
Risk Sensitivity with Exponential
Functions in Reinforcement Learning: An

Empirical Analysis

Eduardo Lopes Pereira Neto

Thesis presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
in partial fulfillment
of the requirements

for the degree of
Master of Science

Program: Ciência da Computação

Advisor: Profª. Drª. Karina Valdivia Delgado

São Paulo

October, 2023

Risk Sensitivity with Exponential
Functions in Reinforcement Learning: An

Empirical Analysis

Eduardo Lopes Pereira Neto

This version of the thesis includes the

corrections and modifications suggested

by the Examining Committee during the

defense of the original version of the

work, which took place on October 5, 2023.

A copy of the original version is available

at the Institute of Mathematics and

Statistics of the University of São Paulo.

Examining Committee:

Prof. Dr. Karina Valdivia Delgado (advisor) – IME-USP

Prof. Dr. Esther Luna Colombini – UNICAMP

Prof. Dr. Reinaldo Augusto da Costa Bianchi – FEI

The content of this work is published under the CC BY 4.0 license
(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Resumo

Eduardo Lopes Pereira Neto. Sensibilidade ao Risco com Funções Exponenciais em
Aprendizado por Reforço: Uma Análise Empírica. Dissertação (Mestrado). Instituto

de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2023.

O Aprendizado por Reforço provou ser altamente bem-sucedido na resolução de problemas de decisão

sequencial em ambientes complexos, com foco na maximização da recompensa acumulada esperada. Embora

Aprendizado por Reforço tenha mostrado seu valor, os cenários do mundo real geralmente envolvem riscos

inerentes que vão além dos resultados esperados, onde, na mesma situação, diferentes agentes podem

considerar assumir diferentes níveis de risco. Nesses casos, o Aprendizado por Reforço Sensível ao Risco

surge como uma solução, incorporando critérios de risco ao processo de tomada de decisão. Dentre esses

critérios, métodos baseados em exponencial têm sido extensivamente estudados e aplicados. No entanto, a

resposta de critérios exponenciais quando integrados com parâmetros de aprendizagem e aproximações, par-

ticularmente em combinação com Aprendizado por Reforço Profundo, permanece relativamente inexplorado.

Essa falta de conhecimento pode impactar diretamente na aplicabilidade desses métodos em cenários do

mundo real. Nesta dissertação, apresentamos um arcabouço que facilita a comparação de critérios de risco

exponencial, como Utilidade Exponencial Esperada, Transformação Exponencial da Diferença Temporal

e Transformação da Diferença Temporal com Soft Indicator considerando algoritmos de Aprendizagem

por Reforço, como Q-Learning e Deep Q-Learning. Demonstramos formalmente que a Utilidade Esperada

Exponencial e a Transformação Exponencial da Diferença Temporal convergem para o mesmo valor. Também

realizamos experimentos para explorar a relação de cada critério de risco exponencial com o parâmetro

de taxa de aprendizado, o fator de risco e os algoritmos de amostragem. Os resultados revelam que a

Utilidade Esperada Exponencial apresenta estabilidade superior. Adicionalmente, esta dissertação analisa

empiricamente problemas de estouro numérico. Uma técnica de truncamento para lidar com esse problema é

analisada. Além disso, propomos a aplicação da técnica LogSumExp para mitigar este problema em algoritmos

que utilizam a Utilidade Esperada Exponencial.

Palavras-chave: Processo de Decisão Markovianos. Aprendizado por Reforço. Sensivel a Risco. Utilidade

Esperada Exponencial.

Abstract

Eduardo Lopes Pereira Neto. Risk Sensitivity with Exponential Functions in Rein-
forcement Learning: An Empirical Analysis . Thesis (Master’s). Institute of Mathe-

matics and Statistics, University of São Paulo, São Paulo, 2023.

Reinforcement Learning has proven to be highly successful in addressing sequential decision problems

in complex environments, with a focus on maximizing the expected accumulated reward. Although Rein-

forcement Learning has shown its value, real-world scenarios often involve inherent risks that go beyond

expected outcomes where, sometimes, in the same situation different agents could consider taking different

levels of risk. In such cases, Risk-Sensitive Reinforcement Learning emerges as a solution, incorporating

risk criteria into the decision-making process. Among these criteria, exponential-based methods have

been extensively studied and applied. However, the response of exponential criteria when integrated with

learning parameters and approximations, particularly in combination with Deep Reinforcement Learning,

remains relatively unexplored. This lack of knowledge can directly impact the practical applicability of these

methods in real-world scenarios. In this dissertation, we present a comprehensive framework that facilitates

the comparison of exponential risk criteria, such as Exponential Expected Utility, Exponential Temporal

Difference Transformation, and Soft Indicator Temporal Difference Transformation with Reinforcement

Learning algorithms such as Q-Learning and Deep Q-Learning. We formally demonstrate that Exponential

Expected Utility and Exponential Temporal Difference Transformation converge to the same value. We also

perform experiments to explore the relationship of each exponential risk criterion with the learning rate

parameter, the risk factor, and sampling algorithms. The results reveal that Exponential Expected Utility

exhibits superior stability. Additionally, this dissertation empirically analyzes numerical overflow issues.

A truncation technique to handle this issue is analyzed. Furthermore, we propose the application of the

LogSumExp technique to mitigate this problem in algorithms that use Exponential Expected Utility.

Keywords: Markov Decision Process. Reinforcement Learning. Risk Sensitive. Exponential Expected

Utility.

v

List of Abbreviations

ANN Artificial Neural Network

CNN Convolutional Neural Network

CVaR Conditional Value-at-Risk

DP Dynamic Programming

DQN Deep Q-Network

EEU Exponential Expected Utility

ETD Exponential Temporal Difference Transformation

MDP Markov Decision Process

QL Q-Learning

RSMDP Risk Sensitive Markov Decision Process

SITD Soft Indicator Temporal Difference Transformation

TD Temporal Difference

VaR Value-at-Risk

VI Value Iteration

vi

List of Figures

2.1 Interaction between agent and environment. 5

4.1 Risk Sensitive MDP example . 21

4.2 Behavior of the exponential utility function. 22

4.3 Behavior of the Soft Indicator function. 27

5.1 Rewards distribution of the Two Armed Bandit instance with 𝑟0 = 0 and

𝑟1 = 0 with precision 𝑝 = 2. 34

5.2 Heat map used to color the Two Armed Bandit policies. 35

5.3 A 10 × 10 instance of the River Crossing Domain. 35

5.4 Number of safe steps in the most risk-prone to the most risk-averse policies. 36

5.5 DQN network architecture used in the experiments for the River Crossing

domain. 37

5.6 Policies obtained by the Value Iteration and Q-Learning algorithms with

EEU criterion for Two Armed Bandit domain. 38

5.7 Policies obtained by the Value Iteration and Q-Learning algorithms with

ETD criterion for Two Armed Bandit domain. 39

5.8 Policies obtained by the Value Iteration and Q-Learning algorithms with

SITD criterion for Two Armed Bandit domain. 40

5.9 Policies obtained by Q-Learning with EEU, ETD, and SITD criteria and

varying the learning rate for Two Armed Bandit domain. 41

5.10 Safe steps in the policies for the 10 × 10 instance of the River Crossing

domain. (a) Number of safe states computed by Value Iteration and Q-

Learning algorithms with EEU; and (b) distribution of the number of safe

steps computed by Q-Learning with EEU. 42

5.11 Safe steps in the policies for the 10 × 10 instance of the River Crossing

domain. (a) Number of safe states computed by Value Iteration and Deep

Q-Network algorithms with EEU; and (b) distribution of the number of

safe steps computed by Deep Q-Network with EEU. 43

vii

5.12 Safe steps in the policies for the 10 × 10 instance of the River Crossing

domain. (a) Number of safe states computed by Value Iteration and Q-

Learning algorithms with ETD; and (b) distribution of the number of safe

steps computed by Q-Learning with ETD. 43

5.13 Safe steps in the policies for the 10 × 10 instance of the River Crossing

domain. (a) Number of safe states computed by Value Iteration and Deep

Q-Network algorithms with ETD; and (b) distribution of the number of

safe steps computed by Deep Q-Network with ETD. 44

5.14 Safe steps in the policies for the 10 × 10 instance of the River Crossing

domain. (a) Number of safe states computed by Value Iteration and Q-

Learning algorithms with SITD; and (b) distribution of the number of safe

steps computed by Q-Learning with SITD. 45

5.15 Safe steps in the policies for the 10 × 10 instance of the River Crossing

domain. (a) Number of safe states computed by Value Iteration and Deep

Q-Network algorithms with SITD; and (b) distribution of the number of

safe steps computed by Deep Q-Network with SITD. 45

5.16 Policies obtained running Q-Learning and Deep Q-Network algorithms

with EEU criterion for the 10 × 10 instance of the River Crossing domain. 47

5.17 Policies obtained running Q-Learning and Deep Q-Network algorithms

with ETD criterion for the 10 × 10 instance of the River Crossing domain. 48

5.18 Policies obtained running Q-Leaning and Deep Q-Network algorithms

with SITD criterion for the 10 × 10 instance of the River Crossing domain. 49

5.19 Iterations to converge for the 10×10 instance of the River Crossing domain

running Value Iteration. 50

5.20 𝑉𝑠0 per iteration of the 10 × 10 instance of the River Crossing domain

running Value Iteration. 51

5.21 Q-Learning convergence curve of the 10×10 instance of the River Crossing

domain. 52

5.22 Max |𝑈 | per episode with Q-Learning for the 10 × 10 instance of the River

Crossing domain. 53

5.23 Safe steps in the policies for the 10 × 10 instance of the River Crossing

domain. (a) Number of safe states computed by Value Iteration and Q-

Learning algorithms with the truncated version of ETD; and (b) distribution

of the number of safe steps computed by Q-Learning with the truncated

version of ETD. 54

viii

5.24 Safe steps in the policies for the 10 × 10 instance of the River Crossing

domain. (a) Number of safe states computed by Value Iteration and Deep

Q-Network algorithms with the truncated version of ETD; and (b) distri-

bution of the number of safe steps computed by Deep Q-Network with the

truncated version of ETD. 54

5.25 Policies obtained running Q-Leaning and Deep Q-Network algorithms

with the truncated version of ETD for the 10 × 10 instance of the River

Crossing domain. 56

5.26 Policies obtained running Q-Leaning and Deep Q-Network algorithms

with all criteria for the 10 × 10 instance of the River Crossing domain with

rewards of -100. 57

5.27 Number of iterations to converge for the 6 × 6, 8 × 8, 10 × 10, 12 × 12 and

14 × 14 instances of the River Crossing domain running Value Iteration for

different criteria. 58

List of Algorithms

1 Value Iteration . 7

2 Policy Iteration . 8

3 TD(0) . 10

4 SARSA . 11

5 Q-Learning . 12

6 Deep Q-Learning . 14

7 Value Iteration with EEU . 23

8 Q-Learning with EEU . 23

9 Deep Q-Learning with EEU . 24

10 Value Iteration with TD Transformation . 26

11 Q-Learning with TD Transformation . 27

12 Deep Q-Learning with TD Transformation 28

ix

Contents

1 Introduction 1
1.1 Motivation . 2

1.2 Objectives . 3

1.3 Organization . 4

2 Reinforcement Learning 5
2.1 Markov Decision Process . 5

2.2 Dynamic Programming . 7

2.3 Monte Carlo method . 8

2.4 Temporal Difference . 9

2.4.1 SARSA . 10

2.4.2 Q-Learning . 11

2.5 Approximation of the Value Function . 12

2.5.1 Artificial Neural Network . 13

2.5.2 Deep Q-Network . 13

3 Safe Reinforcement Learning 17
3.1 Exploration Process . 17

3.2 Optimization Criterion . 18

4 Risk Sensitivity with Exponential Functions in Reinforcement Learning 19
4.1 Risk and Certainty Equivalent . 20

4.2 Exponential Utility Function . 21

4.3 Exponential Expected Utility Criterion 22

4.3.1 Value Iteration with EEU . 22

4.3.2 Q-Learning with EEU . 23

4.3.3 Deep Q-Learning with EEU . 24

4.4 Temporal Difference Transformation . 25

4.4.1 Temporal Difference Transformation Algorithms 25

x

4.4.2 Exponential Utility and Soft Indicator Functions with Temporal

Difference Transformation . 26

4.5 Relationship between EEU and ETD . 27

4.6 Exponential criteria and overflow . 29

4.6.1 Truncated Exponential Utility . 29

4.6.2 LogSumExp . 30

5 Experiments 33
5.1 Domains and setup . 33

5.1.1 Two Arm Bandit Domain . 34

5.1.2 River Crossing Domain . 35

5.2 Results for the Two Arm Bandit Domain 37

5.2.1 Varying the risk factor . 37

5.2.2 Varying the learning rate . 40

5.3 Results for the River Crossing Domain 41

5.3.1 Varying the risk factor . 41

5.3.2 Varying the learning rate . 45

5.3.3 Convergence analysis . 47

5.3.4 Overflow analysis . 51

5.3.5 Scalability Analysis . 55

6 Conclusions and future work 59
6.1 Contributions . 59

6.2 Publication . 61

6.2.1 Risk Sensitive Markov Decision Process for Portfolio Management 61

6.2.2 Risk Sensitive with Exponential Functions in Reinforcement Learn-

ing: An Empirical Analysis . 61

6.3 Future work . 61

References 63

1

Chapter 1

Introduction

Reinforcement Learning has emerged as a powerful framework for training intelligent
agents and combined with Deep neural networks has revolutionized the field of artificial
intelligence enabling agents to learn complex decision-making policies to make sequential
decisions in complex environments (Sutton and Barto, 1998). Reinforcement Learning
consists mainly in how an agent interacts with an environment described by a Markov
Decision Process(MDP) taking actions that maximize expected rewards.

Although Reinforcement Learning has shown its value, real-world scenarios often
involve inherent risks that go beyond expected outcomes where, sometimes, in the same sit-
uation different agents could consider taking different levels of risk. For example, consider
an agent with two available actions: (i) the first deterministic action offering a guaranteed
reward of 𝑟 , and (ii) the second stochastic action with a 25% chance of winning a reward
of 𝑟 − 1, 25% chance of winning 𝑟 + 1, and a 50% chance of receiving the same reward 𝑟 .
For a risk-neutral agent, both actions yield the same expected reward. However, in such
circumstances, individuals often tend to be risk-averse, leading them to favor the option of
selecting the deterministic action which has the lowest variation and a guaranteed reward
of 𝑟 (Ralph L Keeney and Howard Raiffa, 1993). Conversely, when the agent is risk-prone,
she would opt for selecting the stochastic action which has the chance of winning the
greatest reward.

To tackle these challenges, Safe Reinforcement Learning employs two main approaches
(Garcia and Fernández, 2015). One of the approaches focuses on adapting the exploration
process to avoid actions that could lead the learning system into undesirable or catas-
trophic situations by incorporating external knowledge (Driessens and Džeroski, 2004;
Abbeel et al., 2010; Garcia and Fernández, 2012; Dalal et al., 2018; Kidambi et al., 2020;
Swazinna et al., 2021) or the use of risk-directed exploration (Gehring and Precup, 2013;
Andersen et al., 2020). The other approach involves modifying the optimality criterion
to include the concept of risk. These optimization criteria can be divided into three main
groups: (i) worst-case criterion (Heger, 1994; Littman and Szepesvári, 1996; Nilim and
El Ghaoui, 2005), (ii) constrained criterion (Kadota et al., 2006; Moldovan and Abbeel,
2012; HasanzadeZonuzy et al., 2021), and (iii) risk sensitive criterion (Ronald A. Howard
and Matheson, 1972; Chung and Sobel, 1987; Bouakiz and Sobel, 1992; Mausser and
Rosen, 1999; Mihatsch and Neuneier, 2002; Morimura et al., 2010; Cavazos-Cadena

2

1 | INTRODUCTION

and Hernández-Hernández, 2011; Chow and Ghavamzadeh, 2014; Bäuerle and Rieder,
2014; Wood and Khosravanian, 2015; Tang et al., 2019; Stanko and Macek, 2019; Fei,
Yang, Yudong Chen, Wang, and Xie, 2020; Jin et al., 2020; Delétang et al., 2021; Fei,
Yang, and Wang, 2021; Fei, Yang, Yudong Chen, and Wang, 2021; Du et al., 2022; Xu et al.,
2023).

The application of Risk Sensitive Criteria in Reinforcement Learning has garnered
significant attention, with exponential criteria being a subject of extensive research and
analysis among various risk measures. Leveraging the expected utility theory, exponential
utility criteria offers advantages, such as robustness to uncertainty, as it can effectively cap-
ture both high and low probabilities of rare events (Wood and Khosravanian, 2015).

Within the realm of exponential criteria, several studies have explored its application
in different forms. Some have utilized the exponential function in the context of expo-
nential expected utility (Ronald A. Howard and Matheson, 1972), while others have
incorporated the exponential function into Temporal Difference transformations (Shen
et al., 2014). Additionally, some works have combined Temporal Difference transformations
with a related exponential function known as the Soft Indicator function (Delétang et al.,
2021), revealing the close relationship between this function and the classical exponential
function.

Despite the advantages of using exponential utility functions, there are two main
drawbacks when trying to apply this function to real-world domains:

• Scalability and Computational Complexity: When exponential risk criteria are intro-
duced to Reinforcement Learning, the computational complexity further increases
and as the values grow exponentially it becomes a hard task to prevent numeric
overflow (Bäuerle and Rieder, 2014; Shen et al., 2014; Freitas et al., 2020).

• Risk-Aware Policy Optimization: Calibrating the risk sensitivity parameter in expo-
nential risk criteria presents a challenge in Reinforcement Learning. The choice of
this parameter governs the trade-off between risk and reward and directly impacts
the behavior of the agent.

Numerical overflow has been a focus of some studies, with efforts to address the issue
through mathematical techniques such as LogSumExp (Naylor et al., 2001; Freitas et al.,
2020). However, the application of this technique to Reinforcement Learning algorithms
has not been extensively explored. Additionally, truncating techniques have been applied
to prevent large numbers (Shen et al., 2014).

Moreover, the incorporation of exponential utility functions with Deep Reinforcement
Learning holds the potential to enhance real-world applications.

1.1 Motivation
While the application of the exponential function in Reinforcement Learning for risk

modeling has been extensively explored in various studies (Ronald A. Howard and Mathe-
son, 1972; Chung and Sobel, 1987; Cavazos-Cadena and Hernández-Hernández, 2011;
Shen et al., 2014; Delétang et al., 2021), there is a lack in the literature that comprehensively

1.2 | OBJECTIVES

3

investigates the key distinctions among the different methods of employing this function.
Specifically, understanding how additional parameters influence the learning process in
each approach remains relatively unexplored. By delving into these nuances, we aim to
provide valuable insights into the behaviors and dynamics of various exponential-based
risk modeling techniques, facilitating the selection of the most suitable method for specific
Reinforcement Learning and Deep Reinforcement Learning algorithms.

Furthermore, the existing literature lacks a comprehensive examination of the primary
challenges associated with implementing these exponential-based methods in real-world
scenarios. To effectively apply these approaches in practical situations, a thorough under-
standing of their fundamental characteristics and stability is critical. Identifying potential
obstacles and devising solutions to address them is crucial in ensuring the successful inte-
gration of risk modeling techniques based on exponential functions. Through this research,
we seek to clarify these challenges, contributing to the development of more robust and
efficient risk sensitive systems and adaptable to the uncertainties and complexities of
real-life environments.

1.2 Objectives
The main objective is to explore the application of exponential functions to model

risk attitudes in Reinforcement Learning and Deep Reinforcement Learning algorithms,
focusing on the following goals:

• Explore different exponential risk criteria: The first goal is to establish a flexible
framework that allows the comparison of exponential functions in different forms to
model risk attitudes in Reinforcement Learning and Deep Reinforcement Learning
algorithms. We explore different exponential criteria and different exponential func-
tions (exponential utility and soft indicator), to accommodate diverse risk attitudes.
This will enable decision-makers to express risk-averse, risk-neutral, or risk-prone
behaviors, offering a richer spectrum of risk modeling options.

• Analysis of criteria and learning parameters: The second goal is to conduct an analy-
sis of how different risk modeling criteria, and different exponential functions, inter-
act with approximation and learning parameters in various Reinforcement Learning
and Deep Reinforcement Learning algorithms. Understanding how these criteria
influence learning dynamics, convergence properties, and algorithmic stability is
crucial for designing efficient and robust risk-sensitive algorithms. By systematically
exploring these interactions, we can identify the strengths and limitations of different
risk modeling approaches.

• Combining Deep Reinforcement Learning and exponential risk criteria: In this work,
we aim to propose an intuitive and more stable way of combining Deep Reinforce-
ment Learning and exponential risk criteria and analyze how those exponential
criteria interact with deep neural network approximation.

• Overcoming numerical challenges: The third goal is to address numerical challenges,
such as overflow issues, that may arise when employing exponential functions,
especially in high-dimensional and complex Reinforcement Learning and Deep

4

1 | INTRODUCTION

Reinforcement Learning environments. We aim to analyze the truncating technique
and introduce a technique to apply LogSumExp across different classes of algorithms.
These approaches ensure seamless integration of exponential-based risk modeling,
promoting the reliability and scalability of risk-sensitive algorithms.

1.3 Organization
This work is organized as follows. In Chapter 2, we introduce the key concepts of

Markov Decision Processes, Reinforcement Learning, and Deep Reinforcement Learning.
Additionally, we present the main Reinforcement Learning algorithms.

In Chapter 3 the Safe Sensitive Reinforcement Learning area is presented with the main
approaches to model risk. In Chapter 4 we focus on Risk Sensitive Reinforcement Learning
with Exponential Functions. We present risk attitudes and introduce the exponential utility
function. We demonstrate its application across Value Iteration, Q-Learning, and Deep
Q-Learning algorithms. We modify these algorithms to integrate Exponential Expected
Utility. Then, we apply the utility function to Temporal Difference, incorporating both
the exponential function and a related function known as the soft indicator. Notably,
our analysis reveals that applying the exponential function to both expected utility and
Temporal Difference yields identical values. Concluding the chapter, we explore strategies
to mitigate overflow issues.

In Chapter 5 the domains used and the results obtained in the experiments performed
are presented. Finally, in Chapter 6 the final considerations and future works are pre-
sented.

5

Chapter 2

Reinforcement Learning

In this chapter, an overview of Reinforcement Learning and some of the main imple-
mentations that use this learning method is presented.

Reinforcement Learning consists of the interaction between an agent and an envi-
ronment in a way that maximizes rewards over time. The agent does not have prior
knowledge about the result of executing actions and must find out which actions generate
more reward by interacting with the environment. In other words, the agent has knowledge
of the current state (𝑠𝑡) and the actions that can be taken, and when interacting with the
environment taking a certain action (𝑎𝑡) she receives a reward (𝑟𝑡) and goes to a new state
(𝑠𝑡+1), as shown in Figure 2.1 (Sutton and Barto, 1998).

Figure 2.1: Interaction between agent and environment.

The agent’s goal is to maximize the reward received throughout the execution regard-
less of the initial state 𝑠0. This interaction between the agent and the environment can be
modeled as a Markov Decision Process.

2.1 Markov Decision Process
A Markov Decision Process (MDP) is a mathematical model widely used in decision-

making problems and provides a mathematical framework to represent the interaction

6

2 | REINFORCEMENT LEARNING

between an agent and an environment.

An MDP can be formally defined by a tuple ⟨𝑆, 𝐴, 𝑅, 𝑇 , 𝑠0⟩ (Puterman, 1994),
where:

• 𝑆 is a finite set of states;

• 𝐴 is a finite set of actions that can be performed by the agent;

• 𝑅 ∶ 𝑆 × 𝐴 → ℝ is the reward function that defines the reward when an action is
taken in a state;

• 𝑇 ∶ 𝑆 × 𝐴 × 𝑆 → [0, 1] is the transition function that defines the state transition
probability; It is

• 𝑠0 is a finite set of initial states which is a subset of 𝑆.

The agent’s goal is to find the actions that, when executed in certain states, maximize
the accumulated rewards. This function that relates states and actions to be performed is
called a policy. This policy is represented by 𝜋 and can be stochastic or deterministic.

In a stochastic policy, for each state, there is a probability for each action to be taken
while in a deterministic policy, for each state there is a single action to be taken.

Furthermore, a policy can be stationary or non-stationary. A stationary policy is a
policy where the chosen action does not depend on the step at which the action is taken.
In turn, in a non-stationary policy, the action chosen in a given state depends on the step
at which the action is being taken.

An MDP can be classified according to its horizon, which is the number of stages
through which the agent will make decisions, as being: (i) finite horizon when there is
a certain number of steps to complete the process; (ii) infinite horizon, in this case, the
MDP never complete its process; and (iii) undefined horizon when the number of steps is
unknown, but the process can be finished when reaching some goal state.

Knowing the MDP horizon type, it is possible to find the value of a policy by calculating
the amount of utility that we can expect from the execution of this policy (Mausam and
Kolobov, 2012). Considering a discount factor 𝛾 ∈ [0, 1) to ensure that the rewards are
limited to a finite value for an MDP with an infinite horizon, we can define the value of a
policy 𝜋 as the expected reward accumulated discounted:

𝑉 𝜋(𝑠) = 𝐸𝜋[

∞

∑
𝑡=0

𝛾 𝑡𝑟𝑡 |𝑠0 = 𝑠
]
. (2.1)

The value function can be calculated by solving the system of equation (Bellman,
1957):

𝑉 𝜋(𝑠) = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾∑
𝑠′∈𝑆

𝑇 (𝑠, 𝜋(𝑠), 𝑠′)𝑉 𝜋(𝑠′). (2.2)

By defining the value of a policy, it is possible to define the concept of an optimal
solution for an MDP. The optimal solution of an MDP is an optimal policy 𝜋∗ such that

2.2 | DYNAMIC PROGRAMMING

7

this policy is at least as good as any other policy in all states given the same utility criteria,
that is:

𝑉 ∗(𝑠) ≥ 𝑉 𝜋(𝑠), ∀𝑠 ∈ 𝑆. (2.3)

2.2 Dynamic Programming
Algorithms based on Dynamic Programming (DP) can be used to calculate optimal

policies for a Markov Decision Process. Classical DP algorithms for MDPs assume a perfect
model of the environment in which the transition function 𝑇 and the reward function 𝑅
are known. Two Dynamic Programming algorithms widely used to solve MDPs are Value
Iteration (Bertsekas, 1995) and Policy Iteration (Ronald A Howard, 1960).

In the Value Iteration algorithm (Algorithm 1) the objective is to iteratively calculate
the value of the Optimal Value function 𝑉 ∗ from the equation:

𝑉 𝑡+1 (𝑠) ← max
𝑎 [

𝑅 (𝑠, 𝑎) + 𝛾∑
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)𝑉 𝑡(𝑠′)
]
. (2.4)

Formally, the update step must be executed infinite times so that 𝑉 converges to 𝑉 ∗. In
practice, iterations are suspended as soon as 𝑉 is updated by at most a small value defined
by the parameter 𝜃. The maximum difference in the 𝑉 function is represented by Δ in the
algorithm. Finally, the optimal policy 𝜋∗ is obtained through:

𝜋∗(𝑠) ← 𝑎𝑟𝑔 max
𝑎 [

𝑅 (𝑠, 𝑎) + 𝛾∑
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)𝑉 ∗(𝑠′)
]
. (2.5)

Algorithm 1: Value Iteration

1 begin
input :MDP ⟨𝑆, 𝐴, 𝑅, 𝑇 , 𝑠0⟩, 𝛾 , 𝜃
output :𝜋

2 Initializes V with arbitrary values (e.g., 𝑉 (𝑠) = 0 for all 𝑠 ∈ 𝑆);
3 repeat
4 Δ ← 0;
5 foreach 𝑠 ∈ 𝑆 do
6 𝑣 ← 𝑉 (𝑠);
7 𝑉 (𝑠) ← max𝑎 [𝑅 (𝑠, 𝑎) + 𝛾∑𝑠′∈𝑆 𝑇 (𝑠, 𝑎, 𝑠′)𝑉 (𝑠′)];
8 Δ ← max(Δ, |𝑣 − 𝑉 (𝑠)|);
9 until Δ < 𝜃;

10 return 𝑎𝑟𝑔 max𝑎 [𝑅 (𝑠, 𝑎) + 𝛾∑𝑠′∈𝑆 𝑇 (𝑠, 𝑎, 𝑠′)𝑉 (𝑠′)] ∀𝑠 ∈ 𝑆;

In the Policy Iteration algorithm, the goal is to find an optimal policy through changes
in the policy itself and not indirectly through the Value function, as is done in the Value
Iteration algorithm.

8

2 | REINFORCEMENT LEARNING

The Policy Iteration algorithm (Algorithm 2) first calculates the Value function of a
policy, this step is called Policy Evaluation and the calculation of the function can be done
by solving a system of equations or through approximation by an iterative method. You
can define the step of Policy Evaluation through approximation by an interactive method
as being:

𝑉 𝑡+1 (𝑠) = 𝑅 (𝑠, 𝜋(𝑠)) + 𝛾∑
𝑠′∈𝑆

𝑇 (𝑠, 𝜋(𝑠), 𝑠′)𝑉 𝑡(𝑠′), ∀𝑠 ∈ 𝑆. (2.6)

After obtaining the function Value 𝑉 𝜋 , a second step called Policy Improvement is
performed by the Policy Iteration algorithm. The objective of Policy Improvement is to find
a new policy maximizing rewards using the Value function 𝑉 𝜋 calculated before:

𝜋′(𝑠) ← 𝑎𝑟𝑔 max
𝑎 [

𝑅 (𝑠, 𝑎) + 𝛾∑
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)𝑉 𝜋(𝑠′)
]
. (2.7)

The two steps of the algorithm are executed until 𝜋 = 𝜋′ and thus find the optimal
policy 𝜋∗.

Algorithm 2: Policy Iteration

1 begin
input :MDP ⟨𝑆, 𝐴, 𝑅, 𝑇 , 𝑠0⟩, 𝛾 , 𝜃
output :𝜋

2 Initializes 𝜋′ with arbitrary values;
3 repeat
4 𝜋 ← 𝜋′;
5 1: Evaluate policy 𝜋;
6 𝑉 𝜋 (𝑠) = 𝑅 (𝑠, 𝜋(𝑠)) + 𝛾∑𝑠′∈𝑆 𝑇 (𝑠, 𝜋(𝑠), 𝑠′)𝑉 𝜋(𝑠′), ∀𝑠 ∈ 𝑆;
7 2: Improve policy 𝜋′;
8 𝜋′(𝑠) ← 𝑎𝑟𝑔 max𝑎 [𝑅 (𝑠, 𝑎) + 𝛾∑𝑠′∈𝑆 𝑇 (𝑠, 𝑎, 𝑠′)𝑉 𝜋(𝑠′)]
9 until 𝜋 = 𝜋′;

10 return 𝜋

2.3 Monte Carlo method
Reinforcement Learning methods differ from Dynamic Programming methods because

they are methods in which the model of the Markov Decision Process is not known, that
is, the agent knows the actions 𝑎 ∈ 𝐴 but does not know the transition function 𝑇 and
the reward function 𝑅. In these methods, an environment able to produce samples of
the transitions and rewards is necessary and there is no need to know all probability
distributions, as is necessary for Dynamic Programming.

In the Monte Carlo Reinforcement Learning method, the goal is to learn Value functions
from experiments on samples. Rather than using the model to calculate the value of each
state, the sampled returns for each state present in a run episode are averaged. An episode
(𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, ...) is generated by the execution of a policy 𝜋 from an initial state until a

2.4 | TEMPORAL DIFFERENCE

9

terminal (target) state is reached and the execution is finished. An iteration of the Monte
Carlo method can be described as (Sutton and Barto, 1998):

𝑉 (𝑠𝑡) ← 𝑉 (𝑠𝑡) + 𝛼 [𝐺𝑡 − 𝑉 (𝑠𝑡)] , (2.8)

where 𝛼 is the learning rate and 𝐺𝑡 the accumulated rewards in an episode from time
𝑡:

𝐺𝑡 ←
𝑇

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘, (2.9)

where 𝑇 is the last time of the episode and each episode proceeds in a discrete number of
steps 𝑡 so that an episode starts at 𝑡 = 0 and ends at 𝑡 = 𝑇 . This way, the function 𝑉 (𝑠𝑡)
can only be updated at the end of the episode, when it is possible to obtain the value of
𝐺𝑡 .

The Monte Carlo method is an estimation method since the value of 𝐺𝑡 is an estimate
of the expected value. This feature gives the Monte Carlo methods three advantages when
compared to Dynamic Programming methods. First, they can be used to learn optimal
behavior directly from interacting with the environment without the need for a model of
the environment. Second, they can be used with simulation or sampling models. Third,
it is easy and efficient to apply Monte Carlo methods on subsets of states (Sutton and
Barto, 1998).

2.4 Temporal Difference
In Reinforcement Learning there is a central idea called Temporal Difference (TD).

This method, similar to the Monte Carlo methods can learn without prior knowledge of
the environment and similar to Dynamic Programming methods updates the estimated
value without waiting for the final result of the episode. The fact of not waiting for the
end of the episode to update the estimated value can be very advantageous when applied
in environments where the episode is very long or even in ongoing problems where the
episode may never finish (Sutton and Barto, 1998).

As in the Monte Carlo method, the Temporal Difference methods update the estimated
value of the V-value function for all non-terminal states present in the sampled episode,
however, they update at each step the value 𝑉 (𝑠𝑡) starting from the value 𝑟𝑡+1 observed and
the value of 𝑉 (𝑠𝑡+1) estimated. One can describe the Temporal Difference method as being
(Sutton and Barto, 1998):

𝑉 (𝑠) ← 𝑉 (𝑠) + 𝛼 [𝑟 + 𝛾𝑉 (𝑠′) − 𝑉 (𝑠)] . (2.10)

The Temporal Difference called 𝑇𝐷(0) (Sutton and Barto, 1998) (Algorithm 3) begins
by taking a policy 𝜋 and a number of episodes for the evaluation process. During each
episode, 𝑇𝐷(0) selects an action 𝑎 based on the policy 𝜋 and the current state 𝑠. 𝑇𝐷(0) then
takes this action and observes the resulting reward 𝑟 and the next state 𝑠′. The current state
value 𝑉 (𝑠) is then updated using Equation 2.10. The episode continues until the current
state becomes a terminal state.

10

2 | REINFORCEMENT LEARNING

Algorithm 3: TD(0)

1 begin
input :𝜋, 𝑠0, 𝛼, 𝛾
output :𝑉

2 Initializes V with arbitrary values (e.g., 𝑉 (𝑠) = 0 for all 𝑠 ∈ 𝑆);
3 foreach episode do
4 𝑠 ← 𝑠0;
5 repeat
6 𝑎 ← 𝜋(𝑠);
7 Take action 𝑎 and observe 𝑟 and 𝑠′;
8 𝑉 (𝑠) ← 𝑉 (𝑠) + 𝛼 [𝑟 + 𝛾𝑉 (𝑠′) − 𝑉 (𝑠)];
9 𝑠 ← 𝑠′;

10 until 𝑠 being a terminal;
11 return 𝑉

The Temporal Difference method is considered an estimation method as it takes
samples to calculate the estimated value and uses the current estimate of 𝑉 to make the
updates.

2.4.1 SARSA
In the SARSA algorithm (Rummery and Niranjan, 1994) (Sutton and Barto, 1998)

the policy is learned at runtime, that is, the same policy that is used to interact with the
environment has the value updated by the algorithm.

Unlike the algorithms presented so far, SARSA instead of estimating the Value 𝑉
function aims to estimate the Value-Action function 𝑄. The Value-Action function 𝑄∗ is
defined as the sum of the reward received by the state-action pair (𝑠, 𝑎) with the Value-
Action function of the next state and action 𝑄∗ (𝑠′, 𝑎′):

𝑄∗ (𝑠, 𝑎) ← 𝑟 + 𝛾𝑄∗ (𝑠′, 𝑎′) . (2.11)

The update of the Value-Action function 𝑄 in the SARSA algorithm can be represented
as:

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾𝑄 (𝑠′, 𝑎′) − 𝑄 (𝑠, 𝑎)] . (2.12)

This interaction with the tuple (𝑠, 𝑎, 𝑟 , 𝑠′, 𝑎′) gives SARSA its name (State-Action-Reward-
State-Action). To choose actions 𝑎 and 𝑎′, the SARSA algorithm must use an exploration or
exploitation strategy. This strategy aims to perform an already known action to increase
the rewards or choose a random action so that the reward can be improved over a longer
period. A widely used strategy for choosing actions is 𝜖-greedy. In this strategy, the agent
selects a random action with probability 𝜖 or executes the best action with probability
1 − 𝜖.

The SARSA algorithm, described in Algorithm 4, takes the learning rate 𝛼, exploration
rate 𝜖, and the number of episodes as input parameters. During each episode, the algorithm

2.4 | TEMPORAL DIFFERENCE

11

starts with an initial state 𝑠0, and an action 𝑎 is chosen based on a policy derived from
the state-action value function 𝑄 for the current state 𝑠. For example, an action can be
randomly selected following the 𝜖-greedy policy.

After taking action 𝑎, the algorithm observes the reward 𝑟 and the next state 𝑠′. The
next action 𝑎′ for state 𝑠′ is selected using the same process as in the previous step. The
state-action value function 𝑄(𝑠, 𝑎) is updated for the current state-action pair using the
SARSA update rule (Equation 2.12). Then, the next state 𝑠′ and the next action 𝑎′ is set as
the current state and action, respectively.

Algorithm 4: SARSA

1 begin
input : 𝑠0, 𝛼, 𝛾, 𝜖
output :𝜋

2 Initializes 𝑄(𝑠, 𝑎) with arbitrary values for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 ;
3 foreach episode do
4 𝑠 ← 𝑠0;
5 Selects 𝑎 from a policy derived from 𝑄 (e.g., 𝜖-greedy) ;
6 repeat
7 Take an action 𝑎 and observe 𝑟 and 𝑠′;
8 Selects 𝑎′ from a policy derived from 𝑄 (e.g., 𝜖-greedy) ;
9 𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾𝑄 (𝑠′, 𝑎′) − 𝑄 (𝑠, 𝑎)];

10 𝑠 ← 𝑠′;
11 𝑎 ← 𝑎′;
12 until 𝑠 being a terminal;
13 return 𝑎𝑟𝑔 max𝑎 [𝑄 (𝑠, 𝑎)] ∀𝑠 ∈ 𝑆;

2.4.2 Q-Learning

One of the best-known Temporal Difference algorithms is the Q-Learning algorithm
defined as (Watkins, 1989):

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾 max
𝑎

𝑄 (𝑠′, 𝑎) − 𝑄 (𝑠, 𝑎)] . (2.13)

Q-Learning also uses the 𝜖-greedy policy like SARSA, but when updating the Q-value
for a state-action pair, Q-learning considers the action with the highest Q-value for the
next state 𝑠′. In this way, the Value-Action function 𝑄 approaches the optimal function
𝑄∗ regardless of the policy being followed as long as all state-action pairs are updated
(Watkins, 1989).

The Q-Learning algorithm (Algorithm 5) works similarly to SARSA algorithm only
removing the selection of the next action 𝑎′ and replacing the Q-value for the next state
(𝑄(𝑠′, 𝑎′)) by the maximum Q-value for the next state 𝑠′ (max𝑎 𝑄(𝑠′, 𝑎)).

12

2 | REINFORCEMENT LEARNING

Algorithm 5: Q-Learning

1 begin
input : 𝑠0, 𝛼, 𝛾, 𝜖
output :𝜋

2 Initializes 𝑄(𝑠, 𝑎) with arbitrary values for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 ;
3 foreach episode do
4 𝑠 ← 𝑠0;
5 repeat
6 Selects 𝑎 from a policy derived from 𝑄 (e.g., 𝜖-greedy) ;
7 Take an action 𝑎 and observe 𝑟 and 𝑠′;
8 𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾 max𝑎 𝑄 (𝑠′, 𝑎) − 𝑄 (𝑠, 𝑎)];
9 𝑠 ← 𝑠′;

10 until 𝑠 being a terminal;
11 return 𝑎𝑟𝑔 max𝑎 [𝑄 (𝑠, 𝑎)] ∀𝑠 ∈ 𝑆;

2.5 Approximation of the Value Function

Applying Reinforcement Learning to real-world problems can pose significant chal-
lenges due to the large state space involved. The limitations of using tabular methods (all
methods presented in the previous sections) extend beyond memory constraints. It can
be practically impossible to fill and compute values for all states, resulting in most states
being visited for the first time. In such cases, it becomes crucial to generalize from past
experiences when states exhibit similarities.

Fortunately, generalization techniques have been extensively studied in the field of
supervised learning, and the use of artificial neural networks has demonstrated remarkable
success in addressing this challenge. Numerous successful studies have explored the
combination of Artificial Neural Networks and Reinforcement Learning. For instance,
TD-gammon (Tesauro, 1994), a backgammon-playing agent, achieved a human level of
play by exclusively learning through reinforcement learning and self-play. Multi-layer
Artificial Neural Networks were utilized for function approximation in reinforcement
learning, automating the feature design process while learning to play 46 different Atari
2600 games (Mnih et al., 2013). Additionally, AlphaGo (Silver, Schrittwieser, et al., 2017)
and AlphaGo Zero (Silver, Schrittwieser, et al., 2017) utilized Deep Artificial Neural
Networks, supervised learning, Monte Carlo tree search, and Reinforcement Learning to
master the game of Go, achieving remarkable results.

In Reinforcement Learning, there are two main scenarios where function approximation
can be applied: (i) when the policy is fixed, and only the value function is approximated,
and (ii) when function approximation is employed for the optimal policy function.

Applying function approximation to the policy function is notably different and more
challenging than applying it to the value function (Sutton and Barto, 1998). The the-
oretical guarantees and empirical results for the former method are not as strong or
satisfactory as those for the latter. Considering this, the focus of this section is on applying
function approximation to the value function. More specifically applying neural networks

2.5 | APPROXIMATION OF THE VALUE FUNCTION

13

to approximate the value function.

2.5.1 Artificial Neural Network
Artificial Neural Networks (ANNs) are computational models inspired by the structure

and functioning of the human brain. They have revolutionized the field of machine learning
and have become a fundamental tool in various domains, ranging from computer vision
and natural language processing to finance and healthcare.

At its core, an artificial neural network consists of interconnected neurons organized
into layers. Each neuron receives inputs, performs a computation, and produces an out-
put. The connections between neurons are represented by weights, which determine
the strength and influence of each input. The arrangement of these neurons and their
connections forms the network’s architecture.

Training an artificial neural network involves an iterative process of adjusting the
weights to minimize the difference between the network’s predicted outputs and the
desired outputs. This process, known as supervised learning, relies on presenting to the
network a set of expected results. The most common algorithm used for training ANNs is
backpropagation, which calculates the gradient of the network’s error and updates the
weights.

One of the key strengths of artificial neural networks is their ability to learn complex
patterns and extract meaningful features from raw data. This capability is especially promi-
nent in deep neural networks, which are ANNs with multiple hidden layers. Deep learning
(LeCun, Bengio, et al., 2015) has led to significant breakthroughs in areas such as image
and speech recognition, natural language processing, and autonomous systems.

Convolutional Neural Networks (CNNs) (LeCun, Bottou, et al., 1998) is a specialized
type of ANN commonly used for analyzing visual data. By employing convolutional layers,
pooling operations, and nonlinear activations, CNNs can effectively capture spatial and
hierarchical features in images or videos. The use of this class of deep neural networks
has shown impressive results when applied to reinforcement learning applications (Mnih
et al., 2013; Silver, Huang, et al., 2016; Silver, Schrittwieser, et al., 2017).

2.5.2 Deep Q-Network
One outstanding result was achieved by combining a convolutional neural network

and the Q-Learning algorithm (Mnih et al., 2013). They presented a proposal capable of
automating the feature design and generalizing among 46 different Atari 2600 games. Their
proposal was divided into two: (i) the network architecture called Deep Q-Network and
(ii) the algorithm called Deep Q-Learning.

The proposed network architecture, named Deep Q-Network (DQN), is designed to
process four images, each with dimensions of 84 × 84 pixels. It begins with an input layer
of size 84 × 84 × 4, followed by three hidden convolutional layers, then a fully connected
hidden layer, and finally the output layer.

To add more stability to the learning process two identical networks with the described

14

2 | REINFORCEMENT LEARNING

architecture were added to the Deep Q-Learning algorithm (Van Hasselt et al., 2016).
One network is called the learning network 𝑤 and the other is called the target network
�̂�. The target network �̂� is used to estimate while the learning network 𝑤 learns from
experience replays. Experience replay is a method that is incorporated into the algorithm,
which involves storing the agent N last experience in a queue called replay memory 𝐷. An
experience is a tuple (𝑠, 𝑎, 𝑟 , 𝑠′) where 𝑠 is the current state, 𝑎 the action, 𝑟 the reward, and
𝑠′ next state.

The Deep Q-Learning algorithm (Algorithm 6) operates similarly to Q-Learning, uti-
lizing 𝜖-greedy to select action 𝑎 during each episode. However, instead of finding the
action from a Value-Action function 𝑄, it employs a Value-Action prediction �̂� based on
the learning network 𝑤 and the current state 𝑠. Once the action 𝑎 is chosen, the algorithm
observes the reward 𝑟 and the next state 𝑠′.

The tuple (𝑠, 𝑎, 𝑟 , 𝑠′) is stored in the replay buffer 𝐷. Deep Q-Learning randomly samples
batches of tuples (minibatch) from 𝐷. For each tuple in the minibatch, it employs a Value-
Action prediction �̂� using the target network �̂� and the next state 𝑠′. Deep Q-Learning
then calculates the target value 𝑦 based on the Value-Action function equation.

Using the target value 𝑦, a gradient descent is performed to update the weights of the
learning network 𝑤.

After a certain number of steps (𝐶 steps), the weight of the learning network is copied
to the target network (�̂� = 𝑤).

Algorithm 6: Deep Q-Learning

1 begin
input : 𝑠0, 𝛼, 𝛾, 𝜖
output :𝜋

2 Initialize 𝑤, �̂� = 𝑤, 𝑡 = 0 , 𝐷 = 0;
3 foreach episode do
4 𝑠 ← 𝑠0;
5 Selects 𝑎 from a policy derived from �̂�(𝑠, 𝑎, 𝑤) (e.g., 𝜖-greedy) ;
6 Take an action 𝑎 and observe 𝑟 and 𝑠′;
7 Store tuple (𝑠, 𝑎, 𝑟 , 𝑠′) in replay queue 𝐷 ;
8 𝑠 ← 𝑠′;
9 Sample random minibatch from 𝐷 ;

10 foreach tuple (𝑠, 𝑎, 𝑟 , 𝑠′) in minibatch do
11 𝑦 ← 𝑟 + 𝛾 max𝑎′ �̂� (𝑠′, 𝑎′, �̂�);
12 Do gradient descent step on (𝑦 − �̂�(𝑠, 𝑎, 𝑤))2;
13 if mod(t, C) = 0 then
14 �̂� = 𝑤;
15 𝑡 = 𝑡 + 1;
16 return 𝑎𝑟𝑔 max𝑎 [�̂� (𝑠′, 𝑎′, �̂�)] ∀𝑠 ∈ 𝑆;

While the algorithm is commonly referred to as Deep Q-Learning when combined
with the Deep Q-Network, it is also quite prevalent in the literature to simply refer

2.5 | APPROXIMATION OF THE VALUE FUNCTION

15

to it as the Deep Q-Network (Sutton and Barto, 1998). This work applies the same
terminology.

17

Chapter 3

Safe Reinforcement Learning

Reinforcement Learning has proven to be a powerful approach for learning optimal
decision-making policies across various domains. However, in real-world applications,
safety concerns pose a significant challenge, as the selection of incorrect actions or policies
can result in harmful consequences.

In safety-critical domains like autonomous vehicles, healthcare, and robotics, it becomes
imperative to ensure that Reinforcement Learning agents not only maximize expected
rewards but also adhere to predefined safety constraints (Mihatsch and Neuneier, 2002).
To address these challenges, Safe Reinforcement Learning adopts two main approaches.
One approach focuses on adapting the exploration process to avoid actions that could lead
the learning system into undesirable or catastrophic situations (Garcia and Fernández,
2015). The other approach involves modifying the optimality criterion to incorporate the
concept of risk (Garcia and Fernández, 2015). This allows the learning process to take
into account potential hazards and uncertainties, ensuring policies that prioritize safety
over pure expected reward maximization.

3.1 Exploration Process

In Reinforcement Learning Algorithms, it is common to start learning without any prior
knowledge of the environment or the desired goal. In such cases, exploration strategies
like 𝜖-greedy are employed. However, this random exploration may lead the agent to states
where she can encounter potential harm or injury (Garcia and Fernández, 2015).

To address this issue, two methods for modifying the exploration process are commonly
employed:

• The incorporation of external knowledge involves several approaches. In this group,
the learning algorithm is provided with additional knowledge to enhance the learning
process. This additional knowledge can be in the form of initializing the Q-function
with previous demonstration recorded by a human teacher (Driessens and Džeroski,
2004), a policy derived from a predefined and limited number of demonstrations
(Abbeel et al., 2010; Kidambi et al., 2020; Swazinna et al., 2021) or even adding a

18

3 | SAFE REINFORCEMENT LEARNING

teacher or an additional layer capable of providing advice to the agent (Garcia and
Fernández, 2012; Dalal et al., 2018).

• The use of a risk-directed exploration. In these approaches, a risk measure is em-
ployed to assess the probability of selecting different actions during the exploration
process (Gehring and Precup, 2013; Andersen et al., 2020).

3.2 Optimization Criterion
Classical Reinforcement Learning primarily focuses on maximizing the expected re-

ward, but this optimization criterion may not always be the most suitable approach for
dangerous or risky tasks (Mihatsch and Neuneier, 2002). Recognizing the need to consider
risk in decision-making, several alternative optimization criteria have been proposed. These
criteria can be categorized into three main groups (Garcia and Fernández, 2015):

• The Worst-Case Criterion: This group of optimization criteria, considers a policy
to be optimal if it maximizes the worst-case reward. This approach minimizes the
variability of a policy that can be caused by the stochastic nature of the system
(Heger, 1994; Littman and Szepesvári, 1996) or the uncertainty of a not known
MDP parameter (Nilim and El Ghaoui, 2005).

• The Constrained Criterion: This group aims to maximize the reward while ensuring
that other expected measures satisfy specific bounds (Kadota et al., 2006; Moldovan
and Abbeel, 2012; HasanzadeZonuzy et al., 2021).

• The Risk Sensitive Criterion: This group represents a different approach, involving
the addition of a parameter to control the sensitivity to risk. This parameter allows
for the fine-tuning of risk perception in the learning process. To achieve this, the
optimization criterion is transformed into either an exponential utility function
(Ronald A. Howard and Matheson, 1972; Chung and Sobel, 1987; Bouakiz and
Sobel, 1992; Cavazos-Cadena and Hernández-Hernández, 2011; Bäuerle and
Rieder, 2014; Wood and Khosravanian, 2015; Fei, Yang, Yudong Chen, Wang,
and Xie, 2020; Fei, Yang, Yudong Chen, and Wang, 2021) or utilizing implicit
definitions within dynamic programming functions, aiming to incorporate modifiers
that transform metrics like the temporal difference (Mihatsch and Neuneier, 2002;
Shen et al., 2014; Jin et al., 2020; Delétang et al., 2021; Fei, Yang, and Wang, 2021).
Other approaches are rooted in financial engineering and utilize optimization criteria
like value-at-risk (VaR) (Mausser and Rosen, 1999), conditional value-at-risk (CVaR)
(Chow and Ghavamzadeh, 2014; Tang et al., 2019; Stanko and Macek, 2019; Du
et al., 2022; Xu et al., 2023), or the density of the return (Morimura et al., 2010).

The application of the Risk Sensitive Criterion in Reinforcement Learning has garnered
significant attention , and among various criteria, the exponential utility approach stands
out as the most popular and extensively analyzed risk sensitive control framework in
the literature. This work focuses on Risk Sensitive Reinforcement Learning and it will be
further explored in Chapter 4.

19

Chapter 4

Risk Sensitivity with Exponential
Functions in Reinforcement
Learning

In the Risk Sensitive Reinforcement Learning literature the combination of the expo-
nential function with the expected utility theory constitutes the most popular and best-
analyzed risk sensitive control framework (Garcia and Fernández, 2015). As this work
focuses on utilizing exponential functions to model risk, we explore the implementation
of Exponential Expected Utility alongside other proposals that make use of exponential
functions but apply it to the Temporal Difference.

In the context of Risk Sensitive Reinforcement Learning with exponential functions,
we can model the environment as a Risk Sensitive Markov Decision Process (RSMDP)
(Ronald A. Howard and Matheson, 1972). An RSMDP extends the traditional Markov
Decision Process (MDP) by incorporating a risk factor that allows us to define the agent’s
attitude toward risk. Formally, an RSMDP can be represented by the tuple ⟨𝑆, 𝐴, 𝑅, 𝑇 , 𝑠0, 𝜆⟩,
where 𝑆, 𝐴, 𝑅, 𝑇 , 𝑠0 are defined in the same way as in MDPs, and 𝜆 represents the risk
factor.

This chapter is structured as follows: Firstly, we present the risk attitudes. Subsequently,
we introduce the exponential utility function and its application in risk modeling across
different algorithms, including Value Iteration, Q-Learning, and Deep Q-Learning. We
adapt these algorithms to incorporate Exponential Expected Utility.

Moving forward, we explore an alternative approach that applies the utility function to
the Temporal Difference across Value Iteration, Q-Learning, and Deep Q-Learning. Then,
we examine how both the exponential function and a related function known as the soft
indicator can be used with these algorithms.

We show that when applying the exponential function to both expected utility and
Temporal Difference transformations, the values calculated are the same. Finally, we explore
strategies aimed at mitigating overflow issues, which frequently arise when dealing with
exponential functions.

20

4 | RISK SENSITIVITY WITH EXPONENTIAL FUNCTIONS IN REINFORCEMENT LEARNING

4.1 Risk and Certainty Equivalent
The execution of a policy 𝜋 and the dynamics of a process defines a random variable

𝐶𝜋 representing the total rewards obtained by policy 𝜋. This random variable is defined as
follows:

𝐶𝜋(𝑠) = lim
𝑇→∞

𝔼
[

𝑇−1

∑
𝑡=0

𝛾 𝑡𝑟𝑡
||| 𝜋, 𝑠0 = 𝑠

]
. (4.1)

Based on these considerations, the value of a policy 𝜋 at state 𝑠 is 𝑈 (𝑉 𝜋(𝑠)) and can be
defined as follows 1 :

𝑈 (𝑉 𝜋(𝑠)) = E[𝑈 (𝐶𝜋(𝑠))]. (4.2)

Since 𝐶𝜋 is a random variable, we may consider three general attitudes regarding risk
(R L Keeney and Raiffa, 1976): neutral, prone, and averse. First, we need to define the
certainty equivalent of a policy 𝜋.

Intuitively, the certainty equivalent is the reward that an agent would prefer to receive
with certainty rather than taking a chance on an uncertain outcome. If 𝑈 (𝑉 𝜋(𝑠)) < ∞ and
there exists the inverse function 𝑈−1 ∶ ℝ → ℝ+, the certainty equivalent 𝑉 𝜋(𝑠) of a policy
𝜋 is defined by (Bäuerle and Rieder, 2014; Freitas et al., 2020):

𝑉 𝜋(𝑠) = 𝑈−1(𝑈 (𝑉 𝜋(𝑠))) = 𝑈−1(E[𝑈 (𝐶𝜋(𝑠))]). (4.3)

We also define the expected reward 𝐶𝜋(𝑠) of a policy 𝜋 by:

𝐶𝜋(𝑠) = E[𝐶𝜋(𝑠)]. (4.4)

An agent is risk prone if 𝑉 𝜋(𝑠) > 𝐶𝜋(𝑠), risk averse if 𝑉 𝜋(𝑠) < 𝐶𝜋(𝑠), and risk neutral if
𝑉 𝜋(𝑠) = 𝐶𝜋(𝑠) for every state 𝑠 ∈ and policy 𝜋 ∈ Π.

Intuitively, if you are risk prone (optimistic), you would prefer to receive more than
the expected reward to not play the lottery because you are focused on better results (high
reward) of the lottery (i.e. certainty equivalent is bigger than the expected reward). If you
are risk-averse (pessimistic), you would prefer to receive less than the expected reward to
not play the lottery because you are focused on worse results (low reward) of the lottery
(i.e. certainty equivalent is smaller than the expected reward).

Figure 4.1 shows a Risk Sensitive MDP example (Example presented in Chapter 1)
with four states (𝑠0, 𝑠1, 𝑠2, 𝑠3) where 𝑠0 is the initial state and the others are terminals. The
agent can take two different actions: (i) a deterministic action (selecting Arm 0) and (ii) a
stochastic action (selecting Arm 1). When the agent selects Arm 0 she goes to terminal
state 𝑠1 receiving a reward 𝑟 . When the agent selects Arm 1 she has a probability of 0,5 to

1 In this work we make use of the notation 𝑈 (𝑉 𝜋(𝑠)) to represent the value of a policy 𝜋 at state 𝑠 . This
facilitates comparing the different exponential criteria.

4.2 | EXPONENTIAL UTILITY FUNCTION

21

go to terminal state 𝑠1 receiving the same reward 𝑟 . However, there is also a probability of
0,25 to go to terminal state 𝑠2 and receiving a reward of 𝑟 − 1 as well as a probability of
0,25 to go to terminal state 𝑠3 and receiving a reward of 𝑟 + 1.

In the context of the example in Figure 4.1, if you are risk-prone, you will be more
focused on the chances of receiving the higher reward 𝑟 + 1 when selecting Arm 1, leading
you to take that action. On the other hand, if you are risk-averse, you will be more
concerned about the chances of receiving the lower reward 𝑟 − 1 when choosing Arm 1,
and as a result, you will opt for the deterministic action (select Arm 0) instead.

𝑠0

𝑠1

𝑠2

𝑠3

1, 𝑟

Arm
0

0.5, 𝑟

0.25, 𝑟 − 1

0.25, 𝑟 + 1

Arm 1

Figure 4.1: Risk Sensitive MDP example

4.2 Exponential Utility Function
An RSMDP can use an exponential utility function to define the risk attitude. The

exponential function is used since, although it grows very quickly, it has mathematical
properties that allow the use of Dynamic Programming (Ronald A Howard, 1960).

The exponential utility function for an RSMDP can be defined by (Ronald A. Howard
and Matheson, 1972):

𝑈 (𝑥) = 𝑠𝑖𝑔𝑛(𝜆)𝑒𝜆𝑥 , (4.5)

and model arbitrary risk attitude by considering a risk-attitude factor 𝜆. If 𝜆 < 0 the agent
considers a risk-averse attitude, if 𝜆 > 0 the agent considers a risk-prone attitude and,
in the limit, if 𝜆 → 0 the agent considers a risk-neutral attitude. Figure 4.2 illustrate the
exponential utility function for a risk-averse parameter (𝜆 = −1) and for a risk-prone
parameter (𝜆 = 1).

The inverse exponential utility function 𝑈−1 is defined as follows 2:

2 This dissertation utilizes the notation log to represent the natural logarithm.

22

4 | RISK SENSITIVITY WITH EXPONENTIAL FUNCTIONS IN REINFORCEMENT LEARNING

Figure 4.2: Behavior of the exponential utility function.

𝑈−1(𝑥) =
log(𝑠𝑖𝑔𝑛(𝜆)𝑥)

𝜆
. (4.6)

4.3 Exponential Expected Utility Criterion
In the Expected Utility Theory, the main idea is to transform the cumulative rewards

by applying utility functions (Ronald A. Howard and Matheson, 1972) and seek optimal
policies concerning this utility measure. In this work, we refer to the criterion that applies
the exponential function (Equation 4.5) to rewards as Exponential Expected Utility (EEU)
criterion. In the next subsections, we explain how this criterion is employed in Value
Iteration, Q-Learning, and Deep Q-Learning algorithms.

4.3.1 Value Iteration with EEU
By leveraging the principles of expected utility theory, we directly apply the exponential

function to the target value 𝑅 (𝑠, 𝑎) + 𝛾𝑉 𝑖(𝑠′). This allows us to reformulate Value Iteration
as follows:

𝑈 (𝑉 𝑖+1(𝑠)) ← max
𝑎 [

∑
𝑠′∈𝑆

𝑇 (𝑠′|𝑠, 𝑎)𝑈 (𝑅 (𝑠, 𝑎) + 𝛾𝑉 𝑖(𝑠′))]
. (4.7)

An important distinction arises from the applied update, the update now returns the
exponential utility of 𝑉 𝑖+1(𝑠), i.e., 𝑈 (𝑉 𝑖+1(𝑠)). To calculate the certainty equivalent, we
need to apply the inverse utility function 𝑈−1.

The Value Iteration algorithm with the incorporation of the EEU is shown in Algorithm
7. A key aspect of Algorithm 7 is that the certainty equivalent 𝑉 (𝑠) is preserved (line 8).
This aspect is particularly beneficial when comparing this method to other transformations.
Additionally, the use of Δ in the stop criterion remains unchanged from the original Value

4.3 | EXPONENTIAL EXPECTED UTILITY CRITERION

23

Iteration.

Algorithm 7: Value Iteration with EEU

1 begin
input :RSMDP ⟨𝑆, 𝐴, 𝑅, 𝑇 , 𝑠0, 𝜆⟩, 𝛾 , 𝜃
output :𝜋

2 Initializes V with arbitrary values (e.g., 𝑉 (𝑠) = 0 for all 𝑠 ∈ 𝑆);
3 repeat
4 Δ ← 0;
5 foreach 𝑠 ∈ 𝑆 do
6 𝑣 ← 𝑉 (𝑠);
7 𝑢 ← max𝑎 [∑𝑠′∈𝑆 𝑇 (𝑠′|𝑠, 𝑎)𝑈 (𝑅 (𝑠, 𝑎) + 𝛾𝑉 (𝑠′))];
8 𝑉 (𝑠) ← 𝑈−1 (𝑢);
9 Δ ← max(Δ, |𝑣 − 𝑉 (𝑠)|);

10 until Δ < 𝜃;
11 return 𝑎𝑟𝑔 max𝑎 [∑𝑠′∈𝑆 𝑇 (𝑠′|𝑠, 𝑎)𝑈 (𝑅 (𝑠, 𝑎) + 𝛾𝑉 (𝑠′))] ∀𝑠 ∈ 𝑆;

4.3.2 Q-Learning with EEU
To incorporate EEU into Q-Learning, we apply the same principles used in Value

Iteration. The Q-Learning with EEU update equation has the following form:

𝑈 (𝑄𝑖+1 (𝑠, 𝑎)) ← 𝑈 (𝑄𝑖 (𝑠, 𝑎)) + 𝛼 [𝑈 (𝑅 (𝑠, 𝑎) + 𝛾 max
𝑎

𝑄𝑖(𝑠′, 𝑎)) − 𝑈 (𝑄𝑖 (𝑠, 𝑎))] . (4.8)

In this work, the Q-Learning algorithm modified to add EEU is called Q-Learning with
EEU (Algorithm 8).

Algorithm 8: Q-Learning with EEU

1 begin
input : 𝑠0, 𝜆, 𝛼, 𝛾, 𝜖
output :𝜋

2 Initializes 𝑄(𝑠, 𝑎) with arbitrary values for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 ;
3 foreach episode do
4 𝑠 ← 𝑠0;
5 repeat
6 Select 𝑎 from a policy derived from 𝑄 (e.g. 𝜖-greedy) ;
7 Take and action 𝑎 and observe 𝑟 and 𝑠′;
8 𝑢 ← 𝑈 (𝑄 (𝑠, 𝑎)) + 𝛼 [𝑈 (𝑟 + 𝛾 max𝑎 𝑄(𝑠′, 𝑎)) − 𝑈 (𝑄 (𝑠, 𝑎))];
9 𝑄 (𝑠, 𝑎) ← 𝑈−1 (𝑢);

10 𝑠 ← 𝑠′;
11 until 𝑠 being a terminal;
12 return 𝑎𝑟𝑔 max𝑎 [𝑄 (𝑠, 𝑎)] ∀𝑠 ∈ 𝑆;

24

4 | RISK SENSITIVITY WITH EXPONENTIAL FUNCTIONS IN REINFORCEMENT LEARNING

Similar to the modification made in Value Iteration, our objective is to retain the
Value-Action function 𝑄(𝑠, 𝑎) as the certainty equivalent of 𝑈 (𝑄(𝑠, 𝑎)). Thus, in line 9 of
Algorithm 8 the inverse utility 𝑈−1 is applied to calculate the certainty equivalent of the
value 𝑢.

4.3.3 Deep Q-Learning with EEU
The proposed Deep Q-Learning algorithm with EEU is shown in Algorithm 9. To

integrate EEU into the Deep Q-Learning algorithm, we maintain the complete Q-Learning
with EEU update (Equation 4.8) but replacing 𝑄 to the network prediction �̂� that receives a
state, an action and a network parameter 𝑤 to make the prediction. This update is applied
on Line 11 of Algorithm 9.

In the case of Value Iteration with EEU and Q-Learning with EEU, using the certainty
equivalent value was a deliberate choice to facilitate further analyses in these algorithms.
However, in the Deep Q-Learning with EEU, this change also proved to be crucial to the
learning process.

Applying the exponential utility function to the Value-Action function 𝑄 can lead
to significantly large or small values, making it challenging for the neural network to
learn efficiently. In line 12 of Algorithm 9, 𝑢 is transformed to its certainty-equivalent 𝑦
by applying 𝑈−1. This transformation normalizes the values that the network needs to
approximate, resulting in a faster and more stable learning process.

Algorithm 9: Deep Q-Learning with EEU

1 begin
input : 𝑠0, 𝜆, 𝛼, 𝛾, 𝜖
output :𝜋

2 Initialize 𝑤, �̂� = 𝑤, 𝑡 = 0 , 𝐷 = 0;
3 foreach episode do
4 𝑠 ← 𝑠0;
5 Selects 𝑎 from a policy derived from �̂�(𝑠, 𝑎, 𝑤) (e.g., 𝜖-greedy) ;
6 Take an action 𝑎 and observe 𝑟 and 𝑠′;
7 Store tuple (𝑠, 𝑎, 𝑟 , 𝑠′) in replay queue 𝐷 ;
8 𝑠 ← 𝑠′;
9 Sample random minibatch from 𝐷 ;

10 foreach tuple (𝑠, 𝑎, 𝑟 , 𝑠′) in minibatch do
11 𝑢 ← 𝑈 (�̂� (𝑠′, 𝑎, 𝑤))+𝛼 [𝑈 (𝑟 + 𝛾 max𝑎′ �̂� (𝑠′, 𝑎′, �̂�)) − 𝑈 (�̂� (𝑠′, 𝑎, 𝑤))];

12 𝑦 ← 𝑈−1 (𝑢);
13 Do gradient descent step on (𝑦 − �̂�(𝑠, 𝑎, 𝑤))2;
14 if mod(t, C) = 0 then
15 �̂� = 𝑤;
16 𝑡 = 𝑡 + 1;
17 return 𝑎𝑟𝑔 max𝑎 [�̂� (𝑠′, 𝑎′, �̂�)] ∀𝑠 ∈ 𝑆;

4.4 | TEMPORAL DIFFERENCE TRANSFORMATION

25

4.4 Temporal Difference Transformation

The concept of defining risk directly in the dynamic programming equation has been
extensively explored, and one of the most studied approaches involves applying a utility
function to transform the Temporal Difference. This transformation is as follows (Shen
et al., 2014):

𝑄𝑖+1 (𝑠, 𝑎) ← 𝑄𝑖 (𝑠, 𝑎) + 𝛼 [𝑈 (𝑅 (𝑠, 𝑎) + 𝛾 max
𝑎

𝑄𝑖(𝑠′, 𝑎) − 𝑄𝑖 (𝑠, 𝑎)) − 𝑥0] . (4.9)

Analogous to the Value Iteration, when the transition function 𝑇 is known the Value
Iteration with Temporal Difference Transformation can be defined as follow:

𝑄𝑖+1 (𝑠, 𝑎) ← 𝑄𝑖 (𝑠, 𝑎) + 𝛼
[
∑
𝑠′𝜖𝑆

𝑇 (𝑠′|𝑠, 𝑎)𝑈 (𝑅 (𝑠, 𝑎) + 𝛾𝑉 𝑖(𝑠′) − 𝑄𝑖 (𝑠, 𝑎)) − 𝑥0]
. (4.10)

Where 𝑉 𝑖(𝑠) is defined as follow:

𝑉 𝑖(𝑠) ← max
𝑎

𝑄𝑖(𝑠, 𝑎), (4.11)

𝑥0 is the acceptance level (Shen et al., 2014) and 𝑦0 is its certainty equivalent:

𝑥0 = 𝑈 (𝑦0). (4.12)

When 𝑈 (𝑥) = 𝑠𝑖𝑔𝑛(𝜆)𝑒𝜆𝑥 , the acceptance level is defined as 𝑥0 = 𝑠𝑖𝑔𝑛(𝜆) and 𝑦0 = 0
(Shen et al., 2014).

4.4.1 Temporal Difference Transformation Algorithms

In this section, we introduce the adaptation of Value Iteration, Q-Learning, and Deep
Q-Learning to use Equation 4.9 and Equation 4.10.

To modify the Value Iteration for the Temporal Difference Transformation, we use
Equation 4.10, as shown in line 10 of Algorithm 10. In line 3, we set the acceptance level
𝑥0 = 𝑠𝑖𝑔𝑛(𝜆). In line 11 we apply Equation 4.11 to obtain 𝑉 (𝑠).

Adapting the Q-Learning algorithm is a straightforward process, as illustrated in
Algorithm 11.

To maintain consistency with the other proposed methods we adapted the Deep Q-
Learning algorithm by maintaining the complete Q-Learning with TD Transformation
update, resulting in Algorithm 12.

26

4 | RISK SENSITIVITY WITH EXPONENTIAL FUNCTIONS IN REINFORCEMENT LEARNING

Algorithm 10: Value Iteration with TD Transformation

1 begin
input :RSMDP ⟨𝑆, 𝐴, 𝑅, 𝑇 , 𝑠0, 𝜆⟩, 𝛼, 𝛾 , 𝜃
output :𝜋

2 Initializes V with arbitrary values (e.g., 𝑉 (𝑠) = 0 for all 𝑠 ∈ 𝑆);
3 Initializes 𝑄(𝑠, 𝑎) with arbitrary values (e.g., 𝑄(𝑠, 𝑎) = 0 for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴) ;
4 𝑥0 ← 𝑠𝑖𝑔𝑛(𝜆);
5 repeat
6 Δ ← 0;
7 foreach 𝑠 ∈ 𝑆 do
8 𝑣 ← 𝑉 (𝑠);
9 foreach 𝑎 ∈ 𝐴 do

10 𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) +
𝛼 [∑𝑠′∈𝑆 𝑇 (𝑠′|𝑠, 𝑎)𝑈 (𝑅 (𝑠, 𝑎) + 𝛾𝑉 (𝑠′) − 𝑄 (𝑠, 𝑎)) − 𝑥0];

11 𝑉 (𝑠) ← max𝑎 𝑄(𝑠, 𝑎);
12 Δ ← max(Δ, |𝑣 − 𝑉 (𝑠)|);
13 until Δ < 𝜃;
14 return 𝑎𝑟𝑔 max𝑎 [∑𝑠′∈𝑆 𝑇 (𝑠′|𝑠, 𝑎)𝑈 (𝑅 (𝑠, 𝑎) + 𝛾𝑉 (𝑠′))] ∀𝑠 ∈ 𝑆;

4.4.2 Exponential Utility and Soft Indicator Functions with
Temporal Difference Transformation

The Temporal Difference Transformation algorithms have the flexibility to work with
various utility functions. Previous research (Mihatsch and Neuneier, 2002; Shen et al.,
2014; Delétang et al., 2021) has shown their incorporation into the TD transformation
framework. In this study, we specifically concentrate on two different approaches for
applying exponential criteria: (i) the exponential utility function (Shen et al., 2014) and (ii)
the soft indicator function (Delétang et al., 2021).

The exponential utility function (Equation 4.5) could be used in the Temporal Difference
Transformation algorithms (Shen et al., 2014). We call this modification Exponential TD
Transformation (ETD).

Another exponential function that could be used in the Temporal Difference Transfor-
mation algorithms is the soft indicator function (Delétang et al., 2021):

𝑈 (𝑥) =
2𝑥

1 + 𝑒−𝜆𝑥
. (4.13)

The Soft Indicator function serves as an approximation of the exponential utility function
(Delétang et al., 2021). Figure 4.3 displays the Soft Indicator function for a risk-averse
parameter (𝜆 = −1) and for a risk-prone parameter (𝜆 = 1). Its behavior is similar to the
use of exponential utility (Figure 4.2). While these functions exhibit some similarities
in their behavior, the Soft Indicator method produces entirely different results in value
function as we show in the Experiments chapter. We refer to this approach as the Soft
Indicator TD Transformation (SITD).

4.5 | RELATIONSHIP BETWEEN EEU AND ETD

27

Algorithm 11: Q-Learning with TD Transformation

1 begin
input : 𝑠0, 𝜆, 𝛼, 𝛾, 𝜖
output :𝜋

2 Initializes 𝑄(𝑠, 𝑎) with arbitrary values for all 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 ;
3 𝑥𝑜 ← 𝑠𝑖𝑔𝑛(𝜆);
4 foreach episode do
5 𝑠 ← 𝑠0;
6 repeat
7 Select 𝑎 from a policy derived from 𝑄 (e.g. 𝜖-greedy) ;
8 Take and action 𝑎 and observe 𝑟 and 𝑠′;
9 𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 [𝑈 (𝑟 + 𝛾 max𝑎 𝑄(𝑠′, 𝑎) − 𝑄 (𝑠, 𝑎)) − 𝑥0];

10 𝑠 ← 𝑠′;
11 until 𝑠 being a terminal;
12 return 𝑎𝑟𝑔 max𝑎 [𝑄 (𝑠, 𝑎)] ∀𝑠 ∈ 𝑆;

Figure 4.3: Behavior of the Soft Indicator function.

4.5 Relationship between EEU and ETD

In sections 4.3 and 4.4, we explored the application of the Exponential Utility function
(Equation 4.5) in two distinct criteria: EEU and ETD. An important observation from apply-
ing the Exponential Utility in both criteria is that they converge to the same value.

Theorem 1 (EEU and ETD converge to the same state value.). When 𝑦0 = 0 and then
𝑥0 = 𝑠𝑖𝑔𝑛(𝜆), the ETD and EEU converge to the same state value.

Proof. Let’s assume the convergence of the Value Iteration with Temporal Difference
Transformation given in Equation 4.10:

∑
𝑠′𝜖𝑆

𝑇 (𝑠′|𝑠, 𝑎)𝑈 (𝑅 (𝑠, 𝑎) + 𝛾𝑉 𝑖(𝑠′) − 𝑄𝑖 (𝑠, 𝑎)) − 𝑥0 = 0. (4.14)

28

4 | RISK SENSITIVITY WITH EXPONENTIAL FUNCTIONS IN REINFORCEMENT LEARNING

Algorithm 12: Deep Q-Learning with TD Transformation

1 begin
input : 𝑠0, 𝜆, 𝛼, 𝛾, 𝜖
output :𝜋

2 Initialize 𝑤, �̂� = 𝑤, 𝑡 = 0 , 𝐷 = 0;
3 𝑥𝑜 ← 𝑠𝑖𝑔𝑛(𝜆);
4 foreach episode do
5 𝑠 ← 𝑠0;
6 Selects 𝑎 from a policy derived from �̂�(𝑠, 𝑎, 𝑤) (e.g., 𝜖-greedy) ;
7 Take an action 𝑎 and observe 𝑟 and 𝑠′;
8 Store tuple (𝑠, 𝑎, 𝑟 , 𝑠′) in replay queue 𝐷 ;
9 𝑠 ← 𝑠′;

10 Sample random minibatch from 𝐷 ;
11 foreach tuple (𝑠𝑒, 𝑎𝑒, 𝑟𝑒, 𝑠′𝑒) in minibatch do
12 𝑦 ← �̂� (𝑠′, 𝑎, 𝑤) + 𝛼 [𝑈 (𝑟 + 𝛾 max𝑎′ �̂� (𝑠′, 𝑎′, �̂�) − �̂� (𝑠′, 𝑎, 𝑤)) − 𝑥0];
13 Do gradient descent step on (𝑦 − �̂�(𝑠, 𝑎, 𝑤))2;
14 if mod(t, C) = 0 then
15 �̂� = 𝑤;
16 𝑡 = 𝑡 + 1;
17 return 𝑎𝑟𝑔 max𝑎 [�̂� (𝑠′, 𝑎′, �̂�)] ∀𝑠 ∈ 𝑆;

Using Equation 4.5 and 𝑥0 = 𝑠𝑖𝑔𝑛(𝜆) in Equation 4.14, we obtain:

𝑠𝑖𝑔𝑛(𝜆) = ∑
𝑠′𝜖𝑆

𝑇 (𝑠′|𝑠, 𝑎) 𝑠𝑖𝑔𝑛(𝜆)𝑒𝜆(𝑅(𝑠,𝑎)+𝛾𝑉
𝑖(𝑠′)−𝑄𝑖(𝑠,𝑎))

𝑠𝑖𝑔𝑛(𝜆) = ∑
𝑠′𝜖𝑆

𝑇 (𝑠′|𝑠, 𝑎) 𝑠𝑖𝑔𝑛(𝜆)𝑒𝜆(𝑅(𝑠,𝑎)+𝛾𝑉
𝑖(𝑠′))−𝜆𝑄𝑖(𝑠,𝑎)

𝑠𝑖𝑔𝑛(𝜆) =
1

𝑒𝜆𝑄𝑖(𝑠,𝑎) ∑
𝑠′𝜖𝑆

𝑇 (𝑠′|𝑠, 𝑎) 𝑠𝑖𝑔𝑛(𝜆)𝑒𝜆(𝑅(𝑠,𝑎)+𝛾𝑉
𝑖(𝑠′))

𝑠𝑖𝑔𝑛(𝜆)𝑒𝜆𝑄
𝑖(𝑠,𝑎) = ∑

𝑠′𝜖𝑆

𝑇 (𝑠′|𝑠, 𝑎) 𝑠𝑖𝑔𝑛(𝜆)𝑒𝜆(𝑅(𝑠,𝑎)+𝛾𝑉
𝑖(𝑠′))

𝑈 (𝑄𝑖 (𝑠, 𝑎)) = ∑
𝑠′𝜖𝑆

𝑇 (𝑠′|𝑠, 𝑎)𝑈 (𝑅 (𝑠, 𝑎) + 𝛾𝑉 𝑖(𝑠′)) .

By applying Equation 4.11 to find 𝑉 𝑖(𝑠) in the system of equations, we obtain:

𝑈 (𝑉 𝑖 (𝑠)) = max
𝑎 [

∑
𝑠′𝜖𝑆

𝑇 (𝑠′|𝑠, 𝑎)𝑈 (𝑅 (𝑠, 𝑎) + 𝛾𝑉 𝑖(𝑠′))]
. (4.15)

The system of equations is the same as Equation 4.7 that corresponds to Value Iteration
with EEU, demonstrating that both converge to the same state value.

4.6 | EXPONENTIAL CRITERIA AND OVERFLOW

29

In the Experiments chapter, we illustrate these aspects of the convergence of EEU and
ETD criteria.

4.6 Exponential criteria and overflow

Although there are various advantages of using the exponential utility function to
model risk attitudes, there is a significant drawback related to potential underflow or
overflow issues when computing intermediate calculations due to the rapid decrease or
growth of this function. To address these problems, this section presents two different
approaches: (i) truncating the utility function, and (ii) applying LogSumExp during utility
calculations. These techniques aim to mitigate the numerical instability associated with
the use of the exponential function and improve the overall performance of risk-sensitive
algorithms.

4.6.1 Truncated Exponential Utility
The Q-Learning with Temporal Difference transformation (Equation 4.9) converges

when the Lipschitz condition is satisfied by the utility function (Shen et al., 2014). Although
the exponential utility function does not satisfy the global Lipschitz condition, truncating
it within specific lower and upper bounds guarantees convergence (Shen et al., 2014). This
truncating can also handle some overflow errors.

The first crucial assumption that must be made for this truncation technique is that
we have prior knowledge of the upper bound for the absolute value of rewards:

𝑅 = 𝑠𝑢𝑝 |𝑅 (𝑠, 𝑎))| . (4.16)

Considering 𝑦0 = 𝑈−1(𝑥0), the lower and upper bounds 𝑥 and 𝑥 are defined by (Shen
et al., 2014):

𝑥 = 𝑦0 − 2𝑅
1−𝛾 and 𝑥 = 𝑦0 + 2𝑅

1−𝛾 . (4.17)

Assuming positive constants 𝜖, 𝐿 ∈ ℝ+ such that 0 < 𝜖 ≤ 𝑈 (𝑥)−𝑈 (𝑦)
𝑥−𝑢 ≤ 𝐿, for all 𝑥 ≠ 𝑦 ∈

[𝑥, 𝑥], the truncated utility 𝑈 ′ is defined by truncating the utility function when U outside
the interval [𝑥, 𝑥] (Shen et al., 2014):

𝑈 ′(𝑥) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑈 (𝑥) + 𝜖 (𝑥 − 𝑥) , 𝑥 ∈ (−∞, 𝑥)
𝑈 (𝑥) , 𝑥 ∈ [𝑥, 𝑥]
𝑈 (𝑥) − 𝜖 (𝑥 − 𝑥) , 𝑥 ∈ (𝑥,∞)

(4.18)

The truncate strategy can be applied to the Exponential Utility function on EEU and
ETD criteria. The truncate strategy will be further examined and explored in detail in the
Experiments chapter.

30

4 | RISK SENSITIVITY WITH EXPONENTIAL FUNCTIONS IN REINFORCEMENT LEARNING

4.6.2 LogSumExp

The numeric overflow problem is becoming more common in machine learning algo-
rithms (Robert, 2014). There are techniques that have been used to deal with this type
of problem such as LogSumExp (Naylor et al., 2001), Gordian-L (Sigl et al., 1991) and
Lp-Norm (Kennings and Markov, 2000). In particular, the LogSumExp technique, has been
used successfully in several works (Nielsen and Sun, 2016; Yi Chen and Gao, 2016). This
type of problem also happens in Hidden Markov Models and some techniques used are a
scaling technique (Rabiner, 1990) and the LogSumExp technique (Mann, 2006). We chose
the LogSumExp (Logarithm of the Sum of Exponential) strategy because this strategy uses
a logarithmic function on an exponential function.

The LogSumExp instead of calculating the sum of exponential, which can lead to numer-
ical overflow, uses the properties of logarithms to perform the calculation as follow:

log(𝑒𝐴 + 𝑒𝐵) = log(𝑒𝐴(1 +
𝑒𝐵

𝑒𝐴
)) = 𝐴 + log(1 + 𝑒𝐵−𝐴). (4.19)

When using Equation 4.19 it is necessary to identify the largest exponent and designate
it as A. By doing so, the exponential function is applied to a negative number (𝐵 − 𝐴),
preventing overflow issues.

The integration of the EEU criterion with the LogSumExp has demonstrated promising
results (Freitas et al., 2020), and its application on EEU is simple. Next, we present how
LogSumExp can be employed in Value Iteration with EEU (Freitas et al., 2020). As a
valuable contribution from this work, we apply the LogSumExp technique to the update
function of Q-Learning with EEU. By incorporating LogSumExp, we extend its applicability
to both Q-Learning with EEU and Deep Q-Learning with EEU algorithms.

Value Iteration with EEU and LogSumExp

Modifying the Value Iteration with EEU from Equation 4.7 to iterate over the function
𝑄𝑖+1(⋅) instead of 𝑉 𝑖(⋅), we have:

𝑈 (𝑄𝑖+1(𝑠, 𝑎)) = ∑
𝑠′∈𝑆

𝑇 (𝑠′|𝑠, 𝑎)𝑈 (𝑅 (𝑠, 𝑎) + 𝛾𝑉 𝑖(𝑠′)) (4.20)

Applying the exponential utility function (Equation 4.5) in Equation 4.20, we ob-
tain:

𝑠𝑖𝑔𝑛(𝜆)𝑒𝜆𝑄
𝑖+1(𝑠,𝑎) = ∑

𝑠′∈𝑆

𝑇 (𝑠′|𝑠, 𝑎) 𝑠𝑖𝑔𝑛(𝜆)𝑒𝜆(𝑅(𝑠,𝑎)+𝛾𝑉
𝑖(𝑠′)) (4.21)

Eliminating 𝑠𝑖𝑔𝑛 (𝜆) and applying log in both sides of Equation 4.21 to became a log of
exponential sum, we have:

4.6 | EXPONENTIAL CRITERIA AND OVERFLOW

31

𝑄𝑖+1 (𝑠, 𝑎) =
1
𝜆
log

[
∑
𝑠′∈𝑆

𝑇 (𝑠′|𝑠, 𝑎) 𝑒𝜆(𝑅(𝑠,𝑎)+𝛾𝑉
𝑖(𝑠′))

]

=
1
𝜆
log

[
∑
𝑠′∈𝑆

𝑇 (𝑠′|𝑠, 𝑎) 𝑒𝜆𝑅(𝑠,𝑎)𝑒𝜆𝛾𝑉
𝑖(𝑠′)

]

= 𝑅 (𝑠, 𝑎) +
1
𝜆
log

[
∑
𝑠′∈𝑆

𝑇 (𝑠′|𝑠, 𝑎) 𝑒𝜆𝛾𝑉
𝑖(𝑠′)

]

= 𝑅 (𝑠, 𝑎) +
1
𝜆
log

[
∑
𝑠′∈𝑆

𝑒log(𝑇(𝑠
′ |𝑠,𝑎))+𝜆𝛾𝑉 𝑖(𝑠′)

]
.

(4.22)

The two auxiliary function 𝑘𝑎,𝑖𝑠,𝑠′ and 𝐾 𝑎,𝑖
𝑠 are defined with the objective to identify the

largest exponent (Freitas et al., 2020):

𝑘𝑎,𝑖𝑠,𝑠′ = log (𝑇 (𝑠′|𝑠, 𝑎)) + 𝜆𝛾𝑉 𝑖(𝑠′) (4.23)

𝐾 𝑎,𝑖
𝑠 = max

𝑠′∈𝑆
(𝑘𝑎,𝑖𝑠,𝑠′) . (4.24)

Introducing 𝑘𝑎,𝑖𝑠,𝑠′ and 𝐾 𝑎,𝑖
𝑠 in Equation 4.22, we have:

𝑄𝑖+1(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) +
1
𝜆
log

[
∑
𝑠′∈

𝑒𝑘
𝑎,𝑖
𝑠,𝑠′

]

= 𝑅(𝑠, 𝑎) +
1
𝜆
log

[
∑
𝑠′∈

𝑒𝑘
𝑎,𝑖
𝑠,𝑠′−𝐾

𝑎,𝑖
𝑠 𝑒𝐾

𝑎,𝑖
𝑠

]

= 𝑅(𝑠, 𝑎) +
1
𝜆
log

[
𝑒𝐾

𝑎,𝑖
𝑠 ∑

𝑠′∈
𝑒𝑘

𝑎,𝑖
𝑠,𝑠′−𝐾

𝑎,𝑖
𝑠

]

= 𝑅(𝑠, 𝑎) +
1
𝜆
𝐾 𝑎,𝑖
𝑠 +

1
𝜆
log

[
∑
𝑠′∈

𝑒𝑘
𝑎,𝑖
𝑠,𝑠′−𝐾

𝑎,𝑖
𝑠

]
.

(4.25)

Note that, in this last formulation the exponential function is applied to a negative
number, preventing overflow issues.

Finally, the value 𝑉 𝑖+1(𝑠) is calculated with Equation 4.11.

Q-Learning with EEU and LogSumExp

We now apply the LogSumExp on the Q-Learning with EEU update function (Equation
4.8).

First Equation 4.8 is rewritten as follows:

32

4 | RISK SENSITIVITY WITH EXPONENTIAL FUNCTIONS IN REINFORCEMENT LEARNING

𝑈 (𝑄𝑖+1 (𝑠, 𝑎)) = (1 − 𝛼)𝑈 (𝑄𝑖 (𝑠, 𝑎)) + 𝛼 (𝑈 (𝑅 (𝑠, 𝑎) + 𝛾 max
𝑎

𝑄𝑖(𝑠′, 𝑎))) . (4.26)

Applying the exponential utility function (Equation 4.5) on Equation 4.26:

𝑠𝑖𝑔𝑛(𝜆)𝑒𝜆𝑄
𝑖+1(𝑠,𝑎) = (1 − 𝛼) (𝑠𝑖𝑔𝑛(𝜆)𝑒𝜆𝑄

𝑖(𝑠,𝑎)) + 𝛼 (𝑠𝑖𝑔𝑛(𝜆)𝑒
𝜆(𝑅(𝑠,𝑎)+𝛾 max𝑎 𝑄𝑖(𝑠′,𝑎))

) . (4.27)

Eliminating 𝑠𝑖𝑔𝑛 (𝜆) and applying log in both sides of Equation 4.27 to became a log of
exponential sum, we have:

𝑄𝑖+1 (𝑠, 𝑎) =
1
𝜆
log [(1 − 𝛼) (𝑒𝜆𝑄

𝑖(𝑠,𝑎)) + 𝛼 (𝑒
𝜆(𝑅(𝑠,𝑎)+𝛾 max𝑎 𝑄𝑖(𝑠′,𝑎))

)]

=
1
𝜆
log [(𝑒

𝜆𝑄𝑖(𝑠,𝑎)+log(1−𝛼)) + (𝑒
𝜆(𝑅(𝑠,𝑎)+𝛾 max𝑎 𝑄𝑖(𝑠′,𝑎))+log(𝛼)

)] .
(4.28)

The LogSumExp strategy first identifies the largest term of an exponential sum. Note
that, differently from the application of LogSumExp to Value Iteration with EEU, we have
only two terms instead of a sum of many terms. Thus, we define the two terms as being 𝐴
and 𝐵:

𝐴 = 𝜆𝑄𝑖 (𝑠, 𝑎) + log (1 − 𝛼) . (4.29)

𝐵 = 𝜆(𝑅 (𝑠, 𝑎) + 𝛾 max
𝑎

𝑄𝑖(𝑠′, 𝑎)) + log(𝛼). (4.30)

When 𝐴 > 𝐵:
𝑄𝑖+1 (𝑠, 𝑎) =

1
𝜆 [𝐴 + log (1 + 𝑒𝐵−𝐴)] . (4.31)

Otherwise:
𝑄𝑖+1 (𝑠, 𝑎) =

1
𝜆 [𝐵 + log (1 + 𝑒𝐴−𝐵)] . (4.32)

33

Chapter 5

Experiments

Experiments were performed in two domains and three different algorithms: (i) Value
Iteration (VI); (ii) Q-Learning (QL); and (iii) Deep Q-Network (DQN). For each one of
the domains and each algorithm, three exponential criteria were used: (i) Exponential
Expected Utility (EEU); (ii) Exponential TD Transformation (ETD); and (iii) Soft Indicator
TD Transformation (SITD).

With the proposed experiments, we aim to answer the following questions:

• How does the risk factor, 𝜆, affect the exponential criteria?

• How do sampling algorithms (e.g.: Q-Learning and Deep Q-Network) influence the
use of exponential criteria?

• Does the learning rate, 𝛼, directly affect the learning process and how much is each
exponential criterion affected?

• What is the relationship between exponential criteria and the use of Deep Q-
Network?

• How overflow issues are handled? Can they be avoided in all scenarios?

• How difficult is calibrating risk sensitivity parameters in exponential risk criteria?

• Among the EEU, ETD, and SITD criteria, which one is more stable and easier to
apply in different scenarios?

The experiments were done on a machine with a processor of 4 cores at 2.3 GHz and
16 GB of memory 1.

5.1 Domains and setup
In this section, we first describe the domains used in the experiments and the experi-

mental setup to run each algorithm.

1 The source code of the implementation is available at https://github.com/dulpneto/exponential_rs_rl

https://github.com/dulpneto/exponential_rs_rl

34

5 | EXPERIMENTS

5.1.1 Two Arm Bandit Domain

The Two Arm Bandit domain (adapted from (Delétang et al., 2021)) is a simple
environment to evaluate how much risk the agent is willing to take by setting two different
arms, Arm 0 (called Deterministic Arm) and Arm 1 (called Stochastic Arm). Arm 0 always
returns a deterministic reward 𝑟0 while Arm 1 retrieves a stochastic reward with mean 𝑟1
with precision 𝑝. For example, setting 𝑝 = 2 makes Arm 1 return rewards 𝑟1 − 1 with 0.25
of chance, return 𝑟1 with 0.5 of chance, and return 𝑟1 + 1 with 0.25 of chance. Figure 5.1
shows rewards distribution from the Two Armed Bandit instance with 𝑟0 = 0 and 𝑟1 = 0
with precision 𝑝 = 2.

Figure 5.1: Rewards distribution of the Two Armed Bandit instance with 𝑟0 = 0 and 𝑟1 = 0 with
precision 𝑝 = 2.

Value Iteration and Q-Learning Setup

We run tests on the Two Armed Bandit by setting 𝑟0 and 𝑟1 from -0.5 to 0.5 with 0.025
intervals and 𝑝 = 2. The risk factor values used are -5, -2, -0.5, -0.1, 0.1, 0.5, 2, and 5. Thus,
the number of different instances created (called, configurations) is 30 × 30 × 8.

As Value Iteration does not involve sampling, we execute it only once because it
produces the same result for all runs with the same configuration. For the Q-learning
algorithm, we executed 100 runs of experiments for each configuration and we set each
run to finish after 150 episodes.

In the Value Iteration experiments, each point of the chart (that corresponds to one
configuration) is painted in blue when the policy selects Arm 0 and red when it selects
Arm 1.

In the experiments with Q-learning, for each configuration, we compute the number of
times that the obtained policies select Arm 1 minus the number of times that selects Arm
0 considering the 100 runs. With these values, a blue-read heat map is created (Figure 5.2).
The point will be blue when the agent selects Arm 0 for all runs and red when it selects
Arm 1 for all runs. The point will be colored in white when the agent selects Arm 0 in 50%
of the runs.

5.1 | DOMAINS AND SETUP

35

Figure 5.2: Heat map used to color the Two Armed Bandit policies.

5.1.2 River Crossing Domain
The River Crossing domain (Freire and Delgado, 2017) consists of a grid (𝑁𝑥 × 𝑁𝑦)

with the lower left corner being the initial state and the lower right corner being the final
state. In this domain, the agent can perform 4 actions: moving north (↑), south (↓), east
(→), or west (←).

The agent’s goal is to reach the final state and for that, the agent can cross the river
or walk along the river margin until reaching the bridge at the top of the grid. When the
agent walks along the margin or over the bridge, she has a probability 1 of performing
the chosen action. However, when the agent is in a state that represents the river, she has
a chance of 75% to perform the selected action and a chance of 25% to be pushed by the
river to the next state to the south.

For each action performed, the agent receives a reward of -1 and if the agent reaches
the waterfall, she returns to the initial state. Figure 5.3 shows an instance of the River
domain with a grid size 10 × 10.

Figure 5.3: A 10 × 10 instance of the River Crossing Domain.

The number of steps on the left margin the agent will perform before turning right
can be use to analyze the risk attitude in this domain. In this work, we call it the number
of safe steps and this will be computed for all the instances analyzed. Specifically, in an
instance with a shape of 10 × 10, we have nine distinct risk attitudes by considering the
number of safe steps. In Figure 5.4 we show four of them, from the most risk-prone to the
most risk-averse. The number of safe steps is 1,3,6,9, respectively (from left to right).

36

5 | EXPERIMENTS

Figure 5.4: Number of safe steps in the most risk-prone to the most risk-averse policies.

Value Iteration, Q-Learning and Deep Q-Network Setup

A 10 × 10 instance of the River Crossing Domain was used in the experiments and the
risk factor was varying between -1.5 and 1.5 with intervals of 0.1.

While Value Iteration was executed once for each configuration, Q-Learning was exe-
cuted 15 times for each configuration and each run was set to finish after 300 episodes.

To apply the Deep Q-Network algorithm, we first change the River Crossing environ-
ment to return an image of the current observation instead of returning the state number.
This image is a plot from the environment similar to Figure 5.3 with size 100 × 100 pixels
in gray scale where the river and waterfall are marked with hatches.

The input layer of the Convolutional Neural Network has shape 100 × 100 × 1 followed
by:

• Conv2D: 6 filters, kernel size 7x7, stride 3, ReLU activation.

• MaxPooling2D: Pool size 2x2.

• Conv2D: 12 filters, kernel size 4x4, ReLU activation.

• MaxPooling2D: Pool size 2x2.

• Flatten.

• Dense: 216 units, ReLU activation.

• Dense: 4 units, with no activation representing the total number of actions.

Figure 5.5 shows the network architecture along with one example of an observation
image from the River Crossing domain in the left side.

The mean squared error loss and the Adam optimizer with a learning rate of 0.001 are
used.

Deep Q-Network was executed 15 times for each configuration and each run was also
set to finish after 300 episodes.

5.2 | RESULTS FOR THE TWO ARM BANDIT DOMAIN

37

Figure 5.5: DQN network architecture used in the experiments for the River Crossing domain.

5.2 Results for the Two Arm Bandit Domain

In this section, experiments were performed varying the risk factor and the learning
rate for the Two Arm Bandit Domain.

5.2.1 Varying the risk factor
For this experiment, we varied the risk factor and fixed the learning rate 𝛼 = 0.1.

The Value Iteration and Q-Learning algorithms were executed with the three exponential
criteria: (i)EEU; (ii) ETD; and (iii) SITD. The objective of this experiment is to analyze how
each exponential criteria behave for each risk factor and how they are influenced by the
use of the sampling algorithms.

Exponential Expected Utility

The color representation of the policies obtained by the Value Iteration and Q-Learning
algorithms with EEU criterion are shown in Figure 5.6(a) and 5.6(b), respectively. In the last
one, we consider the 100 runs for each configuration as described in Section 5.1.1.

As expected, for the Value Iteration algorithm with EEU criterion, for 𝜆 = −5 the agent
is more risk averse and selects the Deterministic Arm for almost all the configurations.
As the risk factor gets closer to zero, she approximates to the black diagonal line that
represents the risk-neutral policy. And finally when 𝜆 = 5 the agent chooses the Stochastic
Arm for almost all the instances.

Q-Learning with EEU has almost the same behavior as Value Iteration with EEU
regarding the decisions for each risk factor. The main difference is the area where the
agent changes the policy, in this part appears a white area showing for some cases the
agent selects the Deterministic Arm in 50% of the runs and the Stochastic Arm in the rest
of the runs although the area is still parallel to the risk neutral-policy.

38

5 | EXPERIMENTS

(a) Value Iteration

(b) Q-Learning

Figure 5.6: Policies obtained by the Value Iteration and Q-Learning algorithms with EEU criterion for
Two Armed Bandit domain.

Exponential TD Transformation

The color representation of the policies obtained by the Value Iteration and Q-Learning
algorithms with ETD criterion are presented in Figure 5.7(a) and 5.7(b), respectively. In
the last one, we consider the 100 runs for each configuration as described in Section
5.1.1.

As expected, the policies obtained by the Value Iteration algorithm with EEU criterion
for each configuration (Figure 5.6(a)) are equal to the ones obtained by the Value Iteration
algorithm with ETD criterion (Figure 5.7(a)). This follows Theorem 1 that states that
EEU and ETD converge to the same state value. However, the policies obtained by the Q-
Learning algorithm with EEU criterion (Figure 5.6(b)) are different from the ones obtained
by the Q-Learning algorithm with ETD criterion (Figure 5.7(b)) for some configurations.
For 𝜆 = −0.1 and 𝜆 = 0.1 and using Q-Learning with the ETD criterion, the white area is
not more parallel to the line that represents the risk-neutral policy. For 𝜆 = 5 the white area

5.2 | RESULTS FOR THE TWO ARM BANDIT DOMAIN

39

for Q-Learning with ETD criterion is bigger than for the Q-Learning with EEU criterion.
Finally, for 𝜆 = −5, the Q-Learning with ETD criterion must have a red area in the bottom
right corner, but it was not able to find the correct policy in this part.

(a) Value Iteration

(b) Q-Learning

Figure 5.7: Policies obtained by the Value Iteration and Q-Learning algorithms with ETD criterion for
Two Armed Bandit domain.

Soft Indicator TD Transformation

The color representation of the policies obtained by the Value Iteration and Q-Learning
algorithms with SITD criterion are presented in Figure 5.8(a) and 5.8(b), respectively. In
the last one, we consider the 100 runs for each configuration as described in Section
5.1.1.

SITD criterion converges to different values than EEU and ETD criteria. This is expected
since SITD uses a different transformation function. For 𝜆 = 2 and 𝜆 = 5 the line where
the agent changes from Arm 0 to Arm 1 is not parallel with the line that represents the
risk-neutral policy. This behavior was not observed with the other criteria.

40

5 | EXPERIMENTS

Figure 5.8 shows that Q-Learning with SITD has almost the same behavior as Value
Iteration with SITD regarding the decisions for each risk factor. The main difference is the
area where the agent changes the policy (white area).

(a) Value Iteration

(b) Q-Learning

Figure 5.8: Policies obtained by the Value Iteration and Q-Learning algorithms with SITD criterion
for Two Armed Bandit domain.

5.2.2 Varying the learning rate
In the experiments of Section 5.2.1 we notice some stability of the Q-Learning algo-

rithm with EEU criteria but the two TD transformations (ETD and SITD) displayed some
unexpected results, mainly when looking for scenarios with 𝜆 = 5. Thus, in this section,
we analyze how each criterion is affected by the learning rate. We fixed 𝜆 = 5 and used
the following learning rates 0.2, 0.1, 0.05, and 0.01.

Figure 5.9 shows the color representation of the policies obtained by the Q-Learning
algorithm with EEU, ETD, and SITD criteria in the first, second, and third lines, respec-
tively.

5.3 | RESULTS FOR THE RIVER CROSSING DOMAIN

41

EEU is the one with less variation while varying the learning rate. On the other hand,
the other two criteria are showing problems depending on the value of the learning
rate. The ETD works better as we decrease the learning rate, while the SITD works
better as we increase the learning rate. This behavior can make parameter calibration
and convergence more difficult in bigger scenarios. This will be also analyzed in the next
domain experiments.

Figure 5.9: Policies obtained by Q-Learning with EEU, ETD, and SITD criteria and varying the learning
rate for Two Armed Bandit domain.

5.3 Results for the River Crossing Domain
In this section, experiments were performed using Value Iteration and Q-Learning in

the River Crossing domain. Additionally, we incorporate the Deep Q-Network algorithm
to verify how all exponential criteria interact with deep learning methods.

5.3.1 Varying the risk factor
As stated before, the number of safe steps can be used to analyze the risk attitude.

Specifically, for the 10 × 10 instance of the River Crossing domain, we have nine possible
policies considering this number. To investigate how the sampling algorithms respond to
this range of possible policies, we varied the risk factor while maintaining the learning
rate 𝛼 = 0.1.

We analyze if the policies encountered by the sampling algorithms are equal to the
policy encountered by the Value Iteration algorithm. In these figures, the policies found by
Value Iteration are represented by orange points, and Q-Learning or Deep Q-Network are

42

5 | EXPERIMENTS

represented by blue points. When these policies are the same the orange points overlay
the blue ones.

Furthermore, we examined the distribution of policies that each sampling algorithm
converged to, as well as the scenarios in which they encountered difficulties in converging
to a proper policy (a policy that successfully guides the agent to the goal state). Convergence
issues and overflow problems will be thoroughly analyzed in Sections 5.3.3 and 5.3.4,
respectively, providing more detailed insights into these aspects.

Exponential Expected Utility

The left side of Figure 5.10 shows the number of safe steps in the policies computed by
Value Iteration with EEU and the average number of states for the Q-Learning algorithm
with EEU considering 25 runs for each configuration.

The right side of Figure 5.10 shows the distribution of safe steps for the Q-Learning
algorithm with EEU criterion.

Value Iteration with EEU effectively captures various risk attitudes based on the
risk factor, and this behavior is consistent when applying the same criterion to the Q-
Learning algorithm, except when the risk factor is close to zero. In such cases, there are
configurations where the Q-Learning algorithm converges to policies that differ from
those obtained when running the Value Iteration algorithm. For instance, when running
Q-Learning with 𝜆 = −0.2, the agent converged to policies with 4, 5, 6, 7, and 8 safe steps.
This observation highlights the challenge of calibrating the risk parameter to achieve the
desired risk attitude while running sampling algorithms.

Figure 5.10: Safe steps in the policies for the 10×10 instance of the River Crossing domain. (a) Number
of safe states computed by Value Iteration and Q-Learning algorithms with EEU; and (b) distribution
of the number of safe steps computed by Q-Learning with EEU.

Figure 5.11 shows the same experiments but with Deep Q-Network over 15 runs for
each configuration. The results obtained from Q-Learning and Deep Q-Network are quite
similar in most cases, except for some increased variability in the policies obtained for
certain risk factors. For instance, when examining the results for 𝜆 = 0.8, we obtained stable
results when running the Q-Learning algorithm (the number of safe steps is 1). However,
the same stability was not observed when running the Deep Q-Network algorithm.

5.3 | RESULTS FOR THE RIVER CROSSING DOMAIN

43

The observed change in behavior highlights the increasing challenge of calibration as
we introduce additional components to the learning processes. In this case, the first change
occurs when we transition from Value Iteration to Q-Learning, where the addition of sam-
pling contributes to the complexity. Furthermore, the introduction of the neural network
learning process in the shift from Q-Learning to Deep Q-Network further complicates the
calibration. However, it is noteworthy that despite these challenges, the application of
EEU still provides some level of stability in the learning process.

Figure 5.11: Safe steps in the policies for the 10 × 10 instance of the River Crossing domain. (a)
Number of safe states computed by Value Iteration and Deep Q-Network algorithms with EEU; and (b)
distribution of the number of safe steps computed by Deep Q-Network with EEU.

Exponential TD Transformation

In this section, we analyze the ETD criterion. In Figure 5.12, the results obtained for
Value Iteration and Q-Learning algorithms are presented. The policies found by the Value
Iteration algorithm with ETD criterion are the same as EEU. However, for Q-Learning
with ETD, calculation problems arise when the risk factor is lower than -0.7 or greater
than 1.2. The behavior observed for Q-Learning with ETD when the risk factor is close to
zero remains similar to Q-Learning with EEU.

Figure 5.12: Safe steps in the policies for the 10×10 instance of the River Crossing domain. (a) Number
of safe states computed by Value Iteration and Q-Learning algorithms with ETD; and (b) distribution
of the number of safe steps computed by Q-Learning with ETD.

By applying ETD to Deep Q-Network, we obtained interesting results that can be

44

5 | EXPERIMENTS

observed in Figure 5.13. Notably, the ETD criterion performed better with the Deep
Q-Network algorithm compared to its performance on Q-Learning. Although Deep Q-
Network with ETD still faced calculation problems, these occurred in fewer configurations
than in the Q-Learning with ETD.

This finding highlights the difficulty of applying ETD criterion to sampling algorithms
such as Q-Learning and Deep Q-Network. However, it also suggests a good relationship
between the characteristics of the TD transformation and the neural network learning
process.

Figure 5.13: Safe steps in the policies for the 10 × 10 instance of the River Crossing domain. (a)
Number of safe states computed by Value Iteration and Deep Q-Network algorithms with ETD; and (b)
distribution of the number of safe steps computed by Deep Q-Network with ETD.

Soft Indicator TD Transformation

In this section, we analyze the SITD criterion. The number of safe steps in the policies
computed by the Value Iteration algorithm with SITD criterion (Figure 5.14) is different
than the ones obtained by the Value Iteration algorithm with ETD and EEU criterion for
some configurations.

Figure 5.14 shows that differently from Q-Learning with ETD, Q-Learning with SITD
was able to find proper policies for risk factors lower than -0.7. However, unlike EEU,
Q-Learning with SITD faced problems in calculating policies for risk factors greater than
1.2.

Figure 5.15 shows the number of safe states in the policies computed by Value Iteration
and Deep Q-Network algorithms with SITD. The experiments show that Deep Q-Network
with SITD has better behavior than Q-Learning with SITD. In cases where Q-Learning
with SITD encountered convergence problems, Deep Q-Network with SITD was able to
converge to proper policies. Although convergence problems persisted for risk factors
greater than 1.2, Deep Q-Network with SITD exhibited the ability to find proper policies
in some runs for these risk factor values, unlike Q-Learning with SITD.

The recurring patterns observed in these experiments further reinforce the good
relationship between the characteristics of the TD transformation and the neural network
learning process.

5.3 | RESULTS FOR THE RIVER CROSSING DOMAIN

45

Figure 5.14: Safe steps in the policies for the 10×10 instance of the River Crossing domain. (a) Number
of safe states computed by Value Iteration and Q-Learning algorithms with SITD; and (b) distribution
of the number of safe steps computed by Q-Learning with SITD.

Figure 5.15: Safe steps in the policies for the 10 × 10 instance of the River Crossing domain. (a)
Number of safe states computed by Value Iteration and Deep Q-Network algorithms with SITD; and
(b) distribution of the number of safe steps computed by Deep Q-Network with SITD.

5.3.2 Varying the learning rate
In this section, we analyze the influence of the learning rate when sampling algorithms

are used considering different exponential criteria in the River Crossing domain. Specifi-
cally, we execute Q-Learning and Deep Q-Network with each criterion considering 15 runs.
Each run finishes after 300 episodes. Additionally, we delve into the calculation problems
encountered for this domain to identify their underlying causes.

Each run is classified as Proper Policy, Not Proper Policy, Underflow Error, and Overflow
Error. If the policy calculated after 300 episodes successfully guides the agent to the goal
state, the run is classified as Proper Policy. If the calculated policy does not lead the agent
to the goal state, we assess the number of numerical underflow errors in the last episode.
The run is labeled as Not Proper Policy if it encounters less than 20% underflow errors
in the total of updates, indicating a high likelihood of convergence with more episodes.
If it encounters more or equals 20% of underflow errors, it falls under the category of
Underflow Error, signifying that it will likely never converge to a proper policy, even with
more episodes. If a numerical overflow error occurred while computing the utility function,
the run is classified as Overflow Error. The percentage of each type of policy found in the

46

5 | EXPERIMENTS

runs is shown in the figures in this section.

Exponential Expected Utility

Upon comparing the three criteria in the Two Armed Bandit experiment, we observed
that EEU exhibited the highest level of stability when varying the learning rate, as depicted
in Figure 5.9. To further validate this, Figures 5.16(a) and 5.16(b) show the percentage of
each type of policy returned by Q-Learning with EEU and Deep Q-Network with EEU,
respectively. We observe in both figures that reducing the learning rate leads to some
convergence problems within the considered number of episodes. This issue becomes
more pronounced when transitioning from Q-Learning to Deep Q-Network for 𝛼 = 0.01.
However, EEU continues to provide some degree of stability, as demonstrated previously
in the Two Armed Bandit domain.

Exponential TD Transformation

Figures 5.17(a) and 5.17(b) show the percentage of each type of policy returned by
Q-Learning with ETD and Deep Q-Network with ETD, respectively.

Figure 5.17(a) shows that the Q-Learning algorithm with ETD criterion faces overflow
problems. As we decrease the learning rate, the percentage of overflow errors decreases
but we start to find more convergence problems when running with risk factors close to
zero (i.e., the percentage of not proper policies increases). The convergence problem can
be fixed by increasing the number of episodes but as the objective of this experiment is to
show the stability of each of the methods, we keep it as 300.

Figure 5.17(b) shows that Deep Q-Network algorithm with ETD encounters slightly
fewer overflow problems when compared to Q-Learning algorithm with ETD. However,
the observed behavior regarding the decrease in learning rate remains similar. As the
learning rate decreases, the occurrence of overflow problems diminishes. However, this
also leads to an increase in convergence problems for risk factors close to zero.

This behavior highlights the augmented challenge of calibrating sampling algorithms
with ETD criterion when compared to EEU criterion. The observed increase in calibration
difficulty underscores the need for careful parameter tuning and adjustment when utilizing
ETD in conjunction with sampling learning algorithms.

Soft Indicator TD Transformation

The analysis conducted on the Two Armed bandit, as depicted in Figure 5.9, shown that
the Q-Learning with SITD performed better with higher learning rates but poorly with
smaller ones. This behavior is further confirmed in Figure 5.18(a), where we observe that
Q-Learning with SITD achieved more proper policies with higher learning rates.

Furthermore, Deep Q-Network with SITD criterion resulted in an improvement in the
percentage of convergence to proper policies when compared to Q-Learning with SITD
criterion (Figure 5.18). The utilization of SITD criterion led to a higher number of proper
policies in the Deep Q-Network algorithm as happened with the other TD transformation
(ETD criterion).

5.3 | RESULTS FOR THE RIVER CROSSING DOMAIN

47

(a) Q-Learning

(b) Deep Q-Network

Figure 5.16: Policies obtained running Q-Learning and Deep Q-Network algorithms with EEU criterion
for the 10 × 10 instance of the River Crossing domain.

5.3.3 Convergence analysis

Through the various experiments conducted in the River Crossing domain, two key
differences emerged when running the three exponential risk criteria.

The first difference is related to convergence problems. We observed that the conver-

48

5 | EXPERIMENTS

(a) Q-Learning

(b) Deep Q-Network

Figure 5.17: Policies obtained running Q-Learning and Deep Q-Network algorithms with ETD criterion
for the 10 × 10 instance of the River Crossing domain.

gence of the algorithms varied based on the learning rate and the specific risk criterion
employed. Different risk criteria exhibited different behaviors in terms of convergence,
with some criteria leading to more pronounced convergence problems at certain learning
rates.

The second difference is associated with overflow issues encountered during the

5.3 | RESULTS FOR THE RIVER CROSSING DOMAIN

49

(a) Q-Learning

(b) Deep Q-Network

Figure 5.18: Policies obtained running Q-Leaning and Deep Q-Network algorithms with SITD criterion
for the 10 × 10 instance of the River Crossing domain.

learning process. These overflow problems arose due to the complex nature of the learning
algorithms and the risk criteria being used. The overflow problems will be analyzed in
Section 5.3.4.

In this section, our focus is on the convergence problems encountered in the River
Crossing domain experiments. To investigate this further, Figure 5.19 shows the number

50

5 | EXPERIMENTS

of iterations required for convergence when running the three exponential criteria (EEU,
ETD, SITD) with the Value Iteration algorithm. The results are showcased for four different
learning rates (0.4, 0.2, 0.1, and 0.01).

Figure 5.19 shows that EEU exhibits less variance in the number of iterations required
for convergence as the risk factor is varied. On the other hand, both TD Transformations
(ETD and SITD) display a peak in the number of iterations for risk factors closer to
zero.

This finding carries significant importance, as it directly impacts the application setup
and introduces additional complexity in adjusting the learning parameters for larger
problems. The need to carefully calibrate the risk factor becomes crucial to ensure proper
convergence and desired learning outcomes. It highlights the challenges involved in
parameter tuning and emphasizes the importance of understanding the implications of
different risk criteria in learning algorithms for real-world applications.

Figure 5.19: Iterations to converge for the 10 × 10 instance of the River Crossing domain running
Value Iteration.

Theorem 1 demonstrates that EEU and ETD criteria converge to the same value for each
state. Figure 5.20 shows the initial state value (𝑉𝑠0) per iteration running Value Iteration
and different criteria. As expected, EEU and ETD criteria converge to the same value for
𝑠0. Additionally, the SITD criteria converge to a completely different value in certain cases,
as it applies a distinct transformation function. This distinction highlights the unique
characteristics and effects of each risk criterion on the convergence behavior of the learning
algorithms.

Upon closer examination, it became apparent that SITD encountered difficulties in

5.3 | RESULTS FOR THE RIVER CROSSING DOMAIN

51

Figure 5.20: 𝑉𝑠0 per iteration of the 10 × 10 instance of the River Crossing domain running Value
Iteration.

converging when the risk factor was set to 1.5 across various experimental setups involving
sampling learning algorithms. Figure 5.21 displays the Q-Learning convergence curve
for different risk factors. When the risk factor is set to 1.5, the SITD criterion requires
significantly more episodes to converge compared to the other exponential criteria. This
issue was not observed in the Value Iteration convergence results shown in Figure 5.19,
but it emerged as a recurring problem in the Q-Learning and Deep Q-Network setups.
This highlights a specific challenge associated with the convergence of the SITD criterion
in the context of reinforcement learning algorithms.

5.3.4 Overflow analysis

One significant factor that added complexity to the experiment setup was the occur-
rence of overflow problems while running the ETD criterion. As both the EEU and ETD
criteria converged to the same values for all states, the overflow issues were primarily
attributed to the internal calculations involved in the learning process. To investigate this
further, we compute the maximum absolute value of each utility calculation performed by
Q-Learning with different criteria and additionally, we implement the truncated version
of the ETD criterion (Shen et al., 2014) that was explained in Section 4.6.1 for Q-Learning
and Deep Q-Network.

52

5 | EXPERIMENTS

Figure 5.21: Q-Learning convergence curve of the 10 × 10 instance of the River Crossing domain.

Maximum absolute value of each utility

Figure 5.22 depicts the maximum absolute value of each utility calculation per episode
computed by Q-Learning with different criteria. ETD curves exhibit spikes, indicating the
presence of calculation values that approached or exceeded the limits of the numerical
representation. Although these spikes were captured without triggering overflow errors,
even larger spikes were likely responsible for the overflow issues encountered.

The overflow problems encountered in the ETD criterion underscore the challenge of
managing numerical precision and the potential impact on the convergence and stability
of the learning algorithms.

Truncated version of the ETD criterion.

Figure 5.23 displays the policies obtained by the Value Iteration and Q-Learning algo-
rithms with the truncated version of the ETD criterion for different risk factors. Truncation
effectively resolves overflow problems in scenarios with negative risk factors. However,
for most positive risk factor values, the truncated ETD still struggles to converge to a
proper policy. Additionally, even for risk factors such as 1.0, where the agent was able to
converge successfully with the non-truncated version, the truncated ETD now exhibits
convergence issues.

An interesting observation is that the truncated version of the ETD criterion performed
worse than the non-truncated version when applied to the Deep Q-Network (compare
Figures 5.24 and 5.13). Despite addressing overflow problems, the truncated version of the

5.3 | RESULTS FOR THE RIVER CROSSING DOMAIN

53

Figure 5.22: Max |𝑈 | per episode with Q-Learning for the 10 × 10 instance of the River Crossing
domain.

ETD criterion exhibited poorer performance in terms of finding proper policies compared
to the non-truncated version.

Figures 5.25(a) and 5.25(b) show the percentage of each type of policy returned by
Q-Learning with the truncated version of ETD and Deep Q-Network with the truncated
version of ETD, respectively, for different values of 𝛼.

Figure 5.25(a) shows that Q-Learning with the truncated version of ETD no longer
encountered overflow problems. However, new issues emerged which are underflow errors.
Note that the not proper policy issues were also encountered in the ETD experiment
without truncation technique (Figure 5.17 (a)).

These results suggest that the Q-Learning with the truncated version successfully
mitigates the numerical instability caused by spikes. However, the truncated ETD method
begins encountering more underflow errors as the risk factor or learning rate is increased.
It highlights the trade-off between addressing overflow issues and underflow errors when
applying the truncated version of ETD

In contrast to Q-Learning with the truncated version of ETD, Figure 5.25(b) reveals
that the truncated version still encountered overflow problems when executed with the
Deep Q-Network algorithm.

54

5 | EXPERIMENTS

Figure 5.23: Safe steps in the policies for the 10×10 instance of the River Crossing domain. (a) Number
of safe states computed by Value Iteration and Q-Learning algorithms with the truncated version of
ETD; and (b) distribution of the number of safe steps computed by Q-Learning with the truncated
version of ETD.

Figure 5.24: Safe steps in the policies for the 10 × 10 instance of the River Crossing domain. (a)
Number of safe states computed by Value Iteration and Deep Q-Network algorithms with the truncated
version of ETD; and (b) distribution of the number of safe steps computed by Deep Q-Network with the
truncated version of ETD.

Overflow analysis when the reward is increased.

In the experiments presented before we observed that EEU and SITD criteria did not
encounter overflow errors with Q-Learning and Deep Q-Network for River Crossing
domain instances with size 10x10 and reward of -1. While running the ETD criterion it
faced overflow errors for both algorithms, the Truncated ETD criterion presented overflow
errors only when combined with the Deep Q-Network algorithm. With the focus on
observing how the criteria behave with greater rewards, we now change the reward of
-1 that the agent receives at each action on the River Crossing domain to -100. In this
experiment, we fixed the learning rate to 0.1.

Figure 5.26 shows that the EEU criterion started to present overflow errors for risk
factors lower than -0.2 on the Q-Learning algorithm and for risk factors lower than -0.1 on
Deep Q-Network. The overflow error became an issue in both ETD and Truncated ETD
for most of the scenarios on Q-Learning and all scenarios on Deep Q-Network. The SITD
also started to face overflow errors for negative risk factors.

5.3 | RESULTS FOR THE RIVER CROSSING DOMAIN

55

Figure 5.26(a) also shows that even though all the other criteria are facing overflow
errors, the EEU with LogSumExp on the Q-Learning algorithm was able to find the proper
policy for all risk factors. In Figure 5.26(b) we observe that the EEU with LogSumExp and
Deep Q-Network also produced a better result than the other criteria.

5.3.5 Scalability Analysis
In this section, we run the Value Iteration algorithm with 5 River Crossing domain

instances with different sizes (6 × 6, 8 × 8, 10 × 10, 12 × 12, and 14 × 14). The results are
showcased for four different risk factors (-1.5, -0.5, 0.5, and 1.5), a fixed learning rate of 0.1,
and the reward is set back to -1.

The number of iterations to converge for EEU is always between 209 and 766 for all
domain instances and risk factors, as shown in Figure 5.27. Conversely, the number of
iterations to converge for SITD varies more (between 212 and 1281), and for ETD varies
even more (between 148 and 1471).

This finding and the other results presented before in this chapter indicate that the
algorithms with EEU criterion are more stable than the algorithms with ETD and SITD
criteria and it also indicates that algorithms with EEU criterion are easier to calibrate than
the other algorithms.

56

5 | EXPERIMENTS

(a) Q-Learning

(b) Deep Q-Network

Figure 5.25: Policies obtained running Q-Leaning and Deep Q-Network algorithms with the truncated
version of ETD for the 10 × 10 instance of the River Crossing domain.

5.3 | RESULTS FOR THE RIVER CROSSING DOMAIN

57

(a) Q-Learning

(b) Deep Q-Network

Figure 5.26: Policies obtained running Q-Leaning and Deep Q-Network algorithms with all criteria
for the 10 × 10 instance of the River Crossing domain with rewards of -100.

58

5 | EXPERIMENTS

Figure 5.27: Number of iterations to converge for the 6 × 6, 8 × 8, 10 × 10, 12 × 12 and 14 × 14 instances
of the River Crossing domain running Value Iteration for different criteria.

59

Chapter 6

Conclusions and future work

Reinforcement Learning has been a groundbreaking advancement in artificial intelli-
gence, empowering agents to learn intricate decision-making policies for sequential actions.
However, in many real-world scenarios, the consideration of risk attitudes becomes crucial
when applying this technique. Risk-Sensitive Reinforcement Learning emerges as a solu-
tion, incorporating risk criteria into the decision-making process. Among these criteria,
exponential-based methods have been extensively studied and applied.

While the adoption of exponential criteria has garnered significant attention in the
literature, a notable gap exists in the comprehensive analysis of how exponential criteria
respond when integrated with learning parameters and approximations, especially in
conjunction with Deep Reinforcement Learning. The absence of comprehensive exploration
poses a challenge in calibrating and selecting the most suitable technique. In this research,
we investigate the applicability of exponential utility in Deep Reinforcement Learning. By
understanding how to effectively combine exponential criteria with Deep Reinforcement
Learning and addressing their interactions with learning parameters and approximations,
we seek to unlock new possibilities for more robust and adaptive risk-sensitive decision-
making in complex environments.

6.1 Contributions

In this section, we highlight the contributions that this dissertation brings to the area
of Risk Sensitive Reinforcement Learning.

• Exponential criteria and Reinforcement Learning Framework: This research
introduces a framework that facilitates the use of exponential criteria in various forms
to model risk attitudes in both Reinforcement Learning and Deep Reinforcement
Learning algorithms. The framework includes three distinct criteria: (i) Exponential
Expected Utility, (ii) Exponential TD Transformation, and (iii) Soft Indicator TD
Transformation.

• Deep Reinforcement Learning with exponential risk criteria: In this work,
we proposed an intuitive and more stable way of combining Deep Reinforcement

60

6 | CONCLUSIONS AND FUTURE WORK

Learning and exponential risk criteria. The proposed algorithm maintains the com-
plete Q-Learning with EEU and Q-Learning with TD Transformation updates. By
transforming values into their certainty equivalents, the algorithm normalizes the
values required for network approximation. This normalization avoids significantly
large or small values resulting in a faster and more stable learning process

• Fit between Exponential criteria and Deep Reinforcement Learning: Our
experiments yielded significant results, indicating that the combination of EEU and
Deep Learning has ensured stable learning with outcomes comparable to those
obtained through Reinforcement Learning without artificial neural networks. Ad-
ditionally, the utilization of ETD and SITD, when integrated with artificial neural
networks, outperformed the results achieved by using a Q-Table (Q-Learning), sur-
passing our expectations.

• EEU and ETD converge to the same value: In this study, we demonstrate that
when applying the EEU and ETD, both criteria converge to the same value (Theorem
1).

• EEU robustness: During our investigation, we encountered an undesirable outcome
when using ETD and SITD. These criteria exhibited higher levels of instability as
we manipulated the learning rate and risk attitude in both domains used in the
experiments. In contrast, the EEU criterion consistently demonstrated superior
stability across all experiments, exhibiting less variance in the number of iterations
required to converge in the Value Iteration with EEU algorithm. This confirmed the
robustness and effectiveness of the extensively studied EEU criteria, showcasing
its potential for risk modeling in Reinforcement Learning and Deep Reinforcement
Learning scenarios.

• Difficulty when applying sampling and defining risk attitude: A significant
drawback observed in this work while applying the three exponential criteria was
the undesirable policies when utilizing sampling algorithms (Q-Learning and Deep
Q-Network) in the River Crossing Domain. Particularly, for certain cases (where
𝜆 is close to zero), the agent converged to policies that differ from those obtained
through Value Iteration algorithms. This highlights the challenge of calibrating the
risk parameter when combining exponential risk criteria with sampling algorithms.

• Handling overflow with truncate technique: An additional contribution of this
research was verifying the effectiveness of the truncate technique in addressing
overflow problems. The truncate technique was demonstrated to significantly miti-
gate overflow issues during internal calculations within the algorithms. Particularly,
its application to ETD was crucial, as this method tends to encounter peaks of utility
values during the convergence process. By employing the Truncate technique, we
were able to ensure stable computations and prevent numerical instability, enhancing
the overall performance of ETD. However, for most positive risk factor values, the
truncated ETD still struggles to converge to a proper policy since it started to
encounter underflow errors.

• Handling overflow with LogSumExp: In addition, this research also addresses the
issue of overflow problems when using the EEU criteria. A theoretical contribution is

6.2 | PUBLICATION

61

made by proposing the application of the LogSumExp technique to mitigate numerical
overflow in Q-Learning with EEU and Deep Q-Learning with EEU algorithms. Its
effectiveness is also demonstrated in the experiments.

6.2 Publication

6.2.1 Risk Sensitive Markov Decision Process for Portfolio
Management

The work Risk Sensitive Markov Decision Process for Portfolio Management (Neto et al.,
2020) proposes a novel strategy for modeling the Portfolio Management problem, specifi-
cally targeting day trade operations. The objective is to leverage dynamic programming
algorithms, such as Value Iteration, to efficiently find solutions for this problem. In addition,
a new risk attitude measure based on Conditional Value-at-Risk (CVaR) is introduced to
assess and evaluate the level of risk tolerance within the portfolio management frame-
work.

The conducted experiments involve applying Value Iteration with EEU criteria to the
portfolio management problem. The results demonstrate the effectiveness of the proposed
modeling strategy, as it accurately represents the dataset and enables Risk Sensitive Value
Iteration to derive policies with varying risk attitudes.

Furthermore, the experiments highlight the significance of employing robust risk
attitude measures, such as the one based on CVaR.

This work was published at the Mexican International Conference on Artificial Intelli-
gence 2020 (MICAI 2020).

6.2.2 Risk Sensitive with Exponential Functions in Reinforcement
Learning: An Empirical Analysis

The contributions of this dissertation are being compiled into a new paper that is being
prepared to be submitted.

6.3 Future work
Throughout the development of this research, several ideas and gaps surfaced, present-

ing promising avenues for future investigations and improvements. These potential areas
for future work include:

• During the experiments conducted for this work, we opted to assign a fixed learning
rate to each experiment configuration. This decision was made to facilitate com-
parisons among different methods with varying convergence behaviors. However,
it is worth noting that in the literature, there are techniques that demonstrate
higher stability during the learning process, such as learning rate decay. Conversely,
some studies suggest that certain techniques, like changing the batch size in Deep
Reinforcement Learning methods, should be applied instead (Smith et al., 2017). A

62

6 | CONCLUSIONS AND FUTURE WORK

further investigation would involve exploring the application of both learning rate
decay and batch size adjustments in Risk Deep Reinforcement Learning.

• An intriguing observation from the analysis of EEU and ETD criteria is that they
both converge to the same state value. However, despite this similarity, these criteria
exhibit distinct learning processes and respond differently to the learning rate 𝛼.
A compelling area for further investigation would be to explore the possibility of
combining both criteria, leveraging the strengths of each, to develop a more stable
convergence criterion.

• Value Iteration with EEU, Q-Learning with EEU, and Deep Q-Learning with EEU
could use Soft Indicator as the utility function 𝑈 . However, further analysis is
required to investigate the potential advantages of combining Soft Indicator criteria
with these algorithms.

• The experiments revealed that combining exponential criteria with sampling algo-
rithms (Q-Learning and Deep Q-Network) can result in the agent converging to
undesirable policies in certain scenarios. This sensitivity to risk parameter calibration
highlights the necessity for further investigation into how to prevent such behavior.

• Two techniques to handle overflow were presented in this work: (i) truncating
exponential utility function, and (ii) applying LogSumExp on EEU criteria. However,
further analyses of each technique and how they can be related can contribute to
preventing numerical overflow and adding more stability to the learning processes.

63

References

[Abbeel et al. 2010] Pieter Abbeel, Adam Coates, and Andrew Y Ng. “Autonomous
helicopter aerobatics through apprenticeship learning”. The International Journal
of Robotics Research 29.13 (2010), pp. 1608–1639 (cit. on pp. 1, 17).

[Andersen et al. 2020] Per-Arne Andersen, Morten Goodwin, and Ole-Christoffer
Granmo. “Towards safe reinforcement-learning in industrial grid-warehousing”.
Information Sciences 537 (2020), pp. 467–484 (cit. on pp. 1, 18).

[Bäuerle and Rieder 2014] Nicole Bäuerle and Ulrich Rieder. “More risk-sensitive
markov decision processes”. Mathematics of Operations Research 39.1 (2014),
pp. 105–120 (cit. on pp. 2, 18, 20).

[Bellman 1957] R. E. Bellman. Dynamic Programming. USA: Princeton University
Press, 1957 (cit. on p. 6).

[Bertsekas 1995] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control.
Vol. 1. 2. Athena Scientific Belmont, MA, 1995 (cit. on p. 7).

[Bouakiz and Sobel 1992] Mokrane Bouakiz and Matthew J Sobel. “Inventory control
with an exponential utility criterion”. Operations Research 40.3 (1992), pp. 603–608
(cit. on pp. 1, 18).

[Cavazos-Cadena and Hernández-Hernández 2011] Rolando Cavazos-Cadena
and Daniel Hernández-Hernández. “Discounted approximations for Risk-
sensitive average criteria in Markov decision chains with finite state space”.
Mathematics of Operations Research 36.1 (2011), pp. 133–146 (cit. on pp. 1, 2, 18).

[Yi Chen and Gao 2016] Yi Chen and David Y Gao. “Global solutions to nonconvex
optimization of 4th-order polynomial and log-sum-exp functions”. Journal of
Global Optimization 64.3 (2016), pp. 417–431 (cit. on p. 30).

[Chow and Ghavamzadeh 2014] Yinlam Chow and Mohammad Ghavamzadeh. “Al-
gorithms for cvar optimization in mdps”. Advances in neural information processing
systems 27 (2014) (cit. on pp. 2, 18).

64

REFERENCES

[Chung and Sobel 1987] Kun-Jen Chung and Matthew J Sobel. “Discounted MDP’s:
distribution functions and exponential utility maximization”. SIAM journal on
control and optimization 25.1 (1987), pp. 49–62 (cit. on pp. 1, 2, 18).

[Dalal et al. 2018] Gal Dalal et al. “Safe exploration in continuous action spaces”.
arXiv preprint arXiv:1801.08757 (2018) (cit. on pp. 1, 18).

[Delétang et al. 2021] Grégoire Delétang et al. “Model-free risk-sensitive reinforce-
ment learning”. arXiv preprint arXiv:2111.02907 (2021) (cit. on pp. 2, 18, 26, 34).

[Driessens and Džeroski 2004] Kurt Driessens and Sašo Džeroski. “Integrating guid-
ance into relational reinforcement learning”. Machine Learning 57 (2004), pp. 271–
304 (cit. on pp. 1, 17).

[Du et al. 2022] Yihan Du, Siwei Wang, and Longbo Huang. “Risk-sensitive reinforce-
ment learning: iterated cvar and the worst path”. arXiv preprint arXiv:2206.02678
(2022) (cit. on pp. 2, 18).

[Fei, Yang, Yudong Chen, and Wang 2021] Yingjie Fei, Zhuoran Yang, Yudong Chen,
and Zhaoran Wang. “Exponential bellman equation and improved regret bounds
for risk-sensitive reinforcement learning”. Advances in Neural Information Pro-
cessing Systems 34 (2021), pp. 20436–20446 (cit. on pp. 2, 18).

[Fei, Yang, Yudong Chen, Wang, and Xie 2020] Yingjie Fei, Zhuoran Yang, Yudong
Chen, Zhaoran Wang, and Qiaomin Xie. “Risk-sensitive reinforcement learning:
near-optimal risk-sample tradeoff in regret”. Advances in Neural Information
Processing Systems 33 (2020), pp. 22384–22395 (cit. on pp. 2, 18).

[Fei, Yang, and Wang 2021] Yingjie Fei, Zhuoran Yang, and Zhaoran Wang. “Risk-
sensitive reinforcement learning with function approximation: a debiasing ap-
proach”. In: International Conference on Machine Learning. PMLR. 2021, pp. 3198–
3207 (cit. on pp. 2, 18).

[Freire and Delgado 2017] Valdinei Freire and Karina Valdivia Delgado. “Gubs: a
utility-based semantic for goal-directed Markov Decision Processes”. In: Pro-
ceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems.
International Foundation for Autonomous Agents and Multiagent Systems. 2017,
pp. 741–749 (cit. on p. 35).

[Freitas et al. 2020] Elthon Manhas de Freitas, Valdinei Freire, and Karina Valdivia
Delgado. “Risk sensitive stochastic shortest path and logsumexp: from theory to
practice”. In: Intelligent Systems: 9th Brazilian Conference, BRACIS 2020, Rio Grande,
Brazil, October 20–23, 2020, Proceedings, Part II 9. Springer. 2020, pp. 123–139 (cit. on
pp. 2, 20, 30, 31).

[Garcia and Fernández 2012] Javier Garcia and Fernando Fernández. “Safe explo-
ration of state and action spaces in reinforcement learning”. Journal of Artificial
Intelligence Research 45 (2012), pp. 515–564 (cit. on pp. 1, 18).

REFERENCES

65

[Garcia and Fernández 2015] Javier Garcia and Fernando Fernández. “A compre-
hensive survey on safe reinforcement learning”. Journal of Machine Learning
Research 16.1 (2015), pp. 1437–1480 (cit. on pp. 1, 17–19).

[Gehring and Precup 2013] Clement Gehring and Doina Precup. “Smart exploration
in reinforcement learning using absolute temporal difference errors”. In: Proceed-
ings of the 2013 international conference on Autonomous agents and multi-agent
systems. 2013, pp. 1037–1044 (cit. on pp. 1, 18).

[HasanzadeZonuzy et al. 2021] Aria HasanzadeZonuzy, Archana Bura, Dileep
Kalathil, and Srinivas Shakkottai. “Learning with safety constraints: sample
complexity of reinforcement learning for constrained mdps”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 35. 9. 2021, pp. 7667–7674 (cit. on
pp. 1, 18).

[Heger 1994] Matthias Heger. “Consideration of risk in reinforcement learning”. In:
Machine Learning Proceedings 1994. Elsevier, 1994, pp. 105–111 (cit. on pp. 1, 18).

[Ronald A Howard 1960] Ronald A Howard. “Dynamic programming and markov
processes.” (1960) (cit. on pp. 7, 21).

[Ronald A. Howard and Matheson 1972] Ronald A. Howard and James E. Mathe-
son. “Risk-sensitive Markov Decision Processes”. Management Science 18.7 (1972),
pp. 356–369. issn: 00251909, 15265501. url: http://www.jstor.org/stable/2629352
(cit. on pp. 1, 2, 18, 19, 21, 22).

[Jin et al. 2020] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. “Prov-
ably efficient reinforcement learning with linear function approximation”. In:
Conference on Learning Theory. PMLR. 2020, pp. 2137–2143 (cit. on pp. 2, 18).

[Kadota et al. 2006] Yoshinobu Kadota, Masami Kurano, and Masami Yasuda. “Dis-
counted markov decision processes with utility constraints”. Computers & Mathe-
matics with Applications 51.2 (2006), pp. 279–284 (cit. on pp. 1, 18).

[R L Keeney and Raiffa 1976] R L Keeney and H Raiffa. Decisions with Multiple Ob-
jectives: Preferences and Value Tradeoffs. New York: Wiley, 1976 (cit. on p. 20).

[Ralph L Keeney and Howard Raiffa 1993] Ralph L Keeney and Howard Raiffa. Deci-
sions with multiple objectives: preferences and value trade-offs. Cambridge university
press, 1993 (cit. on p. 1).

[Kennings and Markov 2000] Andrew A Kennings and Igor L Markov. “Analytical
minimization of half-perimeter wirelength”. In: Proceedings of the 2000 Asia and
South Pacific Design Automation Conference. ACM. 2000, pp. 179–184 (cit. on p. 30).

http://www.jstor.org/stable/2629352

66

REFERENCES

[Kidambi et al. 2020] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli,
and Thorsten Joachims. “Morel: model-based offline reinforcement learning”.
Advances in neural information processing systems 33 (2020), pp. 21810–21823
(cit. on pp. 1, 17).

[LeCun, Bengio, et al. 2015] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
“Deep learning”. nature 521.7553 (2015), pp. 436–444 (cit. on p. 13).

[LeCun, Bottou, et al. 1998] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. “Gradient-based learning applied to document recognition”. Proceedings
of the IEEE 86.11 (1998), pp. 2278–2324 (cit. on p. 13).

[Littman and Szepesvári 1996] Michael L Littman and Csaba Szepesvári. “A gener-
alized reinforcement-learning model: convergence and applications”. In: ICML.
Vol. 96. 1996, pp. 310–318 (cit. on pp. 1, 18).

[Mann 2006] Tobias P. Mann. “Numerically stable hidden markov model implementa-
tion”. In: An HMM scaling tutorial. 2006, pp. 1–8 (cit. on p. 30).

[Mausam and Kolobov 2012] Mausam and Andrey Kolobov. Planning with Markov
Decision Processes: An AI Perspective. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2012 (cit. on p. 6).

[Mausser and Rosen 1999] Helmut Mausser and Dan Rosen. “Beyond var: from mea-
suring risk to managing risk”. In: Proceedings of the IEEE/IAFE 1999 Conference
on Computational Intelligence for Financial Engineering (CIFEr)(IEEE Cat. No.
99TH8408). IEEE. 1999, pp. 163–178 (cit. on pp. 1, 18).

[Mihatsch and Neuneier 2002] Oliver Mihatsch and Ralph Neuneier. “Risk-
sensitive reinforcement learning”. Machine learning 49.2-3 (2002), pp. 267–290
(cit. on pp. 1, 17, 18, 26).

[Mnih et al. 2013] Volodymyr Mnih et al. “Playing atari with deep reinforcement learn-
ing”. arXiv preprint arXiv:1312.5602 (2013) (cit. on pp. 12, 13).

[Moldovan and Abbeel 2012] Teodor Mihai Moldovan and Pieter Abbeel. “Safe ex-
ploration in markov decision processes”. arXiv preprint arXiv:1205.4810 (2012)
(cit. on pp. 1, 18).

[Morimura et al. 2010] Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hi-
rotaka Hachiya, and Toshiyuki Tanaka. “Nonparametric return distribution
approximation for reinforcement learning”. In: Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10). 2010, pp. 799–806 (cit. on pp. 1,
18).

[Naylor et al. 2001] William C Naylor, Ross Donelly, and Lu Sha. Non-linear opti-
mization system and method for wire length and delay optimization for an automatic
electric circuit placer. US Patent 6,301,693. 2001 (cit. on pp. 2, 30).

REFERENCES

67

[Neto et al. 2020] Eduardo Lopes Pereira Neto, Valdinei Freire, and Karina Valdivia
Delgado. “Risk sensitive markov decision process for portfolio management”. In:
Mexican International Conference on Artificial Intelligence. Springer. 2020, pp. 370–
382 (cit. on p. 61).

[Nielsen and Sun 2016] Frank Nielsen and Ke Sun. “Guaranteed bounds on
information-theoretic measures of univariate mixtures using piecewise log-
sum-exp inequalities”. Entropy 18.12 (2016), p. 442 (cit. on p. 30).

[Nilim and El Ghaoui 2005] Arnab Nilim and Laurent El Ghaoui. “Robust control
of markov decision processes with uncertain transition matrices”. Operations
Research 53.5 (2005), pp. 780–798 (cit. on pp. 1, 18).

[Puterman 1994] Martin L. Puterman. Markov Decision Processes. Wiley Series in
Probability and Mathematical Statistics. New York: John Wiley and Sons, 1994
(cit. on p. 6).

[Rabiner 1990] Lawrence R Rabiner. “A tutorial on hidden Markov models and se-
lected applications in speech recognition”. Readings in speech recognition (1990)
(cit. on p. 30).

[Robert 2014] Christian Robert. Machine Learning, a Probabilistic Perspective. Taylor
& Francis, 2014 (cit. on p. 30).

[Rummery and Niranjan 1994] Gavin A Rummery and Mahesan Niranjan. On-line Q-
learning using connectionist systems. Vol. 37. University of Cambridge, Department
of Engineering Cambridge, England, 1994 (cit. on p. 10).

[Shen et al. 2014] Yun Shen, Michael J Tobia, Tobias Sommer, and Klaus Obermayer.
“Risk-sensitive reinforcement learning”. Neural computation 26.7 (2014), pp. 1298–
1328 (cit. on pp. 2, 18, 25, 26, 29, 51).

[Sigl et al. 1991] Georg Sigl, Konrad Doll, and Frank M Johannes. “Analytical place-
ment: a linear or a quadratic objective function”. In: 28th ACM/IEEE Design Au-
tomation Conference. 1991, pp. 427–432 (cit. on p. 30).

[Silver, Huang, et al. 2016] David Silver, Aja Huang, et al. “Mastering the game of go
with deep neural networks and tree search”. nature 529.7587 (2016), pp. 484–489
(cit. on p. 13).

[Silver, Schrittwieser, et al. 2017] David Silver, Julian Schrittwieser, et al. “Mas-
tering the game of go without human knowledge”. nature 550.7676 (2017), pp. 354–
359 (cit. on pp. 12, 13).

[Smith et al. 2017] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc
V Le. “Don’t decay the learning rate, increase the batch size”. arXiv preprint
arXiv:1711.00489 (2017) (cit. on p. 61).

68

REFERENCES

[Stanko and Macek 2019] Silvestr Stanko and Karel Macek. “Risk-averse distribu-
tional reinforcement learning: a cvar optimization approach.” In: IJCCI. 2019,
pp. 412–423 (cit. on pp. 2, 18).

[Sutton and Barto 1998] Richard S. Sutton and Andrew G. Barto. Introduction to
Reinforcement Learning. 1st. Cambridge, MA, USA: MIT Press, 1998 (cit. on pp. 1,
5, 9, 10, 12, 15).

[Swazinna et al. 2021] Phillip Swazinna, Steffen Udluft, and Thomas Runkler.
“Overcoming model bias for robust offline deep reinforcement learning”. En-
gineering Applications of Artificial Intelligence 104 (2021), p. 104366 (cit. on pp. 1,
17).

[Tang et al. 2019] Yichuan Charlie Tang, Jian Zhang, and Ruslan Salakhutdinov.
“Worst cases policy gradients”. arXiv preprint arXiv:1911.03618 (2019) (cit. on pp. 2,
18).

[Tesauro 1994] Gerald Tesauro. “Td-gammon, a self-teaching backgammon program,
achieves master-level play”. Neural computation 6.2 (1994), pp. 215–219 (cit. on
p. 12).

[Van Hasselt et al. 2016] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep
reinforcement learning with double q-learning”. In: Proceedings of the AAAI con-
ference on artificial intelligence. Vol. 30. 1. 2016 (cit. on p. 14).

[Watkins 1989] Christopher Watkins. “Learning from delayed rewards” (Jan. 1989)
(cit. on p. 11).

[Wood and Khosravanian 2015] David A Wood and Rassoul Khosravanian. “Expo-
nential utility functions aid upstream decision making”. Journal of Natural Gas
Science and Engineering 27 (2015), pp. 1482–1494 (cit. on pp. 2, 18).

[Xu et al. 2023] Wenhao Xu, Xuefeng Gao, and Xuedong He. “Regret bounds for markov
decision processes with recursive optimized certainty equivalents”. arXiv preprint
arXiv:2301.12601 (2023) (cit. on pp. 2, 18).

	Introduction
	Motivation
	Objectives
	Organization

	Reinforcement Learning
	Markov Decision Process
	Dynamic Programming
	Monte Carlo method
	Temporal Difference
	SARSA
	Q-Learning

	Approximation of the Value Function
	Artificial Neural Network
	Deep Q-Network

	Safe Reinforcement Learning
	Exploration Process
	Optimization Criterion

	Risk Sensitivity with Exponential Functions in Reinforcement Learning
	Risk and Certainty Equivalent
	Exponential Utility Function
	Exponential Expected Utility Criterion
	Value Iteration with EEU
	Q-Learning with EEU
	Deep Q-Learning with EEU

	Temporal Difference Transformation
	Temporal Difference Transformation Algorithms
	Exponential Utility and Soft Indicator Functions with Temporal Difference Transformation

	Relationship between EEU and ETD
	Exponential criteria and overflow
	Truncated Exponential Utility
	LogSumExp

	Experiments
	Domains and setup
	Two Arm Bandit Domain
	River Crossing Domain

	Results for the Two Arm Bandit Domain
	Varying the risk factor
	Varying the learning rate

	Results for the River Crossing Domain
	Varying the risk factor
	Varying the learning rate
	Convergence analysis
	Overflow analysis
	Scalability Analysis

	Conclusions and future work
	Contributions
	Publication
	Risk Sensitive Markov Decision Process for Portfolio Management
	Risk Sensitive with Exponential Functions in Reinforcement Learning: An Empirical Analysis

	Future work

	References

