions produced by ABC-SysBio and SignetMS

If we consider only the produced ranking, there are indications that SigNetMS is a better
choice for our application. However, we should also take into account other output information
produced by both methods, relative to the distribution of model parameters. ABC-SysBio algo-
rithm produces in every iteration a population of parameters that, when applied to an specific
model, creates a simulation that is at most epsilon distant to the experimental measurements,
with decreasing epsilon as the iteration number grows. SigNetMS, on the other hand, produces
samples of forty power posterior distributions pβ(θ), and although there is no threshold like
there is on ABC-SysBio, we expect that the closer the value of β is to 1, the closer should
be the produced simulation to the experimental measurements; this is explained by the fact
that the power posterior distributions p0(θ) and p1(θ) are, respectively, the prior and posterior
distribution of parameters.

A possible approach to analyze the produced parameter values is to simulate models with
those values and create simulations to be compared with the experimental measurements. For
ABC-SysBio, in a population of 100 parameter values (“particles”), including the model indica-
tor as one of them, we are able to simulate and visualize the generated experimental measure-
ments for all individuals; on SigNetMS, on the other hand, the number of produced parameter
values is much larger, so a randomly chosen subset of parameters should be enough. With such
experiment, we are then able to identify what types of dynamics were created on the candidate
models according to the estimated posterior distribution of parameters.

In Figure 5.4, we present the dynamics of sampled parameters of the last iterations of
the ABC-SysBio run. We can see in this figure that ABC-SysBio could not produce a set of
parameter values that allows the model to represent the dynamics observed on the experiment.
More than that, we can see that the incorrect model had the best fit, and the dynamics produced
by the sampled parameters induces a nearly stationary dynamics of [Rpp], with intermediary
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values of concentration. With these results, we can understand that the ranking produced by
ABC-SysBio is incorrect because the software could not find suitable parameter values that
allow models to approximate the dynamics observed on experiments.
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Figure 5.4: The simulated dynamics of the four candidate models, using parameters generated with
the ABC-SysBio software. There are 100 particles generated on each iteration of the algorithm, and
each particle consists in a list of parameter values and a model indicator. Because of this, the number
of produced simulations is not equal between models, in fact, the better the fit of a model, the higher
the number of particles representing such model, and therefore, the higher the number of simulations
shown. Each red line represents a particle simulation, and stronger red lines represent overlapping
simulations. Lines with blue, yellow and green color represent experimental observations.

In Figure 5.5, we present the dynamics of a subset of parameters of the posterior distribu-
tion (or power posterior of β = 1), for all four candidate models. We can see in this figure
that SigNetMS could not find parameter values that allow the incorrect model to reproduce
experimental observations, which is expected, and that the three other models candidate mod-
els could closely reproduce the experimental observations. It is also interesting to observe the
dynamics produced by sampled parameters for other values of β, which is shown in Figure 5.6,
for the correct model only. Remember that from β = 0 to β = 1, a sequence of power posterior
distributions is constructed by SigNetMS, bridging the prior and posterior distributions.

The ranking and the simulations indicate that SigNetMS fits our experimentation process
better than ABC-SysBio. Even though it is possible that, with changes to ε schedule, ABC-
SysBio could get comparable solutions to SigNetMS, we think that the latter is easier to use
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Figure 5.5: The simulated dynamics of the four candidate models, using randomly chosen subsets of
parameters from the sample produced by SigNetMS of the power posterior distribution of β = 1, which
is the posterior distribution of parameters, p(θ|M,D). Red translucent lines represent the simulated
dynamics, using the sampled parameters, and stronger lines represent overlapping simulations. Lines
with blue, yellow, and green color represent experimental observations.

considering the choice of algorithm parameters. While for ABC-SysBio one needs to define
an epsilon schedule, for SigNetMS it is only necessary to define four sampling parameters.
Moreover, comparing Figure 5.4 and Figure 5.5 we see that SigNetMS could find samples of
parameters that make model simulations approximates better the experimental data.

We also created plots of approximations of the produced power posterior samples, presented
in Figure 5.7. Those density function estimates were created using the distplot function of
the Seaborn Python package, which uses Gaussian Kernel Densinty Estimate (KDE) to provide
an estimation of the density function given a sample of such distribution. The presented figure
shows estimated power posterior distributions, with different values of β, for the k1 parameter
of the correct model, which had value 0.07 when artificial experimental data were created. We
can see that as we increase the value of β, the posterior distribution concentrates on values
around the “true” value of the parameter. It is also interesting to see that although the
estimated posterior is not necessarily centered on the “true” value, the created simulations do
approximate the experimental observations.

36



Chapter 5 5.1. CHOOSING A SOFTWARE FOR MODEL SELECTION

0 20 40 60 80 100
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[R
pp

]

Simulations with beta = 0.00e+00 of correct model
Experimental observation #1
Experimental observation #2
Experimental observation #3
Simulated observation

0 20 40 60 80 100
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

[R
pp

]

Simulations with beta = 8.41e-02 of correct model
Experimental observation #1
Experimental observation #2
Experimental observation #3
Simulated observation

0 20 40 60 80 100
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

[R
pp

]

Simulations with beta = 1.69e-01 of correct model
Experimental observation #1
Experimental observation #2
Experimental observation #3
Simulated observation

0 20 40 60 80 100
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

[R
pp

]

Simulations with beta = 2.66e-01 of correct model
Experimental observation #1
Experimental observation #2
Experimental observation #3
Simulated observation

0 20 40 60 80 100
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

[R
pp

]

Simulations with beta = 3.99e-01 of correct model
Experimental observation #1
Experimental observation #2
Experimental observation #3
Simulated observation

0 20 40 60 80 100
Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

[R
pp

]

Simulations with beta = 1.00e+00 of correct model
Experimental observation #1
Experimental observation #2
Experimental observation #3
Simulated observation

Figure 5.6: The dynamics induced by samples of different power posterior distributions of parameters
of the correct model. The value of β increases from left to right and from top to bottom. We can
observe how the curve of simulations progressively fits the curve of experimental observations.
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Figure 5.7: Approximation of the power posterior distribution of the samples created by SigNetMS of
parameter k1 of the correct model. We show on this graph the estimated distribution of six different
power posteriors, with increasing value of β from left to right, from top to bottom. The approximation
of this graph is created using distplot function of Seaborn package. The value used for this parameter
on the creation of the experimental data is 0.07, and it is represented on the axis of the plots.
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5.2 Model selection as a feature selection problem

After defining that SigNetMS is our software choice for model selection, we are now able to
experiment and analyze the approach of solving a model selection problem as a feature selection
problem, using a Bayesian approach to define a cost function. To accomplish this, we created
another simple instance of model selection. Although this instance is still a toy model, we will
be able to assess the space of possible solutions and get a glance of the cost surface induced by
SigNetMS over this space.

A feature selection instance can be defined by a pair (S, c) where S is a set of features and c
is a cost function that evaluates subsets of S. The space of solution is usually the power set of
S, P(S), and the cost function usually takes values from this space to real values, c : P(S)→ R.
An optimal solution is a subset X ∈ P(S) such that c(X) ≤ c(Y ),∀Y ∈ P(S), however, it is
important to notice that the size of the search space grows exponentially with the number of
features and, in practice, with time consuming cost functions, it is computationally unfeasible
use optimal search algorithms. That is exactly our case, since the cost function we propose to
use, based on SigNetMS, depends on the estimation of multiple power posteriors of parameters
and includes numerous numerical integrations of a system of ordinary differential equations.

It is often useful to represent the search space with a Boolean lattice, which is defined by the
power set P(S) and the partial order relation ⊆. More than an aid to represent the search space,
the Boolean lattice provides a structure that is useful for search algorithms to define paths and
to take advantage of surface of the search space, as it is done on algorithms for the U-Curve
problem, a special case of the feature selection problem where the cost function describes a U-
shaped curve on every chain of the Boolean lattice. The U-Curve problem is still an NP-hard
problem as the feature selection problem [Rei12]; however, there are heuristics and optimal
algorithms that can be used on the U-Curve problem to produce a quality answer (optimal
or close to be optimal) with a feasible computational time. Moreover, one can produce good
results using U-Curve algorithms to solve a feature selection instance that is not necessarily
U-Curve, but does reproduce u-shaped curves with a few oscillations on chains of the search
space.

In our application, we are going to convert a model selection problem into a feature selection
problem. To do so, we define a set of candidate reactions S and a base model. Then, we
consider that a set of feature X ∈ P(S) represents a candidate model composed by the base
model plus the reactions from X. The cost function we use is the logarithm of the marginal
likelihood produced by SigNetMS. Figure 5.8 shows an example of feature selection instance
that represents a model selection instance.

After defining the feature selection instance, we will traverse the search space in two ways.
First, we will traverse chains from the empty set to the complete set, to understand the shape
of the cost function as we increase the number of reactions. Then, we will run the Sequential
Forward Search algorithm, a heuristic for the feature selection problem, to try to find a good
solution for our model selection problem.

5.2.1 Defining the feature selection instance

The instance we prepared is based on a Ras switch pathway. Ras represents a family of proteins
that are common on signaling pathways that participate on cell growth and differentiation.
Because of this participation, Ras proteins that are constantly switched on can play a part on
some types of cancer. The model we consider for generating experiments, which we also call
the “correct” model is shown on Figure 5.9. This model shows a pathway that decides the state
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Figure 5.8: A diagram with the search space and costs of a feature selection problem that represents a
model selection problem. Each rectangle represents a subset of the power set of features, were reactions
from such subset are drawn with dots. Links between rectangles represent the ⊆ relation; that is, two
rectangles linked represent two subsets of reactions X and Y such that X ⊆ Y (or Y ⊆ X). The set
of features is composed by three reactions, {a, b, c}, inducing the search space with eight elements. The
base model is composed by two chemical species, 1 and 2 and a reaction between those species, we can
see this model at the base of the diagram, on the rectangle that represents the empty set (no reaction
are drawn with dots). Each rectangle also represents a candidate model, which is composed of the
base model plus the reactions drawn with dots. The number below each rectangle represents the score
(minus one times the cost) of each model. The optimal subset is drawn in yellow and it the subset of
reactions {b, c}. Note that this instance is a U-Curve instance, if we consider the cost as minus one
times the score: for every chain of rectangles, the cost of the model describes a u shaped curve. As an
instance, consider the chain ∅, {c}, {a, c}, {a, b, c}, which has respectively the costs of −0.10, −0.15,
−0.30, and −0.03.

of a Ras protein as switched on, represented by RasGTP, and as switched off, represented by
RasGDP. SOS and GEF are enzymes that catalyze the transition RasGDP → RasGTP. The
enzymatic activity of SOS can be increased through allosteric regulation by either RasGTP or
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RasGDP; we denote such molecular interactions as SOS allo RasGTP and SOS allo RasGDP,
respectively. Finally, GAP is an enzyme that catalyzes the transition RasGTP → RasGDP.

Therefore, seven chemical species are present in the Ras switch model, and they have the
following initial concentration: 200 for SOS; 0 for SOS allo RasGDP and SOS allo RasGTP;
900 for RasGDP; 100 for RasGTP; 200 for GEF; and 125 for GAP. Once again, we omit
concentration and reaction rate units for the sake of simplificty. These chemical species interact
in eight different chemical reactions:

• SOS + RasGDP
k2−−→ SOS allo RasGDP, SOS allo RasGDP complexation;

• SOS allo RasGDP
d2−−→ SOS + RasGDP, SOS allo RasGDP decomplexation;

• SOS + RasGTP
k1−−→ SOS allo RasGTP, SOS allo RasGTP complexation;

• SOS allo RasGTP
d1−−→ SOS + RasGTP, SOS allo RasGTP decomplexation;

• RasGTP −−→ RasGDP, with SOS allo RasGTP as a catalyst, and k3cat and K3m as
catalytic constant and Michaelis constant, respectively;

• RasGTP −−→ RasGDP, with SOS allo RasGDP as a catalyst, and k4cat and K4m as
catalytic constant and Michaelis constant, respectively;

• RasGTP −−→ RasGDP, with GEF as a catalyst, and k6cat andK6m as catalytic constant
and Michaelis constant, respectively;

• RasGDP −−→ RasGTP, with GAP as a catalyst, and k5cat and K5m as catalytic con-
stant and Michaelis constant, respectively.

GAP

RasGTP RasGDP

GEF SOS allo RasGDPSOS allo RasGTP

SOS

k1, d1k2, d2

k4cat,K4m k3cat,K3m

k5cat,K5m

k6cat,K6m

1

Figure 5.9: A representation of a Ras switch pathway that we consider as the correct model for our
model selection experiment. This model contains seven chemical species, and eight different chemical
reactions. Reversible reactions are represented with arrows pointing both directions, with reaction rate
parameters over the reaction, with the forward reaction parameter first and then the parameter of the
reverse reaction. Michaelis–Menten reactions are represented with parameters to the left of the arrow
from starting at the enzyme, with the catalytic parameter first, and then the Michaelis constant.

We used this model to generate an artificial experiment where the concentration of acti-
vated Ras was measured at the time steps of 30, 60, 90, 120, 150, 180, 210, and 240 seconds.
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Figure 5.10 illustrates such experimental measurements. Similarly to the experiment of the pre-
vious section, those observations were created by simulating the correct model and then adding
a Gaussian error of mean zero and standard deviation of 0.01. The reaction rate parameters
used to create these simulations are: k1 = 1.8e − 4, d1 = 3, k2 = 1.7e − 4, d2 = 0.04, k3cat
= 3.8, K3m = 1.64e3, k4cat = 0.003, K4m = 9.12e3, k5cat = 0.1, K5m = 1.07e2, k6cat = 0.01,
and K6m = 1836 (once again, remember that we are omitting units for the sake of simplicity).
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Figure 5.10: Experimental data generated with our correct model for the Ras switch pathway. There is
a set of three observations being represented; however, the time points observations of [RasGTP] are
close enough that the lines of each experiment overlap. The time points considered are 30, 60, 90, 120,
150, 180, 210, and 240 seconds; the lines are produced with a linear interpolation of measurements on
these points.

To construct our search space, we considered as the base of our search space a trivial model,
containing no reactions. For the set of features, we considered all reactions from the correct
model (i.e. the correct model is present on the search space), plus two other reactions. A
complete list of candidate reactions is shown of Figure 5.11. The complete list of candidate
reactions is saved in a JSON file, which also stores information about rate parameters for
each reaction, including its name and prior. In this experiment we defined uniform prior
distributions, using our prior knowledge about reactions. As a matter of fact, in our first
approach we used gamma distributions; however, due to numerical instabilities we decided
uniform distributions for its simplicity and restrictiveness.

Figure 5.11 also presents an arbitrary order we choose for these reactions. This order, from
Figure 5.11(a) to (j) is useful to enumerate points of the search space, something that search
algorithms can rely on when traversing the search space. With this order, we can introduce the
concept of characteristic vector, which is a vector composed by Boolean flags that represents
a point of the search space, and, that is, a subset of features. If the i-th element of the
characteristic vector is a 0, then the i-th feature is not present on the subset represented, if the
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i-th elemnt is 1, then this feature is present on the subset. Considering the order we choose
for this Ras switch instance, we could say that the subset represented by the characteristic
vector 0101010001 has the reactions: SOS allo RasGDP decomplexation, SOS allo RasGTP
decomplexation, Ras activation by SOS allo RasGTP, and GAP activation by RasGTP.

After defining our set of features, a base model, the rule for defining the model associated
to a subset of features, and the cost function, we are now able to experiment solving the model
selection problem as a feature selection problem. It is important to remember that our cost
function, the output of SigNetMS, is computationally expensive and, since we have 10 features,
the search space has the size 210. That makes it unfeasible to optimally search on the space,
and therefore we choose a heuristic to search for a good solution.

RasGDP

SOS

SOS allo RasGDP
k1

1

(a) SOS allo RasGDP complexation

SOS allo RasGDP

RasGDP

SOS

d1

1

(b) SOS allo RasGDP decomplexation

RasGTP

SOS

SOS allo RasGTP
k2

1

(c) SOS allo RasGTP complexation

SOS allo RasGTP

RasGTP

SOS

d2

1

(d) SOS allo RasGTP decomplexation

RasGDPRasGTP

GAP

k5cat,K5m

1

(e) Ras inactivation by GAP

RasGTPRasGDP

SOS allo RasGTP

k3cat,K3m

1

(f) Ras activation by SOS allo RasGTP

RasGTPRasGDP

SOS allo RasGDP

k4cat,K4m

1

(g) Ras activation by SOS allo RasGDP

RasGTPRasGDP

GEF

k6cat,K6m

1

(h) Ras activation by GEF

RasGTPRasGDP

SOS

k8cat,K8m

1

(i) Ras activation by SOS

GAPiGAP

RAS GTP

k7cat,K7m

1

(j) GAP activation by RasGTP

Figure 5.11: All candidate reactions, or the set of features for our feature selection problem. Reactions
(a) to (h) are all the reactions of the considered “correct” model.

5.2.2 Using Sequential Forward Selection to select a model

As discussed in the previous section, the feature selection instance we have in hands has a search
space and cost function that makes it unfeasible to use an optimal algorithm of feature selection.
Therefore, we use the Sequential Forward Selection (SFS) [Whi71] heuristics to search for a
solution. Although there other heuristics available, with the ability to find good solutions with
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few evaluations of the cost function, such as Sequential Floating Forward Selection [VK08], we
decided use SFS due to its implementation simplicity.

The Sequential Forward Selection heuristics is a greedy algorithm that starts with the empty
set of features and then, for each iteration, decides to add the “best” remaining feature to the
current solution. Although it is very easy to find instances in which this algorithm is not optimal
(including U-Curve instances), it can generally find fairly good solutions in many cases, making
it a good choice to explore spaces with unknown surfaces, such as in our case. Algorithm 2
presents the dynamics of the SFS heuristics.

SFS (S, c)

1: X ← ∅
2: did impove ← True

3: while did improve do
4: s∗ ← NIL
5: for s ∈ S and s /∈ X do
6: if c(X ∪ {s}) < c(X ∪ {s∗}) then
7: s∗ ← s
8: end if
9: end for

10: if s∗ is NIL then
11: did improve ← False

12: end if
13: X ← X ∪ {s∗}
14: end while
15: return X

Algorithm 2: A pseudocode representing the SFS algorithm.

Results of the search

The SFS search was conduced in a server running with an Intel Xeon E5-2690 CPU, and 252GB
of RAM memory. The total time to conduce the experiment was about 26 hours, with 42 calls
to the cost function, that is, 42 points of the search space were visited. The chain of subsets
the algorithm traversed, from the base to the found solution, is shown in Table 5.1.

The best model found has the characteristic vector 0111011000 and had the logarithm of
the marginal likelihood of 7.9. This model has the following reactions: SOS allo RasGTP
complexation, SOS allo RasGTP decomplexation, Ras activation by SOS allo RasGTP, Ras
activation by SOS, and Ras activation by SOS allo RasGDP; Figure 5.12 has a diagram of
reactions of this model.
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Characteristic Vector Score Cost function time (seconds)
0000000000 330721.05 851.3
0010000000 245681.93 1083.4
0010010000 211.62 4257.4
0011010000 -1.32 5007.71
0011011000 -4.27 4458.7
0111011000 -7.90 5035.7

Table 5.1: The trace of the SFS run on the Ras switch instance. The characteristic vector determines
the set of reactions present on the model; the score is minus one times the marginal likelihood of
the model; and, the Cost function time is the total time used by SigNetMS to calculate the marginal
likelihood.

GAP

RasGTP RasGDP

GEF SOS allo RasGDPSOS allo RasGTP

SOS

k1, d1

k4cat,K4m k3cat,K3m

1

Figure 5.12: A representation of the found model after running the feature selection process. This
model is contained in the “correct” model, and it differs from it on the reactions: SOS allo RasGP
complexation, Ras inactivation by GAP, and Ras activation by GEF. These reactions are represented
with dashed gray arrows. Reactions from the found model are represented with solid black arrows.

Even though the resulting subset is not the correct model, the marginal likelihood indicates
that the model reasonably approximates the experimental measurements. To verify this, we
took the sample of the posterior of model parameters produced by SigNetMS and created plots
of simulations using those sampled parameters. Figure 5.13 shows simulations created using
different power posterior samples. We can see that as β increases, the simulation approximates
better the experimental results, to the point where the simulation curves overlap with the
experimental curves. That indicates that, in fact, model 0111011000 is able to reproduce the
dynamics observed on experimental observations.

Since the found model is not the correct model, we decided to also evaluate the cost function
for the correct model and compare its cost against the found model. As the result, we got that
the logarithm of the marginal likelihood of the correct model was −62, compared to 10.8 for
the found model. To understand these numbers, we also plotted the simulations found for the
correct model. Figure 5.14 shows the simulations created using the sampled parameters for
the correct model; it is possible to see that an approximation of the experimental data was
possible. However, due to model complexity, the marginal likelihood of the correct model was
smaller than the marginal likelihood of the found model.

As explained by Bishop [Bis06], marginal likelihood methods tend to select intermediate
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Figure 5.13: Simulations created with power posterior samples of Ras switch model with characteristic
vector 0111011000, which is the model found by the SFS search. The model parameters used to create
these simulations were sampled when the SFS algorithm evaluated the cost function for the model;
when the cost function was called, SigNetMS produced both the estimation of the log of the marginal
likelihood and samples of different power posteriors of model parameters. There were 40 different
power posteriors sampled, and we show only four of them in this figure. Since the range of the plot
area is fixed, it may seem that the first figure has less lines than the other ones; that only indicate that
some simulations did not appear on the plot area.

complexity models, penalizing more complex models. This is the reason why the model
0111011000 was preferred over the “correct” model. A simplified explanation to why this
happens on marginal likelihood methods is that more complex models are able to generate
a wider range of output data, and therefore, the likelihood function p(D|Mcomplex) is spread
over a wider space, while the mass of a simpler model is concentrated in a less spread area.
We can argue that, because of such sparseness phenomena, we expect a tendency to observe
p(D = D|Mcomplex) > p(D = D|Msimple).
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Figure 5.14: Simulations created with power posterior samples of Ras switch model with characteristic
vector 1111111100, which is the “correct” model, that is, the model we used to create artificial experi-
mental data. It is possible to see that for greater values of β, the simulations are close to experimental
data.
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Conclusion

We will start this chapter with a review of the content presented in this dissertation, with some
extra discussion of a few specific topics. After that, we will present the main contributions of
this work, including technological tools and publications. Finally, we will close this chapter
with possibilities of future work related to this dissertation.

6.1 Review of contents of this dissertation

In the Introduction (Chapter 1) of this text, we presented the main aspects of cell signaling
pathways and how computational models can approximate their dynamics. After that, we
showed how Wu defined an approach for model selection of cell signaling pathwyas as a feature
selection problem [Wu15], and also the main caveats of their approach. With that, we could
state the goal of this project, which is to study and develop a similar method for model selection
using feature selection, where the cost function is created with a Bayesian approach, capable
of determining the likelihood of a model producing experimental data.

We decided to use a Bayesian approach to construct the cost function because of its ability
to auto penalize overly-complex models, avoiding some sort of “overfit” that can occur, char-
acterized by complex models that have good ability to fit an example of experimental data,
but have poor generalization performance; we, however, did not experiment on the general-
ization ability of selected models. Another reason to use a Bayesian approach is that this
approach consider model parameters as random variables, which allow the user to input their
prior knowledge, and also to produce a posterior distribution for model parameters. Specially
in our application, where model parameters are related to the rate constants of reactions, using
a non deterministic approach to model constants is a better way to deal with the uncertainty
in their measurements.

Before introducing concepts and methodologies we developed in this work, we reviewed
the fundamental concepts necessary to advance in this research. In Chapter 2, we conduced
that review, presenting concepts of cell signaling pathways, experimental measurements of
those systems, and also how to create computational models for them, using system of ordinary
differential equations. We also introduced the state-of-the-art methodologies for model selection
in the context of cell signaling pathways and the algorithm of Metropolis–Hastings, to generate
samples of unknown distributions.

In Chapter 3, we presented a short review of two different methodologies for evaluating
the quality of models. The first methodology uses an estimate of the marginal likelihood of a
model being the “correct” given the experimental data. This estimate is created by sampling
from different power posterior distributions, bridging the prior and posterior distributions of
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model parameters; to execute those calculations, it is necessary to define a likelihood function.
The second methodology uses the concept of Approximate Bayesian Computation (ABC), and
it also produces a sequence samples that for each iteration approximates better the posterior
distribution of parameters. This last approach, however, does not depend on the definition of
a likelihood function. There are available software that apply both methodologies, BioBayes
and ABC-SysBio, for the first and second approaches, respectively.

After testing both software, BioBayes and ABC-SysBio, we found that BioBayes would be
cumbersome to use as part of a feature selection cost function. We then decided to produce a
new software to estimate marginal likelihood of models, and we called it SigNetMS. In Chap-
ter 4, we presented the main procedures we needed to build for this software. We highlighted
the sampling procedure as a computationally expensive procedure, mainly because of the mul-
tiple numerical integrations necessary to build the sample. We discussed how we decided for
a numerical integration software, since producing one ourselves was not possible in the scope
of this project. We discussed how we could optimize our process in order to make more ef-
ficient calls of the integrator, using symbolic mathematics to represent our system. Finally,
we presented how we managed to sample from multiple power posterior distributions, using
parallelization.

In Chapter 5, we provided experimental results with both Bayesian methods. With the
implementation of SigNetMS, we could then compare both methodologies to evaluate mod-
els: based on the marginal likelihood estimation, using SigNetMS, and based on Approximate
Bayesian Computation, using ABC-SysBio. To compare them, we used a simple model selection
instance, with four models including a “correct” model, used to generate artificial experimental
measurements. As the result we could see that SigNetMS produced a better ranking of models
compared to ABC-SysBio. We could also see that SigNetMS evaluated a simpler model as
better than a model with similar ability to reproduce experimental data, but with higher com-
plexity; which is an evidence that, in fact, the Bayesian approach does penalize the complexity
of models.

Once SigNetMS produced better results on the simple model selection instance, we used
this software in our next experiment: a model selection problem solved as a feature selection
problem. To build this instance, we defined a “correct” model of a Ras switch to generate
artificial experimental data, and a set of candidate reactions (including all reactions of the
correct model). Then, we created a feature selection instance where the set of features is the
set of candidate reactions, and the cost of a subset is minus one times the marginal likelihood
of a model with such subset. To conduce the search, we used the Sequential Forward Selection
heuristics, and as a result, we got a subset with five features, different from the “correct” subset,
with eight features. We produced plots that indicate that for both “correct” and found subsets,
the produced sample does make the model reproduce the experimental data; however, the cost
of the “correct” model was higher, which indicates that its complexity was penalized, since a
simpler model could reproduce its measured dynamics.

Finally, with this last experiment, we could actually confirm that the Bayesian approach
does penalize complex models. More than that, we could confirm that the sample produced
by SigNetMS, when possible, does approximate the model dynamics to the experimental mea-
surements dynamics. However, although those results indicate that SigNetMS could be used
for other examples of model selection, we should also highlight that our experiment was small,
and further experimentation is needed to improve the SigNetMS software, preparing it for the
application into larger instances.
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6.2 Contributions of this dissertation

In this section, we highlight scientific contributions derived from this work and also other
participations of the author on conferences and other events during his master’s program.

6.2.1 Technical contributions

• The implementation of SigNetMS, a free software that allows evaluating the quality of
models, generating an estimative of the marginal likelihood of a model, and also a posterior
sample of model parameters.

• The comparison of two Bayesian approaches for model selection: using marginal likelihood
and approximate Bayesian computation. Conduced in Chapter 5.

• The experimentation of a feature selection approach for model selection, using a Bayesian
cost function, conduced in Chapter 5.

6.2.2 Participation in events

• The participation on the XIV Escuela de Verano en Matemáticas Discretas, in Valparáıso
- Chile, from the 7th to the 11th of January 2019, as a student.

• The participation at the São Paulo School of Advanced Science on Learning from Data,
São Paulo - Brazil, from July 29th to August 9th of 2019, as a volunteer, including a
five-minute flash talk about partial results of this work.

• The participation at the 2019 Rocky Mountain Bioinformatics Conference, in Aspen,
Colorado - USA, from December 5th to December 7th, including a poster session where
partial results of this work were presented.

6.3 Suggestions for future work

For future work related to this project, we would like to recommend the following topics for
further research:

• An efficiency improvement for SigNetMS. The sampling of model parameters is
still a very time consuming procedure, and to improve its performance, we would like
to suggest a few options: further research on numerical integration software, possibly
aiming for software that are optimized for parallelization and memoization, since many
integrations are performed.

• Treatment for numerical instability on the integration of models. For many
of our instances, we noticed that some regions of the space of parameters can lead to
numerical instabilities in the integration methods. It would be necessary to investigate
on how to avoid such areas and what is the influence of such avoidance in the produced
sample.

• Solving the feature selection problem as a U-Curve problem. In this work, we
produced evidences that complex models are penalized, and therefore, it would be inter-
esting to analyze if the U-Curve simplification is applicable for model selection instances.
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• Experimentation on heterogeneous conditions of measurement. In all the in-
stances we used in this project, repetitions of experimental measurements had very similar
values over time; it might be interesting to assess the robustness of our methodology when
experimental measurements are taken in more heterogeneous conditions, with variations
in the observed dynamics.

• Applications of the methodology on real instances of model selection. In this
project, although inspired in real signaling network pathways, we used only artificial
examples. It is therefore important to use this methodology in real instances, where the
“correct” model is unknown.
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