• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2012.tde-06092012-135831
Document
Auteur
Nom complet
Rodrigo Constantin Ctenas Zaccara
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2012
Directeur
Jury
Finger, Marcelo (Président)
Lejbman, Alfredo Goldman Vel
Rocha, Ricardo Luis de Azevedo da
Titre en portugais
Anotação e classificação automática de entidades nomeadas em notícias esportivas em Português Brasileiro
Mots-clés en portugais
aprendizado de máquina.
córpus
entidade nomeada
índices invertidos
interface rica web
maximização de entropia
motor de anotação e classificação
uolcp2011
webcorpus
Resumé en portugais
O objetivo deste trabalho é desenvolver uma plataforma para anotação e classificação automática de entidades nomeadas para notícias escritas em português do Brasil. Para restringir um pouco o escopo do treinamento e análise foram utilizadas notícias esportivas do Campeonato Paulista de 2011 do portal UOL (Universo Online). O primeiro artefato desenvolvido desta plataforma foi a ferramenta WebCorpus. Esta tem como principal intuito facilitar o processo de adição de metainformações a palavras através do uso de uma interface rica web, elaborada para deixar o trabalho ágil e simples. Desta forma as entidades nomeadas das notícias são anotadas e classificadas manualmente. A base de dados foi alimentada pela ferramenta de aquisição e extração de conteúdo desenvolvida também para esta plataforma. O segundo artefato desenvolvido foi o córpus UOLCP2011 (UOL Campeonato Paulista 2011). Este córpus foi anotado e classificado manualmente através do uso da ferramenta WebCorpus utilizando sete tipos de entidades: pessoa, lugar, organização, time, campeonato, estádio e torcida. Para o desenvolvimento do motor de anotação e classificação automática de entidades nomeadas foram utilizadas três diferentes técnicas: maximização de entropia, índices invertidos e métodos de mesclagem das duas técnicas anteriores. Para cada uma destas foram executados três passos: desenvolvimento do algoritmo, treinamento utilizando técnicas de aprendizado de máquina e análise dos melhores resultados.
Titre en anglais
Automatic named entity recognition and classification for brazilian portuguese sport news
Mots-clés en anglais
classification tool
corpora
inverted index
machine learning
maximum entropy
named entity
uolcp2011
web rich interface
webcorpus
Resumé en anglais
The main target of this research is to develop an automatic named entity classification tool to sport news written in Brazilian Portuguese. To reduce this scope, during training and analysis only sport news about São Paulo Championship of 2011 written by UOL2 (Universo Online) was used. The first artefact developed was the WebCorpus tool, which aims to make easier the process of add meta informations to words, through a rich web interface. Using this, all the corpora news are tagged manually. The database used by this tool was fed by the crawler tool, also developed during this research. The second artefact developed was the corpora UOLCP2011 (UOL Campeonato Paulista 2011). This corpora was manually tagged using the WebCorpus tool. During this process, seven classification concepts were used: person, place, organization, team, championship, stadium and fans. To develop the automatic named entity classification tool, three different approaches were analysed: maximum entropy, inverted index and merge tecniques using both. Each approach had three steps: algorithm development, training using machine learning tecniques and best score analysis.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2012-09-10
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.