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Resumo

Hamidishad, N. Métodos de duas fases para segmentar áreas construídas ao redor
de reservatórios. Tese- Instituto de Matemática e Estatística, Universidade de São Paulo,
São Paulo, 2023.

Os reservatórios são infraestruturas fundamentais para a gestão dos recursos hídricos. Eles
reduzem os efeitos das flutuações de fluxo de água intersazonais e interanuais e, portanto,
facilitam o abastecimento de água, a geração de energia hidrelétrica e o controle de enchentes,
para citar alguns exemplos. Há uma interação significativa entre o meio ambiente e os
reservatórios. Por exemplo, as atividades humanas podem afetar a qualidade da água afluente
do reservatório e seus processos químicos e biológicos. As construções ao redor dos reservatórios
são um exemplo de tais atividades. Essa questão social pode ser detectada segmentando
os objetos criados pelo homem em torno dos reservatórios nas imagens de sensoriamento
remoto (RS). Os métodos tradicionais baseados em pixels, baseados em objetos (OB) e de
aprendizado profundo são três abordagens de mapeamento de cobertura da terra (LCM).

Desenvolvemos uma nova abordagem baseada em técnicas de processamento de imagens e
no método OB para segmentar regiões selecionadas ao redor de reservatórios. As desvantagens
da abordagem OB, como a alta dependência dos resultados na escolha dos parâmetros, nos
levaram a usar DL para contornar a necessidade excessiva de especificação de parâmetros e
o ajuste frequentemente exigido pelos métodos OB.

Nos últimos anos, o DL atraiu considerável atenção como um método para segmentar
imagens das imagens do RS e alcançou um sucesso notável. Para segmentar objetos artificiais
em torno dos reservatórios utilizando um fluxo de trabalho de ponta a ponta, segmentar os
reservatórios e destacar a região de interesse (ROI) em torno deles é essencial. No entanto,
os reservatórios são normalmente considerados em uma classe ampla denominada corpos
d’água. Além disso, os estudos de segmentação de objetos feitos pelo homem implementados
em imagens RS de alta resolução urbana consideram menos frequentemente construções
na zona rural. Portanto, eles frequentemente não consideram estruturas desafiadoras de
cobertura do solo, como estradas não asfaltadas.

Nesta pesquisa, desenvolvemos uma nova abordagem baseada em técnicas de processamento
de DL e imagens para segmentação de objetos feitos pelo homem em torno dos reservatórios.
No fluxo de trabalho em duas fases proposto, o reservatório é inicialmente segmentado usando
um modelo DL. Em seguida, uma etapa de pós-processamento é proposta para remover
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erros da vegetação flutuante nos reservatórios. Em seguida, a RoI ao redor do reservatório
(RoIaR) é destacada usando as técnicas de processamento de imagem. Finalmente, os objetos
artificiais na roiar são segmentados por um modelo DL. Coletamos imagens de alta resolução
do Google Earth (GE) de oito reservatórios no Brasil, localizados principalmente nas paisagens,
em dois anos disponíveis para treinar os modelos de fluxo de trabalho. Além disso, validamos
o fluxo de trabalho preparado com um conjunto de dados de teste não visto durante o
treinamento. As pontuações F1 do estágio de segmentação semântica da fase 1, estágio
de pós-processamento e estágio de segmentação semântica da fase 2 no conjunto de teste
externo são 92,54%, 94,68% e 88,11%, respectivamente, que mostram alta capacidade de
generalização do fluxo de trabalho preparado.

palavras-chave: imagem RS de alta resolução; segmentação de reservatórios; segmentação
feita pelo homem; processamento de imagem; aprendizagem profunda.



Abstract

Hamidishad, N.Two-Phase Methods to Segment Man-made Objects Around Reservoirs.
Thesis (Ph.D.)- Institute of Mathematics and Statistics, Universidade de São Paulo, São
Paulo, 2023.

Reservoirs are fundamental infrastructures for the management of water resources. They
reduce the effects of interseasonal and interannual streamflow fluctuations and hence facilitate
water supply, hydroelectric power generation, and flood control, to name a few. There is a
significant interaction between the environment and reservoirs. For example, reservoirs affect
the quality of the water downstream of their dams, and human activities affect the quality
of the reservoir’s inflowing water and its chemical and biological processes.

Construction around reservoirs is a human activity that can negatively impact the
reservoirs’ water quality. This social issue can be detected by segmenting the man-made
objects around reservoirs in the Remote Sensing (RS) images. Traditional pixel-based, Object-
Based (OB), and Deep-Learning (DL) methods are three Land-Cover Mapping (LCM)
approaches.

We developed a new approach based on image processing techniques and the OB method
for LCM of the selected regions around reservoirs. Disadvantages of the OB approach, such
as the high dependency of results on the choice of parameters, led us to use DL to circumvent
excessive parameter specification and tunning that are often required by OB methods.

In recent years, DL has attracted considerable attention as a method for segmenting
the RS imagery semantically and has achieved remarkable success. To segment man-made
objects around the reservoirs utilizing an end-to-end workflow, segmenting reservoirs and
detaching the Region of Interest (RoI) around them are essential. However, reservoirs are
always considered in a broad class termed water bodies in RS semantic segmentation studies.
Besides, man-made object semantic segmentation in the RoIaR is not explored in the
literature. Moreover, man-made object segmentation in high-resolution images, especially
countryside man-made object segmentation, is not extensively explored in the literature.

In this research, we develop a new approach based on DL and image processing techniques
for man-made object segmentation around the reservoirs. In the proposed two-phase workflow,
the reservoir is initially segmented using a DL model. Then, a post-processing stage is
proposed to remove errors such as floating vegetation. Next, the RoI around the Reservoir
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(RoIaR) is detached using the proposed image processing techniques. Finally, the man-made
objects in the RoIaR are segmented by a DL model. We collected high-resolution Google
Earth (GE) images of eight reservoirs in Brazil, mainly located in the countrysides, over
two different available years to train the workflow models. Furthermore, we validated the
prepared workflow with a test dataset not seen during training. The F1-scores of the phase-
1 semantic segmentation stage, post-processing stage, and phase-2 semantic segmentation
stage on the external test set are 92.54%, 94.68%, and 88.11%, respectively, which show high
generalization ability of the prepared workflow.

Keywords: high-resolution RS imagery; reservoir segmentation; man-made object segmentation;
image processing; object-based method; deep learning.
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Chapter 1

Introduction

1.1 Motivation

Earth Remote Sensing is a technology that involves remote imaging systems (e.g., aircraft,
satellites, unmanned aerial vehicles) to obtain information from a target on the earth through
the analysis of the acquired data. The sensors mounted on remote imaging systems measure
the electromagnetic radiation reflected or emitted by the target. The characteristics of the
sensor and its platform determine the type of information that may be accessed by remote
sensing technologies Bhandari et al. [2012], Rozanda et al. [2015]. There are two overall
categories for remote sensing systems, named passive and active. In the passive mode, the
sensor uses the naturally available energy (sunlight) for image capturing, and in the active
mode, the system sends microwaves toward the surface and waits for the reflected waves.

The first aerial photo was acquired in 1858 from a balloon in France by Gaspard-
Felix Tournachon. In the next years, numerous improvements were made in photographic
technology. The first aerial photograph taken from an aircraft belongs to 1909 from an
Italian landscape. In 1972, the first satellite designed to observe earth’s land areas was
launched. The images had four spectral bands, each 80m pixel size. Numerous improvements
followed from these beginnings, and now a day, satellites, airplanes, or UAVs are utilized
for acquiring RS images with different spatial, spectral, and temporal resolutions Campbell
and Wynne [2011]. For example, some satellite sensors, such as WordView-3, collect multi-
spectral imagery (images with at least three spectral bands) at 1.84 m spatial resolution.
WordView-1 and GeoEye-1 collect panchromatic imagery at 0.5 m, 0.46 m, and 0.41 m spatial
resolutions, respectively. Panchromatic (or black-and-white) images have a single band that
combines the information from different bands (e.g., green and red) instead of partitioning
it into different spectral bands. Moreover, some sensors, such as AVIRIS, produce images
with hundreds of bands that are called hyper-spectral images Liau [2014], Jensen [2015], Zhu
et al. [2018].
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There are different platforms for downloading RS images. Bing1, NASA World Wind2,
and Google Earth3 (GE) are free widely used programs among them Qi et al. [2016], Zheng
et al. [2016], Abdelrahim and Mansour [2017], Huang et al. [2018]. The increasing availability
of data sources helps the development of research for new RS techniques and applications.

RS technology is important due to its spatially-explicit representation of the earth’s
surface, frequent temporal coverage, and relatively low observation costs. The remote sensing
data has many application areas such as environmental assessment and monitoring, change
detection, exploitation of renewable and non-renewable natural resources, mapping, and
military surveillance and reconnaissance Schowengerdt [2006]. One of the most important
applications of RS images is land cover/use mapping. An example of an RS image and
corresponding land cover map is illustrated in Figure 1.1.

Figure 1.1: An RS image (left) and generated land cover map (right) by Geng et al. [2017].

A relevant application of RS segmentation techniques is monitoring the construction
around water reservoirs (man-made lakes). Reservoirs reduce the effects of interseasonal
and interannual streamflow fluctuations and hence facilitate water supply, hydroelectric
power generation, and flood control, to name a few Gao et al. [2012]. There is a significant
interaction between the environment and reservoirs as essential water resource management
tools. For example, reservoirs affect the quality of the water downstream of their dams, and
human activities affect the quality of the reservoir’s inflowing water and the chemical and
biological processes in it Votruba and Broža [1989]. The construction around reservoirs has a
serious negative impact on the quality of reservoirs’ water and can be considered as a social
problem as illustrated in Figure 1.2 4. Monitoring the existence of such constructions can be
modeled by segmenting RS images (see Figure 1.3).

The traditional pixel-based (called pixel-based) methods (e.g., SVM) rely on the spectral
properties of individual pixels, and each pixel is independently classified. However, a single
pixel does not capture the characteristics of targeted objects well when the spatial resolution
of satellite images improves. It causes a reduction in the accuracy of classification using
pixel-based methods Hu et al. [2013a]. Over the last twenty years, the RS community has

1https://www.bing.com/maps/
2https://worldwind.arc.nasa.gov/
3https://www.google.com/earth/desktop/
4https://g1.globo.com/sp/sao-paulo/noticia/2021/07/20/governo-estadual-e-prefeitura-de-sp-fazem-o

peracao-para-remover-construcoes-irregulares-as-margens-da-represa-billings.ghtml and https://agenciab
rasil.ebc.com.br/foto/2018-02/construcoes-margens-da-represa-billings-em-sao-paulo-1581289720-0

https://g1.globo.com/sp/sao-paulo/noticia/2021/07/20/governo-estadual-e-prefeitura-de-sp-fazem-operacao-para-remover-construcoes-irregulares-as-margens-da-represa-billings.ghtml
https://g1.globo.com/sp/sao-paulo/noticia/2021/07/20/governo-estadual-e-prefeitura-de-sp-fazem-operacao-para-remover-construcoes-irregulares-as-margens-da-represa-billings.ghtml
https://agenciabrasil.ebc.com.br/foto/2018-02/construcoes-margens-da-represa-billings-em-sao-paulo-1581289720-0
https://agenciabrasil.ebc.com.br/foto/2018-02/construcoes-margens-da-represa-billings-em-sao-paulo-1581289720-0
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(a)

(b)

Figure 1.2: Construction around reservoirs can be considered a social problem with potentially
serious consequences to society and the reservoir’s water quality (a) Example of Brazilian news
reporting unauthorized constructions around an important reservoir ; (b) Photo from a Brazilian
news agency illustrating unauthorized constructions around a reservoir.

undertaken considerable efforts to promote the use of OB technology for LCM Blaschke
et al. [2014a], Qu et al. [2021]. The OB classification approach is less sensitive to the spectral
variance within the objects despite the pixel-based methods. Since it first segments images
and then uses both segments’ features and spatial relations between them to classify them
into different land covers.

One of the most commonly used and popular algorithms in the OB approach to segment
the images is multi-resolution segmentation Hossain and Chen [2019]. However, this method
requires users to determine a set of parameters. Furthermore, multi-resolution segmentation
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Figure 1.3: Remote sensing image showing man-made objects around Guarapiranga reservoir.

parameters can differ between different RS images and even between different objects in an
image. Many studies believe that to achieve high accurate segments over land cover classes
of different sizes, multi-scale segmentation (i.e., defining one set of segmentation parameters
for each class in the scene) is necessary Drăguţ et al. [2014], Johnson and Jozdani [2018].

Whereas the OB approach almost always outperforms the pixel-based approach Silveira
et al. [2019], Wu et al. [2023], the DL approach is a more sophisticated approach that has
made significant strides in recent years. It enables high-level feature extraction to be carried
out automatically while displaying promising results in various domains, including image
semantic segmentation. Recently, convolutional neural networks (CNNs) have been among
the most advanced algorithms for the semantic segmentation of RS images. Their superior
performance compared to traditional methods has been proved Ghanbari et al. [2021], Wurm
et al. [2021], Malerba et al. [2021]. The encoder-decoder and pyramid pooling-based networks
can be counted as two state-of-the-art and widely used categories of CNNs.

To the best of our knowledge, there is no study on the semantic segmentation of reservoirs
in high-resolution RS images using DL models. This class is always considered in a broad class
termed water bodies. Furthermore, the RoIaR man-made object segmentation has not been
explored. Moreover, man-made object segmentation in urban high-resolution RS images,
especially countryside man-made object segmentation, has not been extensively explored in
the literature.

It is worth noting that although elevation data can improve the detection process, they
are not currently viewed as a cost-effective solution to map RS images Vakalopoulou et al.
[2015]. On the other hand, spatial resolution is more critical than spectral resolution in urban
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LCM Neupane et al. [2021]. Therefore, our experiments are on images collected from the
GE platform, which is a widely used database Hou et al. [2019], Zhang et al. [2020]. This
platform gives us access to free high-resolution RS images from target reservoirs at various
times. GE covers more than 25 percent of the Earth’s land surface and three-quarters of the
global population Jensen [2015], Jacobson et al. [2015]. Furthermore, the appearance of GE
images is improved using color balancing, warping, and mosaic processing Almeer [2012].
Therefore, it can be used for studying many other reservoirs.

1.2 Goal

This thesis aims to develop new methods for segmenting man-made object around reservoirs
in high resolution RS images utilizing highest performance approaches.

1.3 Contributions

The main contributions of this thesis are:

• Development and evaluation of an OB approach for land cover mapping RS images.
The results are described in Hamidishad and Marcondes Cesar Jr [2019].

• Proposition of a multi-phase segmentation for increasing the accuracy of detected
segments in the segmentation step of the OB approach

• Development of an end-to-end workflow for man-made object segmentation around
reservoirs. The proposed approach and results are described in Hamidishad and Marcondes
Cesar Jr [2023].

• Preparation and evaluation of two DL models for segmenting reservoirs and man-
made objects from urban and countryside areas in RS images with different spatial
resolutions, textures, and temporal conditions.

• Proposing a post-processing approach to increase the accuracy of generated reservoir
maps.

1.4 Text Organization

The organization of this thesis is as follows. In Chapter 2, we discuss the bibliography. The
proposed OB and multi-phase segmentation approaches, utilized data, and corresponding
results are presented in Chapter 3. The proposed two-phase DL-based workflow, the data
collection, and experimental results are explored in Chapter 4. Finally, we discuss the results
and findings of the study and propose some future works in Chapter 5.
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Chapter 2

Bibliographical review

Generally, mapping RS images is a complicate process in which many factors influence
the quality of final products. This chapter presents a bibliography review of two widely used
and popular approaches for RS imagery mapping.

2.1 Object-Based Image Analysis

In the past, most digital image classification methods were based on processing the
entire scene pixel by pixel, commonly called pixel-based classification Blaschke [2001], Myint
et al. [2011]. Nonetheless, by improving the spatial resolution of RS images, the image
analysis paradigm moved from pixel-based to OB. This method can increase the classification
accuracy compared to pixel-based image classifications that ignore spatial coherence among
groups of pixels Yu et al. [2006], Wang et al. [2007], Zhou et al. [2015], Qu et al. [2021].

the OB approach consists of two steps; see Figure 2.1. The segmentation step allows
decomposing the scene into many relatively homogeneous image segments (referred to patches,
objects, polygons, or super-pixels) using an image segmentation process. Segments in this
context are groups of pixels that share some common properties (e.g. a connected component
that belongs to a water body or a roof-top). Then, various statistical characteristics of
the created homogeneous image segments are used by different classification methods for
classifying these segments Blaschke et al. [2014b].

Figure 2.1: Overview of land cover map generation using OB approach.

7
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An important image segmentation aspect regards the possible varying scale of the objects
of interest. The multi-resolution algorithm has been developed to address this issue. This
method, proposed by Baatz [2000], is one of the most commonly used algorithms for segmen-
ting RS images Guirado et al. [2017], Liu et al. [2017], Zhang et al. [2018a], Johnson and
Jozdani [2018] and was first implemented in eCognition software.

Assessing the quality of segmentation and identifying appropriate segmentation para-
meters can be performed using a supervised approach, unsupervised approach, or visually.
The main goal in a supervised method is applying several combinations of parameters
and then quantifying dissimilarity between reference segments (digitized manually) and
generated segments. For example, Tong et al. [2012] presents a supervised approach to
determine optimal image segmentation parameters for the multi-resolution algorithm in
eCognition software. A complete description of this optimizer can be found in Zhang et al.
[2010].

Despite the effectiveness of supervised methods, they are time-consuming and dependent
on the applied range of parameter settings Witharana and Civco [2014]. Unsupervised
methods do not rely on expert knowledge. These methods quantify the inter-segment homo-
geneity and intra-segment heterogeneity at several scales Jozdani et al. [2018]. One of
the most well-known unsupervised methods is proposed by Drǎguţ et al. [2010], which is
improved and expanded by Drăguţ et al. [2014].

The work Grybas et al. [2017] tests several unsupervised segmentation optimization
procedures qualitatively and demonstrates that optimal parameters for a particular scene do
not necessarily equate to optimal parameters for the chosen classification scheme. Furthermore,
the authors of Belgiu and Drǎguţ [2014] compare supervised and unsupervised approaches for
selecting multi-resolution parameters. They show that the unsupervised method produces
very different image segments from the supervised method. Nonetheless, surprisingly, the
classification accuracy was still very similar. Although the over-segmentation (where the
created segments are smaller than the optimal segments) is always preferred to the under-
segmentation (where the generated segments are larger than the optimal segments), they
show that as long as under-segmentation is acceptable, high classification accuracy is achiev-
able.

As mentioned before, the quality of generated segments can be assessed visually. This
method have been utilized in several studies Gao et al. [2011], Duro et al. [2012b], Hu et al.
[2013a], Liu et al. [2017], Johnson and Jozdani [2018], Zaabar et al. [2022].

The second step in the OB approach is the classification of generated segments. This step
can be implemented using unsupervised, supervised, semi-supervised, weakly-supervised, or
rule-based methods. Unsupervised methods, also called clustering methods, group segments
based on their similarity of feature values. When these clusters are obtained, the reference
data is used to classify them. When there are more clusters than the land cover classes, these
methods group clusters with no reference data with the closest classified clusters.

One way to ensure that all groups of the land covers are taken into account by the
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classification algorithm is using the knowledge in assigning each segment to a given class
during the learning process. This method is called the supervised method. In supervised
methods, we directly construct the decision function that separates segments and associates
them with their corresponding classes. Because of this reason, supervised methods are more
efficient than unsupervised methods. However, they require more reference data Baghdadi
and Zribi [2016]. The semi-supervised approach is implemented when the dataset is partially
annotated, and the weakly-supervised approach is implemented when the images are incom-
pletely annotated.

The rule-based method is based on user-defined rules. A rule describes intervals of a
feature or features that determine whether the constructed segments in the segmentation
step belong to a particular class. Since the analyst must create the rules, the major challenge
in this method is developing rule sets to map relevant features. This method is implemented
in different studies with different names, such as rule-based Ziaei et al. [2014], Jensen [2015],
Ma et al. [2017], visual interpretation Liu et al. [2017], Membership function classifier Myint
et al. [2011], and knowledge-based Chen et al. [2018a].

The application of the OB approach in mapping RS images is studied in many works.
For example, the Landsat-8 images of the Yangtze River Delta in China are mapped by
Qu et al. [2021] using OB and pixel-based approaches. Simple non-iterative clustering is
used to segment images, and the random forest is applied to classify the segments. In their
experiments, the OB method outperformed the pixel-based method, where the random forest
is used as the classifier. An object-based convolutional neural network approach is proposed
by Lv et al. [2021] for LCM images collected using the GE platform from an area in California.
In the proposed approach, every image is segmented into several zones (residential, natural,
and industrial zones), and each zone is then segmented using the multi-resolution method.
A binary tree sampling is proposed to generate appropriate convolutional windows for the
segments. These windows are semantically segmented using an already trained CNN model,
and then all pixels in each segment are labeled with the most frequent label in that segment.
The authors of Rittenhouse et al. [2022] applied the simple non-iterative clustering method
to produce the segments based on the similarity of spectral reflectance, spectral texture,
vegetation height, and texture of vegetation height of each pixel. They proposed a ruleset
for classifying the segments.

2.2 Deep Learning

DL is a machine learning field that explores Neural Networks to learn from data by
successive layers. The idea is that such (possible large number of) layers may extract
meaningful input representations. The term "deep" in deep learning (DL) refers to these
subsequent layers of representation. Convolutional networks LeCun et al. [1989] are among
the most popular DL networks that have quickly found their place within computer vision
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tasks, including RS LCM.
CNNs are mainly composed of three operation layers termed convolution, pooling, and

nonlinear activation function. Krizhevsky et al. [2012] proposed a pioneer large CNN, AlexNet,
to classify the ImageNet dataset that achieved the best results of the year. In a successful
process, a CNN model called VGGNet was introduced by Simonyan and Zisserman [2014].
VGGNet architectures consist of five convolutional blocks, each followed by a max-pooling
layer, and three Fully-Connected (FC) blocks. The VGG-16 (containing 16 convolutional
layers) won the ImageNet challenge in 2013 and is this category’s most frequently used
model.

Although increasing the network’s depth in some cases is proved to be crucial Szegedy
et al. [2015], it causes the vanishing/exploding gradients. Residual learning frameworks fixed
this problem. The shortcut connection in these networks, which passes the input tensor of
each block to its output, is the key insight of this approach. After VGG-16, two proposed
residual networks by He et al. [2016] called ResNet-50 and ResNet-101 are the most utilized
CNNs Ghanbari et al. [2021].

The results of the proposed architectures were encouraging. Nevertheless, the high-
resolution reduction in the input of models caused by several pooling layers was a severe
drawback for the pixel-wise classification tasks. Therefore, the encoder-decoder paradigm
has been introduced in the semantic segmentation field. The fully convolutional network
proposed by Long et al. [2015] achieved the best results in the PASCAL VOC visual
recognition competition. The decoder-encoder-based networks consist of an encoder path
and a decoder path. The encoder path consists of convolutional layers to extract the feature
maps. Next, these features are transformed/up-sampled to dense label maps in the decoder
path.

A state-of-the-art architecture of this category is named SegNet and was proposed firstly
by Badrinarayanan et al. [2015]. Each decoder in this architecture up-samples the output
of the corresponding encoder using the already stored pooled indices. Despite the SegNet
that was primarily motivated by scene understanding, the U-Net architecture proposed by
Ronneberger et al. [2015] was first applied to biomedical segmentation. However, it was later
successful in other fields as well Emek and Demir [2020], Kashani et al. [2019]. The proposed
concatenation between cropped feature map of each encoder level and the corresponding
decoder improves the segmentation using the U-Net architecture. Although it is reported
that U-Net needs a smaller dataset to achieve satisfying results, it is at a higher memory
cost than SegNet. U-Net, SegNet, and FPN Lin et al. [2017a] are the encoder-decoder-based
architectures that have demonstrated solid performances and are frequently utilized in RS
semantic segmentation Neupane et al. [2021], Bischke et al. [2019].

The spatial pyramid pooling-based networks are also CNN-based state-of-the-art networks.
These networks contain pyramid pooling modules to collect multi-level global information
of the input. PSPNet proposed by Zhao et al. [2017] is a widely used architecture of this
category Zhang et al. [2020], Yuan et al. [2021] that won the ImageNet scene parsing challenge



2.3 DL-BASED RS SEGMENTATION 11

in 2016.
CNNs are employed for a variety of tasks. Such as image classification Krizhevsky et al.

[2012], which in each image is labeled by a class; object detection Galvez et al. [2018]
that involves localizing certain objects in the images with bounding boxes accurately and
efficiently; speech processing that converts human speech into spoken words Deng et al.
[2013], semantic segmentation Pham [2021], Etc. The widely used application of CNNs in
the RS community is semantic segmenting RS images into different land covers or/and land
uses. A bibliography of this application is presented in the next section.

2.3 DL-Based RS Segmentation

CNNs are implemented in various RS semantic segmentation tasks and have achieved
successful results. For example, the authors of Abdollahi et al. [2020] implemented a compo-
sition of SegNet and U-Net models to segment buildings in high-resolution aerial images.
Water detection in high-resolution RGB images collected from Australia is performed using
a CNN model by Malerba et al. [2021]. CNNs are even used to assess the quality of
OpenStreetMap data Xie et al. [2019]. In this paper, OpenStreetMap building footprints
are assessed using the results extracted from the high-resolution RS images using a U-Net-
based model.

Semantic segmentation of water bodies is studied in several works. For example, Song
et al. [2020] has fused panchromatic and RGB images and used a DL-based workflow for
water body recognition. A DL encoder-decoder framework is proposed by Li et al. [2021]
to extract water bodies from 4-band RS images with resolutions greater than one meter.
The authors of Chen et al. [2018b] combine an enhanced super-pixel method with DL to
extract urban water bodies from multi-spectral bands with low spatial resolutions (>4m).
The RapidEye 5m resolution images are used by Zhang et al. [2018b] to compare pixel-based
methods with DL methods in segmenting gorges reservoir areas to water bodies and other
land covers. The capacity of NDWI and NDSWI indices in mapping water surfaces in 4-
band (near-infrared, Red, Green, and Blue) high-resolution RS images using DL and ML
methods is studied by Aryal et al. [2021]. The utilized data belongs to National Oceanic
and Atmospheric Administration (NOAA), which covers areas inside the USA. The authors
of Van Soesbergen et al. [2022] proposed a pipeline where a DL model in the first stage
segments the water bodies in moderate spatial resolution RS images. Next, bounding boxes
of individual water bodies are classified into two classes, dam reservoir and natural water,
by a classifier.

DL is also popular among studies on semantic segmentation of man-made objects in
RS images. For example, a DL-based approach is proposed by Makantasis et al. [2015] to
classify ROSIS hyper-spectral images as man-made and non. The man-made class in this
work consists of asphalt, metal sheets, bricks, bitumen, and tiles. Before feeding to the
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network, the data is pre-processed by Randomized Principal Component Analysis for input
dimension reduction. The authors of Papadomanolaki et al. [2019] have proposed an OB-DL
framework to semantic segment two publicly available ISPRS datasets. These datasets are
annotated to the impervious surface, building, low vegetation, tree, car, and clutter. Two
extension versions of U-Net are proposed by Abdollahi et al. [2021] to segment buildings
and roads in RGB RS images with 0.5m resolution. In the proposed workflow, each class
is trained in a distinct network because of the type of available ground truths. Residential
land, industrial land, traffic land, woodland, and unused land are five defined classes by Yu
et al. [2022] for collected RGB images with 0.5 m resolution. They proposed a workflow to
segment images in which the images are fed to two networks in parallel. Next, their output
feature maps are fused to produce the final map. The built infrastructures in two sites on
the North Slope of Alaska are mapped by Manos et al. [2022] by applying a DL model on
4-band commercial satellite images with resolutions from 0.5 up to 0.87. The utilized model
in this work is the U-Net with ResNet50 as the backbone.



Chapter 3

Land Cover Mapping Using OB Method

The content described in this chapter is based on the publication Hamidishad and
Marcondes Cesar Jr [2019].

3.1 Introduction

The OB land cover mapping consists of two steps, segmentation and classification (see
Figure 3.1). Segments extracted in the segmentation step are regions generated by one or
more homogeneity criteria. Thus, segments have additional spectral information compared to
single pixels, such as mean values per band, median values, minimum and maximum values,
and variance, to name but a few. The more significant advantage of classifying segments
instead of pixels is the additional spatial information of segments Hay and Castilla [2008],
Van der Werff and Van der Meer [2008]. However, The additional spatial features (such as
distances, neighborhood, Etc) are the main reasons for the increase in using this method
Blaschke [2010]. An example of this approach on an RS image is illustrated in Figure 3.1.

Figure 3.1: An example of an RS image and its segmentation and classification outputs produced
by the OB approach Duro et al. [2012a]

Multi-resolution segmentation and rule-based classification are among the most commonly
used algorithms for segmenting and classifying RS images. However, the multi-resolution

13
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segmentation method requires users to determine a set of parameters and is significantly
slower than some other segmentation techniques. Furthermore, visual assessment is the most
common method employed for assessing these parameters’ values, making the process very
empirical and heuristic Zhang et al. [2008]. Moreover, the multi-resolution segmentation
parameters can differ between different RS images and even between different objects in
an image. Therefore, determining and assessing these parameters are challenging and time-
consuming.

Our research developed a new OB approach based on two phases. Phase 1 aims at
detecting the reservoir objects in the images. Then, phase 2 classifies the non-reservoir
image segments into vegetation, man-made object, and shadows. This chapter is organized
as follows: the proposed method is described in section 3.2. In section 3.3, implementation
details, experimental results, and results validation are depicted. Finally, the chapter is
concluded in section 3.4.

3.2 Proposed Approach

The framework of the proposed procedure is illustrated in Figure 3.2. The framework is
composed of three parts: data formation, the proposed two-phase OB classification, and a
data analysis application. The core idea is the two-phase OB classification that is visually
illustrated in Figure 3.3.

Figure 3.2: Flowchart of the proposed approach.
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Figure 3.3: Visual pipeline of the proposed tow-phase OB classification approach.

3.2.1 Data Formation

The Google Earth Pro c© is the data source adopted in our experiments, although the
proposed method may also be applied to other sources. The database of this software
is mainly provided by DigitalGlobe1, Inc., and contains high-resolution images of many
different areas on the earth Jensen [2015]. GE covers over 25% of the Earth’s land surface
and three-quarters of the global population Jensen [2015], Jacobson et al. [2015]. To improve
the appearance of images when are displayed in the GE, the spectral information of images
with more than three bands is reduced to only three bands (red, green, and blue) Visser
et al. [2014], Guo et al. [2016], Potere [2008]. Furthermore, the appearance of GE images is
improved using color balancing, warping, and mosaic processing Almeer [2012]. Containing
an open database of historical RS images with flexibility in selecting the spatial resolution

1https://www.digitalglobe.com/
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are other advantages of this software. The spatial resolution of GE imagery is flexible since
it depends on the resolution of original images and the zoom level Liu et al. [2017].

In this research, we studied three zones around the Guarapiranga reservoir in São Paulo,
Brazil. Their geographic coordinates are presented in Table 3.1.

Zone-1 Zone-2 Zone-3
23◦43′58.01” S, 23◦41′23.08” S, 23◦46′43.74” S,
46◦45′53.17” W 46◦44′10.14” W 46◦47′43.79” W

Table 3.1: The geographical coordinates of the studied zones.

We collected images from each study region over two years, 2009 and 2017. These six
images are considered the test set. In order to form the calibration set, we collected an
image from a sub-region of each test set image. Figure 3.4 illustrates the data collection
method. The size of the calibration and test set images are 1116 x 632 and 4836 x 2739
pixels, respectively, and their spatial resolution is 0.3 meters.

3.2.2 Two-phase OB Classification

This stage aims to map RS images into four land covers; reservoir, man-made, vegetation,
and shadow. The man-made class consists of roads (asphalted and not-asphalted), buildings,
pools, impervious surfaces, and unfinished constructions. The implemented steps in this stage
are explained in the following subsections.

3.2.2.1 Multi-resolution segmentation

This section is based on the multi-resolution concept adopted in Benz et al. [2004]. This
approach is adopted in the eCognition software to analyze the images using the proposed OB
method. In that work, Benz et al. [2004], the resolution is associated with objects of different
possible sizes or scales that appear in RS images. For instance, trees are possible objects of
small scale, rooftops are objects of intermediate scale, and reservoirs are large-scale objects.
Multi-resolution, in this context, refers to hierarchical processing to analyze such possible
scales Benz et al. [2004].

In the multi-resolution segmentation method, each pixel is essentially considered as a
segment. Next, each segment is merged with its neighbors based on relative homogeneity (or
heterogeneity) criteria. In every step, each segment is merged with the adjacent segment with
minimum increase in heterogeneity, similar to region-growing strategies. If the heterogeneity
increase be more than a given scale criterion, then no merge will take place. The heterogeneity
criterion and the scale constitute the most critical parameters of the multi-resolution seg-
mentation method.

The heterogeneity measures how heterogeneous a segment is based on color heterogeneity
and shape heterogeneity. The color and shape heterogeneities are based on the standard
deviation of the spectral colors and the deviation of a compact (or smooth) shape, respectively.
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Figure 3.4: Proposed approach for data collecting.

The heterogeneity criteria can be customized by weighting these two criteria. The shape ratio
determines to what degree shape influences the segmentation compared to color, and the
compactness ratio gives it a relative weighting against smoothness. The scale parameter is
related to the average size of the detected objects.

Consider ∆f as heterogeneity change of a possible merge defined as:

Wshape∆hshape +Wcolor∆hcolor (3.1)
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where 0 < Wshape, Wcolor < 1 and Wshape + Wcolor = 1. The color heterogeneity is computed
as follow:

∆hcolor = ΣN
i=1Wi(nmergeσ

merge
i − (nseg1σ

seg1
i + nseg2σ

seg2
i )) (3.2)

where N is number of channels of the image,Wi is the weight of ith channel, nseg1 is number
of pixels in segment 1, nseg2 is number of pixels in segment 2, nmerge is nseg1 + nseg2, σmergei

is the standard deviation of channel ith within merged segment, and σseg1i and σseg2i are the
standard deviations of ith channel of the segments 1 and 2, respectively.

The shape heterogeneity is defined as:

∆hshape = Wcompact∆hcompact + (1−Wcompact)∆hsmooth (3.3)

where ∆hcompact and ∆hsmooth are :

∆hcompact = nmerge
lmerge√
nmerge

− (
lseg1√
nseg1

+
lseg2√
nseg2

) (3.4)

∆hsmooth = nmerge
lmerge
bmerge

− (
lseg1
bseg1

+
lseg2
bseg2

) (3.5)

l is the border length and b is the perimeter of the segment bounding box Benz et al. [2004].
Two issues arise when assessing segmentation results: Over-segmentation and under-

segmentation. It has been shown that as long as under-segmentation is acceptable, a high
classification accuracy is achievable Belgiu and Drǎguţ [2014], Grybas et al. [2017]. Therefore,
in this phase of segmentation, we followed the over-segmentation idea. Examples of over-
segmentation and under-segmentation are illustrated in Figure 3.5.

We segmented calibration set images with different scales, shape, and compactness factors
and compared segmentation results by visual inspection. When the scale, shape, and compact-
ness parameters are 35, 0.7, and 0.5, respectively, segments become internally homogeneous,
and all pixels within a segment belong to one class.

3.2.2.2 Spectral difference segmentation

Spectral difference segmentation merges segments produced by another segmentation
method. In this method, neighbor segments whose differences between their layer mean
intensities (e.g., mean of Red band in the segments) are below the value given by the
maximum spectral difference are merged Tri [2018]. Consider seg1 and seg2 as two neighbor
segments. Let (Rseg1 , Gseg1 , Bseg1) and (Rseg2 , Gseg2 , Bseg2) be the mean spectral values for R,
G, and B bands of these two segments. If we consider wR, wG, and wB as the weights for
R, G, and B bands, respectively, the spectral difference between these two segments can be
computed as:
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Figure 3.5: Example of a GE image and two segmentation issues. The rooftops in over-
segmentation are covered by several segments. Whereas in under-segmentation, the segments over
rooftops (e.g., the segment highlighted with a red border) contain other scene classes as well.

wR
∣∣Rseg1 −Rseg2

∣∣+ wG
∣∣Gseg1 −Gseg2

∣∣+ wB
∣∣Bseg1 −Bseg2

∣∣
wR + wG + wB

(3.6)

The spectral differences between generated segments over the reservoirs tend to be
small. On the other hand, classifying them using their spectral information leads to poor
results because of their spectral similarity with shadow objects and some man-made objects.
Therefore, the spectral difference segmentation method is implemented to merge neighbor
segments when the difference between their mean intensities is very low (smaller than 1
in our experiments). Employing this method reduces the number of segments, especially
over reservoirs, and generates more accurate segments over the scene reservoir objects.
Utilizing these generated segments, we could classify reservoir objects without their spectral
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information.
The Spectral difference segmentation is applied in two stages of our pipeline, as seen

in Figure 3.2. The second application of this method merges segments with low spectral
differences that belong to the same classes and, consequently, constructs more accurate
segments over unclassified objects.

3.2.2.3 Classification

The second step in the OB method is classifying segments obtained from the segmentation
step. In our two-phase approach, classification is applied twice: in the first phase, for reservoir
classification, and in the second phase, to classify the other classes of interest.

In this study, the rule-based classification method is implemented. As mentioned, the
spectral difference segmentation generated more accurate segments over the reservoir objects
in the GE images. It made it possible to classify the reservoir objects using two spatial
information of generated segments: ”the segment area” and ”the relative border of the
segment to reservoir”. Consider l is the border length of a segment and lt is the common
border of this segment with segments classified as the reservoir, then ”the relative border
of the segment to the reservoir” will be l/lr. Therefore, for example, ”the relative border of
the segment to reservoir” for a segment surrounded by reservoir objects equals one.

The classification step in the second phase aims at classifying segments into vegetation,
man-made object, and shadow. As the number of target classes increases and different classes
have similar spectral properties, applying the rule-based method is more challenging and
time-consuming. Such difficulties illustrate a drawback of the OB approach, which requires
heuristics and an empirical setup of features and parameters. Even so, this method may lead
us to the best results empirically Ziaei et al. [2014]. Therefore, we implemented two steps to
speed up the process of extracting features and suitable thresholds to be used for classifying
the segments:

Spectral similarity analysis A new step is implemented to analyze spectral similarities
between segments of the same classes in different GE images. This step applies the nearest
neighbor classifier to the calibration set images. The classifier is trained utilizing some
proposed features in the literature Pande-Chhetri et al. [2017], Hu et al. [2013b] (e.g., mean
values per band, standard deviation, brightness, area) and samples of segments of 2009
calibration images. Not only were the model outputs for 2017 images too poor but also, the
2009 LCMs were not satisfying. Regarding our experiments, we decided to classify the GE
images of each year separately to achieve better results.

Feature analysis In this step, firstly, the segments from all classes from each year of
the calibration set images are selected. Next, using these samples, the histograms of defined
features are constructed for every two classes. Finally, the features with small histogram
overlap between classes are selected to be used in the classification. The features adopted
in our experiments are brightness, standard deviation, number of pixels/length, quantile,
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the minimum distance between a man-made object with reservoir objects, and R − G and
(R−B)2− (R−G)2, where R, G, and B represent the mean value of Red, Green, and Blue
bands of segments, respectively.

The necessary rules and related applied thresholds for classifying and proper segmentation
parameters have been adopted using the calibration set images. These are then applied to
the GE images in the test set. The calibration set images consist of significantly smaller
numbers of segments. It causes the process of adopting the rules, features, and parameters’
values to be more straightforward.

3.2.3 Data Analysis: Post-classification comparison change detection

In order to illustrate a possible application of the proposed approach, we apply it to
compare man-made object land cover in different years. In Figure 3.6, the experimental
setup is illustrated.

Figure 3.6: Classification comparison for three land cover types.

In this stage, a change detection matrix for each studied zone using the results of
the mapping test set images are constructed. Then, the important "from-to" changes are



22 LAND COVER MAPPING USING OB METHOD 3.3

computed.

3.3 Experimental Results and Accuracy Assessment

Expansion of dormitory neighborhoods around Guarapiranga reservoir has threatened
this reservoir since 1991 Osava [2008]. Since this reservoir is one of the most important water
supply sources of São Paulo city and its preservation is critical for urban management, we
decided to analyze the constructions around it to illustrate the proposed method.

3.3.1 Implementation Details

In this research, RS images are obtained using Google Earth Pro software. The results
of segmentation and classification are obtained using eCognition software, and results of
accuracy assessment and change detection are obtained using Python. This section aims to
give an overall view of the implementation of the method described in section 3.2.

This research provides RS images via Google Earth Pro 7. 3. 1. Downloading this user-
friend software is free. Four steps are necessary to obtain GE images from a geographical
area of interest: first, finding the area of interest on the map manually or by setting its
geographical coordinates; second, setting the desired eye altitude; third, selecting the date
of the GE image using ”historical imagery” tool; and fourth, saving the GE image in available
resolutions using ”save image” tool.

In addition, segmentation and classification are implemented in eCognition Developer
9.3.1 software. This software prepares different segmentation and classification methods to
be utilized. After loading the image, appending a new rule in the ”process tree” window
to access the list of all possible algorithms is necessary for segmenting an RS image. By
selecting the multi-resolution segmentation method, a new window opens that contains the
parameters of this method. After changing the value of parameters to the desired values and
executing the algorithm, the result of segmentation on the current image is visible. Users
can set values from 0 to 1 for the shape and compactness factor to determine objects at
a certain scale level. The larger scale parameter results in larger image segments and vice
versa. The spectral difference segmentation method can be implemented similarly.

Furthermore, to classify segments using the rule-based method, the first step is listing
the names of intended classes in the ”class hierarchy” window. The second step is defining
all features (e.g., mean values per band, variance, distances, neighborhood, Etc.) in the
”Features” tab of ”Image object Information” window. The third step is making the set of
intended rules in the ”process tree” window to classify images using them. To create each
of these rules, following these steps are necessary: 1)appending a new rule in the ”process
tree” window, 2) selecting ”assign class” in the list of algorithms, 3) making the intended
rule in the newly opened window.

As explained in Chapter 3, implementing the nearest neighbor classification method
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is suggested for the spectral similarity analysis step. A possible implementation of this
algorithm with details may be found at Miller et al. [2013]. Also, in the feature extraction
step, constructing histograms of defined features for every two classes is proposed. For
this, the first step is selecting the segments of every defined class from the current map
as samples, and the second step is opening ”Sample Editor” using Classification > Samples
> Sample Editor from the main menu. This window shows constructed histograms using
selected samples.

3.3.2 Experimental Results

Figures 3.7-3.12 demonstrate the collected GE image from Zone-1 in 2017, besides the
results of implementing the proposed two-phase OB classification stage on this image. As
is illustrated in Figure 3.9, after implementing the spectral difference segmentation method
in Figure 3.8, a segment is generated that covers almost the whole reservoir. The result of
applying spectral difference segmentation for the second time is illustrated in Figure 3.11.
This Figure shows the high reduction in the number of segments and the creation of segments
closer to the scene objects.

Figure 3.7: Example of a test set image. This image is collected from zone-1 in 2017.
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Figure 3.8: Result of implementing multi-resolution segmentation on Figure 3.7.

Figure 3.9: The output of applying spectral difference segmentation on Figure 3.8. Applying this
segmentation step reduced The number of generated segments over the reservoirs significantly.
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Figure 3.10: produced image after classifying reservoir in Figure 3.7.

Figure 3.11: The output of implementing spectral difference segmentation on segments in Figure
3.9 that are unclassified in Figure 3.10.
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Figure 3.12: Figure 3.7 final land cover map. Red: man-made, green: vegetation, black: shadow,
blue: reservoir.

Figures 3.13 and 3.14 illustrate the collected GE image from Zone-1 in 2009 and its
derived land cover map, respectively. Examples of Zone-2 and Zone-3 test set images beside
their LCM produced utilizing the proposed pipeline are illustrated in Figure 3.15. The
percentages of "from vegetation to man-made" and "from shadow to man-made" change
classes in new man-made areas in 2017 test images are presented in Table 3.2. These
percentages show a potential environmental impact around the Guarapiranga reservoir. Since
most of the GE images’ shadow areas correspond to vegetation, a high proportion of the
changes indicated as "from shadow to man-made" belongs to the "from vegetation to man-
made" class. Furthermore, a comparison of the proportions of man-made class in the land
cover maps from different years shows that the man-made area in the three studied zones
increased from approximately 40% to 400% from 2009 to 2017.
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Figure 3.13: A test set image collected from Zone-1 in 2009.

Figure 3.14: Figure 3.13 land cover map. Red: man-made, green: vegetation, black: shadow, blue:
reservoir.
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Figure 3.15: Two test set images from different locations and their LCM. (a) and (b) are the GE
image collected from Zone-2 in 2009 and Zone-3 in 2017, respectively; (c) OB LCM of (a); (d) OB
LCM of (b).

Table 3.2: Proportions of ”from vegetation to man-made” and ”from shadow to man-made” from
2009 to 2017 in three studied zones.

from vegetation from shadow
to man-made (%) to man-made (%)

Zone-1 87.22 12.78
Zone-2 28.83 71.17
Zone-3 68.39 31.61

Figure 3.16 summarizes the segmentation results for images of the same region in 2009
and 2017. Another format to display land cover changes is the histogram. Figure 3.17 displays
and compares the average proportions of every land cover type in the studied zones. We can
easily conclude from the results that the man-made area is rapidly expanding, from 8% to
14%.
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2009 2017

Image

Segmentation

Figure 3.16: Segmentation comparison for images of the same region in 2009 and 2017. The
red and green pixels represent man-made and vegetation classes, respectively. In this figure the
environmental degradation around the reservoir is depicted.

Figure 3.17: Average percentage of different land cover types in three studied zones.
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3.3.3 Workflow Validation

Each collected GE image is individually assessed using a number of independent validation
points generated by a stratified random sampling scheme. Stratified random sampling is
an unbiased sample selection method that ensures adequate sampling in each class. Since
it selects a minimum number of samples from each class Congalton and Green [2008]. A
minimum of 50 samples for each class is suggested by Lillesand et al. [2014]. Therefore,
due to the lack of survey points in the study areas, 250 and 500 independent points from
calibration and test set images are randomly selected, respectively. From these number of
samples, 50 and 100 points are distributed to each class in calibration and test set images,
respectively.

The producer’s accuracy (equation 3.7), user’s accuracy (equation 3.8), overall accuracy
(equation 3.9), and Kappa (equation 3.10) are utilized performance evaluation metrics
that are calculated based on the confusion matrix (Table 3.3). The producer’s and the
user’s accuracy indicate the probability of a reference pixel being correctly classified and
the probability that a pixel classified on the map represents that category on the land,
respectively. We also computed Kappa to determine whether the presented results in the
confusion matrix are significantly better than a random result or not Jensen [2015], Congalton
and Green [2008].

Table 3.3: Confusion matrix when there are k classes.

Ground truth class
1 2 3 k

Map class

1 x11 x12 x13 .... x1k
2 x21 x22 x23 .... x2k
3 x31 x32 x33 .... x3k
. . . . .... .
k xk1 xk2 xk3 .... xkk

Producer′s accuracy for class j =
xjj
x+j

(3.7)

User′s accuracy for class j =
xjj
xj+

(3.8)

Overall accuracy =
Σk
j=1xjj

Σk
i=1Σ

k
j=1xij

(3.9)

Kappa =
NΣk

i=1xii − Σk
i=1(xi+ x+i)

N2 − Σk
i=1(xi+ x+i)

N = Σk
i=1Σ

k
j=1xij (3.10)

Tables 3.4-3.9 indicate the producer’s, user’s, overall accuracy, and Kappa of generated land
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cover maps. In these tables, ”Pro” and ”Use” are abbreviations of the producer’s and user’s
accuracy, respectively. Presented accuracy assessment results are computed using one run.

Table 3.4: Accuracy assessment of Zone-1 calibration set images land cover maps.

2009 2017
Use (%) Pro (%) Use (%) Pro (%)

man-made 90.20 97.87 84.62 96.49
Vegetation 88.00 84.62 81.08 81.08
Shadow 89.86 96.87 95.08 87.88
Reservoir 100 90.16 96.55 91.80

overall accuracy (%) 91.60 88.76
Kappa (%) 88.71 84.98

Table 3.5: Accuracy assessment of Zone-1 test images land cover maps.

2009 2017
Use (%) Pro (%) Use (%) Pro (%)

man-made 92.08 93.94 88.70 87.18
Vegetation 84.11 92.03 81.75 81.10
Shadow 96.58 91.87 88.01 92.50
Reservoir 100 93.57 100 97.97

overall accuracy (%) 92.80 90.04
Kappa (%) 90.35 86.41

Table 3.6: Accuracy assessment of Zone-2 calibration set images land cover maps.

2009 2017
Use (%) Pro (%) Use (%) Pro (%)

man-made 92.31 96.00 87.50 97.25
Vegetation 83.82 81.43 81.20 94.34
Shadow 80.03 84.48 90.77 80.73
Reservoir 96.77 90.91 97.00 84.38

overall accuracy (%) 87.70 88.31
Kappa (%) 83.55 84.41

3.4 Conclusion

We proposed a new approach for OB LCM RGB RS images in this study. In the
proposed approach, a multi-phase segmentation is adopted. Avoiding testing different values
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Table 3.7: Accuracy assessment of Zone-2 test images land cover maps

2009 2017
Use (%) Pro (%) Use (%) Pro (%)

man-made 92.86 100 92.62 95.76
Vegetation 91.2 91.93 91.49 91.49
Shadow 91.2 87.69 94.06 90.48
Reservoir 94.93 92.26 98.54 98.54

overall accuracy (%) 92.60 94.21
Kappa (%) 90.11 92.24

Table 3.8: Accuracy assessment of Zone-3 calibration set images land cover maps

2009 2017
Use (%) Pro (%) Use (%) Pro (%)

man-made 94.12 92.31 92.98 96.36
Vegetation 88.00 89.19 82.67 92.54
Shadow 92.31 87.27 96.43 84.37
Reservoir 95.65 100 100 96.92

overall accuracy (%) 92.31 92.43
Kappa (%) 89.66 89.89

Table 3.9: Accuracy assessment of Zone-3 test images land cover maps

2009 2017
Use (%) Pro (%) Use (%) Pro (%)

man-made 88.99 96.04 93.16 97.32
Vegetation 95.74 85.44 87.22 87.88
Shadow 89.31 94.35 92.59 91.24
Reservoir 98.45 100 100 96.9

overall accuracy (%) 93.33 93.14
Kappa (%) 91.07 90.84

for adjusting the parameters of a time-consuming high-performance segmentation method
called multi-resolution, obtaining segments with shapes close to the shapes of scene objects,
and gaining the spatial features of high accurate generated segments for classifying reservoirs,
are advantages of the proposed method. This is analogous to some selective attention-based
methods that may be found in the literature.

Spectral similarity analysis and feature extraction steps are proposed to be implemented
before defining the rules. These two steps indicate the suitable parameters and thresholds to
be used for defining rules. Collecting two datasets as calibration and test sets are proposed,
where the calibration set image sizes are almost one-sixteenth of the test set images and have
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significantly less number of scene objects compared to the test set images. Utilizing these
methods can significantly decrease the necessary time for achieving the desired results when
we visually assess the parameters of the multi-resolution segmentation method and classify
images with the rule-based method. We selected three zones around the Guarapiranga
reservoir in São Paulo, Brazil, to collect our remote sensing images.
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Chapter 4

A DL-based approach for man-made
object segmentation around reservoirs

This chapter content is based on the publication Hamidishad and Marcondes Cesar Jr
[2023].

4.1 Introduction

Despite the efficacy and popularity of the OB image analysis approach, this method has
some disadvantages. For instance, most of its applications rely on pricey commercial software;
and it heavily relies on expert experience in establishing the most suitable parameters.
Therefore, its robustness is undermined, and its outputs may differ highly from case to case.

In recent years, DL has attracted considerable attention as a method for segmenting the
RS imagery semantically and has achieved remarkable success. In this chapter, we develop a
new approach based on DL and image processing techniques for man-made object semantic
segmentation around the reservoirs. In order to segment man-made objects around the
reservoirs in an end-to-end procedure, segmenting reservoirs and identifying the region of
interest (RoI) around them are essential. In the proposed two-phase workflow, the reservoir
is initially segmented using a DL model. A post-processing stage is proposed to remove errors
such as floating vegetation. Next, the RoI around the reservoir (RoIaR) is identified using
the proposed image processing techniques. Finally, the man-made objects in the RoIaR are
segmented by a DL model. In order to illustrate the proposed approach, our task of interest
is segmenting man-made objects around some of the most important reservoirs in Brazil.
Therefore, we trained the proposed workflow using collected Google Earth (GE) images of
eight reservoirs in Brazil over two different years.

The organization of this chapter is as follows: Section 4.2 describes the studied reservoirs,
collected data characteristics, applied data pre-processing pipeline, the proposed workflow for
segmenting man-made objects around the reservoirs, and corresponding utilized methods.
Next, the performance of each workflow stage, besides results visualization and workflow

35
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evaluation, is explored in section 4.3. Finally, the results and findings of the study are
discussed in section 4.4.

4.2 Materials and Methods

Our task of interest is segmenting man-made objects around reservoirs. The proposed
approach (see Figure 4.1) is based on three main steps: 1- Reservoir map generation; 2- RoIaR
detection; 3- Man-made object segmentation in the RoIaR. The data is initially collected
and pre-processed to be prepared in a suitable manner. Then, patches of constructed images
are fed to phase-1 for reservoir segmentation. The reservoir map is passed to phase-2, where
the RoIaR is detected. This RoIaR is used as a mask where man-made objects are finally
segmented. The workflow is detailed in the following subsections.

4.2.1 Data Collection

Our experiments are performed on RGB remote sensing images collected from eight
reservoirs in Brazil using the Google Earth Pro c© software. GE images represent an integration
of multiple satellite data sources, mainly DigitalGlobe’s QuickBird commercial satellite and
EarthSat that mostly is from Landsat-7 Qian et al. [2020]. Aiming to improve the images’
appearance, the spectral information of images with more than three bands is reduced to
RGB Visser et al. [2014]. Furthermore, the GE images’ appearance is improved using color
balancing, warping, and mosaic processing Almeer [2012]. Besides being an open dataset
of RS images, including historical images and flexibility in selecting images of different
resolutions are additional advantages of this platform. The GE coordinate system is the
World Geodetic System WGS84 standard.

The eight studied reservoirs are Anta, Billings (the largest reservoir in São Paulo, Brazil),
Dona Francisca, Guarapiranga, Jaguara, Luiz Barreto, Nova Avanhandav (Nova), and Salto
Osório. Their locations are visualized in Figure 4.2. Their geographic coordinates are listed
in Table 4.1. For each reservoir, images over two different years are collected (Table 4.2).
The size of collected images is 2683 × 4800 pixels. They are captured in different view
altitudes and have consequently different resolutions (from approximately one meter up to
two meters). A total of 206 images are collected, covering about 3000 square kilometers.

4.2.2 Data Preparation and Annotation

Data preparation involves two aspects: pre-processing for mosaic image formation and
data annotation. The data preparation scheme is illustrated in Figure 4.3 using Guarapiranga
reservoir samples. The data preparation aims to prepare data for training the phase-1 and
phase-2 semantic segmentation models in Figure 4.1.

As is shown in Figure 4.3, the input images are initially mosaicked to eliminate overlapping
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Figure 4.1: Overview of the proposed analysis workflow.

areas in collected GE images. Constructing the mosaic images is also essential for implemen-
ting the next steps. The mosaicked images are annotated into two classes, reservoir, and
non-reservoir. To annotate images the Adobe Photoshop tools are used.

Next, to simplify the contour around the reservoirs, a polygonal approximation is initially
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Table 4.1: Locations of studied reservoirs.

Reservoir State Coordinates
Anta Minas Gerais and Rio de Janeiro 22◦02′33.20′′ S, 43◦01′16.85′′ W

Billings São Paulo 23◦48′50.62′′ S, 46◦32′19.39′′ W
Dona Francisca Rio Grande do Sul 29◦26′34.18′′ S, 53◦16′09.09′′ W
Guarapiranga São Paulo 23◦43′16.93′′ S, 46◦44′22.23′′ W

Jaguara Minas Gerais and São Paulo 20◦05′01.85′′ S, 47◦24′10.44′′ W
Luiz Barreto São Paulo 20◦14′18.50′′ S, 47◦11′01.95′′ W

Nova São Paulo 21◦10′34.54′′ S, 50◦07′34.03′′ W
Salto Osório Paraná 25◦33′28.60′′ S, 52◦57′07.61′′ W

Table 4.2: Acquisition years of each reservoir dataset. Some of the older year images of Luiz and
Nova belong to 2004 and 2010, respectively.

Acquisition Years
Reservoir Older Earlier

Anta 2014 2020
Billings 2009 2019

Dona Francisca 2011 2017
Guarapiranga 2009 2019

Jaguara 2010 2020
Luiz Barreto 2010 2020

Nova 2011 2021
Salto Osório 2005 2019

carried out Douglas and Peucker [1973], Cubes [1987], Costa and Marcondes Cesar Jr [2000].
This allows controlling the coarseness by the polygonal approximation parameter. Then, a
rectangular box connecting each pair of consecutive polygon corners is defined. These boxes
are enlarged to cover an at least distance from the border of the reservoir. The RoIaR is
defined as the union of these boxes (see Figure 4.3) and is used to mask the mosaic image.

The masked RoIaR image is annotated to man-made and non-man-made objects:

• Man-made objects: road (asphalted and not-asphalted), rooftop, bridge, pool, urban
and countryside constructions, impervious surface.

• Non-man-made objects: Vegetation, water body, bare land, plantations, Etc.

4.2.3 Phase-1: Reservoir segmentation

This step explores a deep neural network that segments input RGB patches to reservoir
and non-reservoir. Encoder-decoder-based models have been trained and compared for this
step. Below, we briefly describe the two models assessed in this study: U-Net and SegNet.
Based on our evaluation, the SegNet-based model has been selected as the best in our
experiments.
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Figure 4.2: Visualization of the studied reservoirs locations.

The U-Net architecture introduced by Ronneberger et al. [2015] is based on a downsampl-
ing-upsampling procedure that concatenates feature maps between each encoder and corres-
ponding decoder by skip connections (see Figure 4.4). In each step in the encoder path,
two 3x3 convolutions followed by a ReLU and a 2x2 max-pooling with stride two are
repeated. Furthermore, the number of feature channels in each downsampling step is doubled.
After each upsampling in the decoder path, a 2x2 convolution that halves the number of
feature channels is applied. These features are concatenated with the cropped feature of the
corresponding encoder step, and then two 3x3 convolution-ReLU blocks are implemented.

Due to the unpadded convolutions utilized in the U-Net, the output size of the model
is smaller than the input. Therefore, we avoided unpadded convolutions to keep the size
of each output equal to the corresponding input and set the dropout to 0.3 to overcome
the overfitting (named U-Net_p). On the other hand, a common strategy in DL research
for training the CNNs properly and avoiding training from scratch is utilizing a pre-trained
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Figure 4.3: Proposed data preparation and annotation pipeline.

CNN as the initializer or as the fixed feature extractor, called transfer learning. Therefore,
we trained a U-Net model whose encoder path was replaced by VGG-16 (named U-Net_v)
and initialized with weights trained on the ImageNet dataset. However, the model overfitted
extremely the train set. The other trained U-Net-based model (named U-Net_s), has fewer
features. In this model, there is only one convolution block in each layer that is also batch
normalized Ioffe and Szegedy [2015].

The SegNet architecture was first introduced by Badrinarayanan et al. [2015]. Similar to
the U-Net, SegNet includes an encoder and a decoder part with the advantage that the need
for learning to up-sample is eliminated. Since each decoder uses pooling indices computed
in the max-pooling step of the corresponding encoder. After each convolution layer in the
encoder path, a ReLU not-linearity is used, whereas, in the decoder, no ReLU not-linearity is
presented. Furthermore, the number of channels per layer is constant (see figure 4.5). In the
employed architecture (named SegNet_d), despite the original form, the number of feature
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Figure 4.4: The U-Net architecture.

channels is doubled at each down-sampling step. Moreover, batch normalization is applied
after each convolution layer.

Figure 4.5: The SegNet architecture.

Data splitting Since the collected images correspond to different reservoirs geographi-
cally spread in Brazil, they have different visual properties. They may be obtained in different
seasons, atmospheric and geological conditions, Etc. A possible approach to address such
variability is to adopt the domain adaptation techniques. Since this is out of the scope of
this thesis, we explored a data splitting approach to ensure variability in the train, test,
and validation sets. Therefore, samples from each 16 mosaic images of reservoirs are used in
these sets in the following proportions: 60% for the train set, 20% for the validation set, and
20% for the test set.
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Post-processing Feeding models by mosaic images instead of patches is impossible
because of the available GPU memory limits. Whereas, in many cases, patches do not contain
important information about objects, such as their shapes, sizes, and locations in the images.
However, this information is essential for detecting some water bodies from reservoirs. On
the other hand, spectral similarities between objects of different classes also cause errors.
Therefore, we proposed a post-processing stage to fix these errors.

In this stage, the segmented patches are initially assembled to form the reservoir map.
Then, the morphological opening is applied to remove small false positive objects. Next,
morphological closing is applied to remove small false negatives objects inside the reservoir
objects.

Applying morphological transformations with a large kernel causes changes in the shapes
of objects predicted as the reservoir. Accordingly, in order to remove errors inside reservoirs
(such as floating vegetation) and large false positive objects (such as large water bodies
around reservoirs) without removing reservoir objects that are separated because of construc-
ted bridges over the reservoirs, the following rules are proposed:

• If a non-reservoir object is surrounded by a reservoir object, it is classified as the
reservoir.

• If the size of a reservoir object is smaller than one-tenth of the size of the largest
reservoir object, or the minimum distance between these two objects is greater than
300 meters, then it is classified as non-reservoir.

4.2.4 Phase-2: Man-made object segmentation

Once the reservoir is segmented, the next step is to detect and extract the RoIaR. Two
possible approaches for RoIaR detection have been considered: polygonal approximation-
based and mathematical morphology-based. The polygonal approximation approach has
been described in Section 4.2.2, which is adopted for dataset annotation. Although this
approach is useful for sparse data annotation (because we may control the polygonal appro-
ximation parameters), it produces patches of varying sizes that may not be suitable for
analyzing man-made objects’ evolution, for instance.

Therefore, a mathematical morphological approach is also explored. Let I denote the
segmented reservoir image and s a structuring element. The dilated reservoir image is defined
as Id = I ⊕ s, where ⊕ is the morphological dilation. The RoIaR R is defined as R = Id− I,
where − denotes set difference.

Following the data annotation procedure illustrated in Figure 4.3, the detected RoIaR is
applied as a mask to the original data for RoIaR extraction. The extracted RoIaR is then
segmented into man-made and non-man-made objects.

Two widely used network architectures for RS semantic segmentation are the pyramid
networks and encoder-decoder networks Mou and Zhu [2018]. In phase-2, the following
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networks have been assessed: U-Net, Pyramid scene parsing network, Feature Pyramid
network, and LinkNet, which are detailed in the following.

The Pyramid scene parsing network (PSPNet) has been introduced by Zhao et al. [2017]
and won the ImageNet Scene Parsing Challenge 2016. It is a pyramid pooling module
that enables the network to capture the context of the whole image. In this module, the
feature map is pooled at different sizes and passed through a convolution layer. Next, these
features are upsampled and concatenated with the original feature map and passed through
a convolution layer to produce the final prediction (see Figure 4.6). We implemented PSPNet
with different backbones in this study. Furthermore, besides PSPNet that downsamples input
image to 1/8, the 1/4 downsampling is also trained.

Figure 4.6: An overview of PSPNet. The size of feature map channels is denoted below each box.
The size of the last feature map in (a) is 1/8 of the input image size.

The Feature Pyramid Network (FPN) was initially proposed by Lin et al. [2017a] for
object detection. The general scheme of FPN is illustrated in Figure 4.7. The construction
of this architecture involves a bottom-up path, a top-down path, and lateral connections.
The scaling step in the bottom-up path (and consequently in the top-down path) is two.
Each lateral link combines feature maps from the bottom-up and top-down pathways with
the same spatial size. Finally, the feature maps in the top-down stages are upsampled to be
the same size as the input image. These feature maps are combined and used to produce the
prediction map. The ResNet is used as the backbone, whereas in this study, other backbones
have also been experimented.

The LinkNet architecture proposed by Chaurasia and Culurciello [2017] is a semantic
segmentation method that is constructed from an encoder and a decoder path (see Figure
4.8). Each residual block in the encoder path consists of two consequent convolution blocks.
The input of each residual block is bypassed to its output. The decoder blocks consist of
three convolution layers, and the middle is a full convolution. The advantage of the proposed
architecture is passing the input of each encoder block to the output of the corresponding
decoder block.
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Figure 4.7: An overview of FPN.

Figure 4.8: An overview of LinkNet architecture.

Data splitting Splitting data into the train and test sets is reported to work well when
the dataset size is modest. On the other hand, the train and test sets must represent possible
distributions of the addressed problem. Therefore, 70% for the train and 30% for the test
set are selected randomly from each RoIaR.

Loss function The Focal loss proposed by Lin et al. [2017b] and the Dice loss that is
based on Dice coefficient Sorensen [1948], Dice [1945] are utilized as the loss function for
training the networks. Focal loss down-weights easy examples and hence helps the model to
learn complex examples better. It is reported by Jadon [2020] that Focal loss works best
when the data is highly imbalanced. To see how it works, first, consider the binary cross
entropy loss (CE):

CE(p, y) =

− log p, if y = 1

−log(p− 1), otherwise
(4.1)

where p is predicted probability for class with label y=1. Now lets define a new notation pt:
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pt =

p ify = 1

p− 1, otherwise
(4.2)

Using this notation we can rewrite Equation 4.1 as CE(pt) = −log(pt). To balance the
importance of positive/negative examples, we can consider αt as the weight for class 1 and
1− αt for class 0, then α-balanced CE will be written as:

CE(pt) = −αtlog(pt) (4.3)

Finally, to down-weight easy examples, they add factor (1 − pt)γ to CE where γ > 0 is
a tunable parameter. Based on the experiment, γ = 2 works best and is used in this study
too.

The dice Loss is based on the dice coefficient (DC); see Equation 4.4. In the case of
binary classification, A is the set of all positive examples, and B is the set of predicted
positive examples.

DC =
2 |A

⋂
B|

|A|+ |B|
(4.4)

Then, DC can be expressed as the following form:

DC = 2 · TP

2TP + FP + FN
(4.5)

where TP, FP, and FN are true positive, false positive, and false negetive, respectively. The
dice loss (DL) takes the following form:

DL = 1− 2 ·
∑N

i=1 piri∑N
i=1 r

2
i + p2i

(4.6)

where pi is the predicted probability for pixel i-th and ri is the ground truth of the corresponding
pixel. The imbalance between the foreground and background can be efficiently reduced using
Dice Loss. However, it disregards the imbalance in data difficulty.

4.3 Experimental Results

This section describes the experimental results of the proposed workflow. Phases 1 and
2 have been evaluated, and the results are discussed below.

4.3.1 Performance Evaluation Metrics

Three common statistics, precision (Equation 4.7), recall (Equation 4.8), and F1-score
(Equation 4.9) which is a harmonic mean of precision and recall, are adopted as well as the
confusion matrix of segmentation maps.
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Precision =
TP

TP + FP
(4.7)

Recall =
TP

TP + FN
(4.8)

F1 = 2 · Precision ·Recall
Precision+ recall

(4.9)

4.3.2 Phase-1 Experimental Results

The proposed methods have been implemented in Python using the Google Collaborator
(Figure 4.9). The trained architectures for this phase are modified versions of U-Net and
SegNet. All trained models apply the Binary Cross Entropy as the loss function. The learning
rate in the Adam optimizer (proposed by Kingma and Ba [2014]) is set to 0.001, which is
reduced by a factor of 0.2 after every five epochs with no reduction in validation loss down
to 10−7. Although the number of epochs is set to 100, training is stopped after 20 epochs
with no reduction in the validation loss. Patches with 416 x 608 pixel sizes are fed into
the networks, and train, validation, and test sets contain 6017, 2009, and 1998 patches,
respectively. Vertical and horizontal flips are two types of augmentation that each one is
applied randomly on 50% of train patches. The F1-score of trained models in segmenting
the train and validation sets are presented in Table 4.3. As is illustrated in this Table, the
U-Net_v overfits the train set.

Table 4.3: Performance of trained architectures for phase-1 semantic segmentation stage.

F1-score
Model Train set Validation set
U-Net_p 96.19 95.46
U-Net_v 92.11 68.86
U-Net_s 96.80 96.17
SegNet_d 97.22 96.56

The performances of models with healthy learning curves in segmenting the validation
set are illustrated in Table 4.4. As illustrated in the Table, SegNet_d outperforms the U-
Net-based models. The performance of SegNet_d in segmenting the test set is illustrated
in Table 4.5. Some patches of studied reservoirs with different spectral properties besides
their ground truths and SegNet_d, U-Net_s, and U-Net_p prediction outputs are shown
in Figure 4.10.

Besides errors that occur because of spectral similarities between reservoirs and some
other objects (such as shadows), there are small water bodies, rivers, Etc., in the images that
are segmented, partially or entirely, as the reservoir by the models. This issue is unavoidable
because of feeding patches to the models instead of the mosaic images. Therefore, post-
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Figure 4.9: Jupyter Notebook (Google Colaboratory) created to prepare the proposed method.

Table 4.4: The performance of models with healthy learning curves for Phase-1 semantic
segmentation on the validation set.

Precision Recall F1-score
Model non-reservoir reservoir non-reservoir reservoir non-reservoir reservoir
U-Net_p 98.18 93.72 98.71 91.27 98.44 92.48
U-Net_s 98.63 93.85 98.71 93.49 98.67 93.67
SegNet_d 98.79 94.39 98.82 94.24 98.81 94.32

processing the network outputs is an essential task. Figure 4.11 illustrates examples of non-
interesting water bodies in the collected dataset and their segmentation results in generated
reservoir maps.
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Table 4.5: SegNet_d performance on the test set.

Class Precision Recall F1-score Support (N.pixels)
Non-reservoir 98.82 98.87 98.85 4211777759
Reservoir 94.33 94.11 94.22 84172385

Morphological operations post-processing is highly effective in removing minor errors,
as described above. Each reservoir’s applied structuring element size equals 100/(spatial
resolution). For example, if the spatial resolution of a mosaic image is one meter, the
structuring element size is 100x100.

As the reservoirs contain branches, applying morphological operations with large kernel
sizes increases FP and FN objects. Accordingly, significant errors are removed by applying
the two rules to objects in the produced segmentation maps. Post-processing using only
rules is time-consuming because of the high number of FP and FN objects in prediction
maps, whereas morphological operations speed up this process. Anta-2014 and Nova-2021
mosaic images, besides their ground truths, model outputs, and post-processing outputs,
are illustrated in Figure 4.12. Moreover, SegNet_d performance in segmenting these two
reservoirs besides post-processing performance are presented in Table 4.6. Applying the
proposed post-processing improves the accuracy of produced reservoir maps except for two
of the 16 studied cases.

Table 4.6: Prediction and refinement performance metrics for Anta-2014 an Nova-2021.

Model Post-processing
Reservoir Class Precision Recall Precision Recall

Anta-2014 non-Reservoir 98.45 98.95 99.15 99.56
Reservoir 89.75 85.53 95.72 92.07

Nova-2021 non-Reservoir 98.33 98.03 98.67 99.13
Reservoir 92.56 93.65 96.63 94.90

4.3.3 Phase-2 Experimental Results

As discussed above, VGG-16, ResNet-50, and ResNet-101 are the most frequented back-
bones Ghanbari et al. [2021]. In this study, these three backbones besides EfficientNet-B4
have been experimented. All backbones are initialized with weights trained on the ImageNet
dataset. The Adam optimizer is used as the optimizer in all models. The initial learning
rate is set to 0.0001 or 0.001, which is automatically reduced by a factor of 0.2 after every
five epochs with no reduction in validation loss down to 10−7. The mini-batch size is set
to two and power of two (up to the possible size based on the model’s size and available
memory). The number of epochs in training all models is set to 80, and the early stopping is
not implemented. Vertical and horizontal flips are two augmentation methods implemented
on different portions of images (up to 0.7). We added dropout regularization (<0.3) to
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Figure 4.10: Examples of the test set patches beside their corresponding ground truths and
segmentation outputs.
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Figure 4.11: Examples of non-reservoir water bodies in the collected dataset and corresponding
segmentation results.

the models with overfitting. Furthermore, experiments are on two train sets, a train set
containing 70% of data or the over-sampled train set. The over-sampled images are images
with at least 200 man-made objects pixels.

The evaluation metrics for the highest performance model constructed using each archi-
tecture are presented in Table 4.7. These models are all trained on the over-sampled train
set with a learning rate of 0.0001. Furthermore, the augmentation rate in these models
is set to 0.7 for each augmentation method, and the dropout regularization is set to 0.0,
0.3, 0.3, and 0.0, respectively. Regarding the F1-score, the best performance belongs to
FPN; however, the differences are insignificant. The utilized backbones for each model
in the Table are ResNet50, VGG-16, VGG-16, and EfficientNet-B4, respectively. Utilizing
the VGG-16 as the PSPNet backbone could significantly improve the model’s performance
(2.34%). However, the performances of the rest models are slightly affected by changing their
backbones (<0.73%). This indicates the efficiency of the EfficientNets architectures (the
numbers of trainable parameters of EfficientNet-B4, VGG-16, ResNet50, and ResNet101
are about 19, 135, 26, and 45 million, respectively). In our experiments, oversampling
images with more than 200 man-made object pixels improved the performances. Moreover,
despite the expectation, increasing batch size did not increase the performance metrics in all
cases. Adding the dice loss to the focal loss function significantly improved the models’
performances. Although increasing the augmentation rate prevented overfitting in some
cases, in other cases increasing dropout and augmentation rates were both essential. Though
the FPN outperforms the PSPNet, each epoch training time of PSPNet is less than one-third
of the FPN. FPN performance in the segmenting test set is presented in Table 4.8.

Moreover, the FPN performance in segmenting RoI of reservoirs located in the countryside
and urban areas are computed separately and shown in Table 4.9. Some examples of patches
besides their ground truths and segmentation outputs are illustrated in Figure 4.13. This
figure illustrates examples of different types of roads, rooftops, and urban and countryside
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Figure 4.12: Two examples of produced mosaic images, corresponding ground truths, prediction
outputs, and post-processing outputs. Anta-2014 with 11687 × 14430 pixel size, and Nova-2021 with
24830 × 23193 pixel size are depicted in the first and second columns, respectively.

constructions with different density levels.
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Table 4.7: The highest achieved performances using trained models for Phase-2 semantic
segmentation on train and test sets.

F1-score
Model Train set Test set
U-Net 91.64 90.13
PSPNet 91.29 89.58
FPN 92.16 90.32

LinkNet 91.95 90.15

Table 4.8: FPN performance in segmenting test set to man-made, and non-man-made.

Class Precision Recall F1-score Support (N.pixels)
non-man-made 99.52 99.56 99.54 327065669
man-made 81.79 80.43 81.10 8101819

Table 4.9: FPN performance in segmenting countryside and urban man-made objects. C and U are
the abbreviations for countryside and urban.

Precision Recall F1-score
Class C U C U C U

non-man-made 99.68 99.39 99.73 99.26 99.71 99.33
man-made 78.70 86.62 75.78 88.75 77.21 87.67

4.3.4 Workflow evaluation

We evaluated the proposed workflow using a dataset collected from the Barra Grande
reservoir (Barra). Barra is located in Santa Catarina and Rio Grande do Sul states in Brazil.
The collected images belong to 2021, and their spatial resolution is two meters. To evaluate
the proposed workflow using the collected data, first, patches with 416 x 608-pixel size are
constructed from the mosaic RGB image of Barra. Next, patches are fed to the trained
SegNet_d to be segmented into the reservoir and non-reservoir (it took 103 seconds). The
SegNet_d performance is evaluated by comparing model outputs with manually produced
ground truths. In the next step, the SegNet_d outputs are assembled to be refined using
the proposed post-processing stage (it took 100 seconds). The refined reservoir map is used
to detach the RoI around Barra. The covered distance from the border of the reservoir
is 200 meters. This process takes 219 seconds utilizing the mathematical morphology-based
approach and 21 seconds utilizing the polygon approximation-based approach. Finally, patch-
es of detached RoI are fed to the phase-2 pre-trained model to be segmented into man-made
and non-man-made (it took 61 seconds). In Table 4.10, the performances of the phase-
1 semantic segmentation stage, besides the performance of proposed post-processing, are
reported. Table 4.11 shows the evaluation metrics for the phase-2 semantic segmentation
stage. Furthermore, some samples of phase-1 and phase-2 semantic segmentation outputs
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Figure 4.13: Samples of four studied reservoirs RoI patches beside their corresponding ground
truths and prediction outputs.

are illustrated in Figures 4.14 and 4.15, respectively.

Table 4.10: Performance of phase-1 semantic segmentation and post processing stages in
segmenting Barra dataset to reservoir and non-reservoir.

Model Post-processing
class Precision Recall F1-score Precision Recall F1-score

non-Reservoir 98.39 96.86 97.62 98.38 98.36 98.37
Reservoir 84.00 91.21 87.45 90.92 91.04 90.98
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Table 4.11: Performance of phase-2 semantic segmentation stage in segmenting Barra RoI to
man-made and non-man-made.

Class Precision Recall F1-score
non-man-made 99.99 99.99 99.99
man-made 73.29 79.43 76.23

Figure 4.14: Two samples of Barra phase-1 patches, besides their corresponding ground truths and
semantic segmentation results.

4.3.5 Benchmark

In order to show the effectiveness of our proposed two-phase approach, we applied a
single-phase network for semantic segmentation of reservoir, man-made, and else, as the
baseline. In this model, the VGG-16 is used as the backbone, the learning rate is set to 0.0001,
the number of epochs is set to 150, the early stopping is not applied, and the summation of
Dice and Focal losses is used as the loss function. The learning rate is reduced by a factor
of 0.2 after every five epochs with no reduction in validation loss down to 10−7. Like the
phase-2 training phase, we constructed patches with 384 x 384-pixel size and split them into
two sets: train and test.

Since man-made objects inside RoIaR are annotated as man-made and outside as non-
man-made (because they are not around the reservoir), the baseline performance is poor
(see Table 4.12), as expected. This simple baseline approach illustrates the importance of
our proposed two-phase approach.
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Figure 4.15: Two samples of Barra RoI patches, their corresponding ground truths, and semantic
segmentation results.

Table 4.12: U-Net performance in segmenting train and test sets into reservoir, man-made, and
else.

Precision Recall F1-score
Class Train Test Train Test Train Test

Reservoir 96.58 96.15 96.52 95.72 96.55 95.94
Man-made 62.17 59.02 50.78 49.13 55.90 53.62

Else 98.64 98.37 98.88 98.69 98.76 98.53

4.4 Discussion

The experimental performance evaluation has addressed the results of phases 1 and 2 of
the proposed workflow, workflow validation by an external testing dataset, and the single-
phase segmentation benchmark result.

Reservoir segmentation is addressed in phase-1 of the workflow. We trained three U-
Net-based models in this phase. The vanilla U-Net was changed to keep the size of each
output equal to the corresponding input to produce a pixel-wise classification. Besides, a
U-Net with VGG-16 as the backbone was trained. The model over-fitted highly to the
train set. Decreasing the number of feature maps in the model (named U-Net_s) caused
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performance improvement and fixed the over-fitting issue, as shown in Table 4.3. A SegNet-
based architecture was also trained to examine its ability to enhance segmentation outputs.
However, it outperformed the U-Net_s slightly (1.23% in F1-Score).

The reservoirs are considered in a broad class called water bodies. In this study, a post-
processing stage is proposed to eliminate errors caused by floating vegetation, and delete
FP and FN objects caused by spectral similarities between reservoirs and other objects. The
proposed post-processing improved the overall accuracy and provided a clear map of the
reservoirs, as shown by the examples in Table 4.6 and Figure 4.12.

Phase-2 restricts the segmentation of man-made objects in the RoIaR. Four DL archi-
tectures have been evaluated to segment the man-made objects: U-Net, FPN, LinkNet, and
PSPNet. This problem typically involves imbalanced data because of government policies to
protect such areas besides difficulty in segmenting countryside man-made objects.

In order to address these issues, we tried out the capability of two recommended loss
functions (Dice and Focal losses) and the over-sampling strategy. Although Focal loss was
reported as the best loss function for segmenting unbalance data, adding Dice loss to
the Focal loss significantly improved the performances. The oversampling caused a slight
improvement in the performance of some models. We trained each architecture with four
different backbones, ResNet50, ResNet101, VGG-16, and EfficientNet-B4. The highest im-
provement caused by changing the backbone belongs to VGG-16 in PSPNet, 2.24%, whereas
changing the backbone in other architectures had a low contribution.

Workflow validation has been carried out using data not seen by the model during
training (Barra reservoir, see Section 4.3.4). The validation data included realistic noise
and difficulties such as clouds. Despite this, the phase-1 model achieved to 92.54% average
F1-score that was even improved to 94.68% by applying post-processing techniques (see
Table 4.10). Additionally, the reservoir is in the countryside. The majority of roads are
not asphalted, and man-made objects present different visual features from urban areas.
Also, there are fewer samples of them in the training data. Accordingly, segmenting them is
more complicated compared to urban areas. Nonetheless, the phase-2 model could gain an
acceptable performance, as seen in Table 4.11.

We increased the feature maps in the phase-2 trained U-Net-based model and trained
that to segment collected data into the reservoir, man-made and non. The data was split into
the train and test sets, and no early stopping was applied. Nonetheless, the model man-made
F1-score was 35.74 % less than the phase-2 U-Net model.



Chapter 5

Concluding remarks

5.1 Conclusion

The application of OB and DL techniques for mapping the RS imagery into different
land cover classes is an important topic in the RS community due to their significant impact
on professional urban management. Unauthorized construction close to the reservoirs as
important water sources is an urban management issue. In this study, we analyzed monitoring
this social phenomenon utilizing OB and DL approaches.

In chapter 3, the OB approach is studied, and a novel pipeline is proposed for segmenting
high-resolution RGB images into the reservoir, man-made object, vegetation, and shadow.
The suggested approach adopts a multi-phase segmentation. The advantages of the proposed
segmentation method are diminishing the need to tune various parameters of the time-
consuming segmentation setup and enabling the classifying of reservoir segments just using
their spatial information. Spectral similarity analysis and feature extraction steps are pro-
posed to be implemented before defining the rules of the rule-based classifier. These two
steps indicate the suitable parameters and thresholds to be used for defining the rules.
We calibrated and tested the pipeline utilizing data collected from three zones around the
Guarapiranga reservoir. However, despite the OB approach producing promising results,
its parameters and rules calibration is still empirical and time-consuming. Therefore, our
experiments have shown the need for an end-to-end approach with less user dependency.
This conclusion led us to utilize the DL approach for a more generalizing approach.

In chapter 4, we proposed a two-phase workflow to segment man-made objects around
reservoirs in an end-to-end procedure. Modifying the U-Net architecture increased the per-
formance of the model in segmenting images into reservoir and non-reservoir. In order to
improve produced reservoir maps, a post-processing stage is proposed that, besides increasing
the precision metric, its effect is noted by visual evaluation. A small portion of images belongs
to the class of man-made objects, specially countryside man-made objects. Nonetheless,
we obtained promising results by collecting images of reservoirs mainly located in the
countrysides and defining a suitable loss function. The collected RS images have high spatial
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resolutions, contain reservoirs with different spectral properties, are located in urban areas
as well as the countrysides, and are acquired from different states and seasons. These factors
increase the reliability and robustness of constructed models and the proposed workflow.
The trained workflow was evaluated with an external testing dataset. Although the collected
images are noisy in some areas, the RoIaR is in the countryside, and the RoIaR contains
difficult man-made objects for prediction (e.g., roads that are partially covered with high or
low density of vegetation), the average F1-scores of phase-1 and phase-2 outputs show the
reliability of the prepared workflow. The workflow outperformed significantly in man-made
object segmentation compared to the single-phase semantic segmentation benchmark.

5.2 Future work

The availability of larger datasets plays an important role in constructing a higher-
performance model. Therefore, collecting data from reservoirs with more geographical and
temporal diversity, especially from the countrysides, and adapting available annotated RS
images (such as ISPRS Potsdam data 1) can help in constructing a higher performance and
a more generalized model.

The need of pixel-level annotated data in the supervised approach is a challenge in
utilizing our proposed method. The semi-supervised approach addresses problems with
partially unlabelled data Oliveira et al. [2020]. This can be useful to explore already annotated
data and new unlabeled data.

As illustrated in Figure 4.13, the boundary between two objects from two different classes
is not segmented well in some cases. In order to generate more accurate segmentation maps,
preserving objects’ boundary information is important. This issue may be addressed by
different approaches in the future works, such as:

• Integrating OB and DL approaches.

• Utilizing the OB approach as a post-processing step for refining DL outputs.

• Applying a sensitive loss function to the border pixels.

• DL architecture modification to embed boundary-aware feature maps.

An important possible application of RoIaR man-made segmentation is the timely detection
of unauthorized constructions around the reservoirs. This is a social problem that might
lead to serious consequences such as reservoir contamination and dangerous situations for
communities living in such places. Unfortunately, if such constructions are not detected
in their first stages, and local communities start to live there, it becomes more and more
difficult for public services to move such communities. Hence, timely change detection in the

1http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
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RoIaR man-made objects is an important application that might rely on the segmentation
procedure described in this thesis. Change detection in RS images is an issue that deserves
a research work Canty [2019].

Finally, a key issue of remote sensing imagery analysis regards the challenges in analyzing
data from different locations and dates. Geographical and atmospheric variations affect
the images, and domain adaptation approaches can be developed. This problem has been
circumvented in this work by sparse annotation of all considered reservoirs, reflected by our
sampling strategy. We are considering other possible domain adaptation approaches, such as
few-shot and self-supervised learning Oliveira et al. [2020]. Of course, context-aware networks
could be adopted as a possible alternative. This is left as future work since it involves its
own challenges.
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Abstract— Identifying new constructions in large cities can
be done simply, quickly, and at low cost by applying image
processing techniques on time-series remote sensing (RS) images
and producing land cover maps. In recent years, object-based
(OB) image classification has attracted significant attention as
a method for land cover mapping. This method consists of
two steps: segmentation and classification. In this research,
we will develop a new approach based on image processing
techniques to be utilized in the OB classification method for
the analysis of urban growth. In this approach, we propose
a multi-phase segmentation for the segmentation step and a
rule-based method for the classification step. Besides speeding
up the process of OB classification, the accuracy of the final
preliminary results is another advantage of the proposed
approach. Moreover, for collecting RS images, a two-zoom
level data collection is adopted using an open source RGB RS
database. An important application of analyzing RS images is
the detection of non-authorized communities formation around
water reservoirs. Therefore, in our preliminary experiments, we
selected three different regions around Guarapiranga reservoir
in Sao Paulo, Brazil, for collecting our RS images.

Index Terms— Image processing, land cover mapping, remote
sensing, object-based method.

I. INTRODUCTION

RS is a technology that involves the use of space-imaging
systems for monitoring earth resources and obtaining in-
formation from a target through the analysis of acquired
data [1]. By development of RS technology, a large number
of satellite and aerial images with high quality have been
created. The spatial resolution of some of these RS images
is improved to centimeters [2].
One way for obtaining satellite images is by utilizing Google
Earth Pro c© software1. The database of this software contains
high-resolution images of many different areas on the earth
[4]. Besides containing an open database of RS images, the
availability of historical images and flexibility in selecting
different zoom levels and spatial resolutions are the other
advantages of this software.
Utilizing RS images for land cover mapping has been
widely accomplished using pixel-based approaches, where
each pixel is independently classified [5]. Even so, with the
increase in spatial resolution of satellite images, a single
pixel does not capture well the characteristics of targeted
objects and it causes a reduction in the accuracy of classifi-
cation using pixel-based methods [3].

1https://www.google.com/earth/desktop/

In contrast with pixel-based methods, OB classification meth-
ods are less sensitive to spectral variances within objects
and can make use of both object features and spatial re-
lations between objects. Because of these reasons, it has
become the main approach in dealing with high-resolution
satellite imagery [6]. Many studies compared these two
classification methods and concluded that the OB method
is more precise in comparison with the pixel-based method
[7]. The process of OB classification which is implemented
in many studies [8], [9], consists of two steps: segmentation
and classification. One of the most commonly used algo-
rithms for segmenting and classifying RS images are multi-
resolution segmentation and rule-based classification respec-
tively. However, the multi-resolution segmentation method
requires users to determine a set of proper segmentation
parameters. In addition, the most important parameter in
the multi-resolution segmentation (called scale) can differ
between various objects in an image. Moreover, many studies
have concluded that to achieve an accurate segmentation
result, the multi-scale segmentation method is necessary (i.e.,
defining a different scale parameter for each class in the
scene) [8], [10]. Among the different methods for assessing
the values of these parameters, visual assessment is the most
common one employed [11]. Therefore, determining and
assessing these parameters utilizing the most commonly used
methods are very time-consuming. On the other hand, im-
plementing the rule-based method for classifying, especially
when the dataset consisting of several large RS images, is
also time-consuming. However, utilizing this method may
lead to the best results [12]. Additionally, the reservoir
objects have similar spectral properties to other objects that
cause misclassification of this land cover type. This paper
addresses these issues by proposing a new pipeline for the
OB classification. It avoids setting a different scale parameter
for each class type by implementing a multi-phase segmenta-
tion method instead of the multi-scale method. The proposed
pipeline also avoids selecting segmentation parameters and
classification criteria and threshold values through trial and
error on large RS images (that cover larger ground regions
and consequently, consist of more objects). Moreover, it
classifies the scene in two phases: the reservoir classification
and the remained objects classification.
In order to illustrate the performance of the proposed ap-
proach, the preliminary results of its application in land

Figure A.1
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Abstract

Reservoirs are fundamental infrastructures for the management of water resources. Con-
structions around them can negatively impact their quality. Such unauthorized constructions
can be monitored by land cover mapping (LCM) remote sensing (RS) images. In recent years,
deep learning (DL) has attracted considerable attention as a method for LCM the RS imagery
and has achieved remarkable success. In this paper, we develop a new approach based on DL
and image processing techniques for man-made object segmentation around the reservoirs. In
order to segment man-made objects around the reservoirs in an end-to-end procedure, seg-
menting reservoirs and identifying the region of interest (RoI) around them are essential. In
the proposed two-phase workflow, the reservoir is initially segmented using a DL model. A
post-processing stage is proposed to remove errors such as floating vegetation. Next, the RoI
around the reservoir (RoIaR) is identified using the proposed image processing techniques. Fi-
nally, the man-made objects in the RoIaR are segmented using a DL architecture. To illustrate
the proposed approach, our task of interest is segmenting man-made objects around some of
the most important reservoirs in Brazil. Therefore, we trained the proposed workflow using
collected Google Earth (GE) images of eight reservoirs in Brazil over two different years. The
U-Net-based and SegNet-based architectures are trained to segment the reservoirs. To seg-
ment man-made objects in the RoIaR, we trained and evaluated four possible architectures,
U-Net, FPN, LinkNet, and PSPNet. Although the collected data has a high diversity (for
example, they belong to different states, seasons, resolutions, etc.), we achieved good perfor-
mances in both phases. The highest achieved F1-score for the test sets of phase-1 and phase-2
semantic segmentation stages are 96.53% and 90.32%, respectively. Furthermore, applying
the proposed post-processing to the output of reservoir segmentation improves the precision
in all studied reservoirs except two cases. We validated the prepared workflow with a reservoir
dataset outside the training reservoirs. The F1-scores of the phase-1 semantic segmentation
stage, post-processing stage, and phase-2 semantic segmentation stage are 92.54%, 94.68%,
and 88.11%, respectively, which show high generalization ability of the prepared workflow.

keywords: land cover mapping; deep learning; Google Earth imagery

1 Introduction
Reservoirs reduce the effects of interseasonal and interannual streamflow fluctuations and hence
facilitate water supply, hydroelectric power generation, and flood control, to name a few [GBL12].
There is a significant interaction between the environment and reservoirs as essential water resource
management tools. For example, reservoirs affect the quality of the water downstream of their
dams, and human activities affect the quality of the reservoir’s water as well as the chemical and
biological processes in it [VB89].

Unauthorized constructions around reservoirs can be considered destructive activities that can
be monitored by LCM of RS images. The purpose of this study is to segment man-made objects
around reservoirs. However, to reach this aim using an end-to-end workflow, we have to segment
the reservoirs and detect the RoI around them besides segmenting the man-made objects.

The pixel-based, object-based (OB), and, recently, DL methods are three different approaches
that can be implemented for LCM RS images. Pixel-based methods (e.g., SVM) rely on the spectral
signatures of individual pixels, and each pixel is independently classified [Alm12]. With the increase
in the spatial resolution of satellite images by improving in RS systems, a single pixel does not
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