
What Happens When The Bazaar Grows

A comprehensive study on
the contemporary Linux
kernel development model

Melissa Shihfan Ribeiro Wen

Thesis presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
in partial fulfillment
of the reqirements
for the degree of
Master of Science

Program: Computer Science
Advisor: Prof. Paulo Roberto Miranda Meirelles

Coadvisor: Prof. Fabio Kon

During this work, the author was supported by National Council
for Scientic and Technological Development - Brazil (CNPq)

São Paulo
April 20th, 2021

What Happens When The Bazaar Grows

A comprehensive study on
the contemporary Linux
kernel development model

Melissa Shihfan Ribeiro Wen

This is the original version of the
thesis prepared by the candidate
Melissa Shihfan Ribeiro Wen, as

submitted to the Examining Committee.

I authorize the reproduction and disclosure of this work, total or partial,
by any conventional or electronic means, for study and research purposes,
provided the mention of the source.

Abstract

Melissa Shihfan Ribeiro Wen.What HappensWhen The Bazaar Grows:A comprehensive
study on the contemporary Linux kernel development model. Thesis (Masters). Institute
of Mathematics and Statistics, University of São Paulo, São Paulo, 2021.

The popularity and consolidation of many Free/Libre Open-Source Software (FLOSS) projects
in the information technology (IT) market keep industry and academia interested in iden-
tifying practices that can be benecial to the software development process. Two decades
ago, a set of practices observed in the Linux kernel development was used to characterize the
FLOSS development model as a “noisy bazaar”. However, since then, the FLOSS ecosystem
diversied its forms of development. The Linux kernel project has also undergone notable
transformations in its community and development processes toward professionalism and
civility. FLOSS projects usually have a community supporting its development and organically
producing plentiful information to describe how, when, and why a particular change occurred
in the source code or the development ow. Although the existence of several studies on
the FLOSS phenomenon and its development, these essential sources of information have
been overlooked due to the informality and socio-technical challenges for data collection
and analysis. Neglect of these resources may have led some studies to outdated and shallow
results regarding FLOSS development practices. Bearing this in mind, we considered the great
wealth of open-access materials and the Linux project relevance and protagonism on FLOSS
phenomenon to mitigate the distance between what is investigated by academia and what is
observed in practice on the development of the Linux kernel. We designed a multi-method
investigation to cover academics’ and practitioners’ perspectives on the project’s socio-
technical aspects. We used a multivocal literature review, examining peer-reviewed papers
and grey literature, to accurately map the Linux kernel development community’s current
characteristics. We included the participant observation on the development community
as a third perspective to discuss our ndings and nuances involved in community-based
development. We also synthesized a set of research strategies to review FLOSS community
publications. As a result, this research summarizes the state-of-the-art and state-of-the-
practice of the Linux kernel’s contemporary development model. As an adjoining outcome of
this work, we present a combination of research methods that could boost and guide future
FLOSS ecosystems research.

Keywords: Free Software. Open Source Software. FLOSS Ecosystems. Linux Kernel. Multi-
vocal Literature Review. Grey Literature Review. Participant Observation

Resumo

Melissa Shihfan Ribeiro Wen. O Que Acontece Quando o Bazar Cresce: Um estudo
abrangente sobre o atual modelo de desenvolvimento do kernel Linux. Dissertação
(Mestrado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2021.

A popularidade e consolidação de muitos projetos de Software Livre (FLOSS) no mercado
de tecnologia da informação (TI) mantém a indústria e o meio acadêmico interessados em
identicar práticas que podem ser benécas para o processo de desenvolvimento de software.
Duas décadas atrás, um conjunto de práticas observadas no desenvolvimento do kernel Linux
foi usado para caracterizar o modelo de desenvolvimento FLOSS como um “bazar barulhento”.
Porém, desde então, o ecossistema FLOSS diversicou suas formas de desenvolvimento. O
projeto do kernel Linux também passou por transformações notáveis tanto em sua comu-
nidade quanto nos seus processos de desenvolvimento em direção ao prossionalismo e à
civilidade. Os projetos FLOSS geralmente têm uma comunidade apoiando seu desenvolvi-
mento e produzindo organicamente muitas informações para descrever como, quando e por
que uma determinada mudança ocorreu no código-fonte ou no uxo de desenvolvimento.
Apesar da existência de diversos estudos sobre o fenômeno FLOSS e seu desenvolvimento,
essas fontes essenciais de informação têm sido negligenciadas devido à informalidade e aos
desaos sociotécnicos de coleta e análise dos dados. A negligência desses recursos pode ter
levado alguns estudos a resultados desatualizados e superciais em relação às práticas de
desenvolvimento FLOSS. Tendo isso em mente, consideramos a grande riqueza de materiais
de acesso aberto e a relevância e protagonismo do projeto Linux no fenômeno FLOSS para
mitigar a distância entre o que é investigado pela academia e o que é observado na prática no
desenvolvimento do kernel Linux. Projetamos uma investigação multi-método para cobrir
as perspectivas de acadêmicos e prossionais sobre os aspectos sociotécnicos do projeto.
Usamos uma revisão de literatura multivocal, examinando artigos revisados por pares e
literatura cinzenta, para mapear com precisão as características atuais da comunidade de
desenvolvimento do kernel Linux. Incluímos a observação participante no na comunidade
de desenvolvimento como uma terceira perspectiva na discussão das nossas descobertas e
das nuances envolvidas no desenvolvimento baseado na comunidade. Também sintetizamos
um conjunto de estratégias de pesquisa para revisar as publicações da comunidade FLOSS.
Como resultado, esta pesquisa resume o estado da arte e o estado da prática do modelo de
desenvolvimento contemporâneo do kernel Linux. Como resultado adjacente deste trabalho,
apresentamos uma combinação de métodos de pesquisa que podem impulsionar e orientar
futuras pesquisas de ecossistemas FLOSS.

Palavras-chave: Software Livre. Ecossistemas de Software Livre. Kernel Linux. Revisão da
Literatura Multivocal. Revisão da Literatura Cinzenta. Observação Participante

v

List of Abbreviations

FLOSS Free/Libre Open-Source Software
SE Software Engineering

MLR Multivocal Literature Review
GLR Grey Literature Review
SLR Systematic Literature Review
IIO Industrial I/O - Linux Kernel Subsystem

DRM Direct Rendering Manager - Linux Kernel Subsystem
USP University of São Paulo, Brazil
IME Institute of Mathematics and Statistics, University of São Paulo

FLUSP FLOSS at USP - Student Special Interest Group
CCSL FLOSS Competence Center, Brazil

vi

List of Figures

1.1 Practical and Theoretical Study Workow 5

2.1 An Overview of the Linux Architecture 16
2.2 Linux Subsystems . 17

4.1 Steps of our GLR Flow . 30
4.2 WordCloud from Grey Literature textual content 37
4.3 Grouping concepts from selected documents by subject area 39
4.4 The three elds of the Linux Kernel Community mindmap 40
4.5 Mindmap – Attributes about General Characteristics of the Community . 40
4.6 Mindmap – Attributes about the Community Ecosystem (1) 42
4.7 Mindmap – Attributes about the Community Ecosystem (2) – Developers 43
4.8 Mindmap – Attributes about Community Concerns 44

5.2 Comparing interests of academia and community publications – General
Characteristics . 64

5.3 Comparing interests of academia and community publications – Attributes
regarding the Community Ecosystem (1) 70

5.4 Comparing interests of academia and community publications – Attributes
regarding the Community Ecosystem (2) – Developers 71

5.5 Comparing interests of academia and community publications – Attributes
regarding Community Concerns . 72

vii

List of Tables

4.1 Grey Literature Review - Eligibility Criteria and Control Factors 31
4.2 Database evaluation and selection . 34
4.3 Number of documents selected per database 36
4.4 Grey scale of publications . 38

5.1 Search string results per digital library 59
5.2 First step - Evaluating publication . 59
5.3 Results from each identication and screening phases 60
5.4 Selection process per database . 60
5.5 Selected papers . 61

A.1 Types of Grey Literature Datasource . 86
A.2 . 88
A.3 . 88

C.1 List of contributions sent to IIO Linux subsystem 97

D.1 Contributions sent to DRM subsystem for GSoC application 104
D.2 blog_posts . 105
D.3 Contributions sent to DRM subsystem during GSoC project 105
D.4 Contributions sent to IGT GPU Tools project during GSoC 106
D.5 Contributions to DRM - Coding, Reviewing and Testing 106

ix

Contents

1 Introduction 1
1.1 Problem outline . 2
1.2 Research Questions . 4
1.3 Research Design . 4
1.4 Claimed Contributions . 7

1.4.1 Publications in the area of FLOSS Development 8
1.5 Thesis Structure . 9

2 Background 11
2.1 Free/Libre Open Source Software . 11

2.1.1 FLOSS Development Model . 12
2.2 The Linux Kernel . 15

2.2.1 The Linux Project . 15

3 Research Methods and Design 19
3.1 Research Strategies . 19

3.1.1 Multivocal Literature Review . 21
3.1.2 Ethnographic Case Study . 24
3.1.3 Data Analysis and Crossing Information 26

4 The Linux Kernel Development Model from the FLOSS community per-
spective 29
4.1 Systematic Grey Literature Review . 30

4.1.1 GLR Planning . 30
4.1.2 Data Collection . 32
4.1.3 Content Analysis . 36

4.2 The Linux Kernel Development Community Model 39
4.3 Linux Kernel Community Attributes Described by Community Publications 45

4.3.1 General Characteristics . 45

x

4.3.2 The Community Ecosystem . 46
4.3.3 Community Concerns . 52

5 Dierent perspectives on the Linux Kernel Development Model 57
5.1 Multivocal Literature Review . 57

5.1.1 Systematic Literature Review . 58
5.1.2 Content Analysis . 62

5.2 Unifying Academic and Community Understandings 63
5.2.1 General Characteristics of the Linux kernel Community 64
5.2.2 The Community Ecosystem . 65
5.2.3 The Community Concerns . 67

5.3 The Third Perspective - Participant-Observation 73
5.3.1 Mapping gaps in academic and community publications 75
5.3.2 Threats to Validity . 78

6 Conclusion 81
6.1 Future Work . 82

xi

Appendices

A Grey Literature Review Protocol 85
A.1 Research Questions . 85
A.2 Initial steps . 85

A.2.1 Data Sources . 86
A.2.2 Identifying the Database . 86

A.3 Planning GLR . 87
A.4 Search process . 89

A.4.1 Database Selection . 89
A.4.2 Searching documents . 89

A.5 Selection process . 89

B Multivocal Literature Review Protocol 91
B.1 Systematic Literature Review Protocol . 91
B.2 Content Analysis - Multivocal Literature Review 93

B.2.1 Content Analysis . 93

C Getting Involved in the Linux Kernel Community 95
C.1 Training Activities - Development Environment Setup 95

C.1.1 Basic Setup - This Research Approach 95
C.1.2 Understanding the process of sending contribution 96

C.2 Getting involved in the IIO subsystem . 96
C.3 Anatomy and contribution ow: the case of [PATCH] staging:iio:ad7150:

x threshold mode cong bit . 97
C.3.1 Sending a contribution by e-mail 97
C.3.2 Receiving feedback on mailing-list 99
C.3.3 Receiving notication of merge 101

D Path into Linux kernel Community 103
D.1 Changing to Another Subsystem - Development Environment Setup . . . 103

D.1.1 Role: Google Summer Of Code Applicant 103
D.1.2 Role: GSoC Intern . 104
D.1.3 Role: Independent Linux kernel developer 106
D.1.4 Role: VKMS Driver maintainer 107
D.1.5 Role: Co-mentor for Internship program 107

xii

Annexes

References 109

1

Chapter 1

Introduction

Free/Libre Open Source Software (FLOSS) development has been the subject of inves-
tigation in academia and industry. Their interest stems from the popularity of various
software projects and their successful use of peculiar management and training practices
to conduct a high-quality collaborative, geographically distributed, community-based
software development eort.

The search for eective and ecient ways of producing computer programs is at the
heart of the Software Engineering (ES) discipline. Nevertheless, a certain detachment from
the practice observed throughout the history of academic studies on FLOSS may lead many
investigations to carry myths and supercial understanding of its phenomenon and an
outdated view of the development model of one of the largest, most famous, and most
consolidated projects in the history of FLOSS phenomenon, the Linux kernel.

The Linux kernel development is connected in many ways to the history of the free
software and open-source movements. Also, few FLOSS projects have managed to survive
three decades and still have a pulsating development as the Linux kernel. Its characteristics
inspired software development models. Its long history, large community, and the interest
of software engineering studies in understanding its practices provide a great wealth of
open-access sources of information available for investigation.

The primary objective of this thesis is to describe the current development community
of the Linux kernel project, considering community publications and academic studies.
Our purpose is to capture community attributes, challenges, and concerns presented by
practitioners and compare their coverage by ES investigation. We also aim to identify
research techniques and data sources able to mitigate the distance between what is inves-
tigated by academia and what is observed in practice on the development of the Linux
kernel – the project that inspired one of the rst initiatives to dene a FLOSS development
model, the essay “The Cathedral and the Bazaar” (Raymond, 1999). We1 consider that
the real-world gaps in many studies on this kind of software are not caused by a lack
of methodological discipline and rigor in an investigation but rather by the absence of

1I often use “we” to describe the results of the collaborative process that involves my advisors and/or
other researchers at the FLOSS Competence Center of the University of São Paulo (CCSL); the use of “I” is
specic to work performed individually.

2

1 | INTRODUCTION

research approaches that use methods to shed light on the practice and endorse scientic
ndings.

In short, this investigation proposes to extract the attributes used to characterize the
Linux kernel development community from the state-of-the-art and state-of-the-practice.
We examine the outputs from academia and the Linux kernel community publications to
capture the attributes used to describe the Linux development community model, including
project management characteristics, organizational structure, workow, and decision-
making process. We also participated in the daily community to explore other nuances of
the project characteristics, making industry-as-laboratory. From this mapping, we deliver
a comprehensive study on the Linux kernel project’s development community in light of
the social and behavioral aspects of a distributed, community-based workow.

1.1 Problem outline

At the end of the nineties, Raymond (1999) described two supposedly antagonistic
FLOSS development models through an essay named “The Cathedral and The Bazaar”.
These models were based on his observations of the Linux kernel2 development and
lessons learned during his own software project, the fetchmail. The seminal essay aimed
to disseminate an apolitical and unbiased term to dene the development model of free
software projects, the term open-source. Consequently, a new wave inside the free software
communities emerged and brought along with it rms interested in the benets of these
open-source practices that enable innovation, technical support from an external commu-
nity, and “many-eyes” assisting the software development (Crowston et al., 2012).

Companies’ participation in FLOSS development projects has caused changes in their
communities, development processes, and business strategies. As a result, these elements
lost several free software characteristics and became more mainstream and viable (Fitzger-
ald, 2006). The development of many FLOSS projects is now supported by large companies,
either directly or through contributions from paid employees (Lakhani and Wolf, 2003).
Thus, FLOSS projects are less and less bazaar-like as strategic planning becomes essential.
At large, it became a public product produced by the private initiative (Crowston et al.,
2012). Other transformations came from the project evolution in terms of structure and
technologies for supporting distributed management and development, such as version
control systems, instant messengers, and authentication keys. In short, FLOSS development
has followed the web-based pace of globalization and innovation.

In the third decade of existence, the Linux kernel project also has transformed itself. It
steadily grows in terms of source-code size, developer team size, and variety of markets.
With the popularity of Android smartphones, the kernel is used by a large portion of the
global population. Its current development model is in a dierent scenario and presents
other aspects of those on which the Bazaar model was based. A core group of developers
takes most of the reviews and is also exclusively responsible for approving code changes,
passed by a chain-of-trust to Linus Torvalds’ ocial repository. Therefore, the risk of code
instability and intractable bug insertion on the mainline may not vary with the number of
testers and developers. This aspect resembles the Cathedral model’s design and contrasts

2hps://www.linuxfoundation.org/projects/linux

https://www.linuxfoundation.org/projects/linux

1.1 | PROBLEM OUTLINE

3

with the so-called “Linus’ Law” dened by Raymond as “Given enough eyeballs, all bugs
are shallow”.

Many Software Engineering studies already dissociate the Linux kernel development
from the bazar-like model. For Rigby et al. (2014), Linux is currently managed by a
dictatorship where its review process has an average of two reviewers, and 44% of patches
sent to the project are ignored and never merged to the code. However, for Fogel (2017),
code “forkability”, present in the Linux project, is why there are no real dictators in FLOSS
projects, but a particular type of dictatorship, the “benevolent dictator” model. In this
model, the dictator does not have a strict hold on the project, letting things work themselves
out and usually making nal decisions only if there is no consensus. For Lindberg et al.
(2014), the Linux kernel follows a cathedral model, but Shaikh and Henfridsson (2017)
argue that four governance types coexist in the Linux kernel development: autocracy,
oligarchy, federation, meritocracy. This unclear denition reveals that understanding the
Linux kernel development is an ongoing issue in academic investigations.

The annual increase in the number of publications of empirical work on FLOSS demon-
strates the growing interest in the subject (Crowston et al., 2012). Notwithstanding the
apparent consonance between industry and academia on the absorption of FLOSS practices
or products in software development projects,Osterlie and Jaccheri (2007) reveal a lack of
understanding of the FLOSS phenomenon in academic works, exposing the homogeneous
and biased point of view of many studies and their ndings. For the authors, the distancing
of software engineering studies from the practice gives a chance to reproduce imprecision.
Another aggravating factor of this imprecision is the initial and non-comprehensive use
of non-formal materials, such as blog posts, videos, whitepapers, and websites. These
materials are commonly produced by FLOSS practitioners in their day-to-day activities
and are dened by Scacchi andWalt (2007) as Software Informalism.

Many studies look at some artifacts produced by the community. In general, they
examine lines of code, commits, and emails. However, although Software Engineering pub-
lications widely use the term community-based to describe the FLOSS development model,
academic works do not always examine what the community has said about the project
of which it is a part. These mismatches led many software engineering studies to ignore
the diversication of development forms in the FLOSS ecosystem and transformations
on the Linux kernel development model after two decades since “The Cathedral and The
Bazaar”.

Given this scenario, for this thesis, we delimited the scope of some terms as fol-
lows:

• Free Software: refers to the Free Software movement, formalized by Richard Stallman
in 1983

• Open Source: refers to the Open-Source movement, a movement to pitch a concept
of “free software” development viable in the business world, as initially explicited
by the Cathedral and Bazaar essay.

• FLOSS, an acronym for Free / Libre and Open Source Software: refers to both free
and open software ecosystems. This term will be extensively used in discussions of
practices and methods used by developers in the freely licensed software community.

4

1 | INTRODUCTION

• FLOSS Phenomenon: when the topic in discussion involves characteristics of the Free
Software and Open-Source movements

• FLOSS Development: when the subject is limited to the workow and set of techniques
used in the production of this kind of software.

1.2 Research Questions

The Linux kernel project has a protagonism dening what we currently know as the
bazaar-like FLOSS development model. Besides, academia and industry have shown the
relevance of using FLOSS development practices for innovation and software quality.
Accordingly, this research primary goal is to map the attributes that describe the con-
temporary Linux development community model considering the state-of-the-art and
-practice of FLOSS development characteristics. We collect and analyze data from FLOSS
community publication and Software Engineering studies on Linux kernel development,
comparing our ndings. I conduct a participant-observation in the Linux kernel community
to reinforce convergences and address possible divergences between what is claimed by
academia and observed in daily work practice.

The following research questions will guide our investigation:

RQ1. How do soware engineering studies and Linux community publications
describe the current Linux development community model?

RQ1.1. What attributes practitioners use to characterize the Linux development com-
munity? What are the current social and organizational challenges from the community
perspective?

RQ1.2. Do Software Engineering studies already cover these topics?

RQ2. What research techniques can be used to examine a FLOSS project through
its community publications?

RQ3. What are the possible gaps and opportunities for academic research in
FLOSS development topics?

The Linux project’s selection takes into account the role played by this project in the
Free Software and Open-source movements. Also, much of the FLOSS model’s academic
understanding is based on assertions about the Linux project development model – or
Bazaar model. Describing the contemporary characteristics of the Linux project’s workow
and community, in contrast with its traditional characterization, will produce an updated
view of the roles, rules, and restrictions present in the Linux development model, one of
the major projects in FLOSS history.

1.3 Research Design

A variety of research methods supports FLOSS ecosystem studies, and the case study is,
without doubt, the most common method. On the other hand, multi-method investigations
are not largely used and are often designed to incorporate interviews into case studies,

1.3 | RESEARCH DESIGN

5

surveys, and eld studies (Crowston et al., 2012). Researchers are interested in elucidating
factors and features of FLOSS development that increase the chances of a software project
succeeding. According to Fogel (2017), it is not dicult for a FLOSS project to achieve
technical success; however, after initial success, it needs a social foundation and a robust
developer base to handle the growth or loss of skilled workforce.

Over the last two decades, the Linux kernel project grew in size, diversity, and matu-
rity. Besides examining the human interaction networks intrinsic of community-based
development, this study intends to benet from the wealth of information present in the
non-academic publications. We aim to expand the Linux kernel ecosystem’s academic
understanding by providing a socio-technical picture of the contemporary Linux kernel
development community.

We conducted a multivocal literature review (Vahid Garousi et al., 2018) to describe
the Linux development community model from the academia and community perspectives.
When reviewing multivocal literature, we examine documents from both grey literature
and academic studies on FLOSS development. To the best of our knowledge, no single study
has focused on identifying FLOSS research opportunities in the Linux kernel development
model by comparing characteristics mapped in Software Engineering studies with those
presented in FLOSS community publications. Moreover, conducting a multivocal literature
review in the Linux kernel project reveals mismatches and misunderstandings between
academia and industry communities about one of the most prominent and valuable projects
for the FLOSS phenomenon and history.

We also collected and analyzed qualitative data from my participant-observation in
the Linux kernel project community. We veried ndings from this ethnographic method
with those obtained in the multivocal literature review to discuss a potential misleading
characterization of the Linux kernel developmentmodel and Software Engineering research
opportunities in FLOSS.

Figure 1.1: Practical and Theoretical Study Workow

Figure1.1 summarizes the research strategies, methods, expected outcomes, and the
current stage of the investigation. This research is divided into four phases: the rst phase
of the acquaintance of data sources and research methods; the second phase of multivocal

6

1 | INTRODUCTION

literature review; the third phase of the ethnographic case study; and the fourth and nal
phase of conrming results by triangulation. Each phase is detailed below.

Phase I is a warm-up on the studies of the FLOSS phenomenon and its development
model. At this stage, we conducted a preliminary analysis of traditional and non-traditional
literature regarding elements commonly used to describe FLOSS development models and
community workows. These introductory materials support the construction of a search
string for the following steps. Another initial step is the introduction of the observer in
the Linux kernel community. In this phase, I had to sharpen my code skills and started
dialogues with community members to collect data by participant observation. Due to the
steep learning curve for becoming a kernel developer and having some project participants
in our research group, we chose to start this preparatory phase of participant observation
as soon as possible.

Phase II summarizes the state-of-the-art and -practice via amultivocal literature review.
The grey literature review identies attributes commonly used by the FLOSS community
to describe the Linux kernel development community. The systematic review of traditional
literature and, nally, the combination of ndings enables creating a comparative mindmap
of the contemporary Linux kernel development community from academic researchers’
and practitioners’ perspectives. Examining one data source has the inherently potential to
bring bias when reviewing another one. Considering this risk, we started the multivocal
review by grey literature. We prioritize the grey literature review because it is still poorly
systematized on FLOSS research, but these materials are resources closer to practitioners’
routines, gathering diverse undocumented information and decisions.

Phase III strengthens Phase II’s ndings through an in-depth ethnographic case study
on the Linux kernel community. At this stage, we focus on understanding people, project
culture, and their related social and work practices to shed light on mismatched under-
standings between academic researchers and practitioners. I participate in the community’s
daily life to capture undocumented characteristics of the Linux kernel development. As an
observer, I also identify misleading information and shallow approaches for some subjects
of software engineering studies that become research opportunities on FLOSS.

Thus, we design an ethnographic case study of the Linux kernel project. Data collection
follows a qualitative method of participant-observation, where an observer becomes a
member of the community under investigation, participating in daily tasks and dier-
ent situations for members’ interaction. On the one hand, I volunteered in FLUSP3, a
group focused on FLOSS project development at the University of São Paulo. I performed
necessary activities of communication and contribution to participate in a Linux kernel
subsystem’s development process, the Industrial I/O4. In the continuity of the investiga-
tion, I joined another Linux subsystem, the Linux DRM for GPU drivers5, taking a longer
participant-observation that included the performance of dierent community roles: a
volunteer newcomer; an independent developer for the Google Summer of Code program6;

3hps://flusp.ime.usp.br/
4hps://www.kernel.org/doc/html/latest/driver-api/iio/index.html
5hps://www.kernel.org/doc/html/latest/gpu/introduction.html
6hps://summerofcode.withgoogle.com/

https://flusp.ime.usp.br/
https://www.kernel.org/doc/html/latest/driver-api/iio/index.html
https://www.kernel.org/doc/html/latest/gpu/introduction.html
https://summerofcode.withgoogle.com/

1.4 | CLAIMED CONTRIBUTIONS

7

co-maintainer of a subsystem driver; and co-mentor of a project for Outreachy7, a paid
internship program. Driver maintainership involves clerical and development tasks, such
as reviewing contributions to the driver, keeping driver development code up-to-date,
bug-xing and synchronizing driver code to subsystem updates. Mentorship also involves
many activities, such as evaluating candidates, designing the internship projects, guide
newcomers through drivers and subsystem code, explaining concepts, introducing them
to the subsystem community, review contributions. Therefore, this multi-role experience
also enables virtual interactions with other community members to comprehend their
behaviors, communication styles, and development process perceptions with mine.

Finally, Phase IV triangulates the ndings from the GLR, SRL and participant and non-
participant observation in the case of the Linux project. Also, we discuss the advantages,
challenges and limitations of this multi-method research design to help future research in
the choice of appropriate research methods.

1.4 Claimed Contributions

This thesis aims to investigate features of the Linux kernel community in an up-to-date
view of the Linux kernel development model. From this goal, we claim that this work
delivers four primary original contributions:

C1. A comprehensive characterization of the contemporary Linux kernel devel-
opment community. The systematic grey literature review and content analysis resulted
in a mind map of main concepts used by Linux kernel community members to describe
the development of its common-source project. We grouped the concepts in main subjects
regarding characteristics of the community as a unit, members concerns and natural and
legal persons participation. C1.1 A map of potentiallly misleading information and
gaps between theory and practice in the contemporary Linux kernel development
community.We design a multi-method investigation to map convergencies in theory and
practice on the Linux kernel development community. We combine and compare ndings
from reviewing software engineering studies and community publications to provide an
up-to-date description of the project development community. We participated in the daily
life of the community to observe undocumented features. Consequently, we produce a
comprehensive and critical mapping of misleading information and gaps in the Linux
kernel development model’s academic understanding. Filling these gaps improves the
investigative design and increases the relevance of future FLOSS research.

C2. Community characteristics and social-technical nuances that shapes a
FLOSS project development.Many FLOSS projects are supported by a community of
developers. In the Linux kernel project, the development model is dened by concepts that
describe its release process, artifacts, software-product, and community. Discussion on the
Linux kernel structures, rules, and roles used to organize a community of contributors is
dispersed in Software Engineering studies.We thus provide a rationale inwhich community
aspects set the pace of the current Linux kernel development and are the basis of the
sustainability of the project. Therefore, we argue that FLOSS development should be
evaluated from a social perspective, where social aspects impact development processes,

7hps://www.outreachy.org/

https://www.outreachy.org/

8

1 | INTRODUCTION

growth, and continuation of a project. We also explored the advantages of participant
observation to analyze the content and discuss the multivocal review results in one of the
most successful projects in the FLOSS phenomenon.

C3. Guidelines to examine FLOSS projects through its community publications.
We systematize the entire process of reviewing and analyzing content from grey literature
produced by the Linux kernel community. The methods, challenges, and adaptations
reported here can guide future grey literature review on FLOSS and Software Engineering
studies. From our lessons learned in this process, FLOSS Researchers can also anticipate
issues and design a protocol to prevent bottlenecks when dealing with a large amount of
content, usually poorly structured.

C4. A combination of research strategies that could boost research on FLOSS
ecosystems. We resort to dierent systematic literature reviews and qualitative methods
to summarize state-of-art and -practices in the Linux kernel development model. The
multivocal literature review is a powerful method to include negative results, current dis-
cussions, and emerging research topics in software engineering and the software industry.
It also captures practitioners’ point of view that, combined with a participant-observation,
provides a comprehensive understanding of FLOSS project characteristics and transversal
social aspects of FLOSS development. We use data from community publications, software
engineering studies, and participant-observation to expand our research on the Linux
kernel ecosystem with concepts from theory, practice, and development trenches. To date,
no other Software Engineering studies on FLOSS have systematically reviewed community
publications from FLOSS projects and, moreover, combined ndings with a systematic
literature review.

C1 and C1.1 resulted from answering RQ1 and RQ1.2. C2 is a consequence of answering
RQ1.1. C3 is related to the RQ2. Finally, RQ3 covers C4 and C1.1.

1.4.1 Publications in the area of FLOSS Development
We have published a total of ve conference and journal papers based on this research

or covering diverse themes related to topics of this thesis.

P1. Wen, M., Leite, L., Kon, F., Meirelles, P. (2020). Understanding FLOSS through
community publications: strategies for grey literature review. Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: New Ideas and Emerging Results,
ICSE-NIER 2020.

P2.Wen, M., Siqueira, R., Lago, N., Camarinha, D., Terceiro, A., Kon, F., Meirelles, P.
(2020). Leading Successful Government-Academia Collaboration Using FLOSS and Agile
Values. Journal of Systems and Software. Volume 164.

P3. Wen, M., Meirelles, P., Siqueira, R., Kon, F. (2018). FLOSS project management
in government-academia collaboration. Open Source Systems: Enterprise Software and
Solutions, OSS 2018. (Best Paper Award)

P4. Siqueira, R., Camarinha, D., Wen, M., Meirelles, P., Kon, F. (2018). Continuous
delivery: Building trust in a large-scale, complex government organization. IEEE Software,
35(2).

1.5 | THESIS STRUCTURE

9

P5. Meirelles, P., Wen, M., Terceiro, A., Siqueira, R., Kanashiro, L., Neri, H. (2017).
Brazilian public software portal: An integrated platform for collaborative development.
Proceedings of the 13th International Symposium on Open Collaboration, OpenSym
2017.

1.5 Thesis Structure

This thesis consists of ve more chapters. Chapter 2 presents a history of the FLOSS
phenomenon – history, movement, and related development model – and the Linux kernel
both as an operating system kernel and a FLOSS project. Chapter 3 describes the research
methods selected to guide this study, discussing advantages, challenges, and specicities.
Chapter 4 proposes strategies for conducting Grey Literature Reviews on FLOSS based
on guidelines from related works on Software Engineering literature review. We present
the decisions taken and adaptations made to examine and analyze FLOSS community
publications with dierent formality levels. This process resulted in a comprehensive mind
map describing the Linux kernel development community. We also discuss the community
concerns regarding process scalability, member behavior, and project subsistence from the
practitioner’s perspective. Chapter 5 presents related works on the Linux development
model characteristics as systematic literature review ndings. We compare results here to
those from the grey literature review. We include a third point of view from a participant-
observation to discuss the characteristics and concerns of the Linux kernel community. We
also map and discuss the matches and mismatches of the attributes considering the theory
and practice of Linux kernel development. Finally, Chapter 6 concludes this research. We
answer our research question and discuss opportunities for future Software Engineering
research on FLOSS from the gaps mapped by our multivocal literature review.

11

Chapter 2

Background

2.1 Free/Libre Open Source Software

The Free Software and Open Source movements have in their bases the opposition to
established policies and models of the software development industry of their times. While
the Free Software movement was in opposition to the proprietary software industry’s
dominance, the Open Source advocated the superiority of a bazaar-like development over
the hierarchical model typically used in proprietary software projects. After more than
30 years of the Free Software movement and 20 years of Open Source, academia lacks a
complete understanding of FLOSS development’s possible models. Hence, revisiting the
history of Free and Open Source Software is essential to uncover loose ends in academic
investigations.

Free Software Movement

The rst steps of the Free Software movement were given in 1983 when Richard
Stallman announced the GNU project. The project’s goal was to build a Unix-compatible
operating system to be made available for free (Stallman, 1983; Stallman, 2018). In
Stallman’s view, the existence of a free operating system would strengthen the cooperative
development of computing communities (F. S. Foundation, 2017) that had been weakened
by the dominance of the private software industry. This movement was consolidated two
years later with the publication of the GNU Manifesto in Dr. Dobb’s Journal of Software
Tools and the Free Software Foundation (FSF) creation. FSF supports the GNU project and
aims to promote the development and use of free software and ensure the freedom to
copy, study, modify, and redistribute software. In 1989, the same project created the “GNU
General Public License” (GPL) (F. S. Foundation, 2007), a copyleft scheme that eliminates
usage restrictions in software and other kinds of intellectual production.

Only in 1992, with the Linux kernel incorporation, the GNU project became a complete
operating system. The existence of a free operating system and the GNU/Linux project’s
success led to the growth of software projects under the GPL license and its volunteer
communities, which, in turn, led to increased commercial interest in its development
process.

12

2 | BACKGROUND

Open Source Movement

In 1997, through a set of observations made in the Linux kernel community and
lessons learned from his experiences with other software projects, Eric Raymond presented
the essay “The Cathedral and the Bazaar”. In this essay, Raymond (1999) denes two
antagonistic software development models: the cathedral model and the bazaar model.
Projects classied as cathedrals would be those projects that follow a hierarchical model of
development, with long periods between the release of new versions and the users’ little
participation in the software construction process. In opposition to that, Raymond (1999)
claims that the bazaar model, like Linux, is open to receiving any user’s contribution,
with quick releases and assuming the risk of failures and bugs. For him, the bazaar model
was like a horde of anarchists competing and surpassing the hierarchical form of closed
software development.

Th term Open Source was used by Raymond to propagate a depoliticized and ideo-
logically unbiased concept of free software projects. Raymond dened that the bazaar
development model, or Linux model, would be the model to be followed by open-source
software. With an initial set of Linux development characteristics and an apparent dissoci-
ation of moral issues, adopting a bazaar model intensied commercial actors’ participation
in Open Source projects. “Release early and often. Delegate everything you can. Be open to
the point of promiscuity” was a premise that won the developers’ sympathy and users of
the projects and companies. They could see advantages in innovation and improvement of
their products by opening the code for contributions.

Bruce Perens edited the Debian Free Software Guidelines to form the Open Source
Denition and registered a certication mark on the term Open Source. He transferred
the mark’s ownership to Raymond, and they together formed the Open Source Initiative,
“an organization exclusively for managing the Open Source campaign and its certication
mark” (DiBona and Ockman, 1999).

Raymond’s essay has become a landmark for the free software universe until now.While
on the one hand, the essay sowed the investigation, understanding, and implementation of
good practices of OSS development. On the other hand, the defense of the term open source
as an apolitical synonym of free software disturbed some practitioners and generated
a rupture between them. Stallman published an online article stating that Open Source
software misses the point of Free software (Stallman, 2019). Perens stated the concept of
Free Software was outdated when he opted for Open Source. However, some years later,
he explained that Open Source was coined to promote the concept of Free Software to
business people and regrets that the Open Source Initiative deprecated Richard Stallman
and Free Software. For him, “Open Source licenses and Free Software licenses are eectively
the same thing.”1

2.1.1 FLOSS Development Model
According to Mockus et al. (2002), FLOSS processes can produce high-quality and

widely deployed software; however, the exact means responsible for the success are
frequently debated. Meritocracy, cooperative spirit, and code transparency are all part of

1hps://perens.com/2017/09/26/on-usage-of-the-phrase-open-source/

https://perens.com/2017/09/26/on-usage-of-the-phrase-open-source/

2.1 | FREE/LIBRE OPEN SOURCE SOFTWARE

13

this, but they are not enough to explain a project’s daily routine and how they resolve
conicts (Fogel, 2017).

We can consider the Cathedral and Bazaar models presented by Raymond, 1999 as
a preliminary initiative to characterize freely licensed software development models.
When observing free software projects of that time, Raymond separated in two sets the
characteristics found by him in a personal project and projects like Linux and GCC, as
summarized below:

The Cathedral

• Development team: a group of few people, well-trained and working in isolation.

• Release process: does not include beta versions. Do not release a version of the
software until it has as few bugs as possible so as not to undermine the user’s
patience. Uses very long release intervals which increase the user expectations for a
perfect version.

• Debugging: takes a long time. A bug is a complicated and profound phenomenon.
Only a small group of developers can solve them.

The Bazaar

• Development team: composed of co-developers available via the internet. Con-
tributors having dierent schedules and approaches, motivated by ego satisfaction,
perception of constant improvements of the software coming from their works,
personal needs, or love. Users can also be co-developers, helping to nd, suggest-
ing xes, and improving code faster. Contributions are made by people who are
suciently interested in using the software, learning how it works, trying to nd
solutions to the problems encountered, and actually producing a reasonable x. The
coordinator needs to be able to communicate well and attract good people. The
developers are selsh agents who try to maximize their productivity and, during
this process, spontaneously auto-organizing the development workow.

• Release process: Make software versions available as soon as possible and as often
as possible. Perfection is achieved when the code produced is not only ecient but
also as simple as possible. Coding, enhancement, and debugging is parallelizable
when the mode of development is based on rapid interactions.

• Debugging:Maximize the number of person-hours debugging and developing even
if it costs code instability and introduction of an intractable bug. Given a sucient
number of testers and developers, almost all problems will be characterized quickly
(by someone), and the solution will be evident to others. A bug is a supercial
phenomenon (easily visualized), or is brought to the surface quickly when a version
is available to several observers. Debugging is parallelizable and does not require
much coordination, just a useful reference. In practice, debug rework (duplication)
is rarely a problem, and this rework is reduced with increasing launch frequency.
More users nd more bugs because they can stress software in dierent ways. There
is always the option to use a previous (stable) version if a critical bug is found in the
current tree (unstable).

14

2 | BACKGROUND

According to Raymond (1999), starting a project already with the shape of a bazaar is
not trivial since someone needs a plausible promise to create a community, i.e., something
executable and testable for this community. Raymond (1999) states that more important
than being brilliant, a project coordinator should be able to identify promising ideas from
other people’s projects. Coordinators should know when to restrict the innovations and
complexities in favor of code robustness and objectivity. Moreover, they should understand
that the free software community values its reputation. Therefore, they should pressure
people not to initiate development eorts that are not worth moving forward.

After more than two decades, the FLOSS development based on geographically dis-
tributed communities has evolved in an OSS 2.0 due to the growing participation of
commercial actors (Fitzgerald, 2006). The author characterizes both FLOSS in its origin
as its current version and points out possible gaps between the focus of OSS research and
the OSS phenomenon itself. Also, investigations that mine data from the contributions’
ow of dierent projects point to the FLOSS dissociation of the bazaar model.

Fogel (2017) states that as a project gets old, it tends to move from a benevolent
dictatorship model to an openly democratic system with group-based governance. This
model would then be a “consensus-based democracy”, where the group works in consensus
most of the time, and there is a formal voting mechanism. Finally, after metamorphosing
into a group-based system, a project rarely moves back.

Literature reviews supplemented and updated this new shape of FLOSS development.
Scacchi, Feller, et al. (2006) reviews empirical studies of FLOSS projects to identify prac-
tices, processes, dynamics, and other socio-technical concerns involved in these ecosystems
and research opportunities in this eld of study. The author also points to the relevance of
resources and capabilities supporting this kind of development. Osterlie and Jaccheri
(2007) conduct a critical review of the formal literature to investigate, through discourse
analysis, how software engineering research has treated open-source as a homogeneous phe-
nomenon (Osterlie and Jaccheri, 2007). This analysis demonstrates various points where
academia has built biased concepts about the practice and advocates for the heterogeneity
and multidisciplinarity of open-source development (OSSD).

Kon et al. (2011) discuss how the wealth of information available in FLOSS project
artifacts can benet Software Engineering research and education. They also evaluated
where the Brazilian Software Engineering research community stands with regard to
FLOSS. Crowston et al. (2012) reviewed commercial publications between 1999 and
2006 related to empirical research in the development of FLOSS. The purpose of the
paper is to synthesize what academia has known and unknown about the process and
public/private practices involved in the FLOSS development. Ultimately, Steinmacher
et al. (2015) selected 20 studies that provide empirical evidence of newcomers’ barriers
when contributing to a FLOSS project. They classied 15 barriers into ve categories and
also problems according to their three origins.

Considering the diversity of FLOSS projects, Capiluppi, Lago, et al. (2003) examined
almost 400 projects to nd FLOSS project properties. Their work extracted generic charac-
terization (project size, age, license, and programming language), analyzed the average
number of people involved in the project (developers, subscribers, and core team), the
community of users, modularity, and documentation characteristics.

2.2 | THE LINUX KERNEL

15

Some FLOSS practices overlap with agile values regarding individuals and interac-
tions, working software, customer collaboration, responsiveness to change, and software
project management (Beck et al., 2010; Javdani Gandomani et al., 2013). Besides, FLOSS
projects rely on self-organized teams and team-wide shared and coherent goals (P. Adams
and Capiluppi, 2009; Tsirakidis et al., 2009).Warsta and Abrahamsson (2003) found
dierences and similarities between agile development and FLOSS practices. Open com-
munication, project modularity, the users’ community, and fast response to problems are
just a few of the FLOSS ecosystem practices (Capiluppi, Lago, et al., 2003;Warsta and
Abrahamsson, 2003). The authors argued that FLOSS development might dier from agile
in their philosophical and economic perspectives; on the other hand, both approaches
share similar work denitions.

We have also reported the reproducibility of sound FLOSS development practices
in a software development collaboration (Wen, Siqeira, et al., 2020). We explained
FLOSS community development standards, such as developers being also users of the
system under development. FLOSS project is usually divided into fronts of self-organized
development teams, identifying among developers the leadership roles. They use open
means of communication to code review, track activities, and organically document the
project, processes, and technical decisions. Finally, project stakeholders participate in the
development routines and workow through their employees.

2.2 The Linux Kernel

Linux is a monolithic kernel of the family of Unix-like operating systems. It is not a
complete Unix operating system since it does not include lesystem utilities, windowing
systems, desktop environment, text editors, and compilers. Unlike Unix, the Linux kernel
is under the GNU General Public License version 2 only (GPL-2.0), with an explicit syscall
exception2. This license protects the code of commercial ownership and benets it with
developing the userspace project GNU. Also, the project is open and available to anyone
to study (Bovet and Cesati, 2005).

According to Tanenbaum, 2014, Linux is a rewrite of MINIX, with numerous ideas
from this microkernel project and other new features. The Linux kernel uses modules
to achieve microkernel advantages. A module is an object le whose code is linked to
the kernel at runtime. This object code usually implements features at the kernel’s upper
layer (Bovet and Cesati, 2005).

The Linux kernel is divided into three levels, as shown in Figure 2.1: the top-level
implements basic functionalities of the System Call Interface, such as read and write; the
architecture-independent kernel code is in the middle, and the architecture-dependent
code is in the bottom-level (Jones, 2007).

2.2.1 The Linux Project
The Linux kernel project currently has almost 25 million lines of code and much more

than 1,500 active developers frommore than 250 dierent companies (or from no company).
2hps://www.kernel.org/doc/html/latest/process/license-rules.html

https://www.kernel.org/doc/html/latest/process/license-rules.html

16

2 | BACKGROUND

Figure 2.1: An Overview of the Linux Architecture

Its development process diers signicantly from proprietary development methods, with
a community-based scheme, a patch-oriented development process, and a time-based
release process.

Linux History

Linux is an operating system kernel that began to be written by Linus Torvalds in
1991 (Torvalds, 1992). It was initially private, but in 1992 Linus made it free software,
enabling the GNU project to adopt this kernel and thus creating the GNU/Linux operating
system. The rst stable version of Linux (1.0) was released in 1994, with about 165,000
lines of code (Tanenbaum, 2014). Due to the full participation of the GNU community
- concerned with the compatibility of the system with the stable version of the kernel -
and the dynamics of geographically distributed volunteers coordinated by Torvalds, the
project grew to such an extent that, ve years later, version 2.2.0 already had 1.8 million
lines of code (Jones, 2007).

Throughout its three decades, the Linux creator, Linus Torvalds, has repositioned
the project regarding the Free Software and Open-Souce movements. In 2007, Torvalds
positioned itself against the adoption of GPLv3 (Torvalds, 2007), created by the Free
Software Foundation. More recently, in a TED of 2016, he stated that he was never really
concernedwith following an open sourcemethodology or free software policies (McManus,
2016). He just opened the code for feedback and created methods and tools (such as Git)
that made it possible to shape development in the most comfortable possible way for him.
Finally, in a letter recently sent to the kernel project mailing list in 2018, Torvalds licenses
himself for a brief period from the coordination of Linux due to strong disagreements with
the community regarding his way of conducting the project (Torvalds, 2018). Greg Kroah-
Hartman took over Torvalds’ coordination responsibilities and, after a month, Torvalds
returned to Linux development (Statt, 2018). At that time, the controversial code of
conicts was replaced by a new code of conduct as a symbol of a welcoming and inclusive
community that cares about its developers.

2.2 | THE LINUX KERNEL

17

The Project Structure

The kernel code is organized as a set of subsystems3 such as process scheduler, memory
management, device driver infrastructure, networking, and lesystems (Community, 2017)
(depicted by Figure 2.2). Usually, each subsystem has designated maintainers. A maintainer
is the project role responsible for managing and accepting contributions into a specic
subsystem code repository. The kernel project uses the Git source management tool to
coordinate contributions. Contributions are formatted and sent to the Linux kernel project,
as a patch. A patch is a text document describing the dierences between two dierent
versions of a source tree. These contributions (or patches) are grouped according to a
particular need or interest. This collection of patches are arranged in a tree. And each tree
works as a place of a specic development.

Device Drivers

Process Management

System Call Interface (SCI)

Architecture-

dependent code

Memory

Management

Virtual File

System

Network Stack

Figure 2.2: Linux Subsystems

A contribution sent to a subsystem does not go directly to the mainline tree of Linux.
Each subsystem maintainer has a version of the kernel source tree, which enables the
maintainer to track patches. The chain of subsystem trees guides the ow of patches to
Torvalds’ source tree (Corbet, 2008).

At the beginning of a development cycle, a “window” is opened to merge the code
of changes accepted by the maintainers of a given subsystem into the mainline kernel.
Changes in each subsystem trees are merged to Torvalds’ source tree via pull requests.
After this time, Torvalds declares the window as closed and releases a rst intermediate
release (Documentation, 2019). There is a somewhat informal process to ensure that
a change is in the quality and relevance appropriate for the ocial repository. This
evaluation is taken by top-level maintainers and also by Torvalds. Sometimes, he takes
special attention to some particular patch; however, in general, he trusts maintainers will
not send bad code.

Linux development processes extensively rely on human evaluation and subjectivity.
Notwithstanding the building of a chain-of-trust, the community has raised questions

3hps://lwn.net/Articles/844539/

https://lwn.net/Articles/844539/

18

2 | BACKGROUND

about Torvalds’ behavior (Torvalds, 2018), the hierarchies, and also the processes of review
and acceptance of changes (Vetter, 2018). These conicts reinforce the relevance of socio
and behavioral aspects for examining the Linux kernel development model. Moreover, the
high-dependence on human judgment intrinsically puts informalities, imprecisions, and
unpredictability to the project development and deliverables.

This background motivates us to investigate the characteristics of Linux kernel de-
velopment in light of the project community’s human aspects. Bearing in mind FLOSS
phenomenon transformations, we aim to capture an up-to-date picture of roles, rules, and
responsibilities that support the development community. Therefore, we present in the
next chapter the research methods chosen to conduct our comprehensive research in the
Linux kernel development project.

19

Chapter 3

Research Methods and Design

According to Osterlie and Jaccheri (2007), software engineering literature has pre-
sented little about what is performed by practitioners, what activities they do, and how
often they happen. More recently, Aniche et al. (2019) have claimed that “It is fundamental
that the real-life experience of practitioners inuences the work of researchers in the eld”
of software engineering. To ll the gap between practice and theory, researchers should
move from a research-and-transfer model to an industry-as-laboratory approach. With
this concern in mind, this work proposes a multi-methodological investigation, adopting
the multivocal literature review and the ethnographic case study. For the multivocal litera-
ture review, we systematically examined grey and formal literature. Also, we performed
an ethnographic case study through online participant observation in the Linux kernel
project. The use of multiple methods enables to update the academia and practitioners’
perception of the characteristics of the Linux kernel, the ecosystem that inspired the FLOSS
development model.

In this chapter, we introduce the research methods that guide this investigation. We
discuss the advantages and challenges of each of them. We also present guidelines for the
use of each approach in software engineering investigations.

3.1 Research Strategies

Searching for information only in formal bibliographic references does not t well into
the universe of FLOSS. A FLOSS ecosystem usually has a community around its project,
organically producing materials that describe how, when, and why a particular change
occurred in the source code or the development ow. This production provides activity logs,
documentation of discussion, and decision-making present in the developer’s day-to-day.
Scacchi andWalt (2007) dene as Software Informalism the information resources and
artifacts used by participants to describe, prescribe, or proscribe what happens in a FLOSS
project. They are informal, comparatively easy-to-use, and publicly accessible narratives
such as source code, artifacts, online repositories, with substantial size, diversity, and
complexity not previously available globally. Online and non-academic publications can
complement these materials to broaden the academic understanding of how FLOSS project
developers interpret the development model of which they are part.

20

3 | RESEARCH METHODS AND DESIGN

Besides the specicity in the production of informal narratives published openly on the
Internet, FLOSS development studies must also consider the pillars that sustain developers’
community for a given project. Trust and responsibility among project participants are
invisible social control resources that support the open and complex development of
FLOSS (Scacchi and Walt, 2007). Describing how contributors interpret the organization
and workow requires research methods capable of explaining the rationalities from an
insider’s point of view and puts the social, cooperative, and human aspects of software
engineering practice at the center (Sharp et al., 2016). Finally, empirical studies on FLOSS
are growing and expanding the scope of what we can observe, analyze and learn about
these software systems and their development. Traditional research methods join new
techniques for mining repositories and analysis of the socio-technical processes and
environments which support FLOSS projects (Scacchi, 2010).

Considering the research questions enunciated in Section 1.3, we have a mix of question
types. RQ1. How do soware engineering studies and Linux community publica-
tions describe the current Linux development community model? is exploratory and
descriptive. To answer subquestion What attributes practitioners use to characterize the
Linux development model? What are the current project challenges and concerns from the
community perspective?, we conduct a grey literature review to construct a comprehensive,
up-to-date view of the Linux kernel development model considering the FLOSS community
perspective. After, we analyze the selected documents using quantitative and qualitative
content analysis techniques to identify the attributes used to characterize the Linux devel-
opment community. For the subquestion (Do Software Engineering studies already cover
these topics?), we chose themultivocal literature review with a comparative content analysis
approach to assess the convergence between what is studied in academia and what is
experienced in the practice of the Linux development community.

RQ1 also has an ethnographic nature because it concerns itself with the social and
behavioral aspects of groups of people in the means of interactions. Community and
project diversity constrain the statistical generalization of results found in case studies of
FLOSS projects. However, the ethnographic approach communicates a detailed picture
that enables analytical generalizations. Therefore, we include a participant-observation to
explore the nuances from the daily work on the Linux kernel development process and
capture the “what” and “why” of practices from dierent qualitative sources of data. We
collect qualitative data through online participant observation in two Linux subsystems
and non-participant observation of informants.

RQ2. What research techniques can be used to examine a FLOSS project through
its community publications? is exploratory and descriptive. It involves deploying
new methods to review non-academic literature and incrementally adapting the data
collection and data analysis processes. Therefore, we describe the methods and adaptations
to conduct the grey literature review on FLOSS, using the Linux kernel project as a case
study. Finally, we approach RQ3. What are the possible gaps and opportunities for
academic research in FLOSS development topics? by choosing specic content analysis
methods to systematize concepts from FLOSS community publications and highlighting
which of these concepts were already covered by studies in commercial publishers. We
also compared ndings from participant-observation and analyze with those found in the
literature review to illustrate how to nd gaps and build bridges on theory and practice

3.1 | RESEARCH STRATEGIES

21

understanding of a FLOSS project development.

3.1.1 Multivocal Literature Review
A Multivocal Literature Review (MRL) is a form of systematic literature review that

includes inputs from academic peer-reviewed papers and sources from the Grey Litera-
ture (Vahid Garousi et al., 2018). It aims to provide summaries of both the state-of-the-art
and state-of-the-practice in a given area.

Systematic Literature Review

Systematic Literature Review (SLR) is a research methodology used to synthesize and
evaluate the available evidence on a focused topic (Almeida Biolchini et al., 2007). It
follows a rigorous methodology of research results to support evidence-based guidelines
for practitioners (Barbara Kitchenham, Pearl Brereton, et al., 2009). The evidence
knowledge allows researchers to capture gaps and concept conicts addressed by new
studies in the area (Melo, 2013).

In contrast to ad-hoc literature reviews, a systematic review follows a sequence of
well-dened, strict steps following a protocol planned before execution. The whole SLR
process must be documented, explicitly dening methodological steps, collection strategies,
focus, research question, and intermediate results.

According toHiggins andGreen (2008), a systematic review should have the following
characteristics:

• A set of clearly stated goals with predetermined inclusion and exclusion criteria for
studies;

• An explicit and reproducible methodology;

• The use of systematic research to reach all studies that t the eligibility criteria;

• An evaluation of the validity of the ndings of the selected studies, including the
risk of bias; and

• A systematic and synthesized presentation of the characteristics and results of the
selected studies.

Although SLR has become more prevalent in empirical software engineering, many of
these studies use medical standards to guide reviews (Barbara Kitchenham and Brereton,
2013). Budgen and Brereton (2006) proposed a three-phase review process for Software
Engineering: (1) planning the review; (2) conducting the review; (3) reporting the outcomes
from the review. Almeida Biolchini et al. (2007) developed a similar three-phase template
based on protocols and systematic review guidelines in the medical eld to guide the
planning and execution of SLR in Software Engineering. This template handles each phase
of the SLR process as detailed below:

• Review Planning: denes question focus; question quality and amplitude, i.e., problem,
question, keywords, Population-Intervention-Comparison-Outcome (PICO) compo-
nents, and others semantics specicity; Source Selection (criteria denition, studies

22

3 | RESEARCH METHODS AND DESIGN

languages, sources selection, source and references evaluation); Studies Selection
(inclusion and exclusion criteria; studies types; procedures for selection).

• Review Execution: Selection Execution (reports primary studies selection); Informa-
tion Extraction (describes extraction criteria, results, and resolution of divergences
among reviewers).

• Result Analysis: summarizes and analyzes results using statistical methods.

According to B. Kitchenham and Charters, 2007, the main advantages of SLR
are:

• Low probability of bias due to the use of a well-dened methodology (although not
exempted to the prejudices of primary studies);

• Informs the eects of a phenomenon across a wide range of settings and empirical
methods;

• In the case of quantitative studies, SLR enables the combination of data using meta-
analysis techniques.

The SLR primary challenge is that it requires more eort than a non-systematic review.
Some additional problems arise in software engineering; for example, digital libraries lack
mechanisms to perform complex queries, papers omit information, and their abstracts are
poor (Barbara Kitchenham and Brereton, 2013).

Grey Literature Review

According to Rothstein et al. (2005), Grey Literature (GL) is any source of informa-
tion produced from academia, industry, business, and government, published in print
or electronic formats, but commercial publishers do not control it. It is composed of
sources of data not found in the formal literature, such as blogs, videos, white papers, and
web-pages.

Alongside commercial and academic publications, GL can be used to broaden the
understanding of how FLOSS developers interpret the environment of which they are part.
Despite the informality of GL, it brings advantages of its own. Studies with negative or
null results are easier to nd in GL than in peer-reviewed academic literature, enabling
a more critic perspective, with a potential reduction of bias and visualization of more
balanced evidence (Paez, 2017). GL is also a leading source for identifying topics and gaps
not yet covered by academic literature. It also enables investigating more up-to-date, and
emerging information since academic studies incur long publication delays due to the
peer-review process.

Although it is still a nascent trend, a few software engineering reviews have already
included GL material (Bailey et al., 2007; França et al., 2016; Soldani et al., 2018). Never-
theless, we argue that GL material use is even more fruitful in FLOSS research, given the
vast amount of public information resources produced by the FLOSS communities. In such
a scenario, we claim that researchers should investigate such resources before taking the
time of FLOSS contributors with surveys or interviews (V. Garousi et al., 2016), especially

3.1 | RESEARCH STRATEGIES

23

considering that i) most of the needed information is already available with rich details
and ii) top contributors usually do not have much time for extensive interviews.

Combining systematic review protocols with GLR helps shed light on critical industrial
and practitioners concerns not yet mapped by software engineering studies (Soldani et al.,
2018). However, the use of GLR also has challenges. Although systematic seview guidelines,
such as Higgins and Green (2008), recommend the inclusion of this literature, a precise
method for implementation is not available. Thus, GLR still faces diculties due to the
large volume of information and the lack of indexing standards and vocabulary (Godin
et al., 2015).

Godin et al. (2015) present an application of systematic review methods in GLR,
where information sources include GLR databases, customized Google search engines,
targeted websites, and consultation with experts. They use title and source organization
of documents for eligibility assessment and study selection. Finally, they search for a
pre-dened set of data on each study selected.

Conducting a Multivocal Literature Review

A multivocal literature review (MRL) could improve software engineering research
relevance by analyzing input from practitioner literature. Vahid Garousi et al. (2018)
present guidelines to include GLR in SLR and conduct a multivocal literature review. The
proposed MRL process is composed of ve phases:

• Search process:

– Dening search string and/or using snowballing techniques.

– Where to search: search formally-published literature via broad-coverage ab-
stract databases and full-text databases; search GLR via a general web search
engine, specialized databases, and websites, contacting individuals directly or
via social media, and/or reference lists and backlinks, and perform an informal
pre-search to nd dierent synonyms for specic topics.

– Stopping criteria: theoretical saturation; eort bounded; evidence exhaustion;

• Source selection: combine inclusion and exclusion criteria for GLR with quality
assessment criteria; in the source selection process of an MLR, one should ensure
a coordinated integration of the source selection processes for GLR and formal
literature.

• Study quality assessment: apply and adapt the criteria authority of the producer,
methodology, objectivity, date, novelty, impact, as well as outlet control, for study
quality assessment of grey literature.

• Data extraction: design data extraction forms; use systematic procedures and
logistics, such as maintaining “traceability” links, and extracting and recording as
much quantitative/qualitative data as needed to suciently address each research
question;

• Data synthesis:many GLR sources are suitable for qualitative coding and synthesis;
argumentation theory can be benecial for data synthesis; quantitative analysis is

24

3 | RESEARCH METHODS AND DESIGN

possible on GLR databases such as StackOverow.

Crowston et al. (2012) have stated that the use of secondary data was not a research
mechanism widely adopted in research on FLOSS development. Moreover, although SLR
is a well-established investigative method, with steps and restrictions already dened in
several elds of study, MLR, in turn, is an emerging technique, especially in the area of
software engineering. Its conduction still requires adaptations for the variety of publication
types on a particular topic under investigation. To perform an MLR, the reviewer should
deal with the lack of robust search engines (developing customized search mechanisms),
the diversity of the size, quality, and structure of the retrieved documents, and the challenge
of textual and natural language analysis.

3.1.2 Ethnographic Case Study

Ethnography is a research method designed to describe and analyze the social life and
culture of a specic social system (Edmonds and Kennedy, 2013). This approach’s central
tenet is to understand values, beliefs, or ideas shared for a group understudy from the
members’ point of view (Sharp et al., 2016). For this, the ethnographer needs to become
a group member, observing in detail what people do and learning their language, social
norms, rules, and artifacts.

In software engineering, ethnography is an appropriate method of research when one
wants to understand people, culture and the social and work practices associated with
them (Sharp et al., 2016). From an empathic perspective, it can explain the logic of practice
from insiders’ view and, thus, capture what practitioners do and why they do. Considering
people’s behavior an integral part of software development andmaintenance (C. B. Seaman,
2008), ethnography in software engineering can strengthen investigations of social and
human aspects in the software development process since the signicance of these aspects
of software practice is already well-established.

The ethnographic case study focuses on examining a real case in some cultural group,
delimited by time, place, and environment (Edmonds and Kennedy, 2013). Its design
is characterized by the intensive and holistic description and analysis of a particular
social reality. It is best suited for investigations interested in exploring a group’s activities
rather than shared patterns of group behavior. Ethnography imposes an orientation of the
investigative view on the symbols, interpretations, beliefs, and values that integrate the
socio-cultural dimension of a community’s dynamics (Sarmento, 2011). In this way, an
ethnographic case study must present an investigative design that employs convergent
methods with such orientation. Sharp et al. (2016) denes four main characteristics of
ethnographic research in empirical software engineering:

• The members’ point of view: focus on the informants’ point of view, understand-
ing what is, or is not, important, and painful for the informant.

• The ordinary detail of life: collect several types of data about dierent aspects of
their informants’ work and keep “open” for new possibilities.

• The analytical stance: provide an analysis of the results explaining how this
evidence is, or is not, relevant for a particular purpose.

3.1 | RESEARCH STRATEGIES

25

• Production of “thick descriptions” for academic accountability: provide re-
sults well rooted in meaningful aspects. Comparing and contrasting data, their
aggregation, and ordering it in logical sequences to structure the knowledge.

The design of an ethnographic study must also consider ve dimensions: (1) participant
or non-participant observation; (2) the duration of the eld study; (3) space and location;
(4) the use of theoretical underpinnings; (5) the ethnographers’ intent in undertaking the
study.

Data Collection

Three data collection methods are primarily used in ethnographic research: participant
observation, interviews, and documentation analysis (Sarmento, 2011). In this work, we
collect Linux kernel project data by examining the community-produced documents and
the participant-observation in two Linux subsystem communities.

Participant and Non-Participant Observation

Data from direct observation contrasts information obtained through interviews and
questionnaires. The reason for the dierences is that humans do not always do (or will
do) what they say they have done, especially when it involves their reputation. In this
case, the participant observation method makes it possible to explain the meaning of the
observed fact’s experiences through the observer of the fact experienced (Robson and
McCartan, 2016) and allow the informant to judge what is essential rather than what she
thinks is essential.

An ethnographer spends her time working, discussing, participating, and living, inter-
acting with informants. She becomes a member of the experimental group, interpreting
what is happening around her. Hence, in addition to sensitivity, the observer needs the
personal skills necessary to conduct participant observation. In a FLOSS community,
the software engineer has the facility to assume participant-observer’s role and provide
valuable information and practical consequences for software practice. Also, informants
of the same culture and living in similar conditions generally reduce the time required to
complete an ethnographic study (Sharp et al., 2016).

According to C. B. Seaman (2008), a considerable part of software development work
is not documented because it occurs within the developer’s mind. Software developers
nd it easier to reveal the processes present in their thoughts when communicating with
other software developers, making this communication a valuable opportunity to observe
the development process. In this context, a data collection method is the continuous
observation of a developer, recording all interactions with the other group members
through notes or journals. This journal should be kept condential throughout the study
to preserve the observer’s total freedom of writing. Each note should include the location,
time, and participants of the observation, the discussions that took place, the events during
the observation, and the tone and feelings involved in the interactions. As the observer
becomes more familiar with the group studied, the notes gain a wealth of detail.

26

3 | RESEARCH METHODS AND DESIGN

3.1.3 Data Analysis and Crossing Information
Qualitative data are those in which information is expressed through gures or words,

whereas categories or numbers represent quantitative data (C. Seaman, 1999). An approach
to extracting quantitative variable’s values from qualitative data is the process of coding.
Coding makes it possible to get more precise and reliable quantitative data and quantify
subjective information to perform some quantitative or statistical analysis. To avoid loss
of information in this transformation, the researcher needs to be aware of the variations
of terminology in describing the phenomena, the dierent ratings for the same subject,
and the margin of reliability between them.

Three processes describe the coding analysis (Edmonds and Kennedy, 2013):

1. Open coding identies categories of information about the phenomenon being ex-
amined.

2. Axial coding involves taking each one of the categories from the open coding and
exploring it as a core phenomenon.

3. Selective coding systematically relates the core category to other categories.

In this work, we consider distinct approaches for qualitative content analysis: conven-
tional, directed, and summative (Hsieh and Shannon, 2005). They dier by how the initial
codes are developed. When an initial coding scheme exists, it is revised and rened by
interpreting the contextual meaning of specic terms or developing additional codes.

1. Conventional content analysis derives code categories during content analysis and
directly from the text data.

2. Directed content analysis starts from initial codes dened by a previous theory or
relevant research ndings and improves them during data analysis.

3. Summative content analysis starts by counting and comparing keywords derived
from interest of researchers or review of literature. Additional analysis proceeds to
interprete the underlying context.

These dierent approaches also support crossing information. Crossing and analyzing
information obtained from dierent sources, dierent types of data, or dierent collection
methods allows performing a Triangulation (C. Seaman, 1999). It is considered the most
powerful method of “conrming” the validity of conclusions. In the case study, triangu-
lation is essential to prevent the unilaterality in a piece of observation, a testimonial, or
a document that could compromise the understanding of reality (Sarmento, 2011). Dif-
ferent kinds of measurements provide repeated verication; however, triangulation gives
reliability rather than validity information. This method also reveals inconsistency or even
direct conicts, helping to elaborate our ndings or initiate a new line of thinking (Miles,
2015).

The crossing of information obtained through the three data collection methods men-
tioned above (GLR, SLR and Participant-Observation) can provide a comprehensive and
current view of the characteristics of the Linux development model. Following our work-
ow (Figure 1.1) and the methods described here, the next two chapters describe the
process of data collection and analysis according to the research phase and the information

3.1 | RESEARCH STRATEGIES

27

source. We present our ndings from each investigative stage and how we combined them
to reach the study goals. Due to the lack of denition on grey literature review methods,
we also provide a set of strategies to examine FLOSS community publications. Finally,
we discuss our ndings considering three perspectives: academic studies, community
publications, and development community participation.

29

Chapter 4

The Linux Kernel Development
Model from the FLOSS community
perspective

The inclusion of GL in systematic literature reviews has been increasingly widespread
in the medical eld (Godin et al., 2015; Paez, 2017). However, in software engineering, this
procedure is not easily found yet. For that reason, we relied on guidelines from studies in
both areas (Soldani et al., 2018; Vahid Garousi et al., 2018; Godin et al., 2015; Paez, 2017)
to structure a search plan suitable for FLOSS publications.

To address the lack of well-established methods specically tailored for exploring grey
literature, we adapted the existing systematic review methods to examine community
productions with dened steps and constraints. Systematic Literature Review (SLR) is
a research methodology that follows rigorous procedures to synthesize and evaluate
the available evidence on a focused topic (Almeida Biolchini et al., 2007), supporting
the development of evidence-based guidelines for practitioners (Barbara Kitchenham,
Pearl Brereton, et al., 2009). Combining SLR methods with GLR helps shed light on
important industrial practices still not mapped by conventional software engineering
studies (Soldani et al., 2018).

As with SLRs, the GLR methodological plan provides guidelines, structure, and trans-
parency to the search methods (Godin et al., 2015). However, due to grey materials’ char-
acteristics, GLR searches are often less methodical than traditional systematic searches
for academic publications. The researcher should map data sources and types, search
terms, selection criteria, and boundaries to reduce searching bias. This approach also
helps manage the variety of search terms and the volume and diversity of “grey” materials
available throughout the web.

Accordingly, this chapter presents the design and application of the systematic grey
literature review on the Linux kernel development model. We highlight the challenges,
specicities, adaptations, and lessons learned from our experience examining publications
from the FLOSS community. This chapter is an extension of our previous work on dening
strategies to examine GL documents of FLOSS projects (Wen, Leite, et al., 2020).

30

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

Section 4.1 describes a set of strategies and guidelines to support grey literature reviews
on FLOSS. Section 4.2 presents a mind map resulting from our content review and analysis
strategies to systematize the concepts that describe the current Linux kernel community
model. Section 4.3 explains how the selected documents from the grey literature provide
the concepts outlined in the mind map.

4.1 Systematic Grey Literature Review

We present here guidelines for supporting future FLOSS literature reviews. We mapped
challenges and adaptations for GLR on FLOSS and summarized our GLR ow in Figure 4.1.
It is a rst eort in dening a methodology for conducting GLRs for software engineering
research.

Figure 4.1: Steps of our GLR Flow

4.1.1 GLR Planning
The GLR Planning covers four essential steps to ensure the quality of the selected

documents:

1. Outline the problem and dene the research question.

2. Dene the inclusion and exclusion criteria.

3. Develop a relaxed search string.

4. Dene the resource-types to consider.

Also, we developed and applied additional methods to rene the screening step and
complete the GL search. From an extensive selection of information sources, we evaluated
and selected most relevant data sources. After, we identied and examined documents
using an incremental screening process. In the following, we describe better the steps of
planning GLR on FLOSS, and conduction of the screening process.

Outline the Problem and Dene the Research Question. The rst step in a typical
GLR planning process is to establish the need for this type of review. Researchers should
then describe the study’s background and objectives in a protocol (Higgins and Thomas,
2019) to delimit the scope of research and dene research questions.

4.1 | SYSTEMATIC GREY LITERATURE REVIEW

31

The distributed, community-based development of the Linux kernel project provides a
wealth of alternative resources of professionals’ information. This materials examination
can ensure the most current picture of the Linux kernel development model and expand the
knowledge on the FLOSS state of practice. For example, some organizations periodically
provide reports about the State of Linux Kernel Development, which promptly discusses the
Linux development statistics, who is working on the kernel, sponsoring the development,
and so on. In this regard, the research question “RQ1. How do software engineering studies
and Linux community publications describe the current Linux development community
model?” guided our review case. At this phase, we rst examined the perspective of
community publications.

Dene Eligibility Criteria. Reviewing the GL poses many validity risks since these
materials are not reviewed or provided by traditional publishers and channels. Besides this,
evidence in them is often based on personal experience and opinion, at the risk of catching
fake news and views from people outside the problem set. Based on the experiences
reported by Soldani et al. (2018) and Vahid Garousi et al. (2018), we recommend dening
inclusion and exclusion criteria and combining them with additional control factors to
mitigate this problem.

Table 4.1: Grey Literature Review - Eligibility Criteria and Control Factors

Eligibility Criteria Control Factors

Published between 2009 and 2019. The document is publicly accessible.

Most current version of the document. The content is not centered on: techni-
cal issues or specic features.

Available in English.

Published online by institutions,
industry-oriented magazines, and
practitioners of the FLOSS area.

Historical facts, statistics, or Linux
kernel project artifacts support the
statements in the document.

Describes developments in the Linux
kernel by: (1) reporting practices; (2)
presenting statistics; (3) discussing man-
agement and rules inside the project;
(4) or studying the project development
and/or its community.

The document is published by: (1) a
reputable organization or magazine; (2)
an individual author associated with
such organizations and magazines, or (3)
a practitioner with more than ve years
of FLOSS experience.

For our review, we selected documents that satised the eligibility criteria and also
some control factors to assure sample quality, as presented in Table 4.1.

Develop a Relaxed Search String. Dening a exible set of search terms, based
on the problem denition and eligibility criteria, is essential to deal with the variety of
terminologies used by persons and institutions for a given study object, since some popular
keywords in software engineering studies are still not commonly used by practitioners.
Besides, a GL writer has little concern with standardization and structuring. Consequently,
they usually use more informal and heterogeneous terms. Another issue is related to

32

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

applying the search string in a website search engine. Much of these tools cannot address
both diversity and lack of text structure. Therefore, even with synonyms’ prediction, we
observed that broader and simple strings were essential to reach potentially relevant
documents during the search process. Finally, the diversity of the audience of each data
source required a warm-up round to understand how an organization or person commonly
refers to search string elements and evaluate the coverage of these terms accordingly.

For the Linux project case, we rst dened a base search string, Linux development
model. Then, we broke it into words and listed potential synonyms for each word, as
follows:

1. Linux→ Linux Kernel;

2. Development→ Business, (empty string);

3. Model → Scheme, Rules, Process, Guide, Community, Culture, (empty string).

Dene the Resource-types. Considering the great diversity of GL resources, list the
types of data to be considered for analysis. Then, separate this data into in-text content
and audiovisual content, since the latter usually demands more eort to inspect than the
former. Based on the categorization in “shades of GL” presented by R. J. Adams et al.
(2017), rank the resource types according to expected formality levels. This rank should
guide the document review order and support the development of appropriate stopping
criteria for the screening phase.

In our case, we discarded audiovisual resources due to the eort required to examine
this content and the transcription process’s diculty. We also assessed the expected quality
of textual contents from their formality levels. We decided not to include mailing-list e-
mails from this assessment because these records often have opinion-based discussions.
Moreover, in the Linux kernel project, mailing-list e-mails play dual roles: text and code
(artifacts) community production. Nevertheless, mailing-list e-mails can be an interesting
venue for future research.

4.1.2 Data Collection

Even in systematic reviews, changes in a review protocol are sometimes necessary
to adjust methods to unanticipated circumstances (Higgins and Thomas, 2019). Despite
all eorts to adhere to the search plan, we used some strategies to overcome unexpected
limitations and diculties during document screening.

Data Source Selection

In a review of the traditional literature, data source selection often consists of a set
of similar digital libraries from prestigious organizations in academic computer science
publications or similar. However, for GL of FLOSS projects, data sources are not so obvious,
and selecting them requires specic knowledge and consultation of experts.

A good data source selectionminimizes GLR drawbacks such as time spent and omitting
signicant evidence. To select GL suitable data sources for FLOSS studies, the researcher

4.1 | SYSTEMATIC GREY LITERATURE REVIEW

33

should carefully consider the initial search string and the content types.We also recommend
four strategies for extensive searching data sources:

1. Search for targeted source: Conduct a web search to identify organization
webpages, magazines, and relevant blogs on FLOSS development. Use the advanced
search tool to restrict results to English documents only. In this step, we evaluated
the rst ten pages of search hits and manually inspected each website for data
source selection. We also evaluated blog posts that list relevant pages for those
interested in tracking Linux project updates.

2. Consult experts: Consultation with experts can help discover other relevant
data sources. We consulted four of them and identied additional data sources not
previously covered.

3. Apply snowballing: Add data sources if links or references to their contents
repeatedly appear during the sample selection phase.

4. Classify the data sources: The data sources should be classied according to
their proximity to the object of study, in our case, the Linux kernel development.
We divided data sources into sources that deal specically with the Linux kernel
and references that deal more broadly with IT or FLOSS subjects. The publication
collection did not follow any order of priority; however, to improve the performance
of the review process, a researcher should rst evaluate contents in the specic data
sources, and use data from the other sources as complementary information.

Since search engines use unique algorithms to generate their relevance ranking
schemes, the researcher must be prepared to address each data source’s singularities.
Accordingly, we recommend a prior evaluation of data sources in terms of audience, text
structure, search tools, quality of search results display, and updates. This step helps
to identify the main subject addressed, potential search pitfalls, and the formality of
documents.

For our review, the mentioned data source search strategies reached 15 data sources:
eight magazines, three developer blogs, two practitioners-oriented news websites, one
institutional website, and one wiki page. We evaluated each of them and discarded one
for not allowing open access to publications, as presented in Table 4.2. We agged two
others to receive proper procedures in the evidence collection and analysis phase. One
had a restricted time interval (it was deactivated in 2015), and the other had its content
only partially screened, as not everything was openly available.

Some data sources did not provide a search tool, and others had a varying quality of
features. The main issues faced were:

1. site pagination only worked until page 10;

2. the date of the indexed article in the search was not the same as the date of publica-
tion;

34

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

Table 4.2: Database evaluation and selection

Name Type Issues Selected

wire.com Magazine Poor search tool
Browsing results break after page 10 No

drdoobs.com Magazine Inactive since 2015 No

linuxformat.com Magazine Need payment No

linux-magazine.com Magazine Some contents need payment No

linuxjournal.com Magazine The timestamp displayed in the results is not
the same of the article publication No

linux.com Tech website Cannot sort by date; no abstract
Many hits are only external-publication links Yes

linuxfoundation.org Org website

Layout in-grid/block, not in-list
No pagination; No option of sort by
No lter; No abstract
Many hits are only external-publication links
Some external links are broken
Need a google search to nd the document

Yes

cnet.com Magazine (not evaluated) No

networkworld.com Magazine
No regex lter, results is "or" inclusive
Too many results; required to sort by relevance
Search until page 20

No

opensourceforu.com Magazine Search string is "and" by terms
Less accuracy of search strings No

kernelnewbies.org Wiki page Good search tools and enable regex
“Linux kernel” more accurated than “Linux” Yes

lwn.net News site
Search for "and" of terms (no order) or "or"
Sort by date; Return only the last 500 publications
Articles are written by experts

Yes

kroah.com Blog No search tool
Manual Inspection Yes

blog.wll.ch Blog No search tools, but have tags
Manual Inspection + Tags Yes

sage.thesharps.us Blog Manual inspection + searching for the word "Linux" Yes

3. it was not possible to lter or sort by date;

4. results were shown in blocks rather than lists;

5. there was no pagination;

6. did not present any results ordering;

7. did not allow lter searching;

8. did not enable search by an expression, only search by any of the words of the string;

9. search for all words in the string, but in arbitrary order;

10. limit on the number of documents returned.

To overcome weak search mechanisms, we recommend the following strategies:

1. Choose a suitable order of search hit: by date, when it is possible to search by

4.1 | SYSTEMATIC GREY LITERATURE REVIEW

35

an exact sequence of words; by relevance when the tool only seeks for any of the
terms in the string.

2. Dene stopping criteria inuenced by weak search engines or large volumes
of data, such as page number restriction, a suitable number of hits, the decline in
quality, and availability of evidence.

3. Consider searching by tags/categories, whenever possible.

A researcher should perform a manual inspection of publication titles and dates when
a data source does not provide any search engines but had great data potential (such as
some blogs of experienced developers or important personages).

Grouping and Screening Phase

We have developed an incremental method for handling the number of search hits and
the lack of standard indexing. This method consists of dividing the screening process into
data source audiences and iteratively conducting the sample selection. In each iteration,
the inspection becomes more detailed and follows the ascending order of document
formality.

For our review of Linux kernel publications, we separate the selection process into
two, according to data source audience: the most specic Linux source documents rst
and then the most widespread for the IT industry. We documented this screening process
in a spreadsheet1 divided into two tabs: (I) Linux-oriented publishers (8 data sources);
and (II) IT-Industry-oriented publishers (7 data sources). In the rst tab, we identied 236
documents of publishers and practitioners experts on Linux. In the second tab, we collected
104 documents published in magazines and blogs of the general IT industry subjects. Each
spreadsheet row represents a potentially relevant document. Seven columns index the
document data: (1) date of last update or access; (2) title; (3) authoring organization or
person; (4) category of the data source; (5) URL; (6) search strategy that located it; (7) links
or references in the document.

Incremental Screening ProcessIncremental Screening Process

After classifying the data sources by their target audience and separating the documents
into two spreadsheets, we started the identication and incremental screening phase. Two
reviewers carried out this phase to mitigate bias issues. Reviewer 1 is the leading researcher
of this work and Reviewer 2 is external to the investigation but familiar with the object of
study. Both have recent development experiences in the project selected for study.

GL rarely presents standard indexing and controlled vocabulary, with a good quality
title, abstract, or keywords to assist in the document’s inclusion or exclusion. Hence, for
this phase, we opted for an incremental exclusion process. First, remove duplications or
documents with only a link for another, bringing the sample’s linked material. Second, try
to evaluate titles, looking for any relation to the object under study.

1Data available on gitlab.com/ccsl-usp/glr/-/raw/master/linux-case-data.pdf

gitlab.com/ccsl-usp/glr/-/raw/master/linux-case-data.pdf

36

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

However, as GL titles are often not accurate or “attractive” but misleading, this process
was not very productive. Because of this, we opted to speed read the full-text, searching
for the keyword Linux to quickly understand how the project was addressed in that
document and evaluate the exclusion criteria. When the eligibility criteria were not clear,
we kept the document on the list. Finally, we classied the material according to the
categorization of GL of R. J. Adams et al. (2017) and performed the full-text screening
following this order of priority: (1) less informal literature rst; (2) maintainers blog posts;
(3) reports of project landmarks and emblematic cases; (4) documents from the snowballing
process.

Table 4.3: Number of documents selected per database

Database # Initial Selection # Selected documents

Linux Foundation Website 77 25

Linux.com 69 40

LWN.net 31 21

Digital Magazines 9 3

Kernel Newbies 21 7

Members Blog 29 12

Total 236 108

As a result, Table 4.3 shows the distribution per database type of the 108 selected
documents that covered topics related to the Linux kernel community model.

4.1.3 Content Analysis

The screening process resulted in the selection of 108 documents. The lack of standards
in text structure and terms used is a visible problem in documents of this type. Thus, we
resort to some strategies to deal with the challenge of a sample diverse in size, structure,
and formality:

1. We looked at the data from a word cloud structure.

2. Using the same formality classication from the screening process, we coded themost
formal documents (in this case, the foundation’s annual reports) in order of antiquity.
We plotted the result in a mind map. With concepts separated in areas/categories,
we veried a poorly characterized area that needed more depth.

3. Following the formality level strategy, we grouped the documents and ordered them
by recentness to complete the open-coding process.

Below, we detail these strategies and the techniques used in conducting the grey
content analysis.

4.1 | SYSTEMATIC GREY LITERATURE REVIEW

37

The Word Cloud

To explore the usage of words and content in community publications, we started the
content analysis using a summative technique to identify and quantify the appearance
of words in the textual data from selected documents (Hsieh and Shannon, 2005). We
developed a script to build aword cloud from all selected documents’ text content, searching
for familiarity and automatization. Building a word cloud was just a warm-up to be
familiarized with standard terms, Linux community concepts, and aware of the volume of
information. The script2 was developed in Python 3. The script uses a library of natural
language processing named Spacy3 to tokenize the nouns and proper nouns. Spacy is
open-source software and good for beginners. It provides pre-trained models for several
languages, but, for our sample, we used a small English model trained on written CNN
web text (blogs, news, comments).

Figure 4.2:WordCloud from Grey Literature textual content

We used a word cloud generator4 to count word frequency, remove stop words and
plot the result as a word cloud. With this visual representation of the text data, we could
identify relevant words and potential core concepts to facilitate the open-coding. Figure 4.2
present the automated WordCloud from the raw text of the 108 selected documents. We
can identify words related to the community’s elements, such as the nouns maintainer,
developer, people, contributor, company, behavior, discussion, code of conduct, reviewer,

2Script available on hps://gitlab.com/ccsl-usp/glr/-/blob/master/script_wordcloud.py
3hps://spacy.io/
4hps://github.com/amueller/word_cloud

https://gitlab.com/ccsl-usp/glr/-/blob/master/script_wordcloud.py
https://spacy.io/
https://github.com/amueller/word_cloud

38

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

conference; and prominent proper nouns Linus Torvalds, Greg Kroah, Jonathan Cobert,
Linux Foundation.

We also grouped words related to development artifacts: code, patch (unit of code
changes on a source-code version), source project, device, repository, documentation,
kernel version, source code, lines of code. Theword cloud also reveals process-related codes,
such as merge window, pull request. Finally, some codes characterize the development
and the community structures: subsystem, subsystem tree, subsystem maintainer, mailing
list, email, mainline, role.

Counting the frequency of specic words and visualizing potential core labels in
a word cloud is the initial part of our coding approach. Using a computer-automated
method to reveal the most common and potential concepts helps avoid bias and misleading
information. However, understanding the contextual use of each uncovered concept also
includes the process of content interpretation. Therefore, after identied patterns in the
data, we obtained potential labels that become the initial coding scheme. The remaining
content analysis used a more conventional approach to discover the range of meanings
that each code presents in the data from this initial coding scheme.

Open-coding

Since we are developing strategies to analyze grey literature materials in a distributed
group, we use some online tools to support good documentation of our open-coding
process.

We used online spreadsheets from the Google Docs Editors oce suite and kept the
data collected in a single sheet, adding a new column to each new step of both screening
and analysis. We resorted to the feature of “Suggests” to document the coding process,
i.e., which words were discarded and how a label was extracted from a sentence, without
excluding any word of the text fragment. Finally, we developed three versions of the mind
map. First, to become familiar with the data, second, to set up a basis to relate concepts,
and nally, we extended the map to cover all the coding concepts. We used the Coggle5
platform for mind maps and we chose on Color Brew6, a colorblind safe color scheme for
qualitative data. All gures and mind maps in this Chapter 4 and in Chapter 5 subsequent
follow the same selected color scheme.

Table 4.4: Grey scale of publications

Grey Scale Types of Publications #
1 Project Development Reports 4
2 Foundation website articles and white papers 21
3 Magazine and news website articles 64
4 Community Wikipages 7
5 Blog posts 12

We organized and grouped codes into meaningful subjects and produced a conceptual
map, considering the initial coding scheme and codes obtained by a random selection

5hps://coggle.it
6hps://colorbrewer2.org

https://coggle.it
https://colorbrewer2.org

4.2 | THE LINUX KERNEL DEVELOPMENT COMMUNITY MODEL

39

Model

Figure 4.3: Grouping concepts from selected documents by subject area

of materials from dierent formality levels. This conceptual map revealed what topics
are under discussion in the selected community publications. Figure 4.3 shows four key
areas – Process, Community, Project, Patch – and a sample of codes related to them. We
observed that many areas present a solid understanding with enough saturation. The
Linux kernel development process is well-documented and systematized in the project
Documentation (Documentation, 2019) and other publications with this propose (Corbet,
2008). however, concepts concerned with community aspects are scattered around the
documents, lacking systematization. Therefore, we decided to focus on the Linux kernel
community’s concepts to build a comprehensive mind map.

We classied the selected documents for levels of formality (greyscale), as shown
by Table 4.4. We started to open-code content from the four most formal documents -
Linux Kernel Development Reports published by Linux Foundation, ordered by antiquity.
We sorted codes into categories and built a base map version to organize them into a
hierarchical structure. From this, we coded the remaining selected documents and mapped
the concepts in batch. Finally, we dene each category, subcategory, and code. We report
our ndings in Section 4.2. We also exemplify how code and category are identied from
the data by quoting text fragments.

4.2 The Linux Kernel Development Community
Model

The strategies just presented in this chapter to conduct GLR on FLOSS answer RQ2.
What research techniques can be used to examine a FLOSS project through its community
publications? We analyzed content from selected documents to identify the characteristics
used in community publications to describe the Linux kernel development community. In
this section, we present the results obtained that answer RQ1.2. What attributes practitioners

40

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

use to characterize the Linux development community? What are the current social and
organizational challenges from the community perspective?

Even focusing on one of the meaningful subjects on the Linux kernel community, we
reached an extensive mapping of the community characteristics and critical elements.
Therefore, we narrowed the codes obtained in a mind map of categories to highlight
relevant topics from the community publication perspective that should be addressed by
future FLOSS research.

Characteristics

Figure 4.4: The three elds of the Linux Kernel Community mindmap

As presented in Figure 4.4, we sorted the concepts from the grey literature in amindmap
comprising three elds: General Characteristics, Community Ecosystem, and Community
Concerns. This mind map resulted from the exploratory examining of 108 documents
published by practitioners and organizations inserted in the Linux kernel community.
Although we have a vast number of documents, many are shorter and less-structured than
high-level academic papers and required some expertise and side search for understanding
and extracting the correct knowledge.

Figure 4.5: Mindmap – Attributes about General Characteristics of the Community

For readability reasons, the entire mind map is available online in a git respository7.
Here, we have divided it into four gures corresponding to the three elds just discussed,

7Mindmap available on hps://gitlab.com/ccsl-usp/glr/-/blob/master/Linux_KernelDevelopment_
Comunity_Categories.pdf

https://gitlab.com/ccsl-usp/glr/-/blob/master/Linux_KernelDevelopment_Comunity_Categories.pdf
https://gitlab.com/ccsl-usp/glr/-/blob/master/Linux_KernelDevelopment_Comunity_Categories.pdf

4.2 | THE LINUX KERNEL DEVELOPMENT COMMUNITY MODEL

41

where the Community Ecosystem was subdivided. General Characteristics are presented
in Figure 4.5, dealing with the community as a whole. The Ecosystem is presented in two
parts: Figure 4.6 (companies, foundations, and people) and Figure 4.7 (developers, their
roles, and organization). Finally, Concerns, as seen in the selected community publications,
are shown in Figure 4.8.

Figure 4.5 describes general characteristics and summarize transversal features of the
Linux kernel community. The community creates a common project culture. Its participants
are organically organized in a web of trust, supported by features on the git version control
tool. The project development is divided into subsystems or slices analogous to city
neighborhoods. Finally, the project diversity of usage attracts companies and people from
various markets, countries, and cultural backgrounds.

The remaining gures are shown on the following pages. Figure 4.6 presents three key
entities that compose the Linux kernel development community: companies, people and
foundations. Each of them has a specic interest, and their participation in the commu-
nity may inuence the development process. Also, the map describes how people in the
community structured themselves according to roles and responsibilities, and what are
their standard means of interaction. Finally, in the sequence of attributes on the prole
of who directly participates in coding changes, the developers, Figure 4.7 approach the
members’ path into the community, their roles in the work structure, their identity and
aliation, and their motivation (reasons to stay in the community).

The community publications also expose practitioners’ concerns about the weaknesses
of the current project process and management. They commonly express opinions, ques-
tioning the state-of-the-practice and bringing potential solutions for everyday issues and
conicts. Figure 4.8 depicts what has bothered the community for the past ten years. They
report issues ranging from conduct norms on communication to scalability weakness on
the development process. These problems may aect the Linux kernel development since
developers’ interaction supports project sustainability. Consequently, any approach to
mitigate or overcome diculties on the collaborative work has the potential to change
the Linux development model, such as maintainership, hierarchy, grants, and process of
review.

42

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

Figure 4.6: Mindmap – Attributes about the Community Ecosystem (1)

4.2 | THE LINUX KERNEL DEVELOPMENT COMMUNITY MODEL

43

Figure 4.7: Mindmap – Attributes about the Community Ecosystem (2) – Developers

44

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

Figure 4.8: Mindmap – Attributes about Community Concerns

4.3 | LINUX KERNEL COMMUNITY ATTRIBUTES DESCRIBED BY COMMUNITY PUBLICATIONS

45

4.3 Linux Kernel Community Attributes Described by
Community Publications

This section explains how the community claims presented in the 108 documents
analyzed8 is connected to each concept presented in the mind maps of the previous
Section 4.2. We strongly recommend that the reader use the gures referenced in each
section to guide the reading of each concept’s description. For a better understanding
of what comes next, the concepts were formatted in the text as follows. Categories are
displayed in two levels: as subsections in bold or underline. We include some text fragments
from the selected documents, in italic and within quotes, to enrich the discussion on the
attributes, some of which are highlighted in bold.

4.3.1 General Characteristics
In the past two decades, the FLOSS ecosystem has diversied its forms of development.

Also, the development of the Linux kernel has undergone notable transformations. From
the governance perspective, the Linux kernel development shows aspects that diverge
from those that inspired an anarchical, bazaar-like model and converge to dictatorship or
a kind of federalism.

Much of the changes in the development of the kernel are a consequence of the growing
companies participation, many of them large corporations. “Corporate participation in
free-software development isn’t going away, or, at least, so we must hope. But we have to try
not to sell out to it entirely. A crucial piece of that is not allowing any single company to
control any important project on its own” (Corbet, 2016a).

The source code and the number of system resources are also growing. As a conse-
quence, a scalable organization of development work is crucial for the sustainability of the
project. A community of developers does this work, where the Linux community is seen
as the FLOSS equivalent of a city. It grows hugely, and the source code is divided into
a number of neighborhoods with dierent levels of friendship between them. As each
neighborhood has its own local rules, many bad experiences happen because someone
crosses over to a new neighborhood and violates one of the rules.

The pieces of the community interact with each other through a web-of-trust. The
web-of-trust follows a at hierachy with a core group of subsystem maintainers and
few mid-level maintainers. The patch ow into the mainline is a good representation
of the maintainers level structure, “a structure that is far atter than the hierarchical
maintainer model would suggest. In the real world, mid-level maintainers are relatively rare;
most maintainers send pull requests directly to Linus Torvalds.” (Corbet, 2017a). Changes
from each subsystem repository is merged into the mainline following a key-signing
ritual to contribution verication. Subsystem maintainers, responsible for a piece of the
source code, request to merge changes in their repository by signing of pull-requests.
This is supported by a git feature of GPG-sign commits and tags. This approach aims to

8All statements made in this section are summaries of the content present in the selected documents.
References are available at hps://gitlab.com/ccsl-usp/glr/-/blob/master/GLR_Linux_kernel_development_
model.ods

https://gitlab.com/ccsl-usp/glr/-/blob/master/GLR_Linux_kernel_development_model.ods
https://gitlab.com/ccsl-usp/glr/-/blob/master/GLR_Linux_kernel_development_model.ods

46

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

improve security and authenticity when merging repositories, but the community says it
is inecient, as it is not mandatory and maintainers rarely ask for signatures.

Over time, the community creates a project culture related to commonly charac-
teristics, expectation and values of members. The intense work of maintaining the good
performance and supporting new features insert the cult of busy in the community.
There is also a certain personality cult, where high-proles and maintainers could cross
the line with abusive performance. This is solidied because, despite the changes over
the thirty years, the top-level is composed of the same long-standing members with few
renewals.

4.3.2 The Community Ecosystem
As mentioned in Section 4.2, Figure 4.6 and Figure 4.7 focus on elements of the Linux

community, an ecosystem composed of legal persons (foundations and companies from
a variety of IT markets) and natural persons, i.e., people (users, developers, coordinators,
writers). From GL materials, it is possible to verify that each entity has a particular interest
in participating in the community to support and inuence the project development.

Foundations

Foundations participate in the Linux project to support the development commu-
nity. To this end, foundations promote related projects and code improvements, produce
informative materials, and mediate internal and external conicts. Foundations also par-
ticipate in the project governance and some of them employ senior developers. Conse-
quently, conicts of interest became a concern when foundations employ some top-level
maintainers and also receive money from corporations. On the one hand, corporation
investments provide nancial support along with their commercial interest. On the other
hand, the top maintainers have voting power in the project and guide the development.
Therefore, governance and business are intertwined and this model contributes to keeping
the hierarchy and privileges of the upper-cadre.

Authors also raise questions around specic characteristics of foundations’ subsis-
tence that would inuence the development and management. These institutional
characteristics include source of income (who nances their work), members (how its
members and board are composed), and governance (how they are organized and how
they manage the foundation). They approach two prominent foundations in the Linux
kernel project: the Linux Foundation and the X.Org Foundation; however, foundation
participation is not restricted to them.

Companies

Companies in Linux development come from a variety of markets and are, occasionally,
competitors. They bring users and demands o the project. They have dierent interests
that vary from providing user support to using the system as a resource for correctness
guarantee and becoming more competitive. They contribute to the source code mainly
by employing developers and their code contributions are identied by the developers’
e-mail domain or information on the code submitted.

4.3 | LINUX KERNEL COMMUNITY ATTRIBUTES DESCRIBED BY COMMUNITY PUBLICATIONS

47

A company could develop in-house new contributors, but also employmaintainers
and active contributors that already participate in the process of review and acceptance
of code changes. In this sense, employing Linux maintainers could bring some practical
facilities for a company, such as clearing maintainer bottlenecks and inuencing areas of
contributions over a subsystem.

Companies often give some freedom in how employees do the work; however, the
work’s scope is limited by the company’s market interests. Employers are primarily looking
for investment return and, consequently, pay developers to work on things that bring
value to their business. Therefore, despite developer-employees have a large portion of
the total code change in each kernel version, the nucleus of contributions is around
their company’s hardware and little in Linux core needs, such as core components and
project documentation.

People

“The Linux community is a pyramid” (T. L. Foundation, 2010). The Linux kernel
community is hierarchically structured both from the general contributors’ perspective and
from the code development perspective. People are organized in a pyramidal structure,
where a large portion of the community of general contributors comprises users, testers,
and sysadmin. In the mid-level, we nd Linux-based distribution developers that
are, in practice, end users. Active developers andmaintainers are at the top, shaping
the system. Maintainers have commit rights and work as leaders, but a large portion of
coding is made by developers without commit-rights. They range from the most active to
one-time contributors who change the source code by “submitting patches to maintainers
who will, in turn, commit those patches to a repository and push them upstream to higher-level
maintainers.” (Edge, 2016).

The hierarchical organization is not new. It is present in dierent structures that
composed the Linux kernel development model and is supported by the git version control
tool. In fact, the project management responsibilities looks like a tree. From Linus Torvalds
(and from Greg Kroah-Hartman in some contexts), the development coordination starts to
branch in maintainers and developers as leaves. Also, the source-code is hierarchical and
distributed in many repositories and work trees. Finally, the community roles is organized
in levels of participation and also permission rights and privileges that resemble a tree.
Hence, the hierarchy models the kernel source, the development process, and also the
code development community.

Looking inside the code development community, the hierarchy is steeper. The
upper-cadre has a top leader with abusive and disrespectful behavior, and the source
code is divided into lots and distributed to a small group of maintainers responsible for
coordinating work on that slice. In community publications, some individuals claim that
the kernel development community is led by a ‘benevolent dictator’ – Linus Torvalds. He
establishes policy and integrates contributions from all subsystem branches. Strengthening
the idea of subordination, a small group of maintainers is below him. For example, in 2014,
Jonathan Corbet published an article on the web magazine LWN (Corbet, 2014) starting
with “Any self-respecting development community should be attentive to the needs of its
benevolent dictator”, bringing a rm idea of subservience.

48

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

According to publications, git supports this benevolent dictatorship model, encour-
aging branching and embracing the chaos of allowing developers to code what they are
interested in solving. Linus Torvalds is mostly a tie-breaker, and “the tie-breaker role tends
to trickle down to other experienced project members even before a benevolent dictator steps
down” (Edge, 2011).

InteractionsInteractions

Themeans of interactions can also change between those who are or are not part
of the upper-cadre. To meet in person, developers participate in conferences. Face-to-
face meetings brings community relation benets since members see the faces behind
e-mails. Also, conferences help newcomer engagement and sharing experience, ideas,
and problem/solutions between dierent projects. However, some conferences are only
addressed to a select group of maintainers, such as the Kernel Summit conference and
the Maintainers Summit. These conferences may be seen as private venues to shape
the project development, i.e., a no-public decision-making forum where discussion,
decision-making, and voting take place. , “A traditional Kernel-Summit agenda item was
a slot where Linus Torvalds had the opportunity to discuss the aspects of the development
community that he was (or, more often, was not) happy with” (Corbet, 2017b). The meaning
of this slot is questioned in another grey document, arguing that “feedback sessions about
maintainer happiness only reinforce the control structure, with, e.g., the kernel summit
featuring an ‘Is Linus happy?’ session each year.” (Vetter, 2017)

While there are opportunities to meet in-person, development community members
mainly interact remotely.Mailing-list is a well-known channel where collaboration takes
place. Members from dierent companies collaborate in interaction nucleus, proportional
to their companies interest. They are more likely to collaborate with others from the same
companies or companies in the same market. Another nucleus is people that recently sent
a contribution or were working on the same area of code. Finally, “someone is more likely
to reply to a maintainer” (Foster, 2017). This corroborates one of the motivations for the
multiple-committer maintainership model, the fact that “Patch submitters wanted to deal
with the maintainer rather than with other reviewers” (Corbet, 2016c).

Discussions occur asynchronously per patch and per subsystem. The members are
from dierent companies and time zone dierences are not an issue. Besides, members
keep track of key collaborators’ time zones when expecting replies, and similarities in
the timezone do not strengthen this interaction. Because it is textual, e-mail interaction
can exibit a lack of tone and, besides code acceptance, it brings social aspects like
misunderstandings, hurt feelings, and frustration.

Another means of interactions very present in some subsystems development are IRC
channels. Because it is also textual, conversations on IRC carries the same social problems
of disagreements that could look scary for outside viewers and newcomers. Unlike the
mailing-list, IRC interactions suer from timezone dierences.

In fact, social aspects in the Linux community inuence the quality of communication.
Many community members consider the discussion culture positive for the project,
where long arguments in ame wars are an essential part of xing bugs. However, with
members distributed geographically and coming from dierent cultures, communicating

4.3 | LINUX KERNEL COMMUNITY ATTRIBUTES DESCRIBED BY COMMUNITY PUBLICATIONS

49

is context-dependent and, therefore, members should be careful in the tone adopted to
express an opinion.

Developers

Some contribute to the Linux community by spreading the project’s practices and
recruiting new contributors, such as book/article authors and internship programs co-
ordinators. However, the kernel developers are those who change the system code.

“The kernel development community is organized as a hierarchy, with developers submit-
ting patches to maintainers who will, in turn, commit those patches to a repository and push
them upstream to higher-level maintainers” (Corbet, 2016d). The maintainership model
is also evolving as the project grows, and “the hierarchy shows more clearly than it has in
past years. A number of subsystems are growing to the point where there needs to be some
overall higher-level coordination. So there are more two and three-level trees than there used
to be” (Corbet, 2017a).

If one day the development of Linux was portrayed as a product of volunteers and
enthusiasts looking to solve their personal problems with the system anarchically, this has
become a very distant reality. “Today, over 90 percent of the code is coming from professional
developers who are employed by some company to work on the kernel” (Corbet and Kroah-
Hartman, 2017), and professionalism is a trend reinforced by the community.

IdentityIdentity

Based on Linux community publications, common characteristics of a typical devel-
opment community member is professionalism and discipline. They have diverse back-
grounds and are in dierent locations, working for dierent companies. On the one hand,
Linux developers have a professional and friendly relationship. On the other hand, many
do not know each other personally and only "meet" by email or online communication
platforms.

Volunteer work is a negative trend in Linux development. The number of contributions
from volunteer developers has decreased with each version of the kernel. Active developers
report that working on the Linux kernel is a massive career boost. It leads volunteers to
be hired quickly, giving them a good paycheck. The community claims this is a result of
open-source professionalism. Most kernel developers are aliated with some organization,
such as foundations, tech companies, or consulting. However, they do not always link
their contributions to the company that pays their salaries. Consequently, in addition
to changing the email domain according to the company aliation, they can switch
between their personal and company email addresses. Moreover, “developers who work on
independent projects tend to think of themselves as aliated with the project rst, and their
employer second; that results in a strong incentive to avoid compromising the project’s goals
in favor of what today’s employer wants” (Corbet, 2016a).

Motivation to stayMotivation to stay

Active kernel developers have dierent reasons to stay; however, their motivations
converge with the Linux kernel project’s unique power in the IT market and career
opportunities. Developers continue to work on the kernel for professional interest, such

50

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

as paycheck, career boost, and direct interaction with the system users. They are also in
search of technical inovation from a cutting-edge operating system: learning new things,
getting new ideas, and keeping improvements due to high-level technical collaboration.
Finally, but as important as the previous ones, they have personal motivations to
participate in the community. The variety of Linux usage keeps them never bored – they
have fun and meet new people. They also believe their talent is recognized there. And
some of them are there for their belief in FLOSS.

RolesRoles

Developers might have a specic role in the Linux kernel community. This role gives to
someone priviledges on accepting and committing changes to the source code. In general,
the developers should climb a path of contributions in the community to acquire
a prominent and recognized position. However, the closer to the upper-cadre, the less
meritocracy aects – since top-level developers have a reputation, an assumed trust, and
generally more coordination than coding activities. The community has an organic inux
of contributors. These newcomers get involved in the development through internship
programs, in-house company trainings, or just volunteers. Regardless of the gateway,
they deal with a steep learning curve that requires endurance and enjoying the project.
From the community members’ perspectives, newcomers should have time to learn and
synthesize change. Good start points are small contributions, such as documentation,
patch review, testing, and reporting bugs. For coding contributions, they cited bug xing
as the fastest way to get started. If they start from an internship program (as Outreachy),
mentors commonly require knowledge of debugging, git, static code analysis tools, patch
submission, driver implementation, and the subsystem structure.

Contributors develop code changes, but only maintainers feed the mainline. They
maintain a slice of the source code that can be a subsystem, distro kernels, stable release,
drivers, or a framework. They are hired by companies with a market interest in the slice
they maintain. They accumulate a series of attributions, from management and quality
assurance to training and coding. To feed the upstream with patches, maintainers must
gather and manage patches, deal with outstanding issues, as well as review patches. This
clerical job needs technical eort and consumes part of their time.

Maintainers should also concern about how to lead a team of people, guiding or
mentoring developers, coding, and documenting features and procedures. “It’s About the
People. If you’re maintainer of a project or code area with a bunch of full time contributors
(or even a lot of drive-by contributions) then primarily you deal with people. Insisting that
you’re only a technical leader just means you don’t acknowledge what your true role really
is” (Vetter, 2017). Due to their mediator position, maintainers must ensure a balancing
act of keeping developers engaged while asking for change or rejecting a contribution. In
the meantime, they must prevent failures and regressions in their subsystem, carrying the
fear of being publicly censured.

In a subsystem, maintainer adopt a suitablemaintainership model to sustain daily
project activities. Selected documents mentioned three approaches: single-maintainer,
co-maintainer, and multiple-commiters. A single-maintainer works alone, being the
only one with commit-rights in the related subsystem repository. Co-maintainer diers
from a single one by the number (two). Although most subsystems adhere to the single-

4.3 | LINUX KERNEL COMMUNITY ATTRIBUTES DESCRIBED BY COMMUNITY PUBLICATIONS

51

maintainership model, the workload on some subsystems requires more people to handle
the work. These subsystems already count on proactive developers’ feedbacks and patch
reviews. To prevent maintainers from burning out, they spread acceptance permission in a
group maintainership model of two co-maintainers or multiple-committers. Their
motivation is to nd a robust approach in case of a position vacancy and an eective way
to develop new maintainers for the future. Also, as fear is not a bottleneck for changes,
this model fosters new contributors and contributions.

Few subsystems have a group of maintainers, but the number is increasing. From
publications, we identied three models of group maintainership with the following
general features:

• Hands-o: Maintainers share a single repository and a log le of actitivies. They use
an IRC channel to take a “lock” to apply some changes.

• Delegation: The work is automatically delegated using the Patchwork patch-
management system. Patchwork sorts changes as they arrive and handles each
patch to a specic maintainer.

• Multiple-commiter: Many committers have the ability to commit changes to the
repository; however, maintainers and committers have dierent responsibilities.
While a commiter works internally and is not listed on the MAINTAINERS le; a
maintainer has external visibility, dealing with the rest of the world and accepting
the blame when something goes wrong.

In both single and co-maintainership models, contributors avoid disagreements with
the maintainer since they have only one or two ways to have their contributions accepted.
To improve the patch acceptance process, the multiple-committer model emerged in a
subsystem with few maintainers and many reviewers. They have observed that code
submitters want to deal with maintainers, and this need for a maintainer answer be-
came a bottleneck — only one subsystem reports to use this model. As with the other
models, it also presents specic challenges and requirements to works correctly. The
multiple-commiters model needs a consistent team of developers staying around, and
non-maintainer reviews must be the norm to work eciently. Also, to ensure code quality,
committers need to perform useful pre-commit tests and resort to good documentation
and tools.

In the maintainer pool, there are also the top-level maintainers, a role lled by senior
developers. Althoughmost maintainers are employers of a small group of large companies,
top-level maintainers are commonly paid by a foundation. They are in singular positions
not related to a particular subsystem and almost unavailable for disputes. Their role
involves fewer patches and is focused on management and review. Linus Torvalds is at
the absolute top and holds the single role to manage the mainline repository and merge
pull-requests from all subsystems. “When asked about group maintainership at the top level,
he said that he is open to the idea, but doesn’t think that there is a lot of need for it. He
manages to be responsive, even when he’s o diving in some remote part of the world” (Corbet,
2017b).

52

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

4.3.3 Community Concerns

As expected for a software development project, developers keep an eye out for tech-
nical issues of code cleanup and standardization, elimination of errors, security/vulnera-
bilities, and documentation quality. For example, contrary to what is acclaimed by “Linus’
law”, having enough eyes has not been sucient for the current security process. “If we
were able to x problems as quickly as we like to think, it would still be insucient; it is
increasingly clear that patching things up after somebody discloses them is not enough. But,
sometimes, problems seemingly slip through the cracks and are not xed quickly, even when
they are known” (Corbet, 2016b).

However, community publications also bring emergent information and ongoing
issues from the social perspective that aect collaboration and the current development
model.“The technical issues have been small compared to the social challenges involved in
organizing a project largely consisting of volunteers at rst, and then kernel developers paid
by companies with competing interests, operating in disparate markets with vastly dierent
computing needs” (Clark, 2016).

Social challenges

Communication and interaction between members face common social challenges,
such as determining the boundary between acceptable and inadmissible conduct, nding
mechanisms to identify abusive behaviors, and sensitizing them to cultural dierences
to prevent disrespectful actions. “The community likes to think that its decisions are based
entirely on merit. In truth, there is also an important social element involved in working in
the development community. Despite our eorts to just review code and judge it on its own
merits, there are personalities involved. As a result, we see snippy answers and negative things
happening in our communication channels” (Corbet, 2018c).

Conduct issuesConduct issues

Remote interaction and textual communication in mailing-list pose challenges
to the collaborative development process. Some negative behavior is explicit in the
use of an innapropriate language with profanity and cursing; however, impoliteness
and irony are subject to cultural diversity. Participants of the 2018 Maintainers Summit
conference (Corbet, 2018b) reported that messages such as “I love your patch” from the
0day robot, an automated Linux kernel test service, could be oensive and direct criticism
could raise a strong feeling of shame. Maintainers should not attack and be more careful
to avoid inappropriate communication.

A common concern reported by participants and observers is related to the governance
model of the Linux kernel, which gives Linus Torvalds enough power to sustain his
oensive behavior (Brodkin, 2013). Selected documents describe his rude and aggres-
sive reputation, and some members report that his controversial behavior has hurt and
drove away developers. Nevertheless, active-developer resigners do not restrict the
“toxic” working environment to him, reporting it in various high-prole people’s behavior.
Unsatised with the development process or community norms on mailing-lists, few make
noise when deciding to step down.

4.3 | LINUX KERNEL COMMUNITY ATTRIBUTES DESCRIBED BY COMMUNITY PUBLICATIONS

53

The conduct of community members is an ongoing issue. The longstanding Code of
Conicts was no longer ecient to prevent negative behaviors. Even worse, the Code of
Conicts acculturated “no-lter feedback and bluntness as the natural and more successful
state of open source software development” (Statt, 2018). During the term of the Code of
Conicts, only three conduct issues were reported to the Linux Foundation Technical
Advisory, and all of them had weak substance.

After a self-imposed short break from the Linux development (Torvalds, 2018), Linus
Torvalds replaced the Code of Conict with a Code of Conduct9 in an attempt to avoid
losing talents and an answer to a magazine article questioning his conduct on public
mailing-lists (Cohen, 2018). The Code of Conduct was presented as a symbol of the
community conduct goal to continue to scale, remain a welcome place, and convince
the outside world that the community has gotten better. It is a consequence of the progress
toward civility and professionalism in the Linux kernel community.

The code was based on Contributor Covenant Code of Conduct10, which other
projects are used but is not widely accepted by the community. Its adoption was inspired by
the DRM subsystem’s successful case of conduct, based on the freedesktop.org code. The
code was reviewed by Lawyers of the Linux Foundation and, in case of conduct incident,
someone should report to a Code of Conduct Committee, composed of volunteer members
of the Linux Foundation Technical Advisory Board and a professional mediator.

Despite impacting all community members, the code was initially built in private,
without a community-wide discussion. Members complained that the adoption process
was hasty and did not follow the open-source model, and the acceptance does not happen in
a public manner but through hidden e-mails. Also, when published, it was rst presented for
a group of maintainers. This group raised several questions about the application of norms
and the maintainer’s responsibilities on that. Linus Torvalds claried that maintainers are
not police and should lead by example, and the group asked for additional interpretation
documents11.

Again, questions about the Code of Conduct present in some publications reveal
how interaction problems in the Linux kernel community are similar to the other social
groups.“Such laundry lists of misbehavior can leave a bad taste in the mouth; that can be
especially true if, like me, you are an older, run-of-the-mill white male; it is easy to look at a
list like that and say everybody is protected except me’. It can look, rightly or wrongly, like a
threatening change pushed by people with a hostile agenda” (Corbet, 2018a).

Process Issues and Challenges

In 1998, Linus Torvalds merged some incomplete frame buer patches to the 2.1.123
release, which caused a compilation failure in the Linux kernel. That served as a trigger for
some members disappointed with the Torvalds’ manner to handle patches. This episode
became known as the “Linus burnout” and shed light on scalability issues in the Linux
development model (Corbet, 2010). The Linux kernel project has been growing steadily.

9hps://www.kernel.org/doc/html/latest/process/code-of-conduct.html
10hps://www.contributor-covenant.org/
11hps://www.kernel.org/doc/html/latest/process/code-of-conduct-interpretation.html

https://www.kernel.org/doc/html/latest/process/code-of-conduct.html
https://www.contributor-covenant.org/
https://www.kernel.org/doc/html/latest/process/code-of-conduct-interpretation.html

54

4 | THE LINUX KERNEL DEVELOPMENT MODEL FROM THE FLOSS COMMUNITY PERSPECTIVE

Since all contributions’ endpoint is the mainline repository, and the version’s release is
centered on Linus Torvalds, the “Linus not scales” problem still permeates the community
discussions.

“Process scalability requires a distributed, hierarchical development model” (Corbet
and Kroah-Hartman, 2017). Because of this, the Linux development model has un-
dergone some transformations supported, basically, by the adoption of version control
tools – Bitkeeper and later Git – and by the hierarchical structure of maintainers. These
smoothed the release process dependence on Linus availability and increased the volume
of patches he could handle. “Without the right tools, a project like a kernel would simply be
unable to function without collapsing under its own weight” (Corbet and Kroah-Hartman,
2017).

Now, other nodes in the development process seem saturated. Through publications,
the community points out the challenges in themaintainership scalability and the patch
acceptance and review process. In addition to tools to support the release cycle process,
the community claims for more documentation and automation of the contribution ow
daily tasks, expressing concerns with the project’s continuity as the community is getting
older. The community publications present substantial guidelines, supporting tools and
online materials, and internship programs to attract new and young people. However,
after three decades, they are now facing problems of a matured, long-life project. The
upper-cadre is aging, and maintainers are also not self-motivated to nd people able to
substitute them in case of vacancy.

Hence, in spite of the interest in attracting outside developers, the community currently
turns part of its attention to nd mechanisms able to retain and grow the existing con-
tributors. It needs contributors to replace or scale roles important for the project workow,
like maintainers and reviewers. The capacity of reviews must grow, and maintainers show
signs of stress; therefore, developers other than the maintainer should be available and
included in the review process. More reviewers, as well asmid-level maintainers, would
reduce the maintainership workload. Many maintainers have limited time working on
a given subsystem, and the situation worsens as the subsystem grows in size. A non-
proportional number of developers can overwhelm their work, leading them to look for
another job. A burnt-out maintainer is also more likely to ignore or reject new ideas and
give short and unclear answers.

The concern around scaling the number of maintainers increases as the number of
subsystems is growing. This growth requires higher-level coordination, two and three-level
trees, and, consequently, the progression of developers in maintainers. The community
claims for documentation and automation to avoid knowledge retention and make more
friendly and inclusive processes to both new contributors and developers already part
of the community.

Standardizing the process can also avoid the patch acceptance double standard. The
probability of merging a patch increases from newcomers to the long-term contributor and
contributor commits to maintainers self-commit. Maintainers have implicit assumptions
and rules and use checking and testing tools unavailable to developers. Some maintainers
resist changes in the development process because they fear losing privileges. By
retaining knowledge and requesting proof of subordination from those who need the

4.3 | LINUX KERNEL COMMUNITY ATTRIBUTES DESCRIBED BY COMMUNITY PUBLICATIONS

55

approval to move on, they turn the patch acceptance process into a superior power
exercise that complements their toxic behavior.

The results obtained from the strategies selected for the grey literature review on the
Linux kernel project reinforce the relevance of examining FLOSS community publications.
Grey literature is a rich source of data to dene key elements and accurately describe the
subjects of a FLOSS project development model. Besides mapping roles, rules, structures,
and mechanisms of the distributed, community-based Linux kernel development, our
investigation reveals current community concerns that can aect the project’s survival.
Therefore, we advanced our investigation to assess the coverage and pace of academic
research and day-to-day development issues in the Linux kernel project. In the next
chapter, we present the results of systematically review academic studies, the evaluation
of adherence to academic and grey literature concepts, and discussion ndings from a
participant observation in the Linux kernel community.

57

Chapter 5

Dierent perspectives on the Linux
Kernel Development Model

This chapter presents an up-to-date comprehensive description of the Linux ker-
nel community from dierent perspectives of FLOSS community publications, Software
Engineering studies, and Participant Observation. We compare concepts from grey to
traditional literatures in the last decade, and highlight convergence and divergences on
undestanding the current Linux kernel community model. We directly participated in
the development community routine to discuss our ndings and shed light on pitfalls in
mistaken assumptions.

5.1 Multivocal Literature Review

In this research, we conducted a multivocal literature review to embrace the concepts
from the current Linux kernel development community theory and practice. Multivocal
literature can summarize both state-of-the-art and -practice. The comparison between
its ndings also is fruitful to identify gaps and conicts between theory and practice in
the comprehension of the FLOSS phenomenon and its transformation, improving the
conduction and relevance of FLOSS research in software engineering.

In conducting a multivocal review, a researcher needs to consider the documents’
dierences of structure standards, the rigor of the review, and how their ndings are
supported. Due to the FLOSS continuous innovation characteristic, software engineering
researchers and practitioners may also not be at the same pace. These incompatibilities
can result in studies with outdated information and also misunderstandings.

To overcome these diverse challenges, we opted for a research strategy based on
ndings from GLR and subsequent correspondence with SLR codes. Therefore, we re-
viewed the grey literature on FLOSS to nd the Linux kernel development commu-
nity’s state-of-practice and its convergence with the bazaar model, i.e., the open-source
paradigm (Sanders, 1998). We conducted a systematic literature review and, for mapping
congruences and incongruities, we analyzed SLR data and compared their codes based on
the GLR ndings.

58

5 | DIFFERENT PERSPECTIVES ON THE LINUX KERNEL DEVELOPMENT MODEL

5.1.1 Systematic Literature Review

This research phase aims to compare, using a systematic literature review, the attributes
used by Software Engineering studies to characterize the current Linux development
community model with those systematized by the previous Grey Literature Review.

The primary studies were identied by querying digital libraries and following a
methodical protocol for study selection. Using a directed approach to content analysis,
we compare and extend conceptually the framework obtained from the GL. The content
analysis also exposed a certain lack of pace between what is investigated in academic
studies and the Linux kernel community concerns.

Studies Selection

We design a systematic literature review protocol (Appendix B.1) based on recommen-
dations from Almeida Biolchini et al. (2007), Barbara Kitchenham, Pearl Brereton,
et al. (2009), and Higgins and Green (2008). From the problem outline that guides this
research (Section 1.1), the systematic review aims to answer the software engineering
studies perspectives of RQ1. How do software engineering studies and Linux community
publications describe the current Linux development community model?

We selected documents from journals and peer-reviewed conferences available in the
following digital libraries:

• IEEExplore (hps://ieeexplore.ieee.or)

• ACM Digital library (hps://dl.acm.org/)

• ScienceDirect/Elsevier (www.sciencedirect.com)

• Springer (hps://link.springer.com/)

• Google scholar (scholar.google.com) [For double checking]

Traditional publishers and their standards for publication provide helpful search engine
tools. On the other hand, the Linux kernel is used in various markets, and the system
and its development project have characteristics relevant to a wide range of interests in
software engineering studies. To mitigate inconsistency issues in studies of Linux and
increase the search-string eciency, we tested the accuracy of the same terms used in the
GL search process by performing several search iterations until reaching a search string
with synonyms and composed terms:

“Linux kernel” AND (“development model” OR “community practices” OR “development
practices” OR “community rules” OR “development process”)

As opposed to grey literature databases, digital libraries have a higher quality of search
engine and homogeneity in features and listing of search hits. Consequently, we obtained
a more ecient result from dening a search string with composed terms, i.e., words com-
bination. We considered the same time interval of GLR to retrieve traditional publications
(from 2009 to 2019+). We applied the query mentioned above in four databases in March
2020, as shown in Table 5.1, and obtained a total of 1081 candidate-documents.

https://ieeexplore.ieee.or
https://dl.acm.org/
www.sciencedirect.com
https://link.springer.com/
scholar.google.com

5.1 | MULTIVOCAL LITERATURE REVIEW

59

Table 5.1: Search string results per digital library

Database # of hits # of duplicated
IEEExplore 96 3
ACM Digital Library 335 27
Science Direct 203 5
Springer 447 6

Table 5.1 summarized the number of documents obtained from each digital library.
These repositories enable us to lter only online avaliable documents written in English;
therefore, we had no eort to evaluate the compliance of this rst two eligibility criteria,
as dened in our SLR protocol, in Appendix B.1. Whenever possible, we downloaded
the reference hits as CSV or Bibtex les. We stored the references lists on the Mendeley
tool to facilitate metadata evaluation. After, we transposed the gathered references to an
online spreadsheet on Google for documenting the entire screening process. Using the
Mendeley’s feature of “Check for Duplicates”, we found 41 duplicated documents, marking
them as duplicated in the spreadsheet for exclusion.

Identication and Screening Process

Before starting the screening process, we classied the publication venue accord-
ing to its context relevance for software engineering and FLOSS studies, as shown in
Table 5.2.

Table 5.2: First step - Evaluating publication

Publication level Meaning Criteria
-1 Excluded: Out of context Publication venue and Publication keywords
0 Excluded: Out of interest Book chapter and Less than 10 pages
2 Less Priority Magazines

3 High Priority Journals and Conferences paper with more than 10
pages or focused on FLOSS

* Unclear

From this classication, we identied publications in FLOSS and Software Engineering
topics more likely to meet our eligibility criteria with stronger ndings. We excluded
677 documents in this classication step. To the next step of screening, we selected 363
documents with more than 10 pages published in journal and conferences on FLOSS and
SE research venue.

Reviewer 1, the leading researcher of this work, performed the initial phase of the
screening process to exclude documents by title that clearly meets at least one exclusion
criteria. She excluded 173 documents because their title are clearly out of the context of
this research. Even though Higgins and Green (2008) recommend the participation of
two or more reviewers in the screening process, a single reviewer in the initial step is
acceptable.

At this point, we conducted a participant-observation in the Linux kernel project, and
Reviewer 1 became a member of the project development community. We also introduced

60

5 | DIFFERENT PERSPECTIVES ON THE LINUX KERNEL DEVELOPMENT MODEL

a second reviewer for the rst round of text evaluation. Here, we identied this reviewer
as Reviewer 3 since this one is a dierent person than Reviewer 2, who participated in the
GLR screening process. Dierent from Reviewer 2, Reviewer 3 is not a Linux developer.
Reviewer 3 is a Software Engineering researcher with knowledge in sound FLOSS and
Software Engineering practices.

From a reduced sample of 190 documents, Reviewer 1 and 3 worked independently to
evaluate title and abstracts by eligibility criteria. At the end of the process, Reviewer 1
and Reviewer 3 compared their selection samples and found 31 conicts. After discussing
conicts, they agreed to exclude eight from 31 conicting decisions, converging on the
exclusion of 129 studies by title and abstract evaluation. Therefore, in the last step, we
read the full text and evaluated 61 documents, excluding 36 documents that do not meet
the eligibility criteria. Table 5.3 present the total of documents excluded by each exclusion
criteria.

Table 5.3: Results from each identication and screening phases

Exclusion criteria Total
Duplicated 41
Scope of Publication 677
Title out of context: Linux kernel project or FLOSS is not subject of study 173
Restricted to technical issues 14
Linux kernel is not subject of study 66
Restricted to validate a method, framework or tool 22
Linux kernel development practices is not subject of study 63

From this process, we selected 25 documents for content analysis. Table 5.4 shows the
distribution per database of documents retrieved by each search engine and documents
selection after the screening phase.

Table 5.4: Selection process per database

Database # of hits # selected studies
IEEExplore 96 2
ACM Digital Library 335 9
Science Direct 203 5
Springer 447 9

The entire selection process is documented in spreadsheets1. Each column correspond-
ing to a screening phase, where we detail reasons for exclusion. Whenever we could assess
that a single eligibility criterion failed, we excluded the document: marked as excluded in
the respective phase (column) and reported this criterion.

As summarized in Table 5.5, we identied the data source considered for investigation,
whether a study includes or not grey literature, and how this literature is used in each

1Data available on hps://gitlab.com/ccsl-usp/glr/-/blob/master/SLR_Linux_kernel_development_
model.ods

https://gitlab.com/ccsl-usp/glr/-/blob/master/SLR_Linux_kernel_development_model.ods
https://gitlab.com/ccsl-usp/glr/-/blob/master/SLR_Linux_kernel_development_model.ods

5.1 | MULTIVOCAL LITERATURE REVIEW

61

Identier and Reference The use of Grey Literature Multicase Artifacts Interview

SE1 Bagherzadeh et al. (2018) Background and Research Design No Source code and Commits No

SE2 Palix et al. (2014) Introductory No Source code and Commits No

SE3 Tan and Zhou (2019) Analysis of Online Documents No Patches No

SE4 Tian et al. (2012) Background No Commits No

SE5 Zhou et al. (2017) Analysis of Online Documents No Source code Yes

SE6 Rigby et al. (2014) Shallow Yes Patches Yes

SE7 Izqierdo and Cabot (2018) Analysis of Websites Yes - No

SE8 Jiang et al. (2014) Introductory No Patches and Commits No

SE9 Izqierdo-Cortazar et al. (2017) Background Yes Patches and Commits No

SE10 Zaidenberg and Khen (2015) Introductory No Source Code No

SE11 Lindberg et al. (2014) Analysis of Websites Yes - No

SE12 Shaikh and Henfridsson (2017) No No E-mail No

SE13 Avelino et al. (2018) Background and Discussion Yes Commits No

SE14 Feitelson (2012) Analysis Online Documents No Source code No

SE15 Israeli and Feitelson (2010) Discussion No Source code No

SE16 Berger et al. (2014) Analysis of Online Documents Yes Source code No

SE17 Riehle and Berschneider (2012) Analysis of Websites Yes - Yes

SE18 Barr et al. (2012) Analysis of Online Documents Yes Source code and Commits Yes

SE19 Lotufo et al. (2010) Background No Source code and Commits No

SE20 Forrest et al. (2012) Background and Discussion Yes E-mail No

SE21 Eyolfson et al. (2014) Shallow Yes Commits No

SE22 Capiluppi and Izqierdo-Cortázar (2013) No No Commits No

SE23 Joblin et al. (2017) No Yes Commits No

SE24 Bettenburg et al. (2015) Analysis of Online Documents Yes Source code and E-mail No

SE25 German et al. (2016) Background No Commits No

Table 5.5: Selected papers

selected study. Twelve studies use the Linux kernel project as the unique case of study, and
the remaining thirteen analyze and compare the Linux kernel with other FLOSS projects.
Most primary studies resort to grey materials to obtain some background to conduct their
investigation and discuss ndings. Six from 25 selected papers include the analysis of grey
documents as sources of evidence, but none of them collected these documents with a
systematic approach.

We observed that most selected studies resort to grey literature to develop their inves-
tigation background, commonly in a non-systematic manner and shallow analysis of data.
Bagherzadeh et al. (2018) massively used GL to support the investigation background
and research design, but do not use these documents for data collection. Zhou et al.
(2017) inspect Linux websites looking for project-related information and examine various
blogs, forums, webzines, and news websites to understand maintainer behavior and design
suitable measures for maintainers’ work. However, the paper presents shallow information
on their approach to collect and analyze this kind of data. Tan and Zhou (2019) collected
and analyzed online documents to understand communication when submitting patches
in the Linux kernel development process. They use an exploratory approach, searching
two keywords on Google search, gathering the rst 50 hits and, from them, snowballing
documents.

All selected studies consider at least one type of project artifacts. Most of them collected

62

5 | DIFFERENT PERSPECTIVES ON THE LINUX KERNEL DEVELOPMENT MODEL

data from source code repositories (18 studies), which could include source code (10 studies)
or commit messages (12 studies). Seven of them analyzed data from mailing list archives.
Finally, four studies used project proles and websites to collect data. Ten studies used
more than one data source in their analysis. Besides project artifacts and public project
documents, other sources of data used by primary studies include questionnaires and
interviews. None of them systematically analyzed data from grey literature. However,
we veried in the sample of primary studies GL references that matched GL documents
selected in our previous phase of GLR.

5.1.2 Content Analysis
We followed a directed approach of content analysis (Hsieh and Shannon, 2005) to

compare labels in the mind map from the GLR with the content present in academic
publications for the same period and similar eligibility criteria.

(a) Grey Literature Review- Word Cloud (Figure 4.2) (b) Systematic Literature Review - Word Cloud

For comparison with GLR keywords, we generated a word cloud from the text data of
all documents selected from SLR, as presented by Figure 5.1b. The word cloud enabled us
to promptly note convergences and divergences of interest between these two sources
of evidence. Both discuss key concepts of the project development model. They present
keywords that describe the basis of Linux development, such as time, community, mailing
list, developers. Other words describe project artifacts, such as code, patch/change, source
project, and repository.

On the one hand, the grey literature focuses on community subjects, such as people,
maintainers, discussion, conferences, code of conduct, proper names of well-known pro-
les, and emphasizes the subsystem organization. On the other hand, and as expected, the
formal Software Engineering literature shows keywords regarding process subjects, such
as coordination, metric, decision, organization, communication, size, author, and fault. Con-
sequently, comparing both states of mapped concepts strengthened our previous decision
to focus on the community model that supports the Linux kernel development.

We started the directed content analysis by highlighting all passages in the text that

5.2 | UNIFYING ACADEMIC AND COMMUNITY UNDERSTANDINGS

63

appears to be related to aspects of the Linux kernel development community. We coded
these passages considering codes predetermined by GL and gave a new code to the text
fragment that could not be categorized using the initial GL coding scheme. Hence, we
could support ndings from the previous phase and determine the relationship between
each keyword’s theory and practice.

Researchers are more likely to nd evidence supporting the preexistent theory by
using directed content analysis (Hsieh and Shannon, 2005). However, in our experience
from the grey literature to the formal ones, we identied gaps and mapped divergences of
understanding related to the project development and primary concerns. Moreover, by
opting for grey literature rst, our researchers were not blinded to social and contextual
aspects that mobilize the community to structure and restructure the project development
process and organization.

5.2 Unifying Academic and Community
Understandings

This phase’s primary goal is to identify which variables of interest in the Linux kernel
community publications were already explored or are under investigation by Software
Engineering studies. We also intend to understand how they were addressed to identify
which of them potentially need further investigation. Therefore, we obtained the codes
by directed content analysis of the primary studies. We used the complete version of the
grey literature mind map2 as the initial code scheme. This version includes attributes
and categories emerged by reviewing community publications. Whenever the same code
occurrence is found, we evaluated whether the study’s topics go through the entire branch
or has an unclear base or shallow approach.

We mapped all codes from our SLR in the GLR mind map presented in Chapter 4.
This mapping describes how well topics in the primary studies t the selected commu-
nity publications. We present the comparative map divided according to the subjects in
Figures 5.2, 5.3, 5.4, 5.5. The comparative mind map highlights three levels of Software
Engineering studies coverage regarding FLOSS community topics: unclear (no-mention),
some discussion but shallow analysis, or addressed (investigated with ndings).

In the following subsections, we relate the concepts by analyzing 108 publications
from the Linux kernel community with those present in 25 academic studies selected in
this systematic literature review. Due to the gures’ size, a better understanding of the
following section requires the reader to consult mentioned gures while reading. As an
alternative the entire mind map is available online in a git respository3.

2Mindmap available on hps://gitlab.com/ccsl-usp/glr/-/blob/master/Linux_KernelDevelopment_
Comunity_Full.pdf

3Comparive mindmap available on hps://gitlab.com/ccsl-usp/glr/-/blob/master/Linux_
KernelDevelopment_Comunity_Categories.pdf

https://gitlab.com/ccsl-usp/glr/-/blob/master/Linux_KernelDevelopment_Comunity_Full.pdf
https://gitlab.com/ccsl-usp/glr/-/blob/master/Linux_KernelDevelopment_Comunity_Full.pdf
https://gitlab.com/ccsl-usp/glr/-/blob/master/Linux_KernelDevelopment_Comunity_Categories.pdf
https://gitlab.com/ccsl-usp/glr/-/blob/master/Linux_KernelDevelopment_Comunity_Categories.pdf

64

5 | DIFFERENT PERSPECTIVES ON THE LINUX KERNEL DEVELOPMENT MODEL

5.2.1 General Characteristics of the Linux kernel Community

In community publications, authors resort to analogies to describe the Linux kernel
development structure. Despite subjectivity, we can relate the structures andmeanings of an
analogy in similar denitions, but more formal and standardized in FLOSS academic studies.
Therefore, in Figure 5.2, we compare grey and academic literature on topics of interest
regarding the Linux kernel development community’s general characteristics.

Figure 5.2: Comparing interests of academia and community publications – General Characteris-
tics

We observed that studies have explored the chain of trust in the maintainers’ tree
and between maintainers and developers (Rigby et al., 2014; German et al., 2016; Zhou
et al., 2017). Shaikh and Henfridsson (2017) exposes how chain-of-trust mechanisms
are adopted to reinforce authority and privileges in the Linux development community.
“Technology is often embedded with rules and structures that are seen as part of good design
and requirements, yet in practice, users are less able to notice such rules unless they face
them as a possible restriction in use. Oligarchic recursion established the powerful actors
and further entrenched them into the Linux project through instituting nested and recursive
practices for code approval, shortlisting of patches or developers for dierent roles, or the
choice of new maintainers.” German et al. (2016) describe the patch ow into the mainline
by commits propagation via pull requests. They focus on the history traceability across
distributed repositories and state that “most repositories are controlled by one person who
has the ultimate power to decide what makes it into that repository”.

On the other hand, no primary study has addressed the use of signature keys on pull
requests as an identity verication mechanism for security. Also, studies present few
attributes to describe social aspects and characterize community organization’s overview.
Finally, discussions of the impacts of project culture on members’ interaction and develop-
ment collaboration between subsystems are shallow.

5.2 | UNIFYING ACADEMIC AND COMMUNITY UNDERSTANDINGS

65

5.2.2 The Community Ecosystem
The entities that compose the Linux kernel community are sources of interest for

academic studies and community publications. In general, we observed a good coverage
and convergence in these topics comparing both grey and formal bibliographic literature,
as shown in Figure 5.3.

Recent studies have investigated the project structure to support coordination and
governance. We found studies on the Linux kernel project that analyze and compare their
ndings with some particular characteristic of a bazaar-like model. Lindberg et al. (2014)
claim the Linux kernel project is an example of a cathedral-like development model, with
an oligarchic social distribution “where important knowledge is controlled and shared by
several core developers, but where knowledge and control are highly concentrated and only
part of them extend to the entire community”. Despite knowledge restriction, the structural
kernel distribution has a high level of interpretative exibility since the community has
“more freedom in how they combine and utilize heterogeneous artifacts while developing OSS
projects”.

On the other hand, Joblin et al. (2017) investigate developer-coordination on 18 large
FLOSS projects, including the Linux kernel, and found a hybrid coordination structure
between core and peripheral groups of developers. Shaikh and Henfridsson (2017)
present even more diversied characteristics for the Linux governance. They gathered
data from the Linux kernel Mailing List (LKML) to examine the coordination process along
with the project history until the adoption of git (2005). As a result, they described project
governance under continuous transformation. The community sampled dierent version
control tools to support the dramatic and sustained growth in numbers of developers and
contributions. Along with the project history, dierent combinations of four management
processes co-existed: autocratic clearing, oligarchic recursion; federated self-governance;
and meritocratic idea-testing. For them, this multiplicity of authority structures embraces
the diverse motivations of dierent sorts of developers in large-scale, distributed FLOSS
projects such as the Linux kernel.

Software Engineering studies have explored project artifacts on version control tools
and mailing lists as data sources regarding coordination and communication. Avelino
et al. (2018) describe the nucleus of collaboration and discussion between Linux kernel
authors by analyzing the authorship across les of 66 stable releases. German et al. (2016)
analyze how Linux uses git and emphasize that “git provides the freedom to participate
in the development, but git does not provide the freedom to contribute.”. To Shaikh and
Henfridsson (2017), “the distributed nature of collaborating entails a greater dependence on
such coordination tools such as email and version control software”.

In fact, the Linux kernel development is mostly e-mail driven, where contributions
and reviews take place in patches sent to mailing-lists. Tan and Zhou (2019) map ac-
cepted and rejected patches sent to LKML to obtain sound practices for communication
when submitting patches. The mailing list is a common data source for analyzing the
review process. Rigby et al. (2014) identify patch contributions on the mailing list by
examining threads looking for dis. They consider patches that received a response to
analyzing the review processes of the Linux kernel and 24 FLOSS projects. Jiang et al.
(2014) perform an empirical study on patches sent to the Linux kernel mailing list and

66

5 | DIFFERENT PERSPECTIVES ON THE LINUX KERNEL DEVELOPMENT MODEL

trace the related commits to characterize the reviewing history in a low-tech reviewing
environment. Izqierdo-Cortazar et al. (2017) analyze and propose a methodology to
study Linux-style code review. They say, in the Linux-like development model, developers
from many dierent companies collaborate to maintain a common code base. In this
sense, Forrest et al. (2012) explore the participation of outside organizations in the FLOSS
project. They selected the Linux kernel and GCC projects because they use complete e-mail
addresses in Bugzilla and code repositories and had open and widely available mailing list
archives.

As mapped from GL, outside organizations are part of the Linux community ecosystem.
Riehle and Berschneider (2012) analyze the structure and processes of Linux Foundation
and eight other FLOSS foundations. They model foundations categories in terms of general
characteristics, philosophy, intellectual property, governance, nancing, and operations.
Izqierdo and Cabot (2018) analyze the nature of 89 software foundations, and charac-
terize more than 60 FLOSS Foundations to describe the role of these foundations in FLOSS
projects. Among the Linux kernel-related, they selected the X.Org Foundation to study
their openness and inuence in the development practices. However, they did not focus on
the Linux Foundation (LF) because it did not obey their eligibility criteria of independence.
They assess the LF “follows a exible approach which serves as an umbrella for its projects,
which can deploy specic development processes, and therefore concentrates more on the
promotion of OSS benets.”

Forrest et al. (2012) use dierent metrics tracking participation and inuence in
projects to analyze whether businesses and other organizations are biased in their par-
ticipation. They search for evidence of participation bias in terms of bug reporting and
code contributions and claim that “This knowledge is not just important to the projects
themselves, but to potential FOSS adopters or developers. Understanding who supports and
inuences the project is crucial to making better decisions about whether this is a project worth
investing in.” Although they stated that “The responsibility for managing FOSS projects is in
the hands of project maintainers. These individuals manage the code; they are responsible
for choosing which contributions to incorporate into a release, and who has the ability to
submit code”, none of the selected studies explore the inuence of the foundations and
companies’ interests in the level of maintainership and project governance, as inferred by
GL documents.

Finally, members’ communication still deserves further examination. The lack of
good social communication skills between members may spill over the collaborative
work that supports a distributed, community-based development and negatively impacts
the community’s sustainability and growth. Capiluppi and Izqierdo-Cortázar (2013)
analyze commit-date and timestamp on git to assess developers’ activity patterns, and
Eyolfson et al. (2014) address developers’ timezone to investigate code quality and the
propensity of bug introduction. None of the primary studies examine how timezone
dierences may aect collaborative work and address the nucleus of collaboration in
dierent communication means. Besides mailing-lists, community interactions occur
in more informal and instantaneous venues, such as IRC and in-person meetings as
conferences. Tan and Zhou (2019) state that “for patch submission in the Linux kernel, the
medium is xed: email. Thus, it is important to explore how a message is expressed and what
the context is”. However, our ndings on GLR show that other communication venues are

5.2 | UNIFYING ACADEMIC AND COMMUNITY UNDERSTANDINGS

67

a good source of the project decision-making process in the daily maintainership tasks of
patches review and acceptance and a broad perspective of governance.

The GLR briey cites individuals’ proles unrelated to the code’s contributions: in-
ternship coordinators, writers, users, and testers. Although the selected studies address
only users and testers, German et al. (2016) uncover activities that were before invisible
and detail three active end-users roles. Their contributions do not involve code commits
into the mainline: integration testers, experimenters, product-line maintainers. They also
divide code contributors into two roles concerning mainline contributions: producers and
integrators.

Figure 5.4 continues to describe community proles, focusing on code developers. In the
hands-on perspective of coding and review, Software Engineering studies and community
publications use common characteristics to describe Linux kernel developers. Avelino
et al. (2018) use the e-mail address to identify unique developers and Forrest et al. (2012)
mapping e-mail domains to assess contributions regarding contributors aliation.

Community publications usually focus on long-term members, addressing what mo-
tivates a developer to stay, what kind of motivation led them to join the project, and
whether their interest was satised or if their interest has undergone changes. On the
other hand, software engineering studies usually investigate the motivations and barriers
of less experienced kernel developers. Moreover, these studies tend to view new joiners
as volunteers with personal interests and who need to deal with inclusion barriers inde-
pendently. For Forrest et al. (2012), “Large projects may not be accurately portrayed as
grass-roots volunteer eorts.” Therefore, further studies may investigate why developers
decide to stay in the community or drop out and whether barriers and motivations could
change depending on how this new contributor was introduced in the community and its
aliation.

Finally, few studies examined the maintainership structure or the coexistence of dif-
ferent maintainership models in the Linux kernel project. Zhou et al. (2017) already
claimed that “Even though a substantial body of literature has characterized developers’
work, what maintainers do has not been addressed”. Their initiative to understand maintain-
ership scalability analyzes data from software engineering literature, online documents,
interviews, and mainline repository to quantify maintainers’ work. Their study slightly
reports dierent maintainership structures in the Linux kernel; however, no primary study
explores those models.

5.2.3 The Community Concerns

Recent studies have already evaluated some current concerns in the Linux kernel
review process. The community is looking for mechanisms to grow the review capacity
and encourage developers’ code reviews other than maintainers. Bettenburg et al. (2015)
shows that peer review in the Linux kernel is organized less formally and follows a
hierarchical approach. These characteristics aect the transparency and documentation of
the decision-making process. Because of the voluntary management based on e-mails, the
rst feedback usually takes a signicant amount of time to happen. Moreover, contributions
are either abandoned, rejected, revised, or accepted.

68

5 | DIFFERENT PERSPECTIVES ON THE LINUX KERNEL DEVELOPMENT MODEL

Rigby et al. (2014) state that“earlier research into the optimal number of inspectors has
indicated that two reviewers perform as well as a larger group”, in contrast to the Linus’
law. Palix et al. (2014) also weigh the accuracy of the law, since “in practice, code that is
frequently executed, or at least frequently compiled, is more likely to be reviewed than the
rest. When code is frequently executed, many users are likely to encounter any faults and
some may x the faults themselves or submit a request that the faults be xed by a kernel
maintainer. When code is frequently compiled, even if it is not frequently executed, it can
easily be submitted to fault-nding tools that are integrated with the kernel compilation
process.” Izqierdo-Cortazar et al. (2017) shows the impact of the number of reviewers
in the time-to-merge metric for a Linux-like code review process. They also point out the
community should overcome the challenges of a low-tech review environment and many
e-mail messages to improve the project review process.

Also related to code review, the primary studies approach the double-standard in patch
acceptance. Palix et al. (2014) show that committers (maintainers) generally present lower
faulty commits proportionally for all their commits, but their faulty patches are still applied
in the repository. Tan and Zhou (2019) reveals that patches sent by maintainers have
more chance of acceptance, even with poor commit description and explanation, because
reviewers tend to trust and predict quality. They also found that reviewers are stricter
with cleanup patches than with bug xes and more likely to accept changes previously
discussed or a community need. Bettenburg et al. (2015) observed a statistically signicant
acceptance bias towards more substantial contributions. Jiang et al. (2014) states that
“Having to submit additional patch versions is not a disaster, since relatively more such patches
are accepted than for patches with just one version, and reviewers keep on being interested
in subsequent versions.” However, in some community publications, authors suggest a
limit between real improvements and proof of subordination in repeated rejections. Also,
for Shaikh and Henfridsson (2017) and Lindberg et al. (2014), the processes of code
review and patch acceptance in the Linux kernel are mechanisms for decision-making that
strengthen privileges to the small group of kernel maintainers.

Avelino et al. (2018) discuss how knowledge restriction aects the recruitment process
for core and architectural parts of the Linux kernel system, as “developers must have great
condence on the changes they propose, discouraging volunteers from performing small
changes as a means to become kernel contributors.” Zhou et al. (2017) also state that core
modules require a higher skill level and people specialized and more experienced. In
contrast, implementation in peripheral modules is relatively self-contained, providing
a lower entry barrier for newcomers. Also, periphery parts keep growing because of
hardware manufacturers’ interest, where commercial entities add code to the driver’s
module and leave the community to resolve conicts in core modules. Consequently, their
studies found less development activity in core modules and stable maintainer’s workload,
while both continue to grow in the periphery.

Bagherzadeh et al. (2018) do not address much about community. On the other hand,
they discuss how to improve the community development process in the system calls eld
with knowledge sharing via documentations and automated testing and refactoring tools.
Zaidenberg and Khen (2015) also claim that existing tools are not sucient to detect
kernel security vulnerabilities and present a framework for kernel proling, code coverage,
and simulations during the development, similarly to a debugger. Tian et al. (2012) propose

5.2 | UNIFYING ACADEMIC AND COMMUNITY UNDERSTANDINGS

69

an approach to automate bug-xing patches identication to support maintainers of long-
term stable versions and Palix et al. (2014) claim for the relevance of fault-nding tool
and checkers to ensure code quality.

From Figure 5.5, we can quickly realize that software engineering studies address few
topics that currently concern the community about its development model. Our multivocal
literature review suggests shallow investigation in social challenges of members’ conduct
issues in a large-scale, distributed community of developers. Also, the selected papers do
not examine issues related to active developers with less external notoriety. Evaluating
the inclusion of mid-level maintainers instead of more maintainers in the same level may
address scalability for maintenance and review processes. Also, we could not nd power
assessment for internship programs and mechanisms to grow developers into maintainers
and make them able to replace upper-cadre members, or if there are any non-explicit
barriers to this.

70

5 | DIFFERENT PERSPECTIVES ON THE LINUX KERNEL DEVELOPMENT MODEL

Figure 5.3: Comparing interests of academia and community publications – Attributes regarding
the Community Ecosystem (1)

5.2 | UNIFYING ACADEMIC AND COMMUNITY UNDERSTANDINGS

71

Figure 5.4: Comparing interests of academia and community publications – Attributes regarding
the Community Ecosystem (2) – Developers

72

5 | DIFFERENT PERSPECTIVES ON THE LINUX KERNEL DEVELOPMENT MODEL

Figure 5.5: Comparing interests of academia and community publications – Attributes regarding
Community Concerns

5.3 | THE THIRD PERSPECTIVE - PARTICIPANT-OBSERVATION

73

5.3 The Third Perspective -
Participant-Observation

We conducted an Multivocal Literature Review considering community publications
and software engineering studies on FLOSS to answer RQ1. How do software engineering
studies and Linux community publications describe the current Linux development community
model? The comparative mind map presented and discussed in Section 5.2 answers RQ1.2.
Do Software Engineering studies already cover these topics? In this section, we enrich the
discussion on MLR ndings with data from a participant-observation that I conducted in
communities of two Linux kernel subsystems, IIO and DRM. The triangulation aims to
produce a solid discussion of our ndings to more eectively answer RQ3. What are the
possible gaps and opportunities for academic research in FLOSS development topics?

During the content analysis of grey literature, we decided to restrict the study scope to
focus on the Linux Kernel Development Community. We made this decision because we
could evaluate a good saturation and systematization of the concepts related to the Linux
kernel development processes after the rst round of GLR coding. Also, the Linux kernel
community presents a good description of the main community’s artifacts produced and
delivered during the development and release processes.

We ratify this assessment by analyzing content from formal literature. On the one hand,
we observed that software engineering studies reference some of the same grey documents
to describe those elements. A good example is the text fragment from Izqierdo-Cortazar
et al. (2017), “All this process, since when a patch series is posted for rst time to the mailing
list, until when it is accepted to be committed is what we will refer to as the “code review
process” for that specic patch series. The full process is described for developers in the Linux
kernel documentation, section ‘Submitting Patches’.” On the other hand, most of the selected
studies converge on describing development processes, such as the Linux kernel patch
ow, code review process, and the release process (mainline and stable versions).

The Linux kernel project has inspired Raymond (1999) to dene the Bazaar model
of software development management. However, both selected community publications
and primary studies dissociate the current project from those characteristics described
more than two decades ago as open-source project management standards. “Importantly,
Linux’s development dees common management theory [..]. At the same time, it does not
t into any common software lifecycle model” (Feitelson, 2012). “The Linux community
is a pyramid” (T. L. Foundation, 2010) and the Linux kernel project is governed by
dictatorship, and patches are passed up a “chain-of-trust” to the dictator (Rigby et al., 2014).
The more the community grows, the more hierarchical it becomes. “A number of subsystems
are growing to the point where there needs to be some overall higher-level coordination. So
there are more two and three-level trees than there used to be” (Corbet, 2017a). In short,
current studies and community publications do not resort to attributes regarding anarchy
or atness to describe the state of the Linux kernel development model.

My participant-observation in the Linux kernel community brought a third view on
the ndings from literature. The benets of including this qualitative data collection
method are twofold: expanding knowledge on characteristics of the community under
investigation and capturing nuances and unspoken rules on Linux kernel development.

74

5 | DIFFERENT PERSPECTIVES ON THE LINUX KERNEL DEVELOPMENT MODEL

We assumed that some social aspects that shape the Linux kernel development model are
undocumented or appears only eventually. Therefore, the eld research could reveal these
elements present in the daily tasks of development, maintainership and mentorship of
active members.

The knowledge gained from this community engagement work is further detailed
in Appendix C and Appendix D. The community immersive work and data collection
process lasted 15 months (not sequential). However, once the investigation has completed, I
continue to be part of the community and participating in activities related to development
and maintenance.

In participant observation, the rst observer task is to become a member of the commu-
nity under investigation. To join the development community around a Linux subsystem, I,
as a participant-observer, developed specic technical and non-technical skills to contribute
to the project. This learning process started with a training phase on developing device
drivers and sending patches to the IIO subsystem. The approach adopted in this research
for training activities comprised of:

1. Development environment setup for coding and communication:

(a) choosing a more accessible e-mail client to send patches;

(b) using a bouncer to stay connected on IRC community channels;

(c) identifying the maintainer’s repository to contribute to a specic Linux kernel
subsystem;

(d) using a virtual machine and be able to modify, compile, install and test cus-
tomized kernel versions.

2. Learning development and release process: how to patch and send contributions
through subsystem mailing-list; checking code style rules; understanding the contri-
bution ow.

3. Getting involved: sending code clean-up changes, examining staging drivers’ debts
and sending improvements and bug xes.

I resorted to tutorials and integrated the FLUSP (FLOSS at USP)4. FLUSP is an extension
group of the University of São Paulo (USP) created to foster student participation in FLOSS
projects.

To become part of the group of community developers and understand the contribution
workow (submission, revision, acceptance, and merge), I developed a total of eight patches
to the selected subsystem community, Industrial I/O. A summary of these contributions is
presented in Appendix C. In the Linux kernel project, code, comments, reviews and other
discussions use the same route: emails in the mailing list. Therefore, each code contribution
sent to the mailing list can be considered a core of interaction between developers. Linus
subsystem mailing lists are open and publicly available on the Internet, all contributions
and e-mails were collected as data sources to identify members, roles and how interactions

4hps://flusp.ime.usp.br

https://flusp.ime.usp.br

5.3 | THE THIRD PERSPECTIVE - PARTICIPANT-OBSERVATION

75

happen in the Linux kernel development community. I also took notes and wrote blog
posts describing each cycles of contribution, lessons learned, and reections5.

Continuing my immersive work, I moved to a subsystem with a larger community
of active contributors, the kernel DRM/GPU subsystem (DRI/DRM). Even being in the
same project, each subsystem requires from the developer a specic computer knowledge
base in terms of software and hardware. Besides the transition between operating system
components, I needed to understand other specications and testing tools for the drivers
in the GPU subsystem.

I could experience dierent community roles in this phase. Each role brings a specic
perspective of the development process and dierent levels of interaction with other
members. During one year, I walked a path in the community as:

• Linux/DRM development community newcomer;

• Google Summer of Code intern;

• Virtual KMS driver maintainer;

• Outreachy internship program mentor

I sent 15 patches with dierent complexity of code contributions: code style, bug
xes, maintainability improvements, test coverage, operational behavior xes, and new
features. I also reviewed ten patches for DRM subsystem drivers. Finally, I posted 12
blog posts to describe my participation in the subsystem community. In addition to this
involvement in more technical activities, maintainership and mentorship required more
social skills, such as a careful speech, building a follow-up routine, understanding the other
side perspectives, attention to conduct issues. The participant observation in DRM/Linux
community is detailed in Appendix D. I also present discussions about the community
joining phase, the diculties experienced, and some reections in the face of particular
situations.

5.3.1 Mapping gaps in academic and community publications
Interestingly, grey and formal literature converge many times in carrying unclear

information about Linux kernel software. In both samples of selected documents, we could
nd authors describing the software as an Operating System (OS) instead of an OS kernel.
In other words, “Linux is the kernel: the program in the system that allocates the machine’s
resources to the other programs that you run. [..] The ambiguous use of the name doesn’t help
people understand.” 6

Some selected studies dene the Linux project modularization based on directories
and les, while community publications prefer to use the subsystems organization. In
academic studies, statistics are grouped by year while community publications present data
by kernel release. For Avelino et al. (2018), investigation at the subsystem level “requires a
reference architecture of the Linux kernel, as well as a mapping between elements at the source
code level to elements in the architectural model.” Therefore, out of the typical approach in

5hps://melissawen.github.io/blog/2019/04/10/first-patch-linux
6hps://www.gnu.org/gnu/linux-and-gnu.en.html

https://melissawen.github.io/blog/2019/04/10/first-patch-linux
https://www.gnu.org/gnu/linux-and-gnu.en.html

76

5 | DIFFERENT PERSPECTIVES ON THE LINUX KERNEL DEVELOPMENT MODEL

directories and years, they “use the mapping rules set by Greg Kroah-Hartman, one of the
main Linux kernel developers” and available in his repository as scripts7 to map les in each
subsystem and dierent kernel releases. The logs and scripts in his repository is explicitly
the same used by the Linux Kernel Development Report 2012 by Linux Foundation.

We also nd divergences in study ndings and community claims. While maintainers
have frequently advertised through community publications signs of stress, the selected
study on maintainership scalability, Zhou et al. (2017) bring another perspective about this
concern. They investigated the kernel maintainer activities and “found that the workloads of
the average maintainer and the median maintainer do not appear to increase, thus some risks
hypothesized in the community are not evident”. Our participant-observation brings a third
point of view. The study has not considered that active developers and mainly maintainers
are usually employees from companies that do not pay them to work exclusively for
the kernel. Moreover, many of them have few opportunities to upstream contributions
under their employer’s support. Consequently, maintainership could be an extra work
that contributes to boosting the career and also increasing their workload.

In their work, Zhou et al. (2017) mentioned a community publication that we have
also analyzed in our GLR (Corbet, 2016e): “Linus Torvalds said that he has come to like
the group maintainer model, where more than one person takes responsibility for a given
subsystem. However, numerous developers were skeptical of the idea”. We have analyzed this
document and its snowballing references, and, from our understanding, the developers
skepticism is around the suciency of a model with two maintainers. In addition, Torvalds
has refused the idea of sharing commit-rights in the top-level maintainance.

After a participant observation in the Linux kernel project, we found statements in the
primary studies’ that do not twith practice. Aftermore than a year of involvementwith the
DRM subsystem community performing distinct roles (volunteer, intern, maintainer, and
mentor), I observed the developer preference on sending patches that change only parts of
the subsystem only to specialized mailing-lists, and do not include the project-wide mailing
list linux-kernel@vger.kernel.org as recipient, see examples at Appendix D. This practice
diverges from the assumption of Tan and Zhou (2019) to avoid obtaining duplicate patches
for data collection, considering that “In general, LKML contains all the patches because the
kernel community stipulates that the patches sent to those specialized lists need to be copied to
LKML.”. Also, the Linux kernel Documentation8 states that “linux-kernel@vger.kernel.org
functions as a list of last resort, but the volume on that list has caused a number of developers
to tune it out.”. In summary, “in addition to a project-wide mailing list for overall discussion,
there exist many subsystem-specic mailing lists. Contributors are encouraged to submit their
contributions through the corresponding mailing list of the subsystem that their contribution
targets” (Bettenburg et al., 2015).

To overcome the data collection challenge in dening a unique developer identity,
Avelino et al. (2018) “rst assign to a single developer all commits with the same e-mail,
but with dierent names”. However, we found examples in the subsystems community
that show that alias approach is not enough. The same person has more than one e-
mail address, commonly distinguishing personal and professional relationships by e-mail

7hps://github.com/gregkh/kernel-history
8hps://www.kernel.org/doc/html/latest/process/submiing-patches.html

linux-kernel@vger.kernel.org
linux-kernel@vger.kernel.org
https://github.com/gregkh/kernel-history
https://www.kernel.org/doc/html/latest/process/submitting-patches.html

5.3 | THE THIRD PERSPECTIVE - PARTICIPANT-OBSERVATION

77

domain. Moreover, the same person usually switches between personal and professional e-
mail addresses to grant the contribution copyright to an outside organization that sponsors
the work.

Avelino et al. (2018) claim that le authorship measures help identify each le’s key
developers. This claim seems valid for developers who are still active in the community.
Nevertheless, some developers and companies do not continue contributing, and the
code ends up being maintained by other developers. An example is the VKMS driver. I
am currently co-maintaining it, and one of the driver’s authors decided not to continue
working on the community and have sent contributions for more than two years. From the
eld research experience, identifying the le maintainers is more accurate than authors.
Another approach would be checking the number of lines by last change authors using git
commands, like git blame.

Capiluppi and Izqierdo-Cortázar (2013) veried commit date and timestamp on git
to assess developers activity within the Linux Kernel during the day and the week. They
claim to carefully monitor activities on late night and after oce time slots since they are
more likely to introduce additional complexity to the project code. In this scenario, two
issues deserve further investigation: (1) communication means should be considered as
a data source, and (2) code contribution eort in high-complex changes is a long-term
production. Therefore, commit timestamp is a small piece of the work eort and would be
inaccurate data to determine when development happens.

Although the community claim that “developers who work on independent projects tend
to think of themselves as aliated with the project rst, and their employer second; that
results in a strong incentive to avoid compromising the project’s goals in favor of what today’s
employer wants” (Corbet, 2016a), this neutrality or care to the Linux kernel project is not
clear. Some participants expressed the desire to remain in the community when they leave
their jobs but continuing as a volunteer is not as frequent as it seems. On the other side,
others have expressed they are working in the Linux kernel project because it pays well,
and the skill brings professional recognition to high job positions.

Tian et al. (2012) warned of the challenges and cautions when using keywords for
collecting and mining patch data. For them, “All of these studies employ a keyword-based
approach to infer commits that correspond to bug xes, typically relying on the occurrence
of keywords such as ‘bug’ or ‘x’ in the commit log. Some studies also try to link software
repositories with a Bugzilla by the detection of a Bugzilla number in the commit log. Unfortu-
nately these approaches are not sucient for our setting because: 1) Not all bug xing commit
messages include the words ‘bug’ or ‘x’ [..]”. Eyolfson et al. (2014) also point out the
misuse of ‘x’ keywords in the Linux and other two FLOSS projects investigated, and how
false positives aects precision and recall of their methods. During participant observation,
we observed the misuse of these keywords in dierent situations: (1) in the training and
insertion stage in the IIO community, as a member of FLUSP; (2) in the internship for the
DRM community, as a patch reviewer. What has been observed is that new contributors use
the word x to describe clean-up codes, legibility improvements, or debugging messages.
For bug-x patches, the Linux kernel Documentation recommends that “if your patch xes
a bug in a specic commit, e.g., you found an issue using git bisect, please use the ‘Fixes:’ tag”.
The tag helps determine the bug’s origin, review a bug x, and assist the stable kernel

78

5 | DIFFERENT PERSPECTIVES ON THE LINUX KERNEL DEVELOPMENT MODEL

team. Unfortunately, it is a recommendation that still depends on human attention to
ensure its employment.

Ultimately, the participant-observation in the Linux kernel development community
enables us to reinforce and discuss our ndings with the qualitative perspective. In the
context of large-scale FLOSS projects, we believe that becoming a member of the studied
community brings the researcher a better understanding of undocumented rules and roles
that shape development processes. Uncovering these elements is relevant to conduct and
increase the quality of the research design and discussion of results. Despite the reported
challenges for GLR, we also argue that the use of GL material is even more fruitful in
FLOSS research, given the vast amount of public information resources produced by the
FLOSS communities. In such a scenario, we claim that researchers should investigate such
resources before taking the time of FLOSS contributors with surveys or interviews (V.
Garousi et al., 2016), especially considering that i) most of the needed information is
already available with rich details and ii) top contributors usually do not have much time
for extensive interviews.

5.3.2 Threats to Validity
The Linux kernel software and its community-project have peculiarities compared to

other FLOSS projects. Linux is both a typical case of a successful FLOSS project and an
extreme case of vigor in the publications made by its community. Due to the software
type, its complexity, longevity, and project community size, the Linux kernel is the topic of
many publications. It has a high availability of materials produced by practitioners, unlike
many other FLOSS projects. Therefore, obtaining information and performing some GLR
steps can vary in complexity when applied to other FLOSS projects’ investigations.

On the one hand, the maturity and variety of market usage of the Linux kernel project
in the software industry increase the amount of information available public and online.
On the other hand, the Linux development process’s peculiarities and the community
structure demands familiarity with FLOSS practices to interpret the data. To expand this
knowledge and increase the accuracy in coding the data, a researcher should get closer to
the community’s daily life, searching for complementary documents and observing the
community in practice.

This approach brings benets but can lead to bias. Nevertheless, due to the Linux
project relevance and protagonism in the last two decades of FLOSS research, an accurate
mapping of its current state of development practices could improve the execution and
relevance of software engineering research on FLOSS.

The Linux kernel development model was the case for three dierent methods of qual-
itative data collection: grey literature review, systematic literature review and participant-
observation. Although we followed a systematic approach to searching and selecting
documents for formal and gray literature, the dierences in quality of the search tools
and vocabulary used by dierent audiences led to specic adaptations in each review.
Therefore, it was impossible to use the same document search and selection protocol to
review both kinds of literature.

We used the same time range and search-strings as close as ecient to select 108

5.3 | THE THIRD PERSPECTIVE - PARTICIPANT-OBSERVATION

79

documents from grey literature and 25 software engineering studies that approach the
Linux kernel development community’s characteristics. Despite the dierence in number,
most of the grey materials are brief texts, while the selected studies have at least ten well-
structured pages. After we have analyzed both content, we considered to reach balanced
sources of data, notwithstanding the large dierence in number would aect the diversity
information equilibrium.

We resorted to a multivocal literature review to highlight convergence and divergence
of interest by the state-of-the-art and state-of-the-practice in ten years of Linux kernel
development. We considered ten years a reasonable time range of review. Our initial
sample began from thousands to 340 pre-selected grey documents, and 1081 search hits
in academic digital libraries. Nevertheless, we believe that every open topic deserves
more in-depth and more centralized literature examination to assess Software Engineering
studies’ coverage more accurately.

Finally, we use the qualitative method of participant-observation, aware of the re-
searcher’s risk of bias. We also weighted the power of the inclusion of a not usual per-
spective on Software Engineering studies on FLOSS. Therefore, we considered that the
benets of understanding the concepts and expanding the critical view on the study topics
are superior to the risk of inserting a bias intrinsic to a human researcher.

81

Chapter 6

Conclusion

Software engineering literature still presents little of what is performed by FLOSS
practitioners, their activities, and how often they happen. This distancing from the practice
leads academic works to lack a well-understanding of the FLOSS phenomenon, carrying
a homogeneous and biased perspective. From our investigation results, we claim that
software engineering research must accept and analyze knowledge artifacts produced by
practitioners to enrich knowledge about FLOSS development. It enables to capture a more
up-to-date snapshot of the project development and challenges currently faced in the daily
activities. Also, grey literature brings the nuances of the real world from the practitioners’
point of view.

Alongside commercial and academic publications, GL is used to broaden the academic
understanding of how FLOSS developers interpret their daily work environment. Despite
the informality of GL, it brings advantages of its own. Studies with negative or null
results are easier to nd in GL than in peer-reviewed academic literature, enabling a more
critical perspective, with a potential reduction of bias and visualization of more balanced
evidence (Paez, 2017). GL is also a leading source for identifying topics and gaps not yet
covered by academic literature. It also enables the investigation of more up-to-date and
emerging information since academic studies incur long publication delays due to the
peer-review process.

Bearing this in mind, we reviewed the grey literature and systematized the Linux kernel
community characteristics in a mind map where concepts are grouped in three main topics:
General Characteristics, Ecosystem, and Concerns. With this mapping, we answer RQ1.
How do soware engineering studies and Linux community publications describe
the current Linux development community model? and RQ1.1. What attributes practi-
tioners use to characterize the Linux development community? What are the current social and
organizational challenges from the community perspective?. Consequently, the resulted mind
map provides C1. A comprehensive characterization of the contemporary Linux
kernel development community. and explains C2. Community characteristics and
social-technical nuances that shapes a FLOSS project development. It may also help
FLOSS researchers evaluate if the Linux project ts the characteristics desired for their
investigation.

82

6 | CONCLUSION

We combined several data collection methods to provide a comparison of our ndings
from academic and community publications that answer RQ1.2. Do Software Engineering
studies already cover these topics?. With a comparative mind map and discussion from
development trenches, we elucidated the pace between the Linux kernel community
and Software Engineering studies and deliver C4.1 A map of potentially misleading
information gaps between theory and practice in the contemporary Linux kernel
development community.

Because GLR is still a nascent trend, just a few software engineering reviews have
already included GL materials (Bailey et al., 2007; França et al., 2016; Soldani et al.,
2018). Although there are recommendations for GL material inclusion in literature reviews,
there is not yet a precise methodology or guidelines prescribing well-dened steps and re-
strictions for conducting Grey Literature Reviews (GLR). Some researchers have mitigated
this problem by applying systematic review methods for examining GL. Nevertheless,
conducting GLR still requires adaptations for handling the variety in quality, size, types,
and structures of documents, besides the larger volume of available materials compared to
a traditional literature review. Moreover, the reviewer must deal with the lack of robust
search engines and textual and natural language analysis challenges.

Hence, we reported in Chapter 4 a set of mechanisms for data collection and analysis
to systematically examine grey materials produced by members of a FLOSS ecosystem.
This investigative design answers our RQ2. What research techniques can be used to
examine a FLOSS project through its community publications? and contributed with
C3. Guidelines to examine FLOSS projects through its community publications.
We overlapped data from GLR, SLR, and Participant-Observation to identify topics with
misunderstandings or shallow coverage on FLOSS studies that deserve more in-depth
investigations. This multi-method approach presents C4. A combination of research
strategies that could boost research on FLOSS ecosystems and answers RQ3. What
are the possible gaps and opportunities for academic research in FLOSS development
topics?

6.1 Future Work

Our work shows that grey Literature is a leading source for identifying topics and
issues from the real world not yet covered by academic literature. We believe that the use
of grey documents enables a researcher to start from a more prosperous basis by capturing
parts of the practice. However, the lack of data contrast is dangerous due to the power of
incorporating more bias and misleading information for research design and, consequently,
skewed results since personal opinions are intricate to this information source.

From our content analysis and critical discussion, FLOSS researchers may nd oppor-
tunities to conduct in-depth investigations of some Linux kernel practices and expand
state-of-art and -practice even more. Future works should address an explicit comparison
of each of the concepts obtained from multivocal literature review to the third perspective
of participant observation in the Linux kernel development community.

The selected grey documents, practitioners’ also revealed particular concerns about
most code change authorship in the Linux kernel project being concentrated in top contrib-

6.1 | FUTURE WORK

83

utors. These contributors are usually subsystem maintainers and also employees of large
companies. In this scenario, continuing to examine the inuence of outside organization in
the project is essential, “not to malign the sponsorship or participation of corporations or gov-
ernments in FOSS, but to show how these may skew the dynamics of a FOSS project” (Forrest
et al., 2012).

We observed issues in the current Linux kernel development model that are little
discussed in formal literature. First, the current code maintenance organization and how it
impacts active developers. This subject includes issues in the maintainer’s routines, such
as signs of stress, burn-out, fears, paralysis in the face of innovations, and topics regarding
the hierarchy of commit-rights, the double-standard in patch reviews and commits, and the
distinct models of maintainership per subsystem. Future FLOSS research should address an
in-depth investigation of these concepts to identify the challenges and benets of changing
the maintainership model (between the single, group, and multiple-committers) to support
processes scalability and mitigate bottlenecks suggested by traditional and grey literature
in the current pre-commit review process.

Second, we mapped research opportunities regarding community subsistence: the
diculty in transferring knowledge and the steep learning curve. Both contribute to the
aging of the community and missing younger voluntary contributors. On the one hand,
these issues may be addressed by companies developing new contributors in-house. On the
other hand, abusive culture on communication, conduct issues, and a toxic environment
would aect new and active developers. In addition, future works should consider other
means of communication and decision-making besides the mailing-lists, such as IRC
channels and conferences.

Lastly, FLOSS research should benet from investigations of the source code’s continu-
ous growth and the impacts on source code and processes of embracing the non-regression
rule. Also, studies should evaluate the signicance of the code change authorship central-
ized in top contributors, usually maintainers and large companies’ employees. All these
issues are mapped in this thesis and deserve further scrutiny by the research commu-
nity.

Our claimed contributions and the wealth of information in this work reveal the
importance of using investigative methods able to embrace the continuous transformations
of the FLOSS phenomenon and the social aspects of community-based development.
The review of community publications and direct participation in developing a project
as a community member are strategies not commonly used in the studies of Software
Engineering in FLOSS. In our work, the use of Multivocal Literature Review and Participant-
Observation brought academia closer to the everyday practice of developing the Linux
kernel, collecting richer and more up-to-date data, and identifying undocumented social
aspects and unspoken rules. Given the results obtained here, we understand that these
methods t very well in the characteristics of the development of FLOSS and should be
strongly considered in further research in the area.

85

Appendix A

Grey Literature Review Protocol

We considered Grey Literature any online publication not peer reviewed. The term
‘grey literature’ is often used to refer to reports published outside of traditional commercial
publishing. (Cochrane)

Motivation

Some studies of software engineering have presented a skewed view of the FLOSS
phenomenon. Among the possible biases, we highlight the generalization of FLOSS projects
(black-and-white view), distance from day-to-day practice, and the belief that FLOSS
projects do not have well-dened management structure and workow methods. Although
there is a wealth of artifacts produced by communities to document the daily practice of
FLOSS and outsource discussions and reections, there is no academic study focused on
summarizing the concepts disseminated by FLOSS communities about their development
models. This review intends to ll this gap by understanding how FLOSS practitioners
characterize the development model of the community that they contribute.

A.1 Research Questions

RQ1. How do Linux community publications describe the current Linux development
community model?

RQ1.1. What attributes practitioners use to characterize the Linux development com-
munity? What are the current social and organizational challenges from the community
perspective?

RQ2. What research techniques can be used to examine a FLOSS project through its
community publications?

A.2 Initial steps

1. Searching for publications about grey literature review in software engineering

2. Brainstorm sources and potential database to search grey literature on FLOSS

86

APPENDIX A

A.2.1 Data Sources

Textual Audio-visual
• Foundations and Project Webpages
• Industry-oriented magazines
• Books
• Experienced Developers Blogs
• Whitepapers
• Mailing-list

• Movies
• Videos on
Youtube

• Podcasts
• TED Talks

Table A.1: Types of Grey Literature Datasource

A.2.2 Identifying the Database

Textual

Targeted websites (recommendations from FLOSS experts; Locating organiza-
tion via Google)

• https://opensource.org/

• https://www.fsf.org/

• https://www.kernel.org

• https://www.linux.com

• LWN.net

• https://kernelnewbies.org/

• https://www.linuxfoundation.org/

• https://www.linuxinsider.com

• http://planet.kernel.org/

Industry-oriented Magazines

• https://www.wired.com/

• http://www.drdobbs.com/

• https://www.linuxformat.com/

• http://www.linux-magazine.com/

• https://www.linuxjournal.com/

• https://opensourceforu.com/

• https://www.networkworld.com

Books

A.3 | PLANNING GLR

87

• Free as in Freedom

• Producing OSS

• Understanding the Open Source Development Model

Experienced Developers Blogs

• http://www.linux-magazine.com/Online/Blogs

• https://blog.wll.ch/

• http://www.kroah.com/log/

• https://sage.thesharps.us/

Whitepapers

• http://www.ndwhitepapers.com/technology

• https://www.bitpipe.com/

Google advanced search

GL databases

• http://www.opengrey.eu

• https://arxiv.org/

Consultating with experts

Snowballing references and backlinks

Audio-visual

• https://google.com

• Movies: Revolution OS, The Code (Documentary), Pirates of Silicon Valley, The 5
Keys to Mastery

• https://www.youtube.com

• Podcasts: papolivre.org; Sunday Morning Linux Review (http://smlr.us/); Free
as in Freedom (http://faif.us/); https://twit.tv/shows/oss-weekly; KernelPod-
cast(http://www.kernelpodcast.org/);

• https://www.ted.com

A.3 Planning GLR

Relaxed Search String

Inclusion and exclusion criteria

Interval time: 2009-2019+

88

APPENDIX A

Table A.2

Linux Development Model
Linux Kernel Business Structure
Linux Project () Scheme

Rules
Process
Guide
Community
Culture
()

Table A.3

Inclusion criteria Exclusion criteria

Published online by practitioners or
researchers in the FLOSS area

Published by enthusiasts who have
not participated in any FLOSS-related
projects or any FLOSS research

Available in English Unavailable in English

Most current version of the document There is a new (updated) version of the
document

Describes the development of Linux
kernel: reporting practices and/or
presenting statistics and/or discussing
management and rules inside the
project and/or studying the project
development and/or its community

Did not contain any reference of devel-
opment practices of Linux project

Merely discusses technical issues /
coding / new features

Ranking Resource-Types

A.4 | SEARCH PROCESS

89

A.4 Search process

A.4.1 Database Selection

Searching Data Source

Search on Google for relevant websites and contact experts to create a list of tar-
gets

Classifying Data Source

A.4.2 Searching documents
1. When a search tool is available on the selected database, apply the search string

2. Otherwise, search by hand relevant contents

3. Export results to an spreadsheet

4. Remove duplication

5. Highlight title appeared relevant and analyze abstract, when available

6. Author prole: experience, role in FLOSS project, active or not

7. Publisher history/prole

8. Snowballing references

A.5 Selection process

We based on guidelines provided by Higgins and Green (2008).

1. Use (at least) two people working independently to determine whether each study
meets the eligibility criteria.

2. Whener possible, screening of titles and abstracts to remove irrelevant reports
(should be done in duplicate by two people working independently but it is acceptable
that this initial screening is undertaken by only one person).

3. Two people working independently are used to make a nal determination as to
whether each study considered possibly eligible after title / abstract screening meets
the eligibility criteria based on the full text of the study report(s).

4. It is important that at least one author is knowledgeable in the area under review, it
may be an advantage to have a second author who is not a content expert.

5. Disagreements about whether a study should be included can generally be resolved
by discussion.

6. A single failed eligibility criterion is sucient for a study to be excluded from a
review. In practice, therefore, eligibility criteria for each study should be assessed in
order of importance

90

APPENDIX A

7. Pilot test the eligibility criteria on a sample of reports

8. The selection process must be documented in sucient detail to be able to complete
a ow diagram and a table of ‘Characteristics of excluded studies’

Processes of documents identication, screening and content analysis are detailed in
Chapter 4

91

Appendix B

Multivocal Literature Review
Protocol

Multivocal Literature Review considers traditional commercial and non-commercial
publications to build a comprehensive understanding of a specic research eld.

For this, we opted for the gray literature review as a starting point and subsequently
performed a systematic literature review. In this systematic review of the literature, the
search and selection protocol for publications followed conventional patterns, already well
established by software engineering research. From the publication sample obtained by
applying the protocol, we established a comparative content analysis of the ndings of
the grey literature review.

B.1 Systematic Literature Review Protocol

Research Questions

RQ1. How do software engineering studies describe the current Linux development
community model?

RQ1.2. Do Software Engineering studies already cover these topics?

RQ3. What are the possible gaps and opportunities for academic research in FLOSS
development topics?

Data Sources

• Journal (Name of journal; Years searched; Any issues not searched)

• Peer-reviewed Conference Proceedings (Title of proceedings; Name of conference
(if dierent); Title translation (if necessary); Journal name (if published as part of a
journal)

Database

• IEEExplore

92

APPENDIX B

• ACM Digital library:

• ScienceDirect/Elsevier (www.sciencedirect.com)

• Springer (https://link.springer.com/)

• Google scholar (scholar.google.com) [For double check]

Search string

After testing the search string presented in Table A.2, we verify that some words
combinations were more eective. It resulted in a condensed search string, accepted by all
database selected to collect software engineering research publications.

Full text: "Linux kernel" AND ("Development Model" OR "community Practices" OR
"development Practices" OR "community Practices" OR "Development Process")

Eligibility criteria

Interval time: 2009-2019+

• Published online in the selected database

• Available in English

• Most current version of the document

• The Linux project is subject of study

• Describe elements of Linux kernel development: practices and/or artifacts and/or
processes and/or community characteristics

• Include discussion on the Linux kernel community and members, not only technical
issues: coding and/or new features

Search process

1. Test the eciency of the search string by checking the search hits.

2. Dene an ecient search string.

3. Apply the search string in the search tool on each database.

4. Export results to Mendeley.

5. Remove duplication in the same database and cross-database.

6. Export references to spreadsheets for ltering.

7. Evaluate the relevance of each venue.

8. Remove papers from venues with low relevance to the FLOSS and SE area.

9. Screen title. One reviewers.

10. Remove papers with title clearly out FLOSS/SE out of context the FLOSS and SE
area.

11. Screen title and abstract. Two reviewers in parallel. Remove by exclusion criteria.

B.2 | CONTENT ANALYSIS - MULTIVOCAL LITERATURE REVIEW

93

12. Full-text read to select primary studies.

Selection process

We based on guidelines provided by Higgins and Green (2008).

1. Use (at least) two people working independently to determine whether each study
meets the eligibility criteria.

2. One person screening titles and abstracts to remove irrelevant reports. Cochrane
states that this step should be done in duplicate by two people working independently
but it is acceptable that this initial screening is undertaken by only one person.

3. Two people working independently are used to make a nal determination as to
whether each study considered possibly eligible after title / abstract screening meets
the eligibility criteria based on the full text of the study report(s).

4. It is important that at least one author is knowledgeable in the area under review, it
may be an advantage to have a second author who is not a content expert.

5. Disagreements about whether a study should be included can generally be resolved
by discussion.

6. A single failed eligibility criterion is sucient for a study to be excluded from a
review. In practice, therefore, eligibility criteria for each study should be assessed in
order of importance

7. Pilot test the eligibility criteria on a sample of reports.

8. The selection process must be documented in sucient detail to be able to complete
a ow diagram and a table of ‘Characteristics of excluded studies’

B.2 Content Analysis - Multivocal Literature
Review

B.2.1 Content Analysis
Quantitative analysis

1. Extract raw text content from every paper selected;

2. Using a script for Natural Language Processing, plot the Word Cloud resulted for
comparison and acquaintance;

3. Also take the word frequency, showing top words;

4. Finally, using the mind map resulted from Grey Literature review and the script
processing, pre-dene an initial group of core concepts.

Qualitative analysis

We based on a directed approach of content analysis (Hsieh and Shannon, 2005) for
coding.

94

APPENDIX B

1. Use the GLR mind map and SLR Word Cloud ndings as guidance for initial codes.

2. For each publication selected, derive coding categories from the text data. This step
includes counting and comparisons of GLR map keywords and statements of the
examining document, in addition to interpretate the subjacent context.

3. Verify the application (or not) of the concepts identied in the publication in each
GLR mind map branch.

95

Appendix C

Getting Involved in the Linux
Kernel Community

A distributed,large community of users and developers surrounds the Linux kernel
project. The community is a place where users and developers can report problems, obtain
code review and testing and expert advice. Besides, it is the gateway for changes to the
kernel code (Love, 2010).

To join any community, a newmember needs to assimilate the workow and some basic
rules of interaction. These information is available in the Linux kernel Documentation
(hps://www.kernel.org/doc/html/latest/process/howto.html), and in books, such as, the
Linux Kernel Development of Love (2010). Besides, a new member should know the
community norms to preserve a welcome environment. Members and new members
must respect each other and avoid negative behavior in the community, as mentioned in
hps://www.kernel.org/doc/html/latest/process/code-of-conduct.html. Moreover, due to
the software’s singularities, a newcomer should develop skills to correctly change a piece
of the system code.

C.1 Training Activities - Development Environment
Setup

C.1.1 Basic Setup - This Research Approach
Setup e-mail client: This step consists of installing and conguring an e-mail client

that allows the use of the terminal to send contributions managed by git version control
system. The researcher selected Neomutt1 as the client.

Join the IRC channel of the selected project:Here is the place for quick discussions
and questions/answers with other active developers. For the IIO subsystem, developers
meeting in #linux-iio on OFTC network.

1hps://neomu.org/

https://www.kernel.org/doc/html/latest/process/howto.html
https://www.kernel.org/doc/html/latest/process/code-of-conduct.html
https://neomutt.org/

96

APPENDIX C

Clone the kernel git repository: Because each subsystem maintainer has a commit
tree to accept works related to a particular subsystem, the contributor must keep the
selected subsystem maintainer tree up to date. The git trees to contribute have a dierent
location, and they are specied in the MAINTAINERS le: hps://www.kernel.org/doc/
linux/MAINTAINERS

Install a virtual machine for development: it prevents that, by some carelessness,
the contributor damages its operating system. This care is necessary because by modifying
and compiling a Linux image, the developer can replace the image of his/her system and
insert a critical bug.

Learning how to modify, compile, and install a Linux kernel image: consists
of a series of commands and settings that need to be executed or updated to perform the
proposed work. I used the Kworkow tool, a set of scripts to automate commands executed
in the daily development activities: hps://github.com/kworkflow

C.1.2 Understanding the process of sending contribution
Learn the Linux kernel development process: The Linux kernel development

process is well-described in the project documentation at hps://www.kernel.org/doc/
html/latest/process/2.Process.html

Learn the code style rules: The project has code standardization rules described at
hps://www.kernel.org/doc/html/latest/process/coding-style.html. The community also
developed tools to verify compliance with these rules.

Execute tutorials to introduce newcomers to the contribution ow: The
Kernel Newbies website provides tutorials to foster newcomers’ participation in the
Linux kernel community. These tutorials could be found at hps://kernelnewbies.org/
FirstKernelPatch

C.2 Getting involved in the IIO subsystem

Code clean-up: Find the le of a drive. Run code check tools like checkpatch.pl or
Coccinelle. These tools reveal easy-level issues and guide a newcomer to correct the code
follow the code style rules.

Exploring staging drivers: Drivers in the staging tree are in the main Linux kernel
source tree, but, for technical reasons, it was still not merged into the main portion of the
Linux kernel tree2 Therefore, developers can improve these drivers beyond code style. To
develop substantial improvements, a developer should search for the driver documentation.
An example is a Datasheet of the IIO-driver AD7150 from Analog Devices: hps://www.
analog.com/media/en/technical-documentation/data-sheets/AD7150.pdf

Contributions sent to the Industrial I / O subsystem

2https://lwn.net/Articles/324279/

https://www.kernel.org/doc/linux/MAINTAINERS
https://www.kernel.org/doc/linux/MAINTAINERS
https://github.com/kworkflow
https://www.kernel.org/doc/html/latest/process/2.Process.html
https://www.kernel.org/doc/html/latest/process/2.Process.html
https://www.kernel.org/doc/html/latest/process/coding-style.html
https://kernelnewbies.org/FirstKernelPatch
https://kernelnewbies.org/FirstKernelPatch
https://www.analog.com/media/en/technical-documentation/data-sheets/AD7150.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD7150.pdf

C.3 | ANATOMY AND CONTRIBUTION FLOW: THE CASE OF [PATCH] STAGING:IIO:AD7150: FIX THRESHOLD MODE CONFIG BIT

97

1st Version
Date Commit message Developer(s) Kind of change # Versions Status

Apr 2, 2019 staging: iio: frequency: ad9834:
Remove unnecessary parentheses Melissa Wen Code style 1 Merged

May 3, 2019 staging: iio: ad7150: organize
registers denition Melissa Wen Improve readabil-

ity 1 Declined

May 3, 2019 staging: iio: ad7150: use
FIELD_GET and GENMASK Melissa Wen Improve main-

tanability 2 Merged

May 3, 2019 staging: iio: ad7150: simplify i2c
SMBus return treatment Melissa Wen Reduce verbosity 2 Merged

May 3, 2019 staging: iio: ad7150: clean up of
comments Melissa Wen Improve readabil-

ity 2 Merged

May 18, 2019 staging: iio: cdc: ad7150: create
of_device_id array

Barbara
Fernandes,
Wilson Sales
Melissa Wen

Create missing
element 1 Merged

May 18, 2019 staging:iio:ad7150: x threshold
mode cong bit Melissa Wen Bug x 1 Merged

Jun 14, 2019 staging: iio: ad7150: use ternary
operating to ensure 0/1 value Melissa Wen

Remove idiom,
Make operation
consistent

1 Merged

Table C.1: List of contributions sent to IIO Linux subsystem

C.3 Anatomy and contribution ow: the case of
[PATCH] staging:iio:ad7150: x threshold mode
cong bit

Proposing a code change involves a series of interactions. Each patch submission
improves the acquaintance with processes, standards established, communication style
among members, and roles played by each in code review and merging process. The Linux
kernel documentation already presents a Howto for sending a code contribution3.

C.3.1 Sending a contribution by e-mail
In this section, we present a real-submission patch e-mail and point out recommenda-

tions from this research experience.

Header Information

In addition to submitting a contribution to the appropriate mailing list for the related
le, the recipient list must include the driver maintainers and others who may be interested
in reviewing the proposed changes.

Date: 18 de maio de 2019 22:04
From: M...
To: L...
Cc: linux-iio@vger.kernel.org, devel@driverdev.osuosl.org, linux-kernel@vger.kernel.org

Change Description

3hps://www.kernel.org/doc/html/latest/process/submiing-patches.html

https://www.kernel.org/doc/html/latest/process/submitting-patches.html

98

APPENDIX C

The commit message should also describe what is modied and the reasons for this
change and reference documents or tools that support the proposed change. In this case, the
developer cited the driver conguration description presented in the driver datasheet.

“According to the AD7150 conguration register description, bit 7 assumes
value 1 when the threshold mode is xed and 0 when it is adaptive,
however, the operation that identies this mode was considering the
opposite values.

This patch renames the boolean variable to describe it correctly and
properly replaces it in the places where it is used.”

Special Tags

For some cases, the developer must include tags already standardized. The list of tags
is presented at hps://www.kernel.org/doc/html/latest/process/submiing-patches.html#
when-to-use-acked-by-cc-and-co-developed-by and hps://www.kernel.org/doc/html/
latest/process/submiing-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes
Tags give the credits for contributors involved in the code change, beyond the author of
the patch.

Fixes: 531efd6aa0991 ("staging:iio:adc:ad7150: chan_spec conv + i2c_smbus commands +
drop unused powero timeout control.")

Commit Author(s) Signed-o-by: Melissa Wen <..@..>

Commit Di —
drivers/staging/iio/cdc/ad7150.c | 19 +++++++++++——–
1 le changed, 11 insertions(+), 8 deletions(-)

di –git a/drivers/staging/iio/cdc/ad7150.c b/drivers/staging/iio/cdc/ad7150.c
index dd7fcab8e19e..e075244c602b 100644
— a/drivers/staging/iio/cdc/ad7150.c
+++ b/drivers/staging/iio/cdc/ad7150.c
@@ -5,6 +5,7 @@
* Copyright 2010-2011 Analog Devices Inc.
*/

+#include <linux/biteld.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/kernel.h>
@@ -130,7 +131,7 @@ static int ad7150_read_event_cong(struct iio_dev *indio_dev,
{
int ret;
u8 threshtype;

https://www.kernel.org/doc/html/latest/process/submitting-patches.html#when-to-use-acked-by-cc-and-co-developed-by
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#when-to-use-acked-by-cc-and-co-developed-by
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes

C.3 | ANATOMY AND CONTRIBUTION FLOW: THE CASE OF [PATCH] STAGING:IIO:AD7150: FIX THRESHOLD MODE CONFIG BIT

99

- bool adaptive;
+ bool thrxed;
struct ad7150_chip_info *chip = iio_priv(indio_dev);

ret = i2c_smbus_read_byte_data(chip->client, AD7150_CFG);
@@ -138,21 +139,23 @@ static int ad7150_read_event_cong(struct iio_dev *indio_dev,
return ret;

threshtype = (ret >> 5) & 0x03;
- adaptive = !!(ret & 0x80);
+
+ /*check if threshold mode is xed or adaptive*/
+ thrxed = FIELD_GET(AD7150_CFG_FIX, ret);

switch (type) {
case IIO_EV_TYPE_MAG_ADAPTIVE:
if (dir == IIO_EV_DIR_RISING)
- return adaptive && (threshtype == 0x1);
- return adaptive && (threshtype == 0x0);
+ return !thrxed && (threshtype == 0x1);
+ return !thrxed && (threshtype == 0x0);
case IIO_EV_TYPE_THRESH_ADAPTIVE:
if (dir == IIO_EV_DIR_RISING)
- return adaptive && (threshtype == 0x3);
- return adaptive && (threshtype == 0x2);
+ return !thrxed && (threshtype == 0x3);
+ return !thrxed && (threshtype == 0x2);
case IIO_EV_TYPE_THRESH:
if (dir == IIO_EV_DIR_RISING)
- return !adaptive && (threshtype == 0x1);
- return !adaptive && (threshtype == 0x0);
+ return thrxed && (threshtype == 0x1);
+ return thrxed && (threshtype == 0x0);
default:
break;
}
–
2.20.1

C.3.2 Receiving feedback on mailing-list

From maintainer

Header Information

Date: 19 de maio de 2019 07:29

100

APPENDIX C

From: J...
To: M...
Cc: ..., linux-iio@vger.kernel.org, devel@driverdev.osuosl.org, linux-kernel@vger.kernel.org,
kernel-usp@googlegroups.com

Comments inline On Sat, 18 May 2019 22:04:56 -0300
Melissa Wen [...] wrote:
> According to the AD7150 conguration register description, bit 7 assumes
> value 1 when the threshold mode is xed and 0 when it is adaptive,
> however, the operation that identies this mode was considering the
> opposite values.
>

> This patch renames the boolean variable to describe it correctly and
> properly replaces it in the places where it is used.
>

> Fixes: 531efd6aa0991 ("staging:iio:adc:ad7150: chan_spec conv + i2c_smbus commands +
drop unused powero timeout control.")
> Signed-o-by: Melissa Wen <..@..>

Looks good to me. Applied to the xes-togreg branch of iio.git pushed out as
as testing-xes for the autobuilders to see if they can nd anything
we have missed.

Thanks,

Jonathan

From an employee of the related device driver company

Header Information Date: 20 de maio de 2019 06:59
From: A...
To: J...
Cc: ..., linux-iio@vger.kernel.org, devel@driverdev.osuosl.org, LKML <linux-
kernel@vger.kernel.org>, kernel-usp@googlegroups.com, ...

Comments inline On Sun, May 19, 2019 at 8:38 PM [...] wrote:
>

> On Sat, 18 May 2019 22:04:56 -0300
> Melissa Wen <..@..> wrote:

...

> > threshtype = (ret >> 5) & 0x03;
> > - adaptive = !!(ret & 0x80);

C.3 | ANATOMY AND CONTRIBUTION FLOW: THE CASE OF [PATCH] STAGING:IIO:AD7150: FIX THRESHOLD MODE CONFIG BIT

101

> > +
> > + /*check if threshold mode is xed or adaptive*/
> > + thrxed = FIELD_GET(AD7150_CFG_FIX, ret);

nitpick: i would have kept the original variable name as "adaptive",
mostly for consistency.
"adaptive" is used in other places as well;

as i recall, the x is just oneliner in this case:

- adaptive = !!(ret & 0x80);
+ adaptive = !(ret & 0x80);

C.3.3 Receiving notication of merge
This section present the e-mails received after the patch acceptance that suggest the

patch path from the subsystem maintainer tree to other Linux kernel trees related to
staging drivers.

From Linux maintree maintainer

Date: 17 de junho de 2019 17:32
From: gregkh@...
To: m...

This is a note to let you know that I’ve just added the patch titled

staging:iio:ad7150: x threshold mode cong bit

to my staging git tree which can be found at
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging.git
in the staging-linus branch.

The patch will show up in the next release of the linux-next tree
(usually sometime within the next 24 hours during the week.)

The patch will hopefully also be merged in Linus’s tree for the
next -rc kernel release.

If you have any questions about this process, please let me know.

From df4d737ee4d7205aaa6275158aeeb87fd14488 Mon Sep 17 00:00:00 2001
From: Melissa Wen <..@..>
Date: Sat, 18 May 2019 22:04:56 -0300

102

APPENDIX C

Subject: staging:iio:ad7150: x threshold mode cong bit

According to the AD7150 conguration register description, bit 7 assumes
value 1 when the threshold mode is xed and 0 when it is adaptive,
however, the operation that identies this mode was considering the
opposite values.

This patch renames the boolean variable to describe it correctly and
properly replaces it in the places where it is used.

Fixes: 531efd6aa0991 ("staging:iio:adc:ad7150: chan_spec conv + i2c_smbus commands +
drop unused powero timeout control.")
Signed-o-by: Melissa Wen <..@..>
Signed-o-by: Jonathan Cameron <..@..>
—
drivers/staging/iio/cdc/ad7150.c | 19 +++++++++++——–
1 le changed, 11 insertions(+), 8 deletions(-)

From Linux version maintainer

From: S[..]
Para: linux-kernel@vger.kernel.org, stable@vger.kernel.org
Cc: M..
From: Melissa Wen <..@..>

[Upstream commit df4d737ee4d7205aaa6275158aeeb87fd14488]

According to the AD7150 conguration register description, bit 7 assumes
value 1 when the threshold mode is xed and 0 when it is adaptive,
however, the operation that identies this mode was considering the
opposite values.

This patch renames the boolean variable to describe it correctly and
properly replaces it in the places where it is used.

Fixes: 531efd6aa0991 ("staging:iio:adc:ad7150: chan_spec conv + i2c_smbus commands +
drop unused powero timeout control.")
Signed-o-by: Melissa Wen <..@..>
Signed-o-by: Jonathan Cameron <..@..>
Signed-o-by: Sasha Levin <..@..>
—
drivers/staging/iio/cdc/ad7150.c | 19 +++++++++++——–
1 le changed, 11 insertions(+), 8 deletions(-)

103

Appendix D

Path into Linux kernel
Community

D.1 Changing to Another Subsystem - Development
Environment Setup

My rst barrier to become a member of the DRI community was setting up the devel-
opment environment1 and nd how to contribute considering my lack of understanding
of the subsystem functions and the necessary abstractions of graphic concepts.

I started to get involved in the community by exploring the subsystems drives and
sending small contributions2. As I had already contributed to improving code style and
cleanup checkpatch warnings, I chose a bug-x issue to work on. I tried to reproduce the
reported bug and looked for community guidance, but I was not successful3. In this rst
experience, I realized that neither maintainers nor active developers know everything on a
subsystem. Consequently, considering my initial limitations, I went back to work on code
style issues to keep engaged and nd some mentorship.

D.1.1 Role: Google Summer Of Code Applicant
In a subsequent step of participant-observation, I decided to apply to the X.Org Foun-

dation project on Google Summer of Code Program4. The application step consists of
proposing a project based on the list of ideas suggested by community mentors of X.Org
Foundation. In this program, mentors are active community developers that volunteer
to guide new developers to accomplish their project goals. Graphic developers usually
need hardware display capability to develop features and improvements. For this reason, I
opted to work on VKMS5, a software-only model KMS driver developed to run and test
DRM and X in a headless machine.

1hps://melissawen.github.io/blog/2020/01/08/hello-drm
2hps://melissawen.github.io/blog/2020/03/04/first-patch-drm
3hps://www.spinics.net/lists/dri-devel/msg248102.html
4hps://summerofcode.withgoogle.com/
5hps://dri.freedesktop.org/docs/drm/gpu/vkms.html

https://melissawen.github.io/blog/2020/01/08/hello-drm
https://melissawen.github.io/blog/2020/03/04/first-patch-drm
https://www.spinics.net/lists/dri-devel/msg248102.html
https://summerofcode.withgoogle.com/
https://dri.freedesktop.org/docs/drm/gpu/vkms.html

104

APPENDIX D

To gure out how to x a bug on VKMS, I used a test suite originally developed by Intel,
the IGT GPU Tools6. By checking how to x a test case failure, I obtained an overview of
the test coverage. I mapped the results of each test case and realized that the driver was
presenting an unexpected behavior that cross-cut testing7. Therefore, I design a GSoC
project to improve VKMS using IGT GPU Tools.

In one of my attempts to x a bug on the VKMS driver, my patch received a review
criticizing the proposed solution8. The reviewer proposed a better code to solve the issue,
but I considered themessage was rude and discouraging9. Initially, I thought the personwas
a DRI community member. However, after one year in the community, I can say this person
is completely out of the usual Linux DRI more active developer. Maybe this developer
came from another subsystem because I copied the Linux kernel mailing list.

Contributions sent to DRM subsystem for GSoC application

1st Version
Date Commit message Developer(s) Kind of change # Versions Status

Feb. 26, 2020
drm/amd/display: dc_link: code
clean up on enable_link_dp
function

Melissa Wen Code style 2 Merged

Feb. 26, 2020 drm/amd/display: dc_link: code
clean up on detect_dp function Melissa Wen Code style 2 Merged

Mar. 2, 2020 drm/amd/display: dcn20: remove
an unused function Melissa Wen Improve main-

tanability 1 Merged

Mar. 21, 2020 drm/vkms: use biteld op to get
xrgb on compute crc Melissa Wen Bug-x 1 Declined

March 21,
2020

drm/vkms: enable cursor by
default Melissa Wen Improve usabil-

ity 2 Merged

March 31,
2020

drm/amd/display:
cleanup codestyle type
BLOCK_COMMENT_STYLE
on dc_link

Melissa Wen Code style 2 Merged

March 31,
2020

drm/amd/display: codestyle
cleanup on dc_link le until
detect_dp func

Melissa Wen Code style 2 Merged

March 31,
2020

drm/amd/display: code cleanup
on dc_link from is_same_edid to
get_ddc_line

Melissa Wen Code style 2 Merged

March 31,
2020

drm/amd/display: code
cleanup of dc_link le on func
dc_link_construct

Melissa Wen Code style 2 Merged

Table D.1: Contributions sent to DRM subsystem for GSoC application

D.1.2 Role: GSoC Intern

My project was the unique X.Org Foundation project accepted10 in 2020 GSoC. This
participation was hands-on, with technical issues and community engagement experience.
I reported the steps in the learning curve and project acquaintance in 12 blog posts:

6hps://gitlab.freedesktop.org/drm/igt-gpu-tools
7hps://melissawen.github.io/blog/2020/03/23/a-tangle-issues
8hps://www.spinics.net/lists/kernel/msg3450967.html
9hps://melissawen.github.io/blog/2020/03/23/good-bad
10hps://summerofcode.withgoogle.com/archive/2020/projects/6046648674811904/

https://gitlab.freedesktop.org/drm/igt-gpu-tools
https://melissawen.github.io/blog/2020/03/23/a-tangle-issues
https://www.spinics.net/lists/kernel/msg3450967.html
https://melissawen.github.io/blog/2020/03/23/good-bad
https://summerofcode.withgoogle.com/archive/2020/projects/6046648674811904/

D.1 | CHANGING TO ANOTHER SUBSYSTEM - DEVELOPMENT ENVIRONMENT SETUP

105

Date Title Link
2020/05/13 I’m in - GSoC 2020 - X.Org Foundation hps://melissawen.github.io/blog/2020/05/13/im-in-gsoc
2020/05/20 Everyone makes a script hps://melissawen.github.io/blog/2020/05/20/community-bounding
2020/06/02 Status update - Tie up loose ends before starting hps://melissawen.github.io/blog/2020/06/02/status-update
2020/06/03 Walking in the KMS CURSOR CRC test hps://melissawen.github.io/blog/2020/06/03/overview_kms_cursor_crc
2020/06/15 Status update - connected errors hps://melissawen.github.io/blog/2020/06/15/status-update
2020/07/06 GSoC First Phase - Achievements hps://melissawen.github.io/blog/2020/07/06/first-round
2020/07/17 Increasing test coverage in VKMS - max square cursor size hps://melissawen.github.io/blog/2020/07/17/add-max-cursor-size.html
2020/08/12 The end of an endless debugging of an endless wait hps://melissawen.github.io/blog/2020/08/12/end_of_endless.html
2020/08/19 If a warning remains, the job is not nished. hps://melissawen.github.io/blog/2020/08/19/let-vkms-blend-it.html
2020/08/27 Another day, another mistery hps://melissawen.github.io/blog/2020/08/27/writeback-is-back
2020/08/28 Better validation of alpha-blending hps://melissawen.github.io/blog/2020/08/28/translucent-cursor-testcase
2020/08/31 GSoC Final Report hps://melissawen.github.io/blog/2020/08/31/gsoc-final-report

Table D.2: blog_posts

The experience of blogging and sharing the content in the Freedesktop11 and Debian12
Planet brought me even closer to the community. I received positive feedback on #dri-devel
channel (IRC), and it was a way to get known to other developers of the community that
works for dierent worldwide companies. However, I did not share every thought there
because I worried with the audience. During the project, an outsider started to work on
the same things that I had scheduled for my project. Initially, I decided to share knowledge
in a discussion between this newcomer and a subsystem maintainer. We started a thought-
building process, looking for the proper solution. However, at some point, I felt the person
stole my proposed solution when I suddenly saw that solution in a patch with no mention
of my authorship or co-development. After sharing this episode with others, I realized
that sometimes two people do not know they are working on the same solution, and it is
acceptable. However, it is not uncommon for someone to “ steal ” a patch in development
by another. Respecting the work of others is a good community practice. A developer
can use tags to grant credits when more than one works on a solution. The Linux kernel
documentation describes the standards tags13.

Contributions for VKMS driver / DRM subsystem

1st Version
Date Commit message Developer(s) Kind of change # Versions Status

July 10, 2020 drm/vkms: change the max cursor
width/height Melissa Wen Increase test

coverage 1 Merged

July 14, 2020 drm/vkms: add wait_for_vblanks
in atomic_commit_tail Melissa Wen Fix operational

behavior 1 Declined

July 22, 2020
drm/vkms: add missing
drm_crtc_vblank_put to the
get/put pair on ush

Melissa Wen Fix operational
behavior 1 Declined

July 30, 2020 drm/vkms: x xrgb on compute
crc Melissa Wen Bug-x 1 Merged

Aug. 1, 2020 drm/vkms: guarantee vblank
when capturing crc Melissa Wen Fix operating

behavior 3 Merged

Aug. 19, 2020 drm/vkms: add alpha-
premultiplied color blending Melissa Wen Add new feature 2 Merged

Table D.3: Contributions sent to DRM subsystem during GSoC project

11hps://planet.freedesktop.org/
12hps://planet.debian.org/
13hps://www.kernel.org/doc/html/latest/process/submiing-patches.html#

when-to-use-acked-by-cc-and-co-developed-by

https://melissawen.github.io/blog/2020/05/13/im-in-gsoc
https://melissawen.github.io/blog/2020/05/20/community-bounding
https://melissawen.github.io/blog/2020/06/02/status-update
https://melissawen.github.io/blog/2020/06/03/overview_kms_cursor_crc
https://melissawen.github.io/blog/2020/06/15/status-update
https://melissawen.github.io/blog/2020/07/06/first-round
https://melissawen.github.io/blog/2020/07/17/add-max-cursor-size.html
https://melissawen.github.io/blog/2020/08/12/end_of_endless.html
https://melissawen.github.io/blog/2020/08/19/let-vkms-blend-it.html
https://melissawen.github.io/blog/2020/08/27/writeback-is-back
https://melissawen.github.io/blog/2020/08/28/translucent-cursor-testcase
https://melissawen.github.io/blog/2020/08/31/gsoc-final-report
https://planet.freedesktop.org/
https://planet.debian.org/
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#when-to-use-acked-by-cc-and-co-developed-by
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#when-to-use-acked-by-cc-and-co-developed-by

106

APPENDIX D

Contributions for IGT GPU tools

1st Version
Date Commit message Developer(s) Kind of change # Versions Status

June 25, 2020 test/kms_cursor_crc: release old
pipe_crc before create a new one Melissa Wen Bug-x 2 Merged

June 25, 2020 lib/igt_fb: change comments with
fd description Melissa Wen Improve Main-

tainability 2 Merged

June 25, 2020
test/kms_cursor_crc: update
subtests descriptions and some
comments

Melissa Wen Documentation 2 Merged

July 6, 2020 lib/igt_fb: remove extra parame-
ters from igt_put_cairo_ctx Melissa Wen Improve Main-

tainability 1 Merged

Aug. 26, 2020 tests/kms_cursor_crc: refactoring
cursor-alpha subtests Melissa Wen New feature 2 Any

Table D.4: Contributions sent to IGT GPU Tools project during GSoC

D.1.3 Role: Independent Linux kernel developer

The Linux DRM subsystem has a very active community on IRC. Comparing with the
IIO subsystem, the DRI community is larger. While the #dri-devel channel never stops to
receive messages, no single message arrives in #linux-iio. Graphic developers use the IRC
to ask for technical advice, patch review or acks, synchronize maintainership work, and
discuss the use of tools and processor to share knowledge.

Last Version
Date Commit message Developer(s)

Jan. 21, 2021 drm/vkms: Annotate vblank timer Daniel Vetter

Jan. 01, 2021 drm/vkms: Decouple cong data
for congfs

Sumera Priyadarsini and
Daniel Vetter

Oct. 13, 2020 drm/vkms: Switch to shmem
helpers Daniel Vetter

Oct. 09, 2020 drm/vkms: fbdev emulation
support Daniel Vetter

Oct. 06, 2020 drm/vkms: update todo Melissa Wen

Sep. 27, 2020 drm/vgem: validate vgem_device
before exit operations Melissa Wen

Sep. 23, 2020 drm/vkms: Introduce GEM object
functions Thomas Zimmermann

Sep. 23, 2020 drm/vgem: Introduce GEM object
functions Thomas Zimmermann

Aug. 30, 2020 drm/vkms: Introduces writeback
support Rodrigo Siqueira

Aug. 27, 2020 drm/vkms: avoid warning in
vkms_get_vblank_timestamp Sidong Yang

Table D.5: Contributions to DRM - Coding, Reviewing and Testing

D.1 | CHANGING TO ANOTHER SUBSYSTEM - DEVELOPMENT ENVIRONMENT SETUP

107

D.1.4 Role: VKMS Driver maintainer
Graphic maintainers on the DRM subsystem should follow a workow to apply patches

in the subsystem repository. “The tools and workows for maintaining and contributing to
the Linux kernel DRM subsystem’s drm-misc and drm-intel repositories are documented and
available publicly on hps://drm.pages.freedesktop.org/maintainer-tools/index.html Any
DRM community member, even more, maintainer should follow the freedesktop.org and
kernel.org Code of Conduct.

“Abuse of commit rights, like engaging in commit ghts or willfully pushing patches that
violate the documented merge criteria or process, will also be handled through the Code of
Conduct enforcement process. Violations may lead to temporary or permanent account or
commit rights suspension according to freedesktop.org umbrella rules.” Also, driver main-
tainers should be attentive to the mailing-list and inbox to catch contributions, questions,
and code changes that aect the related driver.

D.1.5 Role: Co-mentor for Internship program
In this cycle, I co-mentored an intern in the Linux kernel community for the Outreachy

Program. “Outreachy provides remote internships. Outreachy internships are open to appli-
cants around the world. Interns work remotely. Interns are not required to move. Interns work
with experienced mentors from open source communities. Outreachy internship projects may
include programming, user experience, documentation, illustration, graphical design, data
science, project marketing, user advocacy, or community event planning. Outreachy’s goal is
to increase diversity in open source.”14

The program has two phases: the application period and the internship period. Pre-
selected applicants start to contribute to the community theywant to work in the internship
in the application period. “Prospective interns (applicants) work with mentors to complete
small contributions to the project during the six-week application period.” If selected, interns
work for three months to develop the internship project. Besides the internship project
development, interns should participate in biweekly chats and write posts in a blog sharing
their program experience. The program timeline details the tasks15.

As a mentor, I also have responsibilities and time commitment in both phases16. The
application phase gave me some interesting insights on newcomers.

1. For the Linux kernel project, applicants should start to set up the development
environment and get familiar with the submitting patch steps before the application
period starts. Applicants who started to gure out how to contribute to the Linux
kernel community only when in the application period seemed to face barriers
hard to overcome in the timebox of six-week. For the project that I mentored, three
expressed interest, one gave up without any submission, one did not have enough
time to build the project schedule, and only one was accepted.

2. The community members start to observe negative behavior even in the application

14hps://www.outreachy.org/
15hps://www.outreachy.org/docs/internship/
16hps://www.outreachy.org/mentor/#mentor

https://drm.pages.freedesktop.org/maintainer-tools/index.html
https://www.outreachy.org/
https://www.outreachy.org/docs/internship/
https://www.outreachy.org/mentor/#mentor

108

APPENDIX D

phase. As the intern will work together with the community, good social skills
and respecting others’ work make a dierence to be or not selected. I experienced
some occurrence of “social faults”, I saw the community coordinator’s reaction
and captured the opinion of other community members regarding the episode. For
some long-term developers, certain behaviors show disengagement from the project,
which conicts with mentoring motivation.

3. The kernel community advises applicants to add a prex on patches related to the
Outreachy program. Therefore, community members can identify the contributions
of newcomers from this program. It may help to avoid rude comments and do not
happens in the Google Summer of Code program.

4. In this phase, we try to evaluate the ability to design a good project, engagement,
self-commitment, and communication in more than technical skills.

The benets of mentoring an intern are twofold: recruitment of new developers to
the community and updating and strengthening subsystem knowledge. This experience
exposes that even long-term experienced developers and maintainers do not know ev-
erything under their maintainership. Also, the Linux kernel solutions are collaborative
work that requires developers with dierent expertise and backgrounds. Maintainers have
responsibilities as a team leader: clerical tasks, development and people management,
reviewing contributions, and connecting people.

109

References

[P. Adams and Capiluppi 2009] Paul Adams and Andrea Capiluppi. “Bridging the gap
between agile and free software approaches: the impact of sprinting”. In: Inter-
national Journal of Open Source Software and Processes (IJOSSP) 1 (Jan. 2009),
pp. 58–71 (cit. on p. 15).

[Almeida Biolchini et al. 2007] Jorge Calmon de Almeida Biolchini, Paula Gomes
Mian, Ana Candida Cruz Natali, Tayana Uchôa Conte, and Guilherme Horta
Travassos. “Scientic research ontology to support systematic review in software
engineering”. In: Advanced Engineering Informatics 21.2 (2007). Ontology of Sys-
tems and Software Engineering; Techniques to Support Collaborative Engineering
Environments, pp. 133–151 (cit. on pp. 21, 29, 58).

[R. J. Adams et al. 2017] R. J. Adams, P. Smart, and A. S. Huff. “Shades of grey: guide-
lines for working with the grey literature in systematic reviews for management
and organizational studies”. In: International Journal of Management Reviews 19.4
(2017) (cit. on pp. 32, 36).

[Avelino et al. 2018] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco
Tulio Valente. “Measuring and analyzing code authorship in 1 + 118 open source
projects”. In: vol. 176. 2018 (cit. on pp. 61, 65, 67, 68, 75–77).

[Aniche et al. 2019] Mauricio Aniche, Joseph W. Yoder, and Fabio Kon. “Current
challenges in practical object-oriented software design”. In: Proceedings of the 41st
International Conference on Software Engineering: New Ideas and Emerging Results.
ICSE-NIER ’19. Montreal, Quebec, Canada: IEEE Press, 2019, pp. 113–116 (cit. on
p. 19).

[Bagherzadeh et al. 2018] Mojtaba Bagherzadeh et al. “Analyzing a decade of linux
system calls”. In: Proceedings of the 40th International Conference on Software Engi-
neering. ICSE ’18. Gothenburg, Sweden: Association for Computing Machinery,
2018 (cit. on pp. 61, 68).

[Bailey et al. 2007] J.Bailey et al. “Evidence relating to object-oriented software design:
a survey”. In: First International Symposium on Empirical Software Engineering and
Measurement. 2007 (cit. on pp. 22, 82).

110

REFERENCES

[Barr et al. 2012] Earl T. Barr et al. “Cohesive and isolated development with
branches”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Articial Intelligence and Lecture Notes in Bioinformatics). Vol. 7212 LNCS. 2012,
pp. 316–331 (cit. on p. 61).

[Budgen and Brereton 2006] David Budgen and Pearl Brereton. “Performing sys-
tematic literature reviews in software engineering”. In: Proceedings of the 28th
International Conference on Software Engineering. ICSE ’06. Shanghai, China: ACM,
2006, pp. 1051–1052. isbn: 1-59593-375-1 (cit. on p. 21).

[Beck et al. 2010] Kent Beck, M Beedle, A Bennekum, et al. “Manifesto for agile soft-
ware development. agile alliance (2001)”. In: Retrieved June 14 (2010) (cit. on
p. 15).

[Bovet and Cesati 2005] Daniel P Bovet and Marco Cesati. Understanding the Linux
Kernel: from I/O ports to process management. " O’Reilly Media, Inc.", 2005 (cit. on
p. 15).

[Berger et al. 2014] Thorsten Berger et al. “Variability mechanisms in software ecosys-
tems”. In: Information and Software Technology 56.11 (2014), pp. 1520–1535 (cit. on
p. 61).

[Bettenburg et al. 2015] Nicolas Bettenburg, Ahmed E. Hassan, Bram Adams, and
Daniel M. German. “Management of community contributions: a case study on
the android and linux software ecosystems”. In: Empirical Software Engineering
20.1 (Feb. 2015), pp. 252–289 (cit. on pp. 61, 67, 68, 76).

[Brodkin 2013] Jon Brodkin. Linus Torvalds defends his right to shame Linux kernel
developers. July 2013. url: hps://arstechnica.com/information-technology/2013/
07/linus-torvalds-defends-his-right-to-shame-linux-kernel-developers/ (visited
on 04/19/2021) (cit. on p. 52).

[Capiluppi and Izqierdo-Cortázar 2013] Andrea Capiluppi and Daniel Izqierdo-
Cortázar. “Eort estimation of FLOSS projects: a study of the linux kernel”. In:
Empirical Software Engineering 18 (2013), pp. 60–88 (cit. on pp. 61, 66, 77).

[Corbet and Kroah-Hartman 2017] Jonathan Corbet and Greg Kroah-Hartman.
Linux Kernel Development Report - 2017. Apr. 2017. url: hps : / / www .
linuxfoundation.org/wp-content/uploads/linux-kernel-report-2017.pdf (visited
on 04/19/2021) (cit. on pp. 49, 54).

[Clark 2016] Libby Clark. Linus Torvalds Reects on 25 Years of Linux. Aug. 2016. url:
hps://www.linux.com/news/linus-torvalds-reflects-25-years-linux/ (visited on
04/19/2021) (cit. on p. 52).

[Capiluppi, Lago, et al. 2003] Andrea Capiluppi, Patricia Lago, and MaurizioMorisio.
“Characteristics of open source projects”. In: Software Maintenance and Reengineer-

https://arstechnica.com/information-technology/2013/07/linus-torvalds-defends-his-right-to-shame-linux-kernel-developers/
https://arstechnica.com/information-technology/2013/07/linus-torvalds-defends-his-right-to-shame-linux-kernel-developers/
https://www.linuxfoundation.org/wp-content/uploads/linux-kernel-report-2017.pdf
https://www.linuxfoundation.org/wp-content/uploads/linux-kernel-report-2017.pdf
https://www.linux.com/news/linus-torvalds-reflects-25-years-linux/

REFERENCES

111

ing, 2003. Proceedings. Seventh European Conference on. IEEE. 2003, pp. 317–327
(cit. on pp. 14, 15).

[Cohen 2018] Noam Cohen. After Years of Abusive E-mails, the Creator of Linux Steps
Aside. Sept. 2018. url: hps://www.newyorker.com/science/elements/aer-years-
of-abusive-e-mails- the-creator-of- linux-steps-aside (visited on 04/19/2021)
(cit. on p. 53).

[Community 2017] KernelNewbies: Community. Scheduler. Dec. 2017. url: hps://
kernelnewbies.org/Documentation/Subsystems (visited on 04/19/2021) (cit. on
p. 17).

[Corbet 2008] Jonathan Corbet. How to Participate in the Linux Community: A Guide
To The Kernel Development Process. Aug. 2008. url: hp://www.static.linuxfound.
org/sites/lfcorp/files/How-Participate-Linux-Community_0.pdf (visited on
04/19/2021) (cit. on pp. 17, 39).

[Corbet 2010] Jonathan Corbet. On the scalability of Linus. July 2010. url: hps :
//lwn.net/Articles/393694/ (visited on 04/19/2021) (cit. on p. 53).

[Corbet 2014] Jonathan Corbet.What makes Linus happy (or not) ? Aug. 2014. url:
hps://lwn.net/Articles/608950/ (visited on 04/19/2021) (cit. on p. 47).

[Corbet 2016a] Jonathan Corbet. 25 Years of Linux — so far. Aug. 2016. url: hps:
//lwn.net/Articles/698042/ (visited on 04/19/2021) (cit. on pp. 45, 49, 77).

[Corbet 2016b] Jonathan Corbet. A slow path to a fast x. Mar. 2016. url: hps :
//lwn.net/Articles/681062/ (visited on 04/19/2021) (cit. on p. 52).

[Corbet 2016c] Jonathan Corbet. Group maintainership models. Nov. 2016. url: hps:
//lwn.net/Articles/705228/ (visited on 04/19/2021) (cit. on p. 48).

[Corbet 2016d] Jonathan Corbet. How 4.4’s patches got to the mainline. Jan. 2016. url:
hps://lwn.net/Articles/670209/ (visited on 04/19/2021) (cit. on p. 49).

[Corbet 2016e] Jonathan Corbet. On Linux kernel maintainer scalability. Oct. 2016.
url: hps://lwn.net/Articles/703005/ (visited on 04/19/2021) (cit. on p. 76).

[Corbet 2017a] Jonathan Corbet. Patch ow into the mainline for 4.14. Oct. 2017. url:
hps://lwn.net/Articles/737093/ (visited on 04/19/2021) (cit. on pp. 45, 49, 73).

[Corbet 2017b] Jonathan Corbet. The state of Linus. Nov. 2017. url: hps://lwn.net/
Articles/738230/ (visited on 04/19/2021) (cit. on pp. 48, 51).

[Corbet 2018a] Jonathan Corbet. Code, conict, and conduct. Sept. 2018. url: hps:
//lwn.net/Articles/765108/ (visited on 04/19/2021) (cit. on p. 53).

[Corbet 2018b] Jonathan Corbet. The code of conduct at the Maintainers Summit. Oct.
2018. url: hps://lwn.net/Articles/769117/ (visited on 04/19/2021) (cit. on p. 52).

https://www.newyorker.com/science/elements/after-years-of-abusive-e-mails-the-creator-of-linux-steps-aside
https://www.newyorker.com/science/elements/after-years-of-abusive-e-mails-the-creator-of-linux-steps-aside
https://kernelnewbies.org/Documentation/Subsystems
https://kernelnewbies.org/Documentation/Subsystems
http://www.static.linuxfound.org/sites/lfcorp/files/How-Participate-Linux-Community_0.pdf
http://www.static.linuxfound.org/sites/lfcorp/files/How-Participate-Linux-Community_0.pdf
https://lwn.net/Articles/393694/
https://lwn.net/Articles/393694/
https://lwn.net/Articles/608950/
https://lwn.net/Articles/698042/
https://lwn.net/Articles/698042/
https://lwn.net/Articles/681062/
https://lwn.net/Articles/681062/
https://lwn.net/Articles/705228/
https://lwn.net/Articles/705228/
https://lwn.net/Articles/670209/
https://lwn.net/Articles/703005/
https://lwn.net/Articles/737093/
https://lwn.net/Articles/738230/
https://lwn.net/Articles/738230/
https://lwn.net/Articles/765108/
https://lwn.net/Articles/765108/
https://lwn.net/Articles/769117/

112

REFERENCES

[Corbet 2018c] Jonathan Corbet. Two perspectives on the maintainer relationship. Mar.
2018. url: hps://lwn.net/Articles/749676/ (visited on 04/19/2021) (cit. on p. 52).

[Crowston et al. 2012] KevinCrowston, KangningWei, JamesHowison, and Andrea
Wiggins. “Free/libre open-source software development”. In: ACM Computing
Surveys 44.2 (Feb. 2012), pp. 1–35 (cit. on pp. 2, 3, 5, 14, 24).

[DiBona and Ockman 1999] C. DiBona and S. Ockman. Open Sources: Voices from the
Open Source Revolution. O’Reilly Media, 1999 (cit. on p. 12).

[Documentation 2019] Kernel.org: Documentation. A guide to the Kernel Develop-
ment Process. July 2019. url: hps://www.kernel.org/doc/html/latest/process/
development-process.html (visited on 04/19/2021) (cit. on pp. 17, 39).

[Edge 2011] Jake Edge. LPC: Development model diversity. Sept. 2011. url: hps://lwn.
net/Articles/458094/ (visited on 04/19/2021) (cit. on p. 48).

[Edge 2016] Jake Edge. On moving on from being a maintainer. Jan. 2016. url: hps:
//lwn.net/Articles/670087/ (visited on 04/19/2021) (cit. on p. 47).

[Edmonds and Kennedy 2013] W. Alex Edmonds and Thomas D. Kennedy. An applied
guide to research designs : quantitative, qualitative, and mixed methods. 2013, p. 364.
isbn: 9781483317274 (cit. on pp. 24, 26).

[Eyolfson et al. 2014] Jon Eyolfson, Lin Tan, and Patrick Lam. “Correlations between
bugginess and time-based commit characteristics”. In: Empirical Software Engi-
neering 19 (2014), pp. 1009–1039 (cit. on pp. 61, 66, 77).

[Feitelson 2012] Dror G. Feitelson. “Perpetual development: a model of the linux
kernel life cycle”. In: Journal of Systems and Software 85 (2012), pp. 859–875 (cit. on
pp. 61, 73).

[Fitzgerald 2006] Brian Fitzgerald. “The transformation of open source software”.
In: MIS Quarterly 30.3 (2006), pp. 587–598. issn: 02767783 (cit. on pp. 2, 14).

[França et al. 2016] B. B. N. de França, H. Jeronimo Junior, and G. H. Travassos.
“Characterizing DevOps by hearing multiple voices”. In: Proceedings of the 30th
Brazilian Symposium on Software Engineering. SBES ’16. Maringa, Brazil: ACM,
2016, pp. 53–62 (cit. on pp. 22, 82).

[Fogel 2017] Karl Fogel. Producing Open Source Software: How to Run a Successful Free
Software Project. Second. O’Reilly Media, Jan. 2017 (cit. on pp. 3, 5, 13, 14).

[Forrest et al. 2012] Darren Forrest, Carlos Jensen, Nitin Mohan, and Jennifer
Davidson. “Exploring the role of outside organizations in free / open source
software projects”. In: IFIP Advances in Information and Communication Technol-
ogy. Vol. 378 AICT. Springer New York LLC, 2012, pp. 201–215 (cit. on pp. 61, 66,
67, 83).

https://lwn.net/Articles/749676/
https://www.kernel.org/doc/html/latest/process/development-process.html
https://www.kernel.org/doc/html/latest/process/development-process.html
https://lwn.net/Articles/458094/
https://lwn.net/Articles/458094/
https://lwn.net/Articles/670087/
https://lwn.net/Articles/670087/

REFERENCES

113

[Foster 2017] Dawn Foster. What the data says about how Linux kernel developers
collaborate. Oct. 2017. url: hps://opensource.com/article/17/10/collaboration-
linux-kernel (visited on 04/19/2021) (cit. on p. 48).

[F. S. Foundation 2007] Free Software Foundation. GNU General Public License. June
2007. url: hps://www.gnu.org/licenses/gpl.html (cit. on p. 11).

[T. L. Foundation 2010] The Linux Foundation. How To Learn Linux From the Devel-
opers of Linux. (For Free.) Jan. 2010. url: hps://www.linuxfoundation.org/wp-
content/uploads/linux-kernel-report-2017.pdf (visited on 04/19/2021) (cit. on
pp. 47, 73).

[F. S. Foundation 2017] Free Software Foundation. Overview of the GNU System. Apr.
2017. url: hps://www.gnu.org/gnu/gnu-history.html (cit. on p. 11).

[German et al. 2016] Daniel M. German, Bram Adams, and Ahmed E. Hassan. “Con-
tinuously mining distributed version control systems: an empirical study of how
linux uses git”. In: Empirical Software Engineering 21 (2016), pp. 260–299 (cit. on
pp. 61, 64, 65, 67).

[V. Garousi et al. 2016] V. Garousi, M. Felderer, and M. V. Mäntylä. “The need for
multivocal literature reviews in software engineering: complementing systematic
literature reviews with grey literature”. In: Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering. Limerick, Ireland,
2016 (cit. on pp. 22, 78).

[Vahid Garousi et al. 2018] Vahid Garousi, Michael Felderer, and Mika Mantyla.
“Guidelines for including grey literature and conducting multivocal literature
reviews in software engineering”. In: Information and Software Technology (Apr.
2018) (cit. on pp. 5, 21, 23, 29, 31).

[Godin et al. 2015] Katelyn Godin, Jackie Stapleton, Sharon I. Kirkpatrick, Rhona
M. Hanning, and Scott T. Leatherdale. “Applying systematic review search
methods to the grey literature: a case study examining guidelines for school-based
breakfast programs in canada”. In: Systematic Reviews 4 (Oct. 2015), p. 138. issn:
2046-4053 (cit. on pp. 23, 29).

[Higgins and Green 2008] Julian P. T. Higgins and Sally Terry Green. “Cochrane
handbook for systematic reviews of interventions”. In: 2008 (cit. on pp. 21, 23, 58,
59, 89, 93).

[Hsieh and Shannon 2005] Hsiu-Fang Hsieh and Sarah E. Shannon. “Three ap-
proaches to qualitative content analysis”. In: Qualitative Health Research 15.9
(2005) (cit. on pp. 26, 37, 62, 63, 93).

[Higgins and Thomas 2019] Julian P. T. Higgins and James Thomas, eds. Cochrane
handbook for systematic reviews of interventions. 2nd.Wiley-Blackwell, 2019 (cit. on
pp. 30, 32).

https://opensource.com/article/17/10/collaboration-linux-kernel
https://opensource.com/article/17/10/collaboration-linux-kernel
https://www.gnu.org/licenses/gpl.html
https://www.linuxfoundation.org/wp-content/uploads/linux-kernel-report-2017.pdf
https://www.linuxfoundation.org/wp-content/uploads/linux-kernel-report-2017.pdf
https://www.gnu.org/gnu/gnu-history.html

114

REFERENCES

[Izqierdo and Cabot 2018] Javier Luis Cánovas Izqierdo and Jordi Cabot. “The
role of foundations in open source projects”. In: Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Society. ICSE-SEIS
’18. Gothenburg, Sweden: Association for Computing Machinery, 2018, pp. 3–12
(cit. on pp. 61, 66).

[Israeli and Feitelson 2010] Ayelet Israeli and Dror G. Feitelson. “The linux kernel
as a case study in software evolution”. In: Journal of Systems and Software 83.3
(2010), pp. 485–501 (cit. on p. 61).

[Izqierdo-Cortazar et al. 2017] Daniel Izqierdo-Cortazar, Nelson Sekitoleko,
Jesus M. Gonzalez-Barahona, and Lars Kurth. “Using metrics to track code
review performance”. In: Proceedings of the 21st International Conference on Eval-
uation and Assessment in Software Engineering. EASE’17. Karlskrona, Sweden:
Association for Computing Machinery, 2017 (cit. on pp. 61, 66, 68, 73).

[Joblin et al. 2017] Mitchell Joblin, Sven Apel, and WolfgangMauerer. “Evolutionary
trends of developer coordination: a network approach”. In: Empirical Software
Engineering 22 (2017), pp. 2050–2094 (cit. on pp. 61, 65).

[Javdani Gandomani et al. 2013] Taghi Javdani Gandomani, Hazura Zulzalil, Ab-
dul azim abdul ghani, and Abu BakarMd Sultan. “A systematic literature review
on relationship between agile methods and open source software development
methodology”. In: International Review on Computers and Software 7 (Feb. 2013)
(cit. on p. 15).

[Jiang et al. 2014] Yujuan Jiang, Bram Adams, Foutse Khomh, and Daniel M. German.
“Tracing back the history of commits in low-tech reviewing environments: a
case study of the linux kernel”. In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. ESEM ’14. Torino,
Italy: Association for Computing Machinery, 2014 (cit. on pp. 61, 65, 68).

[Jones 2007] Tim Jones. Anatomia do Kernel Linux. July 2007. url: hps://www.ibm.
com/developerworks/br/library/l-linux-kernel/index.html (cit. on pp. 15, 16).

[Barbara Kitchenham and Brereton 2013] Barbara Kitchenham and Pearl Brere-
ton. “A systematic review of systematic review process research in software
engineering”. In: Inf. Softw. Technol. 55.12 (2013) (cit. on pp. 21, 22).

[B. Kitchenham and Charters 2007] B. Kitchenham and S Charters. Guidelines for
performing Systematic Literature Reviews in Software Engineering. 2007 (cit. on
p. 22).

[Barbara Kitchenham, Pearl Brereton, et al. 2009] Barbara Kitchenham, O. Pearl
Brereton, et al. “Systematic literature reviews in software engineering – a sys-
tematic literature review”. In: Inf. Softw. Technol. 51.1 (2009), pp. 7–15 (cit. on
pp. 21, 29, 58).

https://www.ibm.com/developerworks/br/library/l-linux-kernel/index.html
https://www.ibm.com/developerworks/br/library/l-linux-kernel/index.html

REFERENCES

115

[Kon et al. 2011] Fabio Kon et al. “Free and open source software development and re-
search: opportunities for software engineering.” In: SBES. IEEE Computer Society,
2011, pp. 82–91. isbn: 978-1-4577-2187-8 (cit. on p. 14).

[Lotufo et al. 2010] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czar-
necki, and AndrzejWaski. “Evolution of the linux kernel variability model”. In:
Software Product Lines: Going Beyond. 2010, pp. 136–150 (cit. on p. 61).

[Love 2010] Robert Love. Linux Kernel Development. 3rd. Addison-Wesley Professional,
2010. isbn: 0672329468 (cit. on p. 95).

[Lakhani andWolf 2003] Karim Lakhani and Robert G. Wolf. “Why hackers do
what they do: understanding motivation and eort in free/open source software
projects”. In: SSRN Electronic Journal (2003) (cit. on p. 2).

[Lindberg et al. 2014] A Lindberg, X Xiao, and K Lyytinen. “Theorizing modes of
open source software development”. In: 2014 47th Hawaii International Conference
on System Sciences. 2014, pp. 4568–4577 (cit. on pp. 3, 61, 65, 68).

[McManus 2016] EmilyMcManus. The quotable Linus Torvalds, live onstage at TED. Feb.
2016. url: hps://blog.ted.com/the-quotable-linus-torvalds-live-onstage-at-ted/
(cit. on p. 16).

[Melo 2013] Claudia de O. Melo. “Productivity of agile teams: an empirical evaluation
of factors and monitoring processes”. In: 2013 (cit. on p. 21).

[Mockus et al. 2002] AudrisMockus, Roy T Fielding, and James D Herbsleb. “Two
case studies of open source software development: apache and mozilla”. In: ACM
Trans. Softw. Eng. Methodol. 11.3 (July 2002), pp. 309–346. issn: 1049-331X (cit. on
p. 12).

[Miles 2015] Matthew B. Miles. Qualitative Data Analysis + the Coding Manual for
Qualitative Researchers. 3rd ed. Sage Pubns, 2015 (cit. on p. 26).

[Osterlie and Jaccheri 2007] Thomas Osterlie and Letizia Jaccheri. “A critical re-
view of software engineering research on open source software development”. In:
Proceeding of the 2nd AIS SIGSAND European Symposium on Systems Analysis and
Design, Gdansk, Poland. 2007 (cit. on pp. 3, 14, 19).

[Paez 2017] Arsenio Paez. “Gray literature: an important resource in systematic re-
views”. In: Journal of Evidence-Based Medicine 10.3 (Aug. 2017), pp. 233–240. issn:
17565391 (cit. on pp. 22, 29, 81).

[Palix et al. 2014] Nicolas Palix et al. “Faults in linux 2.6”. In: vol. 32. New York, NY,
USA: Association for Computing Machinery, 2014 (cit. on pp. 61, 68, 69).

https://blog.ted.com/the-quotable-linus-torvalds-live-onstage-at-ted/

116

REFERENCES

[Raymond 1999] Eric Raymond. “The cathedral and the bazaar”. In: Knowledge, Tech-
nology and Policy 12.3 (Sept. 1999), pp. 23–49. issn: 0897-1986 (cit. on pp. 1, 2,
12–14, 73).

[Riehle and Berschneider 2012] Dirk Riehle and Sebastian Berschneider. “A model
of open source developer foundations”. In: IFIP Advances in Information and
Communication Technology. Vol. 378 AICT. 2012, pp. 15–28 (cit. on pp. 61, 66).

[Rigby et al. 2014] Peter C. Rigby, Daniel M. German, Laura Cowen, and Margaret-
Anne Storey. “Peer review on open-source software projects”. In: ACM Transac-
tions on Software Engineering and Methodology 23.4 (Sept. 2014), pp. 1–33 (cit. on
pp. 3, 61, 64, 65, 68, 73).

[Robson andMcCartan 2016] Colin Robson and Kieran McCartan. Real world re-
search : a resource for users of social research methods in applied settings. 2016,
p. 533. isbn: 111874523X (cit. on p. 25).

[Rothstein et al. 2005] Hannah. Rothstein, A. J. Sutton, and Michael. Borenstein.
Publication bias in meta-analysis : prevention, assessment and adjustments. Wiley,
2005, p. 356. isbn: 9780470870143 (cit. on p. 22).

[Sanders 1998] J. Sanders. “Linux, open source, and software’s future”. In: IEEE Soft-
ware 15.5 (1998), pp. 88–91 (cit. on p. 57).

[Sarmento 2011] Manuel Jacinto Sarmento. “O estudo de caso etnográco em edu-
cação”. In: (2011) (cit. on pp. 24–26).

[Scacchi, Feller, et al. 2006] Walt Scacchi, Joseph Feller, Brian Fitzgerald, Scott
Hissam, and Karim Lakhani. “Understanding free/open source software develop-
ment processes”. In: Software Process: Improvement and Practice 11.2 (Mar. 2006),
pp. 95–105. issn: 1077-4866 (cit. on p. 14).

[Scacchi 2010] Walt Scacchi. “The future of research in free/open source software
development”. In: Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research. FoSER ’10. New York, NY, USA: ACM, 2010, pp. 315–320
(cit. on p. 20).

[Sharp et al. 2016] Helen Sharp, Yvonne Dittrich, and Cleidson R. B. de Souza. “The
role of ethnographic studies in empirical software engineering”. In: IEEE Trans.
Softw. Eng. 42.8 (2016), pp. 786–804. issn: 0098-5589 (cit. on pp. 20, 24, 25).

[C. B. Seaman 2008] Carolyn B. Seaman. “Qualitative methods”. In: Guide to Advanced
Empirical Software Engineering. London: Springer London, 2008, pp. 35–62 (cit. on
pp. 24, 25).

[C. Seaman 1999] C.B. Seaman. “Qualitative methods in empirical studies of software
engineering”. In: IEEE Transactions on Software Engineering 25.4 (1999), pp. 557–572
(cit. on p. 26).

REFERENCES

117

[Shaikh and Henfridsson 2017] Maha Shaikh and Ola Henfridsson. “Governing
open source software through coordination processes”. In: Information and Orga-
nization 27 (2017), pp. 116–135 (cit. on pp. 3, 61, 64, 65, 68).

[Stallman 2018] Richard Stallman. About the GNU Operating System. Dec. 2018. url:
hps://www.gnu.org/gnu/about-gnu.html (cit. on p. 11).

[Statt 2018] Nick Statt. Linus Torvalds returns to Linux development with new code of
conduct in place. Oct. 2018. url: hps://www.theverge.com/2018/10/22/18011854/
linus-torvalds-linux-kernel-development-return-code-of-conduct (visited on
04/19/2021) (cit. on pp. 16, 53).

[Stallman 2019] Richard Stallman.Why Open Source misses the point of Free Software.
Apr. 2019. url: hps://www.gnu.org/philosophy/open- source-misses- the-
point.html (cit. on p. 12).

[Stallman 1983] Richard Stallman. Initial Announcement. Sept. 1983. url: hps://
www.gnu.org/gnu/initial-announcement.html (cit. on p. 11).

[Steinmacher et al. 2015] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco
Aurelio Gerosa, and David F. Redmiles. “A systematic literature review on the
barriers faced by newcomers to open source software projects”. In: Information
and Software Technology 59 (2015), pp. 67–85 (cit. on p. 14).

[Soldani et al. 2018] Jacopo Soldani, Damian Andrew Tamburri, andWillem-Jan Van
Den Heuvel. “The pains and gains of microservices: a systematic grey literature
review”. In: Journal of Systems and Software 146 (2018), pp. 215–232. issn: 0164-
1212 (cit. on pp. 22, 23, 29, 31, 82).

[Scacchi andWalt 2007] Walt Scacchi and Walt. “Free/open source software devel-
opment”. In: The 6th Joint Meeting on European software engineering conference and
the ACM SIGSOFT symposium on the foundations of software engineering companion
papers - ESEC-FSE companion ’07. New York, New York, USA: ACM Press, 2007,
p. 459 (cit. on pp. 3, 19, 20).

[Tanenbaum 2014] Andrew S. Tanenbaum. Modern operating systems. 2014, p. 1101.
isbn: 013359162X (cit. on pp. 15, 16).

[Tsirakidis et al. 2009] P. Tsirakidis, F. Kobler, and H. Krcmar. “Identication of
success and failure factors of two agile software development teams in an open
source organization”. In: 2009 Fourth IEEE International Conference on Global
Software Engineering. 2009, pp. 295–296 (cit. on p. 15).

[Tian et al. 2012] Y. Tian, J. Lawall, and D. Lo. “Identifying linux bug xing patches”.
In: 2012 34th International Conference on Software Engineering (ICSE). 2012 (cit. on
pp. 61, 68, 77).

https://www.gnu.org/gnu/about-gnu.html
https://www.theverge.com/2018/10/22/18011854/linus-torvalds-linux-kernel-development-return-code-of-conduct
https://www.theverge.com/2018/10/22/18011854/linus-torvalds-linux-kernel-development-return-code-of-conduct
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/gnu/initial-announcement.html
https://www.gnu.org/gnu/initial-announcement.html

118

REFERENCES

[Torvalds 2007] Linus Torvalds. Re: Dual-Licensing Linux Kernel with GPL V2 and GPL
V3. June 2007. url: hps://marc.info/?l=linux-kernel&m=118236278730043&w=4
(cit. on p. 16).

[Torvalds 2018] Linus Torvalds. Linux 4.19-rc4 released, an apology, and a maintain-
ership note. Sept. 2018. url: hps://lkml.org/lkml/2018/9/16/167 (cit. on pp. 16, 18,
53).

[Torvalds 1992] Linus Torvalds. July 1992. url: hp://www.cs.cmu.edu/~awb/linux.
history.html (cit. on p. 16).

[Tan and Zhou 2019] Xin Tan and Minghui Zhou. “How to communicate when sub-
mitting patches: an empirical study of the linux kernel”. In: vol. 3. CSCW. New
York, NY, USA: Association for Computing Machinery, 2019 (cit. on pp. 61, 65, 66,
68, 76).

[Vetter 2017] Daniel Vetter. Maintainers Don’t Scale. Jan. 2017. url: hps://blog.
wll.ch/2017/01/maintainers-dont-scale.html (visited on 04/19/2021) (cit. on
pp. 48, 50).

[Vetter 2018] Daniel Vetter. Linux Kernel Maintainer Statistics. Apr. 2018. url: hps:
//blog.wll.ch/2018/04/maintainer-statistics.html (visited on 04/19/2021) (cit. on
p. 18).

[Warsta and Abrahamsson 2003] JuhaniWarsta and Pekka Abrahamsson. “Is open
source software development essentially an agile method”. In: Proceedings of the
3rd Workshop on Open Source Software Engineering. 2003, pp. 143–147 (cit. on
p. 15).

[Wen, Leite, et al. 2020] Melissa Wen, Leonardo Leite, Fabio Kon, and Paulo
Meirelles. “Understanding FLOSS through community publications: strategies
for grey literature review”. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: New Ideas and Emerging Results. ICSE-NIER
’20. Association for Computing Machinery, 2020, pp. 89–92 (cit. on p. 29).

[Wen, Siqeira, et al. 2020] MelissaWen, Rodrigo Siqeira, et al. “Leading successful
government-academia collaborations using FLOSS and agile values”. In: Journal
of Systems and Software 164 (2020), p. 110548 (cit. on p. 15).

[Zhou et al. 2017] Minghui Zhou, Qingying Chen, Audris Mockus, and Fengguang
Wu. “On the scalability of linux kernel maintainers’ work”. In: Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2017.
Paderborn, Germany: Association for Computing Machinery, 2017 (cit. on pp. 61,
64, 67, 68, 76).

[Zaidenberg and Khen 2015] N. J. Zaidenberg and E.Khen. “Detecting kernel vulner-
abilities during the development phase”. In: 2015 IEEE 2nd International Conference
on Cyber Security and Cloud Computing. 2015 (cit. on pp. 61, 68).

https://marc.info/?l=linux-kernel&m=118236278730043&w=4
https://lkml.org/lkml/2018/9/16/167
http://www.cs.cmu.edu/~awb/linux.history.html
http://www.cs.cmu.edu/~awb/linux.history.html
https://blog.ffwll.ch/2017/01/maintainers-dont-scale.html
https://blog.ffwll.ch/2017/01/maintainers-dont-scale.html
https://blog.ffwll.ch/2018/04/maintainer-statistics.html
https://blog.ffwll.ch/2018/04/maintainer-statistics.html

	Introduction
	Problem outline
	Research Questions
	Research Design
	Claimed Contributions
	Publications in the area of FLOSS Development

	Thesis Structure

	Background
	Free/Libre Open Source Software
	FLOSS Development Model

	The Linux Kernel
	The Linux Project

	Research Methods and Design
	Research Strategies
	Multivocal Literature Review
	Ethnographic Case Study
	Data Analysis and Crossing Information

	The Linux Kernel Development Model from the FLOSS community perspective
	Systematic Grey Literature Review
	GLR Planning
	Data Collection
	Content Analysis

	The Linux Kernel Development Community Model
	Linux Kernel Community Attributes Described by Community Publications
	General Characteristics
	The Community Ecosystem
	Community Concerns

	Different perspectives on the Linux Kernel Development Model
	Multivocal Literature Review
	Systematic Literature Review
	Content Analysis

	Unifying Academic and Community Understandings
	General Characteristics of the Linux kernel Community
	The Community Ecosystem
	The Community Concerns

	The Third Perspective - Participant-Observation
	Mapping gaps in academic and community publications
	Threats to Validity

	Conclusion
	Future Work

	Grey Literature Review Protocol
	Research Questions
	Initial steps
	Data Sources
	Identifying the Database

	Planning GLR
	Search process
	Database Selection
	Searching documents

	Selection process

	Multivocal Literature Review Protocol
	Systematic Literature Review Protocol
	Content Analysis - Multivocal Literature Review
	Content Analysis

	Getting Involved in the Linux Kernel Community
	Training Activities - Development Environment Setup
	Basic Setup - This Research Approach
	Understanding the process of sending contribution

	Getting involved in the IIO subsystem
	Anatomy and contribution flow: the case of [PATCH] staging:iio:ad7150: fix threshold mode config bit
	Sending a contribution by e-mail
	Receiving feedback on mailing-list
	Receiving notification of merge

	Path into Linux kernel Community
	Changing to Another Subsystem - Development Environment Setup
	Role: Google Summer Of Code Applicant
	Role: GSoC Intern
	Role: Independent Linux kernel developer
	Role: VKMS Driver maintainer
	Role: Co-mentor for Internship program

	References

