• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
Documento
Autor
Nome completo
Rafael Will Macêdo de Araujo
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2019
Orientador
Banca examinadora
Hirata Junior, Roberto (Presidente)
Gomes, David Menotti
Marana, Aparecido Nilceu
Miranda, Paulo Andre Vechiatto de
Rakotomamonjy, Alain Ndimby Heritsimba
Título em inglês
A bag of features approach for human attribute analysis on face images
Palavras-chave em inglês
Bag-of-visual-words model
Dictionary learning
Face image processing
Gender and ethnicity classification
Resumo em inglês
Computer Vision researchers are constantly challenged with questions that are motivated by real applications. One of these questions is whether a computer program could distinguish groups of people based on their geographical ancestry, using only frontal images of their faces. The advances in this research area in the last ten years show that the answer to that question is affirmative. Several papers address this problem by applying methods such as Local Binary Patterns (LBP), raw pixel values, Principal or Independent Component Analysis (PCA/ICA), Gabor filters, Biologically Inspired Features (BIF), and more recently, Convolution Neural Networks (CNN). In this work we propose to combine the Bag-of-Visual-Words model with new dictionary learning techniques and a new spatial structure approach for image features. An extensive set of experiments has been performed using two of the largest face image databases available (MORPH-II and FERET), reaching very competitive results for gender and ethnicity recognition, while using a considerable small set of images for training.
Título em português
Uma abordagem "bag of features" para análise de atributos humanos em imagens de faces
Palavras-chave em português
Aprendizagem por dicionário
Classificação de gênero e etnia
Modelo bag-of-words visual
Processamento de imagens de faces
Resumo em português
Pesquisadores de visão computacional são constantemente desafiados com perguntas motivadas por aplicações reais. Uma dessas questões é se um programa de computador poderia distinguir grupos de pessoas com base em sua ascendência geográfica, usando apenas imagens frontais de seus rostos. Os avanços nesta área de pesquisa nos últimos dez anos mostram que a resposta a essa pergunta é afirmativa. Vários artigos abordam esse problema aplicando métodos como Padrões Binários Locais (LBP), valores de pixels brutos, Análise de Componentes Principais ou Independentes (PCA/ICA), filtros de Gabor, Características Biologicamente Inspiradas (BIF) e, mais recentemente, Redes Neurais Convolucionais (CNN). Neste trabalho propomos combinar o modelo "bag-of-words" visual com novas técnicas de aprendizagem por dicionário e uma nova abordagem de estrutura espacial para características da imagem. Um extenso conjunto de experimentos foi realizado usando dois dos maiores bancos de dados de imagens faciais disponíveis (MORPH-II e FERET), alcançando resultados muito competitivos para reconhecimento de gênero e etnia, ao passo que utiliza um conjunto consideravelmente pequeno de imagens para treinamento.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-10-08
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.