• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2013.tde-06062013-142529
Document
Author
Full name
Juliana Sato Yamashita
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2013
Supervisor
Committee
Silva, Flavio Soares Correa da (President)
Martinez, Maria Laura
Morimoto, Carlos Hitoshi
 
Title in Portuguese
Visualização de tags para explicar e filtrar recomendações de músicas
Keywords in Portuguese
Design de Interfaces
Interação Homem-Máquina
Sistemas de Recomendação
Visualização
Abstract in Portuguese
Coleções digitais de mídias, tanto pessoais como online, crescem rapidamente. Para que grandes quantidades de músicas sejam acessíveis à usuários, serviços populares como iTunes, Last.fm e Pandora oferecem recomendações. Essa abordagem livra usuários de lembrarem de músicas, e permite a descoberta de canções novas ou esquecidas. Mas recomendações apresentam problemas com usuários, como credibilidade e falta de controle. A motivação deste trabalho é melhorar a experiência de usuários com recomendações de música através do uso de explicações. Ao usar um sistema de recomendação, a satisfação e aprovação de usuários não depende só da eficácia do algoritmo, mas também de explicações. Pesquisas mostram que estas podem beneficiar sistemas de recomendação, aumentando a credibilidade e satisfação de usuários, ao oferecer mais transparência e formas de correção. O objetivo deste trabalho é projetar e desenvolver uma nova forma de visualização de tags, e testar sua viabilidade para explicar e filtrar recomendações de músicas. Mais precisamente, investigamos se esta visualização pode favorecer as metas de inspeção (scrutability), eficiência, eficácia e satisfação. A partir da pesquisa em necessidades de usuários para recomendações e música, a visualização Tag Strings foi projetada e desenvolvida. Tag Strings inclui tanto a interface da visualização, quanto o processo de coleta e cálculo de relevância de tags e músicas. Para a avaliação da visualização Tag Strings, dois tipos de experimentos foram construídos: a comparação entre uma lista de recomendações com Tag Strings, e a comparação entre o design de referência (baseado nos serviços Last.fm e Pandora) e Tag Strings. A construção desses dois experimentos permitiu a avaliação de Tag Strings como uma forma de explicação para recomendações de música. Os resultados dos experimentos evidenciam que a nova forma de visualização Tag Strings favorece as metas de inspeção (scrutability), eficiência, eficácia e satisfação, melhorando a usabilidade e experiência de usuários com recomendações de música.
 
Title in English
Using Tag Visualizations to Explain and Filter Music Recommendations
Keywords in English
Human-Computer Interaction
Interface Design
Recommendation Systems
Visualization
Abstract in English
Digital media collections, both personal and online, grow rapidly. To make large music collections available to users, popular services such as iTunes, Last.fm and Pandora offer recommendations. This approach frees users from searching for music, and allows for the discovery of new or forgotten items. But recommendations present issues such as user trust and lack of control. The motivation for this project is to improve user experience with music recommendations through explanations. While using a recommendation system, user acceptance and satisfaction depends not only on the algorithm effectiveness, but also on explanations. Research shows that recommendations benefit from explanations, increasing user trust and satisfaction by offering more transparency and scrutability. The goal of this project is to design and develop a new form of tag visualization, and test its feasibility to explain and filter music recommendations. We specifically investigate if the visualization can support the aims of scrutability, efficiency, effectiveness and satisfaction. Based on the user research and needs for music recommendation, the visualization Tag Strings was designed and developed. Tag Strings includes both the visualization interface and the process of collecting and calculation of tag and track relevancy. To evaluate the visualization Tag String, we designed two types of experiments: comparing Tag Strings with a recommendation list, and comparing Tag Strings with a design reference (based on the services Last.fm and Pandora). The design of these two experiments allowed the evaluation of Tag Strings as a form of explanation to music recommendation. The experiment results highlight that the new visualization Tag Strings favors the aims of scrutability, efficiency, effectiveness and satisfaction, improving the user experience with music recommendations.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2013-06-10
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.