
Universidade de São Paulo

Institute of Mathematics and Statistics

Department of Computer Science

A Formalization of a Startup Finance Transaction
Model using Alloy

Rodrigo Ehrlich Stevaux

Advisor: Prof. Ana Cristina Vieira de Melo

Dissertation presented to the Institute of

Mathematics and Statistics at the University

of São Paulo, as part of the requirements for

the degree of Master of Science in Computer

Science

São Paulo

2023

Abstract

This thesis proposes a formal model for a subset of the startup finance transaction space.

The initial version of the provided domain is the result of an industry coalition effort to

make the data model standard.

The data definition explains how this domain can be modeled syntactically. We refined this

first model with semantics on transactions by using the Alloy formal modeling language and

analyzer, aiming for a more expressive and correct model by capturing domain invariants.

As a result, our design is machine-checkable for important safety integrity criteria and stated

as a formal domain specification.

This research contributes to the field of formal methods by demonstrating how to progress

from a semi-formal specification to a formal one, evaluating the results, and providing a case

study of a real-world domain to other researchers and practitioners in the field of formal

methods.

I dedicate this thesis to my late, loved mother, and to my father.

I thank my advisor, Prof. Ana Cristina Vieira de Melo, not only for her academic guidance

and support throughout this work, but for the friendship and care she has shown me since

during this endeavor.

I am grateful to my institution for providing me with the opportunity to pursue this work,

and from all I have learned from my colleagues and professors.

I thank all the people who helped me arrive at this point, including my family, friends, and

colleagues.

1

Contents

Glossary 10

I Background 14

1 Introduction 15

1.1 The economic motive to adopt a specification 15

1.2 Complexities in managing capitalization tables 16

1.3 Open-source efforts . 17

1.4 Structure . 17

1.5 Related works . 17

2 Capitalization tables and the need for specifications 19

2.1 Overview . 19

2.1.1 Use in startup financing . 20

2.1.2 Capitalization table over two investment rounds and a final sale trans-

action . 22

2.2 JSON Schema . 24

2.2.1 Validating the presence of specific keys in a document 25

2.2.2 Composing schemas to form more complex schemas 25

2.2.3 Validating numeric, string and array values 26

2.2.4 Achievements and limitations of JSON Schema 27

2.3 The Open Cap Table format . 28

2.3.1 File format . 28

2.3.2 The existence of an implied conceptual model within the data model 29

2.3.3 Organizing principles of the underlying model 29

2

2.3.4 Opening example of the complete lifetime of a security 30

2.3.5 A note on the current folder structure of the OCF 31

2.3.6 Transactions . 32

2.3.7 Entities and other objects . 35

2.4 Key components and patterns in the OCF 35

2.4.1 Transaction tracing system . 35

2.4.2 Vesting system . 41

2.4.3 Convertible securities . 44

2.5 Discussion . 44

2.5.1 Advantages and achievements of the OCF 44

2.5.2 Disadvantages and limitations of the OCF 46

II A new model for capitalization tables 48

3 Key Concepts and Methodology 49

3.1 The new model versus the Open Cap Table Format 49

3.2 Key Concepts in the Model . 50

3.2.1 Treatment of Securities . 50

3.2.2 Treatment of transactions . 51

3.3 Constructing the Model . 52

3.3.1 Parts of an Alloy model . 52

3.3.2 A brief overview of Alloy-related literature 53

3.3.3 Methodology . 54

4 The New Model 55

4.1 Signatures for Securities, Transactions, and Stakeholders 55

4.1.1 Abstract security signature . 55

4.1.2 Abstract signature for transactions 57

4.1.3 Concrete transactions signatures . 58

4.1.4 Constraints . 81

4.2 Vesting system . 82

4.2.1 Conditions . 83

4.2.2 Triggers . 84

4.2.3 Event and Date-related . 84

4.2.4 Propositional logic . 85

3

4.3 Unrolled evaluation function . 86

4.4 Checks . 87

4.4.1 Accounting checks . 88

4.4.2 Count checks . 91

4.4.3 Structure checks . 93

4.5 Discussion and contributions . 95

III Reflections on the Model Usage and Conclusions 96

5 Towards Legal Contracts and Code Normativity 97

5.1 Our Work in the Context of Code Normativity 97

5.2 Code Normativity and Community Efforts 99

5.2.1 Smart Contracts . 99

5.2.2 Tax and Accounting: The Catala Approach 100

5.3 An example rendition of our model as prose contracts 100

6 Conclusion 103

6.1 Limitations of our Model . 104

6.2 The New Model: technical issues . 105

6.2.1 What have we gained? . 106

6.3 Future Work . 106

A Types and enums in the OCF 108

4

List of Figures

2.1 Capitalization tables as states of a system 21

2.2 Directory structure of the OCF distribution. 31

2.3 Primitive transactions in the OCF . 32

2.4 Transactions relevant to stock options and vesting 33

2.5 Transactions relevant to stock . 33

2.6 Transactions relevant to warrants . 34

2.7 Transactions relevant to convertibles . 34

2.8 Adjustment transactions in the OCF . 34

2.9 An issuance . 36

2.10 A partial cancellation . 37

2.11 A partial transfer . 37

2.12 Vesting schemas in the OCF . 41

2.13 The convertible securities system . 45

4.1 Metamodel of the abstract security . 56

4.2 Metamodel of the transaction signature, including relationships between

transactions and securities, and the extensions PlanTx and StockTx 58

4.3 Metamodel of the stock transaction signature, showing the specific transac-

tion types and their share fields . 60

4.4 Metamodel of the plan transaction signature, showing the specific transaction

types and their share fields . 60

4.5 The graph formed by securities and transactions. 61

4.6 An example instance of the stock issuance transaction 62

4.7 An example instance of the stock partial cancellation transaction 64

4.8 An example instance of the stock partial transfer transaction 66

4.9 An example instance of the stock total cancellation transaction 68

5

4.10 An example instance of the stock total transfer transaction 70

4.11 An example instance of the plan issuance transaction 71

4.12 An example instance of the plan cancellation transaction 73

4.13 An example instance of the plan exercise transaction 76

4.14 An example instance of the plan vesting date transaction 78

4.15 An example instance of the plan vesting event transaction 80

4.16 Metamodel of the vesting system. 83

A.1 Types in the OCF for general use . 109

A.2 Conversion mechanisms . 110

A.3 Conversion rights . 110

A.4 Vesting events and conditions, periods and portions 110

A.5 Conversion triggers, divided in elective and automatic 111

A.6 Enums in the OCF . 112

6

List of Tables

2.1 A capitalization table . 19

2.2 A capitalization table at company formation 22

2.3 A capitalization table after a seed round . 22

2.4 A capitalization table after an option pool is created 23

2.5 A capitalization table after a Series A investment 23

2.6 A capitalization table after an exit . 24

2.7 Available Validations in JSON Schema (Types and enums) 25

2.8 Composition Operators in JSON Schema . 26

2.9 Available Validations in JSON Schema (Numbers) 26

2.10 Available Validations in JSON Schema (Strings) 27

2.11 Available Validations in JSON Schema (Collections) 27

2.12 Available Validations in JSON Schema (Objects) 27

2.13 Files in the Open Cap Table format . 29

2.14 Key components in the OCF . 35

2.15 Transactions and their supported security types 40

3.1 Comparison between our model and the original model 50

4.1 Transactions in the model . 59

7

List of Listings

1 Primitive transaction schema . 38

2 Transfer schema in the OCF . 39

3 Abridged vesting term schema . 42

4 Abridged vesting condition schema . 43

5 Abstract signature for securities . 56

6 Signature for a stock security . 57

7 Signature for a plan security . 57

8 Abstract signature for a transaction . 58

9 The stock issuance transaction signature . 63

10 The stock partial cancellation transaction signature 65

11 The stock partial transfer transaction signature 67

12 The stock total cancellation transaction signature 69

13 The stock total transfer transaction signature 70

14 The plan issuance transaction signature . 72

15 The plan cancellation transaction signature 74

16 The plan exercise transaction signature . 75

17 The plan vesting transaction signature . 77

18 The plan vesting date transaction signature 79

19 The plan vesting event transaction signature 81

20 Ordering of parent securities . 82

21 Ordering of parent transactions . 82

22 Signature of a condition. 83

23 Signature of a trigger. 84

24 Signature of an AfterEvent trigger. 84

25 Signature of an AfterDate trigger. 85

26 Signature of a Conjunction trigger. 85

8

27 Signature of a Disjunction trigger. 85

28 Signature of a Negation trigger. 86

29 Unrolled evaluation function. 87

30 Plan security shares . 89

31 New shares . 89

32 Cancelled shares . 90

33 Outstanding shares . 90

34 Check plan shares . 91

35 Check cancelled shares . 91

36 Check outstanding shares . 91

37 Count checks . 93

38 Opening the util/graph module for securities and transactions 94

39 Check that the parent relationships induce an acyclical graph. 94

40 Checking that all securities contain an issuance in their lineage 94

41 No overlap in portfolios . 95

42 Predicate describing an stock option grant 101

9

Glossary

acquisition An acquisition is when one company purchases another company. Depending

on how many shares are acquired, the acquiring company may gain control of the

acquired company.. 9, 16

angel investor An angel investor is an individual who provides capital for a business start-

up, usually in exchange for convertible debt or ownership equity. These investors

typically support startups in the early stages of growth. 9

asset An asset is something that can eventually generate cashflows. Because not all future

cashflows are known with certainty, the value of an asset must be discounted to reflect

the risk that those cashflows do not meet expectations.. 9, 35

asset class An asset class is a group of securities that have similar characteristics. Stocks,

bonds, and real estate are all asset classes.. 9, 16, 20, 32, 38, 39

capitalization table A capitalization table is a table that lists all the securities issued

by a company. The capitalization table lists the number of shares issued, the type

of security, the price per share, and the date of issuance. The capitalization table is

used to calculate the ownership of each shareholder.. 9, 15–17, 19, 20, 22, 23, 28, 35,

46, 49, 53, 108

cliff period The cliff period is the period of time before which no stock options are vested.

After the cliff period, stock options are typically vested monthly.. 9, 43

common stock Stock that holds no special rights beyond a share in profits. Common

stock is the most common type of stock.. 9, 16

convertible debt In startup financing, it is typical to encounter convertible debt. Con-

vertible debt is a loan that can be converted into equity at a later date. The conversion

10

is typically triggered by a future financing round. The conversion price is typically set

at a discount to the price of the future financing round. Since debt is safer, convertible

debt has lower investment risk. Conversion is typically at the option of the holder..

9, 44

debt Debt is a loan that must be repaid. Companies might raise funds via equity issuances

or debt issuances. Debt is issued as security in terms of the amount that was loaned,

the interest rate, and the maturity date. Debt is safer than equity, and must be repaid

before equity holders can receive any cashflows.. 9, 21, 35, 44

dilution Dilution is the reduction in ownership stake that occurs when new shares are

issued. In the special case that in the financing round investors purchase new shares

proportionally to their then current stake, no dilution occurs. Founders and employees

can also be diluted by the issuance of new shares.. 9

equity Equity represents ownership interest in a company. It can come in the form of

stocks or stock options and may be granted to founders, employees, or investors.

Equity holders have a claim to the profits of the company.. 9, 21, 22

exercise Stock options are exercised and become stocks. The strike price is the price at

which the stock options can be converted to equity. They can only be exercised after

they have been vested.. 9, 20, 21, 31, 35, 39

financing round Each stage of financing is also called a financing round. Each financing

round is typically led by a lead investor, who sets the terms of the financing round.

The terms of the financing round include the valuation of the company, the price per

share, and the type of security issued.. 9, 20

initial public offering During an initial public offering, a company sells shares of its stock

to the public for the first time. This is also known as going public and is a way for

companies to raise capital for new investments or to pay off existing debt.. 9, 16

issuance An issuance is the creation of a new security plural. 9

issuer Companies are issuers of securities.. 9, 28, 30, 31

11

liquidity event A liquidity event is an event that allows a company’s stakeholders to cash

out or make a profit from their investment. This could be a sale of the company (also

known as an exit), an IPO, or a large dividend distribution. 9

preferred stock Preferred stock is stock that holds special rights. As an example of a

special right, preferred stock might have a guaranteed dividend payment but less

voting rights.. 9, 16, 22, 23, 30, 39, 44

security A security is a financial asset that can be bought and sold. Stocks, options and

debt notes are all securities. Every security has an Issuer. A loan from a bank is not

a security, because the bank can not generally sell the loan to another bank.. 5, 9, 16,

28, 30–32, 35–37, 39, 41, 44–46, 53

share Shares represent a fraction of ownershp in a company. The number of shares a stock

holder owns is the starting point for calculating their ownership stake in the company..

9

staged financing Staged financing is a financing strategy in which a company raises funds

in stages. The first stage is typically called the seed round, with subsequent stages

receiving a latin alphabet letter (such as Series A, Series B, etc.). Staged financing

allows investors to reduce their risk by investing in stages, and allows the company to

raise funds as it grows.. 9, 21

stakeholder A stakeholder is any person, legal or natural, with an economic interest in a

company, including all debt, option and stock holders.. 9, 16

startup company A startup company is a new company that is searching for a business

model as it grows. Startup companies are typically funded in stages and by specialized

venture capital investors such as individual (angel) investors and funds. Startup

companies usually aim for high growth and high returns, by choosing projects with

higher risk.. 9, 15, 20, 21

stock Stocks are securities that represent ownership in a company. Stock are typically

issued as shares (e.g. 100 shares of Apple stock). Shares are fractions of a company’s

total ownership. plural. 9

stock class A stock class is a group of stocks that have similar characteristics. Common

stock and preferred stock are both stock classes.. 9, 16, 31, 34, 39, 44

12

stock option Stock options are securities that give the right for their holder to purchase

stock at a predefined price (the strike price) at a predefined date (the maturity date).

The value of a stock option is the different between the market price for the stock

and the strike price. Stock options are typically issued to employees as part of their

compensation package.. 9

strike price The strike price is the price at which a stock option can be exercised. The

strike price is typically set at the market price of the stock at the time of issuance,

but may be futher discounted to incentivize employees.. 9, 16

sweat equity Startup founders raise capital by selling shares of their stock to investors.

For example, a investor might take 20 of 100 shares, leaving founder with 80 shares that

were not issued against cash. This complement of the shares that held by investors is

called sweat equity.. 9, 22

transaction A transaction refers to the issuance, change, transfer and cancellation of se-

curities. A transaction is typically initiated by a stakeholder, and must be approved

by the company. Most transactions involve a cost, with money changing hands in the

opposite direction of the securities.. 9, 16, 21, 28, 29, 31–36, 39, 46, 108

venture capital Venture capital is a form of private equity financing that is provided by

venture capital firms to startups and early-stage companies that have been deemed

to have high growth potential or which have demonstrated high growth. 9, 15, 16, 20

vesting period A vesting period is a period of time during which an employee must remain

employed in order to receive the full value of their stock options. Vesting periods are

typically 4 years, with a 1 year cliff period. Only vested stock options can be execised..

9, 111

vesting schedule A schedule that sets out how many stock options are vested at different

dates, usually monthly, but also in according to specific milestones that can accelerate

the vesting of options. 9, 20

13

Part I

Background

14

Chapter 1

Introduction

Capitalization tables are essential documents required for conducting venture capital

investments in startup companies. A capitalization table depicts the ownership structure

of a company, and this structure is subject to change following investments, transfers, and

acquisitions.

Errors in capitalization tables can prove costly and may lead to potential legal disputes.

Traditionally, capitalization tables have been maintained in spreadsheets, a method

which is prone to error and difficult to audit. Furthermore, spreadsheets do not adhere

to a standard format, requiring all parties involved in a transaction to agree on a uniform

format before exchanging data.

The inherent issues associated with maintaining capitalization tables in spreadsheets have

prompted the emergence of several companies that offer capitalization table management

as a service. These companies provide a web-based interface for managing capitalization

tables, which aims to streamline the process and reduce errors. However, these services

are not without limitations. The underlying data models they use are proprietary and not

publicly accessible, and the rules for updating the capitalization tables are often not

explicitly defined.

1.1 The economic motive to adopt a specification

To give objective measures of cost and risk to the task of validating capitalization tables,

we can consider the following:

15

1. 38,644 venture capital deals were closed in 2021 (according to accounting firm

KPMG [1]). Each deal requires tens of hours of lawyers and accountants.

2. The venture capital market invested USD 671 billion from investors in 2021, and

exits (including initial public offerings and acquisitions) amounted to USD 1.378

billion (also according to the same KPMG report).

3. As of June 2023, Apple, Google, NVIDIA, Amazon, and Microsoft alone were worth

USD 9 trillion. All companies started as venture capital investments. Their com-

bined market up is comparable only to the gross domestic product of the United States

of America (USD 23 trillion) and that of China (USD 17.7 trillion).

1.2 Complexities in managing capitalization tables

Capitalization tables are complex to manage for several reasons:

1. Different asset classes. Common stock entitles profit sharing and voting rights,

generally proportional to the number of shares. preferred stock generally carries

less voting rights but more economic rights, such as having priority over common

stock in case of, and can in some cases be exercised (converted) to common stock.

Stock options are securities that can be converted to shares of a given stock class

upon the payment of a strike price, which, if lower than the market price, will result

in profits for the option holder.

2. Distinction between actual and diluted shares.

3. Difference in the price each investor paid for shares, and the respective investment

cost must be recorded properly to calculate returns in case the company is acquired

or goes public.

4. There is no information on the transactions that led to the current capitalization

table, which must be considered to validate a capitalization table.

The last point is the most critical one. The only way to attest that a capitalization table

accurately reflects the correct stakes of each stakeholder is to validate the transactions

that led to the current capitalization table.

This is a non-trivial task, and is extremely error-prone if done manually, which alone mo-

tivates the need for a specification for capitalization tables. As we shall see in depth, a

16

candidate for such a specification is in development by the Open Cap Table Coalition [2],

based on JSON Schema, which we introduce next.

1.3 Open-source efforts

Recently, the Open Cap Table Coalition [2], formed by industry members, has been working

on a standard for capitalization tables.

The standard is based on a data model that is publicly available, and that can be used to

build software systems that manage capitalization tables. However, the data model is not

accompanied by a formal specification of the rules for updating the capitalization tables.

This is an unfortunate consequence of the specific semantics of the chosen technology, JSON

Schema, which is syntax-oriented and does not allow for the specification of complex rules.

1.4 Structure

In this thesis, we present a formal specification of the rules for updating capitalization

tables. We do so by first modeling the data model in Alloy, and then by specifying the

rules for updating the capitalization tables in Alloy. We then use the Alloy Analyzer to

check that the rules are consistent with the data model, and that the rules are free of errors.

Our goal is to show that formal methods, in the form of Alloy, can be feasibly used to specify

the rules for updating capitalization tables. We hope that this work will lead to a clearer

understanding of the rules for updating capitalization tables, and to the development of

software systems that implement these rules.

1.5 Related works

Although Simon P. Jones’ paper provides a comprehensive formal semantics for the eval-

uation of derivative contracts, a similar formal semantics for capitalization tables remains

absent from existing literature[3]. Financial instruments compose into a big expression that

can evaluated to the raw dollars.

Relevant contributions to Alloy modeling will be discussed in the chapter dedicated to the

model itself.

The work by INRIA in Catala is also relevant[4]. Catala is a domain specific language for

17

writing legal text, with applications to British immigration law and the french tax code.

Writing tax rules must be as difficult as investment rules, so it warrants a full study object

for a language. Catala can analyse contracts to show contradictory clauses. It is certainly

useful in doing due-dillugence using Catala.

There is research in smart contract verification, and the field is accordingly moving fast.

It is not entirely visible as research, since many projects exist as open-source software

projects. Nevertheless, we can point to the KEVM, which represents a formal semantics

for the Ethereum Virtual Machine (EVM) and is grounded in the K framework, a tool for

modeling programming languages [5], and other projects such as Lolisa [6], for the Solidity

language, and Scilla, an intermediate-level contract language based in Coq[7].

In contrast, our focus is not only on correctness but conceptual; we aim to establish a robust

domain model or conceptual model that can serve as a foundation for deriving properties to

shape software specifications. Our choice of Alloy stems from its user-friendly nature, its

ability to provide a high-level representation of the domain, and its utility in model checking.

While we initially contemplated the use of dependent types, we ultimately opted for Alloy

due to its simplicity and adequacy for our objectives. Moreover, Alloy augments our work

with valuable visualization tools, enhancing our modeling and analysis capabilities.

The organization of this thesis is outlined as follows:

• In Chapter 2, we introduce the original data model for capitalization tables as pro-

posed by the Open Cap Table Coalition, along with an examination of the JSON

Schema technology that serves to define this data model.

• Chapters 3 and 4 are devoted to elucidating our Alloy model, which represents the

data model for capitalization tables. Additionally, this chapter outlines the rules

governing the updates to these tables.

• In Chapter 5, we explore the interplay between our Alloy model and traditional prose

contracts, specifically focusing on their alignment in the context of code normativity.

• Finally, Chapter 6 provides our concluding thoughts and sheds light on potential

avenues for future research.

18

Chapter 2

Capitalization tables and the need

for specifications

2.1 Overview

A capitalization table is a table that shows the ownership stakes in a company. We

give an example in table 2.1. The table shows the ownership stakes of the founders, angel

investors, funds, and employees. The table also shows the number of shares issued, the type

of security, the price per share, and the date of issuance. The capitalization table is used

to calculate the ownership of each shareholder.

Acme Corp.
Capitalization table — December, 20XX

Asset class Stakeholder Shares Cost % Ownership
Actual/diluted Actual/diluted

Common stock Founders 700/700 0 78%/70%

Preferred stock Angel investors 50/50 0 6%/5%

Preferred stock Funds 150/150 300 16%/15%

Options Employees 0/100 0 0%/10%

Total 900/1000 350 100%/100%

Table 2.1: A capitalization table

19

Stakeholders have interests in different asset classes, resulting in some shares and %

ownership at a given cost. Prices can change as investor value the company differently at

different points in time.

Options are granted to employees, who can exercise the options and exchange them for

actual shares. As an incentive for the employee to stay with the company, virtually all

options have a vesting schedule, which is a period of time that the employee must remain

with the company in order to exercise the options. The most typical case is to vest shares

after 1 year, and then vest the remaining shares monthly over the next 3 years. Vesting will

be the subject of a later section.

2.1.1 Use in startup financing

Capitalization tables are used specially in startup financing. Startup companies are

financed in stages, which each stage requiring the achievement of certain objectives and

milestones but also providing a larger of capital.

Stages in startup financing

Stages are defined in terms of the phase of the company’s development and the amount of

capital required to achieve the next stage. The stages are[8]:

• Seed/Startup financing: relatively small amount of capital, for companies mostly aim-

ing to prove a business concept. Beyond Venture capital firms, individual investors

(“angel” investors) are also common sources of seed funding.

• Early-stage financing: moderate amounts of capital, for advancing pilots or produc-

tions and searching for commercial viability evidence.

• Mid-stage financing: this stage revolves on supplying a company with working capital

so that it can continue to grow.

• Later-stage financing: this stage is for companies that are already on the way to

profitability, and serves as a bridge to an initial public offering (IPO) or a sale to a

larger company.

Financing rounds are numbered not by their stage but by letters, typically: Seed, Series

A, Series B, Series C and so on. Investment sizes range from USD 1 million in seed rounds

to USD 100 million or more in later rounds.

20

In this manner, the computer scientist reader may note that a capitalization table is

the state of a system, and financing operations are transitions of that state.

Figure 2.1 illustrates this idea.

Cap table (state)

Cap table

Cap table

Cap table

Investments, transfers and other transactions (transition)

More investments, transfers and other transactions

Even more investments, transfers and other transactions

Figure 2.1: Capitalization tables as states of a system

Financing rounds and investment contracts

Each staged financing round is defined in contracts that define business rules that are

potentially complex to validate. It is common for the investors of each round to have

different rights and obligations:

• Seed rounds are frequently financed via a loan to the company that can later on be

converted to equity. Precise triggers and conversion rates are defined in a contract.

Debt confers more rights to the investor than equity, such as the right to receive

interest payments and the right to be paid back before equity holders.

• Startup companies typically reserve a portion of shares for employees, which are

typically granted in the form of stock options. Stock options are granted according

to vesting schedules, and become shares when the employee exercises the option.

Conversions, transfers, vesting and other events can only happen within certain conditions,

and those conditions must always be validated, on the risk of misrepresenting the company’s

ownership structure.

21

2.1.2 Capitalization table over two investment rounds and a final sale

transaction

Since we hinted at seeing the capitalization table as states in a transition system, we can

now see an example of a capitalization table over two investment rounds:

Company formation

At company formation, the capitalization only reflects the founders’ ownership of the com-

pany, by giving them a number of shares with no matching cost. Equity that has no

matching investment is typically called Sweat equity.

Asset class Stakeholder Shares Cost % Ownership

Actual/diluted Actual/diluted

Common stock Founders 100/100 $ 0 100%/100%

Total 100/100 $ 0 100%/100%

Table 2.2: A capitalization table at company formation

After a seed round, a group of investors joined the capitalization table, purchasing 100

shares for $1 each. The founders’ ownership is diluted to 50% of the company. The new

shares are issued as preferred stock.

Asset class Stakeholder Shares Cost % Ownership

Actual/diluted Actual/diluted

Common stock Founders 100/100 $ 0 50%/50%

Preferred stock Seed investors 100/100 $ 100 50%/50%

Total 200/200 $ 100 100%/100%

Table 2.3: A capitalization table after a seed round

The company creates an option pool for its employees, reserving 100 shares for that purpose.

The founders’ ownership is diluted to 33% of the company. The new shares are issued as

options.

22

Asset class Stakeholder Shares Cost % Ownership

Actual/diluted Actual/diluted

Common stock Founders 100/100 $0 50%/33%

Preferred stock Seed investors 100/100 $100 50%/33%

Options Employees 0/100 $0 0%/33%

Total 0/100 $100 100%/100%

Table 2.4: A capitalization table after an option pool is created

And then the company receives a Series A investment, where a new group of investors

purchases 100 shares for $2 each. The founders’ ownership is diluted to 25% of the company.

The new shares are issued as preferred stock.

Asset class Stakeholder Shares Cost % Ownership

Actual/diluted Actual/diluted

Common stock Founders 100/100 $0 33%/25%

Preferred stock Seed investors 100/100 $100 33%/25%

Preferred stock Series A investors 100/100 $200 33%/25%

Options Employees 0/100 $0 0%/25%

Total 300/400 $300 100%/100%

Table 2.5: A capitalization table after a Series A investment

Finally, after the company is sold, the capitalization table is updated to reflect the

exit. The company is sold for $1000, and the proceeds are distributed to the shareholders.

The founders’ ownership is diluted to 25% of the company. The new shares are issued as

preferred stock. The share numbers are recalculated to simplify the math1. The stocks

from the employees’ stock options are exercised and become actual shares.

1It is common practice in finance to rebase figures after many transactions to keep the numbers simple
enough to facilitate calculations. In our case, all investors where divided into founders and non-founders,
and the corresponding participations of 25/75 used as a basis for the stock after the acquisition

23

Asset class Stakeholder Shares Cost % Ownership

Actual/diluted Actual/diluted

Common stock Founders 25/25 $0 25%/25%

Common stock Float 75/75 $100 75%/75%

Total 100/100 $100 100%/100%

Table 2.6: A capitalization table after an exit

Float refers to the publicly held shares of a company. In this case, the float is 100 shares,

and the founders’ ownership is 25% of the company.

2.2 JSON Schema

JSON Schema is a specification for JSON (JavaScript Object Notation) data, and pro-

vides an approach for defining the structure and constraints of JSON data [9]. JSON is a

lightweight data interchange format, and is ubiquitously employed in web applications and

APIs due to its simplicity and readability, and JSON Schema, allows developers to metic-

ulously define the structure and constraints of JSON data. A comprehensive description of

JSON Schema is provided in RFC8259 [10].

The versatility of JSON Schema is evident in its extensive range of validation rules and

constraints. These include, but are not limited to, data types, required fields, minimum and

maximum values, and regular expressions. Furthermore, JSON Schema supports custom

validation rules and extensions, thereby offering developers the flexibility to define their

own rules and constraints. This feature significantly enhances the adaptability of JSON

Schema to cater to diverse and specific requirements.

JSON Schema is a powerful tool that leverages the simplicity and readability of JSON,

making it human-friendly and easy to comprehend. It employs hypermedia principles,

allowing schemas to reference other schemas through a Universal Resource Identifier (URI).

This feature enhances the modularity and reusability of schemas, thereby promoting efficient

schema design and management.

In the context of designing messages for HTTP application programming interfaces (APIs),

JSON Schema is exceptionally adequate. It provides robust validation capabilities, ensuring

the integrity and consistency of data communicated through APIs. Not only can it validate

24

the presence of all necessary arguments, but it also offers basic format validation. This

means it can check if the data conforms to the specified types, patterns, or other constraints,

thereby ensuring that the data received or sent via APIs adheres to the expected structure

and format. This comprehensive validation capability significantly enhances the reliability

and robustness of HTTP APIs, making JSON Schema an indispensable tool in modern web

development.

2.2.1 Validating the presence of specific keys in a document

JSON Schemas can be used to check the presence of a set of valid keys of a document, as

well as the set of valid values for that key. The values for each key are given a JSON Schema

themselves. This means that JSON Schemas cam compose with other JSON Schemas.

The structure and acceptable formats for the fields can be defined in terms of types, enu-

merations, and constants. Table 2.7 shows the available validations in JSON Schema.

Validation Keyword Specification

type of the data type (e.g., string, number, object, array,
boolean, null)

enum a predefined list of acceptable values

const a constant value that the data must match

Table 2.7: Available Validations in JSON Schema (Types and enums)

2.2.2 Composing schemas to form more complex schemas

Schemas can be composed using composition keywords. Any schema might refer to other

schemas by a URI, and the referred schema is expected to be found at that URI. The

composition keywords are shown in table 2.8.

25

Operator Specification

allOf all the schemas must be valid for the document to be

valid.

anyOf at least one of the schemas must be valid for the doc-

ument to be valid.

oneOf exactly one of the schemas must be valid for the docu-

ment to be valid.

not the schema must not be valid for the document to be

valid.

Table 2.8: Composition Operators in JSON Schema

2.2.3 Validating numeric, string and array values

Numeric validation is restricted to the value of a single field, which can be constrained to

be a multiple of a constant, or to be within a range. Table 2.9 shows the available numeric

validations in JSON Schema.

Validation Keyword Specification

multipleOf that a numeric instance is divisible by this keyword’s

value

maximum the maximum numeric value

exclusiveMaximum a numeric instance to be strictly less than this key-

word’s value

minimum the minimum numeric value

exclusiveMinimum a numeric instance to be strictly greater than this key-

word’s value

Table 2.9: Available Validations in JSON Schema (Numbers)

Strings can be validated by their length, or by a regular expression. Table 2.10 shows the

available string validations in JSON Schema.

26

Validation Keyword Specification

maxLength the maximum length of a string

minLength the minimum length of a string

pattern a regular expression that a string must match

Table 2.10: Available Validations in JSON Schema (Strings)

Arrays can be validated by specifying a schema for its elements, by the number of ele-

ments, and by whether the elements must be unique. Table 2.11 shows the available array

validations in JSON Schema.

Validation Keyword Specification

items constraints for array items

maxItems the maximum number of items in an array

minItems the minimum number of items in an array

uniqueItems that all items in an array must be unique

Table 2.11: Available Validations in JSON Schema (Collections)

Object validation is the most basic of all, and is used to specify what keys are allowed and

required in any object. Table 2.12 shows the available object validations in JSON Schema.

Validation Keyword Specification

properties constraints for object properties

required required properties in an object

additionalProperties whether additional properties are allowed

Table 2.12: Available Validations in JSON Schema (Objects)

2.2.4 Achievements and limitations of JSON Schema

JSON Schema is supported by many tools [11]: validators, schema generators and code

generators. There are validators for all major languages, and the schema generators can

27

generate schemas from code, data, and models. Code generators can implement basic Web-

based user interfaces and generate data based on schemas. It is also closely integrated with

the OpenAPI specification, which is the de facto standard for describing HTTP APIs.

JSON Schema can validate data syntactically, which is adequate for a file or data exchange

format. However, JSON Schema provides little in terms of expressiveness in sets, relations,

and logic. It is not possible to express constraints such as “the sum of the shares of all

stakeholders must be equal to the total number of shares issued by the issuer”. In JSON

Schema, we cannot rule out cyclical sequences of security trades because the language

lacks a closure operator. JSON Schema can not reason about any relational properties of

instances.

2.3 The Open Cap Table format

Our analysis is based on the following commit. The reader can run the command to fetch

the specific files from GitHub.

git clone https://github.com/Open-Cap-Table-Coalition/Open-Cap-Format-OCF

git checkout 20f3ede62d1f5bdbef16ae1edfa98c34fbda2610

2.3.1 File format

The Open Cap Table format defines a package, or set, of JSON files, for storing data on

transactions and business entities. Adopting the format means being able to export the

capitalization table data according to the format.

The manifest contains metadata about the other files, which contain data. The data files

either contain immutable entities which participate in transactions or the transactions

themselves, which are the events that change the state of the entities. Table 2.13 shows the

files in the format.

28

File Contents

Manifest Metadata

Issuers Static

Stakeholders Static

Stock classes Static

Stock legend templates Static

Stock option plans Static

Vesting terms Static

Transactions Dynamic

Table 2.13: Files in the Open Cap Table format

2.3.2 The existence of an implied conceptual model within the data model

Although the OCF specifies a set of files by defining its contents as JSON documents with

associated JSON Schema, it is built on top of an implied conceptual model that underlies

the data, which is just a representation.

This conceptual model implied in the data model is of great value for us. We will therefore

present its organizing principles, describe its structure, and discuss the key components of

the model while identifying the design patterns used to represent them.

2.3.3 Organizing principles of the underlying model

The format is given as a set of JSON Schemas. The schemas are used to validate the data

files. Each schema is defined in a file ending with .schema.json.

The schemas are organized according to two principles, which are reflected in the directory

structure of the repository:

• Technical building blocks: enums, types and objects

• Conceptual blocks: entities, transactions, conversion mechanisms, rights and trig-

gers, and vestings

Technically, types (in OCF terminology) define structures (expected keys and associated

29

validation) that are reused in primitive objects (in the sense JSON objects and documents)

and in Enum (enumerations of constant values).

2.3.4 Opening example of the complete lifetime of a security

As we analyze the format, we will see how it can store a case such as the following:

1. Issuance Event: 1,000 shares of preferred stock are issued to Bob (generates a new

security ID)

2. Acceptance Event: Bob accepts the shares (refers to the security ID generated in

transaction 1)

3. Conversion Event: Bob converts 500 shares to common stock (refers to the security

ID generated in transaction 1)

Since this is a partial transaction, beyond issuing a security for 500 shares of

common stock, we must issue new preferred stock for the remaining 500 shares as

well

4. (a) Issuance Event: 500 shares of common stock are issued to Bob (a new security

ID is generated)

(b) Issuance Event: 500 shares of preferred stock issued to Bob (a new security

ID is generated)

5. Transfer Event: Bob transfers 500 shares of preferred stock to Alice

Again, this is a partial transaction, so we must issue new preferred stock for

the remaining 500 shares as well

6. (a) Issuance Event: 500 shares of preferred stock are issued to Frank (a new

security ID is generated)

(b) Issuance Event: 500 shares of preferred stock issued to Bob (a new security

ID is generated)

7. Repurchase Event: Issuer repurchases 500 shares of common stock from Bob (This

is a complete transaction, so no new security ID is generated)

30

Conceptually, the model defines entities which are referenced to in transactions. Entities

include issuers, stakeholders, stock classes, stock option plans, vesting terms and stock

legend templates. Transactions include security trades, conversions, grants, exercises,

cancellations, terminations, and vesting events. Conversion mechanisms, rights, and triggers

are used to define the conversion of securities. Vestings are used to define vesting terms.

By considering all transactions, we can derive the state of the entities at any point in

time.

2.3.5 A note on the current folder structure of the OCF

The two principles are mixed in the original OCF distribution, regarding the folder struc-

ture. Nevertheless, the principles are useful enough for our purposes. We will use them to

describe the OCF schemas. Figure 2.2 shows the directory structure of the OCF distribu-

tion.

schema/

schema/enums/

schema/files/

schema/objects/

schema/transactions/

schema/primitives/

schema/files/

schema/objects/

schema/types/

schema/types/

schema/conversion mechanisms/

schema/conversion rights/

schema/conversion triggers/

schema/vesting/

Figure 2.2: Directory structure of the OCF distribution.

31

2.3.6 Transactions

Transactions are the actions performed on securities. Transactions are organized in

primitive transactions and specific transactions. Primitive transactions represent the

different kinds of transactions in the financial domain. Figure 2.3 shows the directory

structure of the primitive transactions.

schema/

primitives/

objects/

transactions/

acceptance/Acceptance.schema.json

cancellation/Cancellation.schema.json

conversion/Conversion.schema.json

exercise/Exercise.schema.json

issuance/Issuance.schema.json

reissuance/Reissuance.schema.json

release/Release.schema.json

repurchase/Repurchase.schema.json

retraction/Retraction.schema.json

SecurityTransaction.schema.json

StockClassTransaction.schema.json

StockPlanTransaction.schema.json

Transaction.schema.json

transfer/Transfer.schema.json

Figure 2.3: Primitive transactions in the OCF

The primitive transactions, with additional fields, are specialized to each of four different

types of securities: stocks, convertible notes, warrants, and plan securities. We group

them by the asset class they specialize in. Figure 2.4 shows the directory structure of the

specialized transactions.

32

schema/

objects/

transactions/

cancellation/PlanSecurityCancellation.schema.json

repurchase/PlanSecurityRepurchase.schema.json

retraction/PlanSecurityRetraction.schema.json

transfer/PlanSecurityTransfer.schema.json

release/PlanSecurityRelease.schema.json

reissuance/PlanSecurityReissuance.schema.json

acceptance/PlanSecurityAcceptance.schema.json

issuance/PlanSecurityIssuance.schema.json

exercise/PlanSecurityExercise.schema.json

Figure 2.4: Transactions relevant to stock options and vesting

Figure 2.5 shows the directory structure of the specialized transactions for stocks.

schema/

objects/

transactions/

acceptance/StockAcceptance.schema.json

cancellation/StockCancellation.schema.json

conversion/StockConversion.schema.json

issuance/StockIssuance.schema.json

reissuance/StockReissuance.schema.json

repurchase/StockRepurchase.schema.json

retraction/StockRetraction.schema.json

transfer/StockTransfer.schema.json

Figure 2.5: Transactions relevant to stock

Figure 2.6 shows the directory structure of the specialized transactions for warrants.

33

schema/

objects/

transactions/

acceptance/WarrantAcceptance.schema.json

cancellation/WarrantCancellation.schema.json

exercise/WarrantExercise.schema.json

issuance/WarrantIssuance.schema.json

retraction/WarrantRetraction.schema.json

transfer/WarrantTransfer.schema.json

Figure 2.6: Transactions relevant to warrants

Figure 2.7 shows the directory structure of the specialized transactions for convertibles.

schema/

objects/

transactions/

acceptance/ConvertibleAcceptance.schema.json

cancellation/ConvertibleCancellation.schema.json

conversion/ConvertibleConversion.schema.json

issuance/ConvertibleIssuance.schema.json

retraction/ConvertibleRetraction.schema.json

transfer/ConvertibleTransfer.schema.json

Figure 2.7: Transactions relevant to convertibles

Additional transactions adjust parameters of stock classes and stock option plans. Fig-

ure 2.8 shows the directory structure of the adjustment transactions.

schema/

objects/

transactions/

adjustment/

StockClassConversionRatioAdjustment.schema.json

StockClassAuthorizedSharesAdjustment.schema.json

StockPlanPoolAdjustment.schema.json

Figure 2.8: Adjustment transactions in the OCF

34

2.3.7 Entities and other objects

Beyond transactions being entities, the OCF defines entities for each one of the files in

the manifest (cf. page 29).

2.4 Key components and patterns in the OCF

The OCF has three key logical components: tracing of transactions, rules for vesting, and

rules for convertible securities, as shown in table 2.14.

Transaction & tracing Transactions that are linked by security identifiers (i.e.,

the issuance and cancellation of a security refer to a common

security identifier)

Vesting Composable rules for both schedule-based and event-based

vesting

Convertible securities Composable rules for converting securities, typically applied

in the case of debt that can be converted to stock shares

Table 2.14: Key components in the OCF

2.4.1 Transaction tracing system

Since a capitalization table is a snapshot after a set of transactions have been ac-

cumulated, one component of the OCF is the support of traceable transactions. The

general principle is that transactions are objects which are stored in the transactions

file (cf. page 29), which refer to securities. A security is a financial asset that can be

bought and sold. Stocks, options, and debt notes are all securities.

Securities do not have a specific schema in the OCF—they are given implicitly as correlated

identifiers.

The key ideas behind the transaction tracing systems are:

• Securities have a initial and a terminal transaction.

• Issuances (including re-issuances) and exercises are initial transactions.

• Cancellations, retractions, repurchases are terminal transactions.

35

• Transfers are both initial and terminal transactions, as they extinguish the initial

security and create a new security (the result security).

• Partial cancellations are possible by extinguishing the original security and generat-

ing a new security with the remaining balance.

• Partial transfers are possible by extinguishing the original security and generating a

new security with the remaining balance

To compute the state of a security, all transactions that refer to it must be traced. The

state of a security is the sum of all issuances minus the sum of all cancellations, retractions,

repurchases, and transfers. This chaining is what enables auditability and traceability in

the system.

Pictorially, the scheme is as follows:

An issuance

Figure 2.9 shows an issuance as an input-output system (in a special case with no inputs).

Issue

50 shares

Input security

Not required

Result security

100 shares

Balance security

Not produced

Figure 2.9: An issuance

A issuance requires no security as input, and always produces a resulting security

A partial cancellation

Figure 2.10 shows a partial cancellation as an input-output system. The existing security,

of which some number of shares will be cancelled, is the input. The output is the security

with the balancing shares.

36

Cancel

50 shares

Input security

100 shares

Result security

Not produced

Balance security

50 shares

Figure 2.10: A partial cancellation

Cancelling 50 of 100 shares implies a partial cancellation, and a balance security is thus

generated

A partial transfer

Figure 2.11 shows a partial transfer as an input-output system. The existing security, of

which some number of shares will be transferred, is the input. The outputs are the new

security and the balancing shares.

Transfer

50 shares

Input security

100 shares

Result security

50 shares

Balance security

50 shares

Figure 2.11: A partial transfer

Transferring 50 of 100 shares implies a partial transfer, and a balance security is thus

generated

Example —the transfer schema

The full listing for the transaction schemas can be found in the appendix, but by giving the

transfer schema, we can depict the general pattern of the transaction schemas.

37

Listing 1 shows the primitive transfer schema, which must be extended by the specific

transfer schemas for each asset class. It states that every transaction must present a

security_id field.

{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "$/primitives/objects/transactions/SecurityTransaction.schema.json",

"title": "Primitive - Security Transaction",

"description": "Abstract transaction object to be extended by all transaction objects

that deal with individual securities",↪→

"type": "object",

"properties": {

"security_id": {

"type": "string"

}

},

"required": ["security_id"],

}

Listing 1: Primitive transaction schema

In listing 2, we see the transfer schema, which extends the primitive transaction schema.

38

{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "$/primitives/objects/transactions/transfer/Transfer.schema.json",

"type": "object",

"properties": {

"consideration_text": {

"type": "string"

},

"balance_security_id": {

"type": "string"

},

"resulting_security_ids": {

"title": "Security Transfer - Resulting Security ID Array",

"type": "array",

"items": {

"type": "string"

},

"minItems": 1,

"uniqueItems": true

}

},

"required": ["resulting_security_ids"]

}

Listing 2: Transfer schema in the OCF

In the listing above, we can clearly see the pattern of an input security being consumed

and a new security being created. The balance_security_id field is used to indicate that a

partial transfer is being made, and the resulting_security_ids field is used to indicate that

multiple securities are being created.

Transactions that affect different asset classes (e.g. common stock, preferred stock, op-

tions, warrants, etc.) have different behavior: options have transactions specific to vesting

and exercises and objects to represent the vesting schedule, warrants have transactions

to represent the vesting schedule, and convertible securities have also objects representing

the conversion mechanisms and parameters.

The full cross-referenced table of asset classes and their transaction types is given below.

For clarity, we omit concepts in the OCF that are transactions with no affected security,

such as stock class splits and adjustments and stock option pool increases. Table 2.15

39

Transaction Type Convertible Options Stock Warrant

Acceptance Yes Yes Yes Yes

Cancellation Yes Yes Yes Yes

Conversion Yes Yes

Exercise Yes Yes

Issuance Yes Yes Yes Yes

Reissuance Yes

Release Yes

Repurchase Yes

Retraction Yes Yes Yes Yes

Transfer Yes Yes Yes Yes

Table 2.15: Transactions and their supported security types

shows the transactions and their supported security types.

40

2.4.2 Vesting system

As we discussed above in 2, stock options follow a vesting system whereby options are

released to optionees over time.

Figure 2.12 shows the directory structure of the vesting schemas.

schema/

enums/

VestingDayOfMonth.schema.json

VestingTriggerType.schema.json

files/

VestingTermsFile.schema.json

objects/

transactions/vesting/

VestingAcceleration.schema.json

VestingEvent.schema.json

VestingStart.schema.json

VestingTerms.schema.json

primitives/

types/vesting/

VestingConditionTrigger.schema.json

VestingPeriod.schema.json

vesting/

VestingCondition.schema.json

VestingConditionPortion.schema.json

VestingEventTrigger.schema.json

VestingPeriodInDays.schema.json

VestingPeriodInMonths.schema.json

VestingScheduleAbsoluteTrigger.schema.json

VestingScheduleRelativeTrigger.schema.json

VestingStartTrigger.schema.json

Figure 2.12: Vesting schemas in the OCF

The key object is the Vesting Term object. This object is used to represent the vesting

terms of a security (vesting term is a synonym for a schedule). The responsibility of the

vesting term is factored into more schemas. The vesting term itself defines an allocation

type and points to an array of vesting conditions. Listing 3 shows the vesting term schema.

41

{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "$

/objects/VestingTerms.schema.json",

"type": "object",

"properties": {

"allocation_type": {

"$ref": "$/enums/AllocationType.schema.json"

},

"vesting_conditions": {

"type": "array",

"items": {

"$ref": "$/types/vesting/VestingCondition.schema.json"

},

},

},

}

Listing 3: Abridged vesting term schema

The Vesting Condition, in turn, defines a number of shares and points to an array of vesting

triggers. Listing 4 shows the vesting condition schema.

42

{

"$schema": "http://json-schema.org/draft-07/schema",

"$id": "$/types/vesting/VestingCondition.schema.json",

"type": "object",

"properties": {

"id": "string",

"portion": {

"$ref": "$/types/vesting/VestingConditionPortion.schema.json"

},

"quantity": {

"$ref": "$/types/Numeric.schema.json"

},

"trigger": {

"oneOf": [

{ "$ref": "/types/vesting/VestingStartTrigger.schema.json" },

{ "$ref": "/types/vesting/VestingScheduleAbsoluteTrigger.schema.json" },

{ "$ref": "/types/vesting/VestingScheduleRelativeTrigger.schema.json" },

{ "$ref": "/types/vesting/VestingEventTrigger.schema.json" }

]

"type": "array"

},

"oneOf": ["portion", "quantity"]

}

}

Listing 4: Abridged vesting condition schema

Each vesting trigger, in turn, is one of four kinds:

• Vesting Start triggers after the Cliff period has passed

• Vesting Schedule Absolute triggers on a specific date

• Vesting Schedule Relative triggers after a specific period of time has passed relative

to another date

• Vesting Event triggers after a specific event has occurred

In the most typical case, that of one year Cliff period and monthly vesting over the next

three years, the corresponding vesting term would contain 1 + 36 vesting conditions, the

first of which is triggered by a vesting start event, and the remaining 36 of which are

43

triggered by a vesting schedule relative event (regarding the vesting start), with a period of

one month.

By composing the triggers described above, one can define a variety of vesting terms. This

composition of triggers is nothing short of a proto-domain specific language. That is why

the Open Cap Table Coalition uses the term “vesting graph” for the resulting composition

of triggers and conditions (see [12]).

The vesting term system can accommodate the most basic vesting scenarios —we will

improve upon, so it can support a richer set of vesting terms, by expanding the idea of a

domain-specific language.

2.4.3 Convertible securities

In this section, we show how conversion mechanisms model transformation of securities

from one type to another, which usually involves either the conversion of preferred stock

into common or the conversion of debt into glsequity. Figure 2.13 shows the directory

structure of the convertible securities system.

The building blocks of conversions are mechanisms, rights, and triggers. There are mecha-

nisms for converting to a given percentage of a company’s capitalization, as a fixed number

of shares, at a given ratio, and in the case of convertible debt notes, the mechanism is

given in terms of a valuation cap and a discount, and also gives concepts related to interest

payments.

A conversion right complements the conversion mechanism by giving the stock class of

the resulting security. Conversion triggers are more interesting, and specify whether the

conversion is triggered electively, at a given date or event, or whether it is automatic.

2.5 Discussion

2.5.1 Advantages and achievements of the OCF

We see OCF as incredibly valuable given how much knowledge it gathers in a single specifica-

tion. The choice of design patterns results in a data model that can fulfill the requirements

of auditability (in special regarding transaction tracing) and flexibility (via the domain-

specific languages implicit in the vesting and conversion systems).

After reviewing the Open Cap Table Format, we can agree that:

44

schema/

objects/transactions/conversion/

ConvertibleConversion.schema.json

StockConversion.schema.json

primitives/

objects/

transactions/

conversion/Conversion.schema.json

primitives/

types/

conversion mechanisms/ConversionMechanism.schema.json

conversion rights/ConversionRight.schema.json

conversion triggers/ConversionTrigger.schema.json

types/

conversion mechanisms/

CustomConversionMechanism.schema.json

FixedAmountConversionMechanism.schema.json

NoteConversionMechanism.schema.json

PercentCapitalizationConversionMechanism.schema.json

RatioConversionMechanism.schema.json

SAFEConversionMechanism.schema.json

conversion rights/

ConvertibleConversionRight.schema.json

StockClassConversionRight.schema.json

WarrantConversionRight.schema.json

conversion triggers/

AutomaticConversionOnConditionTrigger.schema.json

AutomaticConversionOnDateTrigger.schema.json

ElectiveConversionAtWillTrigger.schema.json

ElectiveConversionInDateRangeTrigger.schema.json

ElectiveConversionOnConditionTrigger.schema.json

UnspecifiedConversionTrigger.schema.json

Figure 2.13: The convertible securities system

45

1. The OCF consolidates a wealth of expert knowledge in the capitalization tables

domain.

2. The data format was explicitly designed to be auditable: ultimately there is a set

of immutable entities that when replayed together with the transactions give the

current state of the capitalization table.

3. The vesting system and the conversion system, in particular, are based on a complex

tangle of business rules which are modeled in the OCF (such is the case that the

corresponding part of the model looks like a domain-specific language).

4. Many useful auxiliary types are provided to model dates, addresses, monetary values,

which are useful in itself.

2.5.2 Disadvantages and limitations of the OCF

The choice of JSON Schema can arguably be defended because it is widespread, easy to use

and can validate data, by its purpose.

However, we believe that the use of JSON Schema is a limitation to the OCF, because of

the characteristics of JSON Schema’s semantics.

JSON Schema fails to express invariants of the system. The JSON Schema itself cannot

distinguish wrong transaction traces from correct ones. In fact, the samples given in the

repository are given only syntactically correct. The documents in the samples are well-

formed, so to say. But they are not semantically correct. The examples are trivial.

In order for the OCF to reach its full potential as a standard, correct validators must be

available. In this regard, we must note that the choice of JSON Schema carries a number

of downsides.

For any language to be able to validate the OCF data, it must be capable of expressing

some facts that are not at all possible to validate with JSON Schema:

1. To validate that no more options have been exercised than those granted, a language

must be able to reason about the fields of associated entities, such a stock plan and its

plan securities, and perform sums. JSON Schema has no way to apply this validation.

Accounting equations cannot be verified in any practical way with JSON Schema.

2. There is nothing that JSON Schema can do to make sure that there are no cycles as

we trace securities. Transitive relations must be considered when tracing securities.

46

Critically, JSON Schema is incapable of validating the OCF properly.

Secondly, a format also must be able to express a wider range of business logic: although

the support rules for vesting are expressive enough for a broad range of cases, it can only

express a conjunctive condition (all triggers must be satisfied) and it can only refer to points

or intervals going forward and unbounded in the future. But this precludes the combination

of a vesting condition that triggers when a milestone is met within a deadline because we

would have to model an “until” operator.

We can improve the model by making the vesting term more expressive, and

more capable of modeling the conditions that can be found in legal documents

in the wild.

We can improve on how easy it is to validate and improve the expressiveness of the original

OCF by adopting a stronger modeling framework: Alloy and the Alloy Analyzer. This

should keep the business knowledge that is available in the OCF, while making it more

rigorous.

47

Part II

A new model for capitalization

tables

48

Chapter 3

Key Concepts and Methodology

3.1 The new model versus the Open Cap Table Format

If a model that operates inside the same domain as the Open Cap Table Coalition (OCF)

and integrates numerous insights from it were to be developed in a more comprehensive

language, it may enhance the process of specifying and implementing tools for validating,

managing, and precisely reporting capitalization tables.

The Open Cap Table Format (OCF) is limited to elementary data validation and lacks

the expressive power to codify community-accepted business rules. While it can conduct

basic field-value validation, it is unable to enforce structural or arithmetic rules, thereby

constraining its applicability. Such limitations are inherent to its chosen modeling language,

JSON Schema.

On the other hand, our improved model makes use of the ability of the Alloy language

to formalize limitations as well as update rules specific to a capitalization table. The

expanded variety of capabilities offered by Alloy, in comparison to JSON Schema, can

be credited to its higher degree of expressiveness. Table 3.1 outlines a comprehensive

comparison between the two models, highlighting the contributions made by our research.

49

New Model Original Model (OCF)

Explicit representation of current state Necessitates transaction replay for state

Structural Constraints Field-Value Validation

Accounting Constraints Rudimentary Integer Range Constraints

Advanced Vesting System with AND/OR/NOT Basic Vesting System with OR

Table 3.1: Comparison between our model and the original model

Although the new model draws significant inspiration from the OCF principles and ground

structure, it has enhanced the original model by incorporating semantics related to trans-

actions and vesting. These enhancements will be further elaborated upon in the subsequent

sections.

3.2 Key Concepts in the Model

Like its Open Cap Table Coalition predecessor, our Alloy model centers on securities and

transactions. However, transactions in our model are state-transformative; they invalidate

previous securities and instantiate new or balanced ones. This ensures an always-current,

consistent state, encapsulated by structural and accounting constraints.

Our state-management approach diverges significantly from the original model. Transac-

tions result in the deprecation of input securities and the generation of output and balance

securities, thus enabling local state validation. This removes the need for historical trans-

action replay and streamlines implementation, as the validity of each transaction becomes

locally deterministic.

We focus on stock and plan securities, omitting less common types like warrants and con-

vertible debts. Our model, however, remains extensible for future inclusion of these types,

owing to the local nature of the constraints. This will become clear as we examine the

specific signatures in Section 4.1.

3.2.1 Treatment of Securities

In the Alloy-based model, securities are managed according to the following computational

principles:

50

1. Each security is anchored to an initial transaction, constituting its instantiation within

the system. Optionally, a terminal transaction may demarcate its termination.

2. Securities are flagged as either current or expired.

3. Transition to an expired state occurs solely upon association with a terminal trans-

action, thus invalidating the security for subsequent transactions.

4. A security is instantiated either as a new or derived from a parent security, thereby

inheriting attributes such as type and constraints.

5. Share quantities must remain positive, enforcing accounting integrity and regulatory

compliance.

3.2.2 Treatment of transactions

In the formal Alloy-based model, transactions adhere to the following computational rules:

1. Transactions are composed of input, output, and balance securities. Input securi-

ties undergo transformation, output securities are instantiated, and balance securities

capture residual shares not transferred or voided.

2. Transactions may function as either the initial transaction or terminal transaction for

securities. The former activates a security, while the latter marks its termination.

3. Transactions may possess a parent transaction, which is accountable for generating

the input securities. Attributes like transaction type and constraints can be inherited

from this parent transaction.

These rules induce a directed graph, with parent-child relationships between securities and

transactions forming its edges. By representing these edges as a partial ordering relation,

cycle detection and prevention are facilitated. Cycles introduce logical contradictions, such

as securities self-referencing as parents. Leveraging Alloy’s capacity for transitive closure

analysis, cycles can be automatically identified and invalidated. By conforming to these rules

and utilizing Alloy’s analytical capabilities, we uphold the integrity of share accounting,

disallowing both negative and zero quantities.

51

3.3 Constructing the Model

Alloy, first introduced by Daniel Jackson in 2002 [13], is today a complete framework for

modeling and analyzing software systems. The fundamental concept that underlies the Alloy

environment is the notion that software development should be based on abstractions, and

the process of programming should arise naturally from the design phase through the careful

selection of appropriate abstractions.

Alloy is distributed as the Alloy Analyzer, which features:

• A modeling language

• A visualizer for meta-models and model instances

• A bounded model checker

• A standard library for common data structures (sequences, graphs, relations, etc.)

Through the integration of the aforementioned features, anyone using Alloy is able to effi-

ciently engage in the iterative process of modeling, visually and comprehensively examine

instances, and express and verify properties. Through the modeling of interactions between

two or more states, an Alloy model can focus on more operational features of the system as

well as the concepts underlying the system under consideration.

3.3.1 Parts of an Alloy model

Every alloy model is composed of signatures, predicates, facts, functions, assertions, and

commands:

1. Signatures: the basic building blocks of Alloy models, represent entities in the domain.

Signatures have fields that relate them to other signatures.

2. Functions: A function in Alloy relates instances of signatures to relations. An alloy

function is a function like in any programming language.

3. Predicates: A predicate in Alloy is a function that returns a boolean value. Predicates

are used to express the properties of the model.

4. Facts: A fact is a predicate that must always be true in the model. A fact actively

constrains the model by discarding instances that do not satisfy it.

5. Assertions: An assertion is a predicate that can be given to a check command, and

52

expresses our expectations of the model. Assertions do not constrain the model effec-

tively.

6. Commands (Checks and runs): The run finds examples of the model that satisfy all

constraints, while the check command finds counter-examples that violate a given

assertion.

A full presentation of Alloy is beyond the scope of this work but can be found in the Software

Abstractions book by Daniel Jackson [14].

3.3.2 A brief overview of Alloy-related literature

Alloy is cited in more than 1,200 papers, with many extensions and applications in software

design and modeling. Alloy∗ is a higher-order extension of Alloy that can be used for

program synthesis, since it supports higher-order quantification [15]. αRby is an embedding

of Alloy in Ruby [16].

A number of other modeling languages have been translated to or partially modeled in

Alloy[17], including UML, i⋆, CVL, Event-B and, Z, OCL. Alloy can also be used in con-

junction with verification languages such as ACL2[18] or Isabelle[19].

Alloy has been used in a wide range of applications in software engineering, database design,

security analysis [20], [21], multiagent negotiations [22]. It has also been applied to mod-

eling beyond computer science such as a model for central bank policy [23]. A model of the

same-origin-policy used in web browsers can be found in the 500 Lines or Less open-source

book [24].

We were not able to find previous models of capitalization tables in Alloy.

The model’s capacity to accurately validate and determine the current state of

the system without requiring the re-execution of all transactions is of utmost

significance. This is a significant improvement compared to the original model.

In contrast, the architecture proposed by the Open Cap Table Coalition does

not provide adequate specifications for accurately determining the present con-

dition of a capitalization table. This is a crucial requirement for the effective

development of optimal tools. .

The Alloy environment significantly contributed to the iterative process of evaluating various

design issues, including those outlined by the Open Cap Table Coalition, resulting in the

development of the current model.

53

3.3.3 Methodology

Our methodology for model construction adopts an iterative approach, consistent with best

practices for employing Alloy:

1. Initially, we isolate each discrete concept within the Open Cap Table Coalition’s orig-

inal model. Corresponding Alloy signatures are created for these concepts, and antic-

ipated invariant properties are defined.

2. Subsequent to establishing initial properties and signatures, we assess their validity.

In case a property is demonstrated to be inconsistent, we amend the relevant signature

with additional constraints to rectify the discrepancy.

3. Instance model visualizations are rigorously examined to confirm alignment with our

theoretical expectations and to identify any conspicuous inconsistencies.

4. This iterative process continues until the model fulfills our pre-established conditions

and criteria.

Several factors contribute to the efficacy of our methodology. First, Alloy enables swift

feedback loops, thereby streamlining the iterative development cycle. Second, the amal-

gamation of automated verifications and manual scrutiny serves as a robust validation

mechanism. Additionally, Alloy’s capacity to transform problems into boolean satisfiability

issues and identify unsatisfiable subsets (UNSAT cores, in the literature) within the original

constraints is invaluable for debugging and for isolating root causes when the model diverges

from expected behavior.

54

Chapter 4

The New Model

This chapter presents a conceptual framework for a system intended for managing capital-

ization tables, focusing on the fundamental ideas of securities and transactions.

The proposed model serves as an initial framework for the development of validation tools

and information management applications. Additionally, it lays the groundwork for code-

normative documents, such as smart contracts.

4.1 Signatures for Securities, Transactions, and Stakeholders

In the model, signatures serve as the foundational entities. Specifically, we define signatures

for three main categories: securities, transactions, and stakeholders. Within these, we

further classify different types of securities and transactions through additional signatures.

The signatures for both securities and transactions are designed as abstracts. Subsequently,

the signatures for their respective types are extensions of these abstract foundations. This

structure adheres to a prevalent pattern in Alloy modeling.

Beyond securities and transactions, there are signatures for the vesting system, constraints,

and checks (properties to be verified under a bound scope size).

4.1.1 Abstract security signature

All transactions and the two kinds of securities extend an abstract signature. The signature

for abstract security is shown in Listing 5. It contains the relationships with transactions

55

(initial and terminal), and the parent security (which might be none, in the case of is-

suances). Figure 4.1 illustrates a visual depiction of the signature’s abstract security.

parentSec

balanceSecurity

initialTx

inputSecurity

outputSecurity

terminalTx

owner

Security

Tx

Stakeholder

Figure 4.1: Metamodel of the abstract security

abstract sig Security {

initialTx : one Tx,

terminalTx : lone Tx,

parentSec : lone Security,

owner : one Stakeholder,

id : disj one Id

}

Listing 5: Abstract signature for securities

The Security abstract signature is extended by the StockTx and PlanTx signatures, shown

in Listings 6 and 7, respectively. Structural constraints are defined in the transaction

signatures, while accounting constraints are defined in both.

A security must always represent some shares; instances with zero shares are not allowed.

Take into account that there might not be zero shares in the event of a partial cancellation or

transfer. In this scenario, the outcome entails a complete cancellation or transfer, resulting

in the absence of newly generated securities, and thus, the absence of securities with zero

56

shares.

sig StockSecurity extends Security {

shares : Int

} {

pos[shares]

}

Listing 6: Signature for a stock security

We enforce that the sum of granted, vested and exercised shares is always positive and that

the number of vested shares is always less than or equal to the number of granted shares,

which is always less than or equal to the number of exercised shares. This means that

0 ≤ exercisedShares ≤ vestedShares ≤ grantedShares.

sig PlanSecurity extends Security {

grantedShares : Int,

vestedShares : Int,

exercisedShares : Int,

conditions : set Condition

} {

nonneg[exercisedShares]

lte[exercisedShares, vestedShares]

lte[vestedShares, grantedShares]

}

Listing 7: Signature for a plan security

4.1.2 Abstract signature for transactions

The signature for an abstract transaction is similar to the abstract security signature.

It shows relationships to input, output, and balance securities, as well as to its parent

transaction. In order to account for the possible existence of transactions having input,

output, and balance securities, the lone keyword is employed to denote the optional nature

of these relationships. The signature can be observed in Listing 8. Figure 4.2 depicts a

visual representation of the signature.

57

parentTx extends

extends

balanceSecurity

initialTx

inputSecurity

outputSecurity

terminalTx

Tx

PlanTx

StockTx

Security

Figure 4.2: Metamodel of the transaction signature, including relationships between trans-
actions and securities, and the extensions PlanTx and StockTx

abstract sig Tx {

inputSecurity : disj lone Security,

outputSecurity : disj lone Security,

balanceSecurity : disj lone Security,

parentTx : lone Tx,

id : disj one Id

}

Listing 8: Abstract signature for a transaction

4.1.3 Concrete transactions signatures

We will consider nine different transactions in our model, sufficient for both stock and

plan securities. The transactions are listed in Table 4.1. We show which transactions have

(or do not have) input, output and balance securities. This shows how every transaction

follows a general form. Issuance transactions exclusively generate new securities, whereas

cancellation transfers consume the original security and, in the case of partial cancellation,

may result in the creation of a balance security. Vesting operations result in the creation of

58

a novel security that reflects revised quantities of shares that have been provided, vested, or

exercised. Transfers invariably result in the establishment of a fresh security arrangement

for the incoming stakeholder, and in cases of partial transfers, might result in a security

balance. Engaging in exercises can be considered as an intriguing transaction, since it is

the only transaction that involves the consumption of a planned security while producing

a stock security.

Table 4.1: Transactions in the model

Transaction Type Input Security? Output Security? Balance Security?

Stock Issuance No Yes No

Plan Issuance No Yes No

Stock Total Cancellation Yes No No

Stock Total Transfer Yes Yes No

Plan Vesting Event Yes Yes No

Plan Vesting Date Yes Yes No

Stock Partial Transfer Yes Yes Yes

Stock Partial Cancellation Yes Yes Yes

Plan Exercise Yes Yes Yes

Figure 4.3 illustrates the graphical depiction of various forms of stock security transac-

tions and how they are linked through the extension relation. The figure depicting the

corresponding representation for plan security transactions is presented in Figure 4.4. It

is important to realize that the only direct association between transactions is the parent

relationship.

59

extends

extends

extends

extends

extends

extends

parentTx

StockTx

StockIssuanceTx

issuedShares: Int

StockPartialCancellationTx

cancelledShares: Int

StockPartialTransferTx

transferredShares: Int

StockTotalCancellationTx

StockTotalTransferTx

Tx

Figure 4.3: Metamodel of the stock transaction signature, showing the specific transaction
types and their share fields

extends

extends

extends

extends

extends

parentTx

extends

extends

PlanTx

PlanCancellationTx

PlanExerciseTx

exercisedShares: Int

PlanIssuanceTx
grantedShares: Int

PlanVestingTx

Tx

PlanVestingDateTx

vestedShares: Int

PlanVestingEventTx

vestedShares: Int

Figure 4.4: Metamodel of the plan transaction signature, showing the specific transaction
types and their share fields

From the perspective of securities, transactions are associated through the initialTx and

terminalTx relations. Conversely, from the standpoint of transactions, the inputSecurity,

outputSecurity, and balanceSecurity relations establish connections to securities.

The parentSec and parentTx relations induce graphs over the domains of securities and

transactions, respectively. Furthermore, the initialTx and terminalTx relations serve as

60

the linking mechanisms between the graph of securities and the graph of transactions. The

bipartite structure that emerges is illustrated in Figure 4.5.

initialTx

terminalTxparentSec

parentTx

parentSec

initialTx

terminalTx

parentTxterminalTx

initialTx

parentSec

parentTx

terminalTx

initialTx

parentSec

initialTx

parentTx

PlanSecurity0

PlanVestingEventTx

PlanExerciseTxPlanSecurity2

PlanVestingDateTx

PlanSecurity1

PlanCancellationTx

PlanSecurity3

PlanIssuanceTx

StockSecurity

Figure 4.5: The graph formed by securities and transactions.

Now we will detail the specific signatures for each transaction type, and provide examples

of instances where those transactions are used.

The Stock Security Issuance Transaction

Stock securities are instantiated by Stock Issuance Transactions, which inject a specified

number of shares, denoted as issuedShares, into the system. These transactions allocate

the newly created security to a designated stakeholder, referred to as issuedTo. Addition-

ally, stock securities can be introduced through plan security exercises, as elaborated in

61

Section 4.1.3.

The restrictions outlined in the signature state that a Stock Issuance Transaction is linked to

a single stock-type output security. This stock security designates the issuance transaction

as its initial transaction. The subsequent constraint block stipulates that no other securities

are linked to this particular transaction. The third constraint block maps the attributes

of the security to the corresponding attributes in the transaction. Since this operation is

related to an issuance, there is no requirement for input security or a parent transaction.

Finally, the accounting requirement is unambiguous, requiring that the quantity of shares

be greater than zero. The source code for the Alloy signature is depicted in Listing 9.

initialTx outputSecurity

issuedShares issuedTo

owner portfolio

model/StockIssuanceTx

model/StockSecurity

shares: 2

2 model/Stakeholder

Figure 4.6: An example instance of the stock issuance transaction

62

sig StockIssuanceTx extends StockTx {

issuedTo : one Stakeholder,

issuedShares : Int

} {

no inputSecurity && no balanceSecurity && one outputSecurity

outputSecurity in StockSecurity

no outputSecurity.parentSec

outputSecurity.initialTx = this

all s : Security | s.initialTx = this iff s = outputSecurity

no s : Security | s.terminalTx = this

outputSecurity.owner = issuedTo

outputSecurity.shares = issuedShares

no parentTx

pos[issuedShares]

}

Listing 9: The stock issuance transaction signature

The Stock Security Partial Cancellation Transaction

In Stock Partial Cancellation Transactions, represented as StockPartialCancellationTx,

the model extends StockTx by introducing cancelledShares to indicate the shares intended

for cancellation. The constraints in the signature articulate that each transaction is linked to

exactly one balanceSecurity and inputSecurity, while disallowing any outputSecurity.

Additionally, both inputSecurity and balanceSecurity must be of the StockSecurity

type. The model sets balanceSecurity as parented to inputSecurity, and uniquely ties

their initialTx and terminalTx attributes to this transaction. Figure 4.7 presents an

instance of this transaction.

Accounting constraints further refine the model’s rigor, and are a bit more involved than

in the Stock Issuance Transaction. Specifically, cancelledShares must be positive and

less than the total shares in inputSecurity. The resulting balanceSecurity shares are

calculated as the difference between the shares in inputSecurity and cancelledShares,

and this value also needs to be greater than zero. Listing 10 shows the source code for this

signature.

63

balanceSecurity initialTx

terminalTx

parentSec

owner portfolioparentTx

inputSecurity terminalTx

initialTx outputSecurity

issuedTo

owner portfolio

model/StockSecurity1

shares: 1

model/StockPartialCancellationTx

cancelledShares: 6

model/StockIssuanceTx

issuedShares: 7

model/StockSecurity0

shares: 7

model/Stakeholder

Figure 4.7: An example instance of the stock partial cancellation transaction

64

sig StockPartialCancellationTx extends StockTx {

cancelledShares : Int

} {

one balanceSecurity && one inputSecurity && no outputSecurity

inputSecurity in StockSecurity && balanceSecurity in StockSecurity

balanceSecurity.parentSec = inputSecurity

balanceSecurity.initialTx = this

inputSecurity.terminalTx = this

no s : Security - balanceSecurity | s.initialTx = this

no s : Security - inputSecurity | s.terminalTx = this

balanceSecurity.owner = inputSecurity.owner

parentTx = inputSecurity.initialTx

pos[cancelledShares]

lt[cancelledShares, inputSecurity.shares]

eq[balanceSecurity.shares, sub[inputSecurity.shares, cancelledShares]]

pos[balanceSecurity.shares]

}

Listing 10: The stock partial cancellation transaction signature

The Stock Security Partial Transfer Transaction

In the Stock Partial Transfer Transactions, represented as StockPartialTransferTx,

the model extends the foundational StockTx to include transferredTo, denoting the

receiving stakeholder, and transferredShares, specifying the quantity of shares trans-

ferred. According to the signature constraints, each transaction is associated with ex-

actly one balanceSecurity, inputSecurity, and outputSecurity, all of which must

be of the StockSecurity type. These securities are interconnected in such a way

that outputSecurity and balanceSecurity are both parented to inputSecurity, and

their initialTx attributes are set to this transaction. Meanwhile, the terminalTx of

inputSecurity is also specified as this transaction. Figure 4.8 shows an instance of a stock

partial transfer.

65

balanceSecurity initialTx parentTx

inputSecurityterminalTx

initialTxoutputSecurity

transferredTo

parentSec

ownerportfolio

initialTxoutputSecurity

issuedTo

ownerportfolio

parentSec ownerportfolio

model/StockPartialTransferTx
transferredShares: 1

model/StockSecurity0
shares: 6

model/StockIssuanceTx
issuedShares: 7

model/StockSecurity1
shares: 7

model/StockSecurity2
shares: 1

model/Stakeholder0

model/Stakeholder1

Figure 4.8: An example instance of the stock partial transfer transaction

The model imposes additional accounting and ownership constraints for internal consistency.

Specifically, transferredShares must be a positive integer and less than the total shares

in inputSecurity. The securities resulting from the transfer—the outputSecurity and

balanceSecurity—are determined based on transferredShares and the remaining shares

in inputSecurity, respectively. Both resulting securities must have a positive number of

shares. Ownership rules are also enforced: outputSecurity is owned by the transferredTo

stakeholder, while balanceSecurity retains the same owner as inputSecurity. The source

code is available in Listing 11.

66

sig StockPartialTransferTx extends StockTx {

transferredTo : one Stakeholder,

transferredShares : Int

} {

one balanceSecurity && one inputSecurity && one outputSecurity

inputSecurity in StockSecurity && outputSecurity in StockSecurity && balanceSecurity in

StockSecurity↪→

outputSecurity.parentSec = inputSecurity && balanceSecurity.parentSec = inputSecurity

balanceSecurity.initialTx = this && outputSecurity.initialTx = this

inputSecurity.terminalTx = this

all s : Security | s.initialTx = this implies (s = outputSecurity or s =

balanceSecurity)↪→

all s : Security | s.terminalTx = this implies s = inputSecurity

outputSecurity.owner != inputSecurity.owner && balanceSecurity.owner =

inputSecurity.owner && outputSecurity.owner = transferredTo↪→

outputSecurity.shares = transferredShares

parentTx = inputSecurity.initialTx

pos[transferredShares]

lt[transferredShares, inputSecurity.shares]

eq[outputSecurity.shares, transferredShares]

eq[balanceSecurity.shares, sub[inputSecurity.shares, transferredShares]]

pos[outputSecurity.shares]

pos[balanceSecurity.shares]

eq[balanceSecurity.shares, sub[inputSecurity.shares, transferredShares]]

}

Listing 11: The stock partial transfer transaction signature

The Stock Security Total Cancellation Transaction

In Stock Total Cancellation Transactions, encapsulated as StockTotalCancellationTx, the

model defines that each transaction is exclusively associated with a single inputSecurity

of the StockSecurity type. The schema expressly prohibits the inclusion of either

outputSecurity or balanceSecurity, and assigns this transaction as the terminalTx

for the inputSecurity involved.

67

Figure 4.9 illustrates a representative instance of this transaction, and Listing 12 provides

the corresponding source code. As depicted, the complexity of this particular transaction

is markedly reduced compared to other transaction types.

initialTx outputSecurity

issuedTo

parentTx

inputSecurity terminalTx

ownerportfolio

model/StockIssuanceTx

issuedShares: 4

model/StockSecurity

($exampleStockTotalCancellation sec)

shares: 4

model/Stakeholder

($exampleStockTotalCancellation own)

model/StockTotalCancellationTx

($exampleStockTotalCancellation tx)

Figure 4.9: An example instance of the stock total cancellation transaction

68

sig StockTotalCancellationTx extends StockTx {

} {

one inputSecurity && no outputSecurity && no balanceSecurity

inputSecurity in StockSecurity

inputSecurity.terminalTx = this

no s : Security | s.initialTx = this

all s : Security | s.terminalTx = this implies s = inputSecurity

parentTx = inputSecurity.initialTx

}

Listing 12: The stock total cancellation transaction signature

The Stock Security Total Transfer Transaction

In Stock Total Transfer Transactions, denoted as StockTotalTransferTx, the model

extends StockTx by introducing transferredTo to specify the receiving stakeholder.

According to the constraints, each transaction uniquely links to one inputSecurity

and one outputSecurity, while deliberately excluding any balanceSecurity. Both

inputSecurity and outputSecurity are required to be of the StockSecurity type. The

outputSecurity is parented to the inputSecurity and has its initialTx attribute set to

this transaction, while the inputSecurity’s terminalTx is also defined as this transaction.

Figure 4.10 presents an instance of the transaction, and Listing 13 presents the source code.

69

initialTx outputSecurity

issuedTo

ownerportfolio

parentTx

inputSecurity terminalTx

initialTx outputSecurity

transferredTo

parentSec owner portfolio

model/StockIssuanceTx

issuedShares: 6

model/StockSecurity0

shares: 6

model/Stakeholder1

model/StockTotalTransferTx

model/StockSecurity1

shares: 6

model/Stakeholder0

Figure 4.10: An example instance of the stock total transfer transaction

sig StockTotalTransferTx extends StockTx {

transferredTo : one Stakeholder

} {

no balanceSecurity && one inputSecurity && one outputSecurity

inputSecurity in StockSecurity && outputSecurity in StockSecurity

outputSecurity.parentSec = inputSecurity

outputSecurity.initialTx = this

inputSecurity.terminalTx = this

all s : Security | s.initialTx = this iff s = outputSecurity

all s : Security | s.terminalTx = this iff s = inputSecurity

outputSecurity.owner = transferredTo && inputSecurity.owner != transferredTo

parentTx = inputSecurity.initialTx

pos[outputSecurity.shares]

eq[outputSecurity.shares, inputSecurity.shares]

}

Listing 13: The stock total transfer transaction signature

The Plan Security Issuance Transaction

The Plan Security Issuance transaction exhibits greater complexity compared to standard

stock security transactions due to its adherence to a vesting system. As elaborated in

70

Chapter 2, the vesting system establishes temporal regulations for the gradual release of

securities, commonly observed in employee stock option grants.

In order to maintain accuracy and consistency between the specified number of shares in the

conditions (see Section 4.2) and the number of shares granted, it is imperative to include

a verification phase in the transaction process. Considering that shares are subjected to a

vesting schedule, which must be completed before they may be exercised, the initial count

of vested and exercised shares is set at zero.

In the Alloy model, PlanIssuanceTx extends PlanTx and specifies additional fields such

as issuedTo, grantedShares, and conditions. The constraints require that there is

no inputSecurity, exactly one outputSecurity, and no balanceSecurity. Moreover,

outputSecurity must belong to the category of PlanSecurity and should not have a

parentSec. Other constraints ensure the consistency and integrity of the transaction, such

as the initialization of vestedShares and exercisedShares to zero and the requisite equal-

ity between vestedShares and the sum of conditionedShares specified in the conditions.

conditions conditions

initialTxoutputSecurity

issuedTo

trigger trigger

conditions conditions

owner portfolio

model/PlanIssuanceTx

model/Condition0 model/Condition1

model/PlanSecurity

model/Stakeholder

model/AfterDate

Figure 4.11: An example instance of the plan issuance transaction

71

Figure 4.11 shows an example instance of a plan security issuance transaction, and Listing 14

presents the source code.

sig PlanIssuanceTx extends PlanTx {

issuedTo : one Stakeholder,

grantedShares : Int,

conditions : set Condition

} {

no inputSecurity && one outputSecurity && no balanceSecurity

outputSecurity in PlanSecurity

no outputSecurity.parentSec

outputSecurity.initialTx = this

no s : Security | s.terminalTx = this

all s : Security | s.initialTx = this implies s = outputSecurity

outputSecurity.owner = issuedTo

outputSecurity.grantedShares = grantedShares

outputSecurity.conditions = conditions

no parentTx

zero[outputSecurity.vestedShares]

zero[outputSecurity.exercisedShares]

let x = sum c : outputSecurity.conditions | c.conditionedShares {

eq[outputSecurity.vestedShares, x]

}

}

Listing 14: The plan issuance transaction signature

The Plan Security Cancellation Transaction

This signature is directly analogous to the total stock security cancellation (see Sec-

tion 4.1.3). Figure 4.12 shows an example instance, and Listing 15 presents the Alloy

source code.

72

initialTx outputSecurity

issuedTo

parentTx

inputSecurity terminalTx

ownerportfolio

model/PlanIssuanceTx

grantedShares: 6

model/PlanSecurity

($examplePlanTotalCancellation sec)

exercisedShares: 0
grantedShares: 6

vestedShares: 0

model/Stakeholder

($examplePlanTotalCancellation own)

model/PlanCancellationTx

($examplePlanTotalCancellation tx)

Figure 4.12: An example instance of the plan cancellation transaction

73

sig PlanCancellationTx extends PlanTx {

} {

one inputSecurity && no outputSecurity && no balanceSecurity

inputSecurity in PlanSecurity

inputSecurity.terminalTx = this

all s : Security | s.terminalTx = this iff s = inputSecurity

no s : Security | s.initialTx = this

parentTx = inputSecurity.initialTx

lt[inputSecurity.exercisedShares, inputSecurity.grantedShares]

}

Listing 15: The plan cancellation transaction signature

The Plan Security Exercise Transaction

The Exercise Transaction for plan securities adheres to the foundational principles and

methodologies common to other transactions. However, it necessitates added accounting

verifications to manage distinct metrics, such as exercised shares, vested shares, and granted

shares. This increased scrutiny is required due to the intricate structure of plan securities.

74

sig PlanExerciseTx extends PlanTx {

exercisedShares : Int

} {

one inputSecurity && one outputSecurity && one balanceSecurity

inputSecurity in PlanSecurity && balanceSecurity in PlanSecurity && outputSecurity in

StockSecurity↪→

outputSecurity.parentSec in inputSecurity && balanceSecurity.parentSec = inputSecurity

outputSecurity.initialTx = this && balanceSecurity.initialTx = this

inputSecurity.terminalTx = this

all s : Security | s.initialTx = this iff (s = outputSecurity or s = balanceSecurity)

all s : Security | s.terminalTx = this iff s = inputSecurity

outputSecurity.owner = inputSecurity.owner && balanceSecurity.owner =

inputSecurity.owner↪→

outputSecurity.shares = exercisedShares

parentTx = inputSecurity.initialTx

eq[balanceSecurity.exercisedShares, add[inputSecurity.exercisedShares, exercisedShares]]

eq[balanceSecurity.vestedShares, inputSecurity.vestedShares]

eq[balanceSecurity.grantedShares, inputSecurity.grantedShares]

}

Listing 16: The plan exercise transaction signature

Figure 4.13 illustrates a sample instance of this transaction, while Listing 16 provides the

corresponding source code.

75

balanceSecurityinitialTx

parentSec

owner portfolio parentTx

initialTx outputSecurity

inputSecurity terminalTx

initialTx outputSecurity

parentSec

ownerportfolio

parentTx

inputSecurity terminalTx

initialTxoutputSecurity

issuedTo

owner portfolioownerportfolio

model/PlanSecurity0

exercisedShares: 2
grantedShares: 4

vestedShares: 4

model/PlanExerciseTx

exercisedShares: 2

model/PlanSecurity1

exercisedShares: 0
grantedShares: 4

vestedShares: 4

model/Stakeholder

($examplePlanSecurityExercise own)

model/PlanVestingDateTx

($examplePlanSecurityExercise tx)

vestedShares: 4

model/StockSecurity

shares: 2

model/PlanSecurity2

($examplePlanSecurityExercise sec)

exercisedShares: 0
grantedShares: 4

vestedShares: 0

model/PlanIssuanceTx

grantedShares: 4

Figure 4.13: An example instance of the plan exercise transaction

76

The Plan Security Vesting Transaction

The Vesting Transaction for plan securities is the most intricate within the system. When

the transaction occurs, any conditions that are triggered by the specified date or event are

marked as satisfied and subsequently removed from the resultant, updated plan security

transaction. As these conditions are fulfilled, the corresponding shares transition into a

vested state, thereby becoming eligible for exercise. Apart from this specialized treatment

of conditional triggers, the transaction aligns with the typical structure of other transactions,

featuring one input and one output security.

The specific triggers and a presentation of the vesting system is provided in Section 4.2.

Listings 17 provides the basic signature for vesting transactions.

abstract sig PlanVestingTx extends PlanTx {

vestedShares : Int,

satisfiedConditions : set Condition

} {

}

Listing 17: The plan vesting transaction signature

The Plan Security Vesting Date Transaction

The Plan Security Vesting Date Transaction serves as an indicator that a specified date has

elapsed, potentially satisfying certain triggers embedded within the conditions of the plan

securities. Figure 4.14 and Listing 18 respectively showcase an example instance and the

source code corresponding to this transaction signature.

77

initialTx outputSecurity

issuedTo

ownerportfolio

parentTx

inputSecurity terminalTx

initialTx outputSecurity

parentSec

ownerportfolio

model/PlanIssuanceTx

grantedShares: 4

model/PlanSecurity0

exercisedShares: 0
grantedShares: 4

vestedShares: 0

model/Stakeholder

($examplePlanVestingDate own)

model/PlanVestingDateTx

($examplePlanVestingDate tx)

vestedShares: 4

model/PlanSecurity1

($examplePlanVestingDate sec)

exercisedShares: 0
grantedShares: 4

vestedShares: 4

Figure 4.14: An example instance of the plan vesting date transaction

78

sig PlanVestingDateTx extends PlanVestingTx {

vestingDate : Date

} {

one inputSecurity && one outputSecurity && no balanceSecurity

inputSecurity in PlanSecurity

outputSecurity in PlanSecurity

outputSecurity.parentSec = inputSecurity

outputSecurity.initialTx = this

inputSecurity.terminalTx = this

all s : Security | s.initialTx = this iff s = outputSecurity

all s : Security | s.terminalTx = this iff s = inputSecurity

outputSecurity.owner = inputSecurity.owner

parentTx = inputSecurity.initialTx

satisfiedConditions = { c : inputSecurity.conditions |

isTriggerSatisfiedByDate0[c.trigger, vestingDate] }↪→

outputSecurity.conditions = inputSecurity.conditions - satisfiedConditions

pos[vestedShares]

eq[outputSecurity.vestedShares, add[inputSecurity.vestedShares, vestedShares]]

eq[outputSecurity.grantedShares, inputSecurity.grantedShares]

eq[outputSecurity.exercisedShares, inputSecurity.exercisedShares]

eq[sum[satisfiedConditions.conditionedShares], vestedShares]

}

Listing 18: The plan vesting date transaction signature

The Plan Security Vesting Event Transaction

Analogously to the vesting date transaction, The Plan Security Vesting Event Transaction

serves as an indicator that a specified event has occurred. Figure 4.15 and Listing 19 respec-

tively showcase an example instance and the source code corresponding to this transaction

signature.

79

initialTx outputSecurity

issuedTo

ownerportfolio

parentTx

inputSecurity terminalTx

initialTx outputSecurity

parentSec

ownerportfolio

model/PlanIssuanceTx

grantedShares: 4

model/PlanSecurity0

exercisedShares: 0
grantedShares: 4

vestedShares: 0

model/Stakeholder

($examplePlanVestingDate own)

model/PlanVestingDateTx

($examplePlanVestingDate tx)

vestedShares: 4

model/PlanSecurity1

($examplePlanVestingDate sec)

exercisedShares: 0
grantedShares: 4

vestedShares: 4

Figure 4.15: An example instance of the plan vesting event transaction

80

sig PlanVestingEventTx extends PlanVestingTx {

event : Event

} {

one inputSecurity && one outputSecurity && no balanceSecurity

inputSecurity in PlanSecurity && outputSecurity in PlanSecurity

outputSecurity.parentSec = inputSecurity

outputSecurity.initialTx = this

inputSecurity.terminalTx = this

all s : Security | s.initialTx = this iff s = outputSecurity

all s : Security | s.terminalTx = this iff s = inputSecurity

outputSecurity.owner = inputSecurity.owner

satisfiedConditions = { c : inputSecurity.conditions |

isTriggerSatisfiedByEvent0[c.trigger, event] }↪→

outputSecurity.conditions = inputSecurity.conditions - satisfiedConditions

parentTx = inputSecurity.initialTx

pos[vestedShares]

eq[outputSecurity.vestedShares, add[inputSecurity.vestedShares, vestedShares]]

eq[outputSecurity.grantedShares, inputSecurity.grantedShares]

eq[outputSecurity.exercisedShares, inputSecurity.exercisedShares]

eq[vestedShares, sum[satisfiedConditions.conditionedShares]]

}

Listing 19: The plan vesting event transaction signature

4.1.4 Constraints

Beyond the constraints provided as part of signatures, we enforce a few more constraints

as stand-alone facts to ensure that the securities and transactions are consistent with each

other.

Two very important facts, orderingParentSec and orderingParentTx, ensure that the

parent relations are acyclic by establishing the partial ordering between securities and se-

curities, and transactions and transactions. This is shown in Listings 20 and 21.

As we establish that children are always ≥ than their parents, we ensure that there are no

cycles in the graph induced by the parentSec and parentTx relations. This is an example

where Alloy’s expressiveness shines, as we can express the fact in a very concise manner.

81

fact orderingParentSec {

all sec : Security {

some sec.parentSec implies {

lt[sec.parentSec, sec]

}

}

}

Listing 20: Ordering of parent securities

fact orderingParentTx {

all tx : Transaction {

some tx.parentTx implies {

lt[tx.parentTx, tx]

}

}

}

Listing 21: Ordering of parent transactions

By stating all the signatures and constraints we have defined the possible instances of the

model. But the model is only interesting if it possesses the properties that we expect to

hold. We will now define the properties that we expect to hold in the model.

4.2 Vesting system

The original OCF vesting system can handle at most a combination of dates and events.

We support both triggers for vesting, but add operators for the conjunction, disjunction

and negation of triggers. The vesting trigger for vesting after a date thus can be negated

and express conditions that might happen before a date.

In our model, each PlanSecurity has a Condition, which has a Trigger and a number

of shares conditionedShares. The triggers form a simple expression language with two

base cases (dates and events) and 3 propositional logic operators. The metamodel for our

improved vesting system is shown in Figure 4.16.

82

extends extends extends extends conjL conjR extends disjL disjR extends inner

afterDate afterEvent

conditionedShares trigger owner portfolio

parentSecInt

seq/Int

model/Trigger

model/AfterDate model/AfterEvent model/Conjuntion model/Disjunction model/Negation

model/Date model/Event

model/Condition model/Stakeholder

model/Security

Figure 4.16: Metamodel of the vesting system.

4.2.1 Conditions

The structure of a condition is straightforward and serves the purpose of associating a

quantity of shares, denoted as conditionedShares, with specific triggers. The signature

for such a condition is displayed in Listing 22. Its primary function is to link a specific

number of shares—conditionedShares—with a trigger that, when satisfied, allows for

the release of those shares. It’s important to note that the Condition signature is the

one referenced within plan security transactions. The source code representation for the

condition is also provided in Listing 22.

sig Condition {

conditionedShares : Int,

trigger : one Trigger

} {

pos[conditionedShares]

}

Listing 22: Signature of a condition.

83

4.2.2 Triggers

The triggers are designed to be straightforward signatures as well. A _children relation

is introduced to guarantee that the trigger expressions remain acyclic (by pairing it with a

constraint). The signature for a trigger is presented in Listing 23. Signatures for additional

types of triggers are depicted in Listings 24 and 25.

abstract sig Trigger {

_children : set Trigger

}

Listing 23: Signature of a trigger.

4.2.3 Event and Date-related

Basic triggers necessitate either the occurrence of an event or the passing of a specific date.

These triggers are categorized as ”after” triggers, meaning they are activated following the

event or date in question. These triggers can also be negated and combined either con-

junctively or disjunctively, as discussed in Section 4.2.4. This added flexibility significantly

expands the scope of possibilities compared to the original model, especially since the nega-

tion of an ”after” trigger effectively translates to ”until”. Listings 24 and 25 present code

for both base triggers.

Given that the triggers constitute an expression language subject to recursive evaluation (as

detailed in Section 4.3), these two basic triggers serve as the base cases for the evaluation

process.

sig AfterEvent extends Trigger {

afterEvent : Event

} {

no _children

}

Listing 24: Signature of an AfterEvent trigger.

84

sig AfterDate extends Trigger {

afterDate : Date

} {

no _children

}

Listing 25: Signature of an AfterDate trigger.

4.2.4 Propositional logic

In addition to the basic triggers, logical operators ”AND,” ”NOT,” and ”OR” are intro-

duced. As previously noted, the negation operator, when applied to an ”after date” or

”event,” means ”until”. Through the use of conjunction, it becomes possible to express

vestings that are conditioned upon both achieving a milestone and meeting a deadline. The

original model was limited to expressing only conjunctions of triggers, lacking the capability

for disjunction and negation. The source code for these extended trigger types is provided

in Listings 26, 28, and 27.

sig Conjunction extends Trigger {

conjL : one Trigger,

conjR : one Trigger

} {

_children = conjL + conjR

}

Listing 26: Signature of a Conjunction trigger.

sig Disjunction extends Trigger {

disjL : one Trigger,

disjR : one Trigger

} {

_children = disjL + disjR

}

Listing 27: Signature of a Disjunction trigger.

85

sig Negation extends Trigger {

inner : one Trigger

} {

_children = inner

}

Listing 28: Signature of a Negation trigger.

4.3 Unrolled evaluation function

Alloy is limited in its ability to natively support recursion. To address this, we adopt a strat-

egy of unrolling the recursion through varying depths until we reach the base case, as exem-

plified in Listing 29. For the scope of this study, a tenfold unrolling of the function is deemed

adequate. This unrolled function is employed within the isTriggerSatisfiedByEventN

predicates, which are designed to verify the fulfillment of specific conditions. The method-

ology echoes techniques used in model finders for code synthesis by bounding loop depths.

In the source code, the base case—termed isTriggerSatisfiedByEvent0—serves as the

point where events and dates are actually verified.

86

pred isTriggerSatisfiedByEvent0[t : Trigger, e : Event] {

(

isTriggerSatisfiedByEvent_BASE_CASE[t, e]

) or (

t in Conjunction && isTriggerSatisfiedByEvent1[t.conjL, e] &&

isTriggerSatisfiedByEvent1[t.conjR, e]↪→

) or (

t in Disjunction && isTriggerSatisfiedByEvent1[t.disjL, e] ||

isTriggerSatisfiedByEvent1[t.disjR, e]↪→

) or (

t in Negation && not isTriggerSatisfiedByEvent1[t.inner, e]

)

}

// until...

pred isTriggerSatisfiedByEvent9[t : Trigger, e : Event] {

(

isTriggerSatisfiedByEvent_BASE_CASE[t, e]

) or (

t in Conjunction && isTriggerSatisfiedByEvent10[t.conjL, e] &&

isTriggerSatisfiedByEvent10[t.conjR, e]↪→

) or (

t in Disjunction && isTriggerSatisfiedByEvent10[t.disjL, e] ||

isTriggerSatisfiedByEvent10[t.disjR, e]↪→

) or (

t in Negation && not isTriggerSatisfiedByEvent10[t.inner, e]

)

}

// Base case

pred isTriggerSatisfiedByEvent_BASE_CASE[t : Trigger, e : Event] {

t not in AfterDate

t in AfterEvent && t.afterEvent = e

}

Listing 29: Unrolled evaluation function.

4.4 Checks

The model’s integrity is validated through a comprehensive suite of checks, segmented into

accounting, count, and structure checks.

87

Accounting Checks, elaborated in Section 4.4.1, perform arithmetic verifications that are

relevant to the quantification of shares.

Count Checks, discussed in Section 4.4.2, validate the accurate cardinality of instances

for each type, providing substantial analytical utility despite their conceptual straightfor-

wardness. For example, the quantity of initialTx relations should align with the number

of securities.

Structure Checks, expounded in Section 4.4.3, examine the topological soundness of the

securities and transactions graph, assuring, for instance, the absence of cyclical structures.

Model validation is facilitated by the Alloy Analyzer, which utilizes bounded-model check-

ing by translating the Alloy model into an isomorphic SAT problem. In this SAT frame-

work, each solution corresponds to a unique model instance. The Alloy Analyzer confirms

the properties under specification by identifying counterexamples, thus offering a robust

methodology for model verification.

4.4.1 Accounting checks

Accounting identities serve to validate the model. These identities are domain-derived and

are implemented as checks within the model. These identities operate based on the following

categorizations of shares at various junctures in the model.

In the context of plan securities, shares are classified into exercised, vested, and granted

categories. The categorization for shares related to plan securities is delineated in Listing 30.

88

fun _exercisedShares : set Int {

sum i : PlanExerciseTx | i.exercisedShares

}

fun _vestedShares : set Int {

sum i : PlanVestingTx | i.vestedShares

}

fun _grantedShares : set Int {

sum i : PlanIssuanceTx | i.grantedShares

}

Listing 30: Plan security shares

The issuance of new shares into the system is encapsulated by the issuedShares and

newShares functions, as illustrated in Listing 31.

fun _issuedShares : set Int {

sum i : StockIssuanceTx | i.issuedShares

}

fun _newShares : set Int {

add[_issuedShares, _grantedShares]

}

Listing 31: New shares

Shares that have been cancelled are represented by the cancelledShares function, as de-

lineated in Listing 32.

89

fun _totallyCancelledShares : set Int {

sum i : StockTotalCancellationTx | i.inputSecurity.shares

}

fun _partiallyCancelledShares : set Int {

sum i : StockPartialCancellationTx | i.cancelledShares

}

fun _cancelledShares : set Int {

add[_totallyCancelledShares, _partiallyCancelledShares]

}

Listing 32: Cancelled shares

Lastly, the measure of all shares in circulation, also known as outstanding shares, is encap-

sulated by the outstandingShares function, as illustrated in Listing 33.

fun _currentStockSecurities : set StockSecurity {

StockSecurity - _expiredStockSecurities

}

fun _expiredStockSecurities : set StockSecurity {

terminalTx.StockTx

}

fun _currentShares : set Int {

sum s : _currentStockSecurities | s.shares

}

Listing 33: Outstanding shares

We can now delineate the accounting properties subject to verification. These properties

are derived from domain equations:

0 ≤ exercisedShares ≤ vestedShares ≤ grantedShares (4.1)

90

0 ≤ cancelledShares ≤ issuedShares+ exercisedShares (4.2)

currentShares ≤ issuedShares+ exercisedShares− cancelledShares (4.3)

The checks are implemented as in Listings 34, 35 and 36.

check {

lte[0, _exercisedShares]

lte[_exercisedShares, _vestedShares]

lte[_vestedShares, _grantedShares]

}

Listing 34: Check plan shares

check {

lte[0, _cancelledShares]

lte[_cancelledShares, add[_issuedShares, _exercisedShares]]

}

Listing 35: Check cancelled shares

check {

lte[_currentShares, sub[add[_issuedShares, _exercisedShares], _cancelledShares]]

}

Listing 36: Check outstanding shares

4.4.2 Count checks

Count-based verification is instrumental in precluding a large swath of invalid instances,

bearing resemblance to techniques such as reference counting. These checks are computa-

tionally efficient and serve as valuable tools for model validation.

The count-based checks are formulated to evaluate the following equations:

91

#terminalTx = #inputSecurity (4.4)

#initialTx = #outputSecurity +#balanceSecurity (4.5)

#inputSecurity +#balanceSecurity +#outputSecurity = #terminalTx+#initialTx

(4.6)

#parentTx ≤ #Tx (4.7)

#initialTx ≤ #Security (4.8)

The source code for the checks is shown in Listing 37.

92

chkTerminalTxCount : check {

eq[#inputSecurity, #terminalTx]

}

chkInitialTxCount : check {

eq[

add[#outputSecurity, #balanceSecurity],

#initialTx

]

}

chkTxSecurityCountEq : check {

eq[

add[#inputSecurity, add[#balanceSecurity, #outputSecurity]],

add[#terminalTx, #initialTx]]

}

chkParentTxLeqTxCount : check {

lte[#parentTx, #Tx]

}

chkInitialTxCountLeqSecurityCount : check {

lte[#initialTx, #Security]

}

Listing 37: Count checks

4.4.3 Structure checks

Structural verifications serve a pivotal role, confirming that the graph of securities and

transactions constitutes a Directed Acyclic Graph (DAG), that no securities exist without

corresponding transactions, and that all securities are anchored in an issuance transaction.

The simplicity of the resulting graph is intrinsically linked to its traceability, underlining

the efficacy of the model in ensuring transparent and accountable transactions.

No cycles in graph

Alloy provides a dedicated graph module comprising predicates and functions tailored for

graph analysis. Among these is the dag predicate, which ascertains whether a graph de-

93

rived from a binary relation constitutes a Directed Acyclic Graph (DAG). The model can

be invoked as described in Listing 38. Utilizing the dag predicate allows for a succinct

articulation and verification of the graph’s acyclic nature, as demonstrated in Listing 39.

open util/graph[Security]

open util/graph[Tx]

Listing 38: Opening the util/graph module for securities and transactions

check { dag[parentTx] } for 5

check { dag[parentSec] } for 5

Listing 39: Check that the parent relationships induce an acyclical graph.

Graph roots

We validate that the graph engendered by the parentSec and parentTx relationships forms

a Directed Acyclic Graph (DAG). According to domain-specific principles, every share can

be traced back to an original issuance. Therefore, each security invariably contains an

issuance in its historical lineage. This invariant holds across multiple securities and extends

to the base case involving a single security within a trace.

By transitive implication, if each security has an issuance in its lineage, the initial security

must be valid. Subsequent securities in the sequence must either be issuances themselves

or descendants of the preceding security, paralleling the logic of natural induction.

check {

{

all s : StockSecurity | some i : StockIssuanceTx + PlanIssuanceTx | i in

s.*parentSec.initialTx↪→

}

{

all p : PlanSecurity | some i : PlanIssuanceTx | i in p.*parentSec.initialTx

}

} for 5

Listing 40: Checking that all securities contain an issuance in their lineage

94

No overlap in portfolios

Within the given domain, it is axiomatic that each security can have a singular owner.

Formally, this necessitates that all portfolios—defined as the aggregated securities belonging

to an individual stakeholder—must be disjoint.

check {

all disj s1, s2 : Stakeholder

| no s1.portfolio & s2.portfolio

} for 5

Listing 41: No overlap in portfolios

4.5 Discussion and contributions

Systems managing security transactions, including capitalization table systems, necessitate

both traceability to origin and adherence to accounting principles. Our formalized model,

validated through Alloy, successfully fulfills these prerequisites. By articulating the prop-

erties in a precise manner, we facilitate effective communication with both domain experts

and software engineers. Furthermore, employing Alloy’s verification capabilities signifi-

cantly enhances quality assurance levels, which were not only lacking in the Open Cap

Table Coalition’s original model but also inherently inexpressible using JSON Schema.

95

Part III

Reflections on the Model Usage

and Conclusions

96

Chapter 5

Towards Legal Contracts and Code

Normativity

The inherent difficulty of encoding legal norms into software stems from the ambiguity

and complexity of legal language, coupled with the potential for context-dependent inter-

pretation. Traditional contracts, although comprehensive, often rely on a broader legal

framework to fill in gaps and resolve ambiguities, features that are challenging to replicate

in code.

Our work engages with the field of code normativity, which aims to translate legal rules

into executable code. We address similar challenges of interpretation and execution in

the context of capitalization tables. By modeling essential contract elements in Alloy, we

contribute to both cap table management and the broader issue of legal-to-code translation.

Our approach serves as a practical case study for how formal methods can bridge the legal

and technical realms, streamlining transactions and compliance.

5.1 Our Work in the Context of Code Normativity

In our model, we have gathered the fundamental concepts of contracts that are relevant to

capitalization tables into a formal model in Alloy. By doing so, we not only serve the imme-

diate purpose of better cap table management but also contribute to the more generalized

problem of translating legal norms into executable software. Our model, therefore, serves

as a case study of how formal methods can be applied to encode complex legal frameworks

97

in a machine-readable format, thereby facilitating automatic execution and validation.

Role of Contracts in Investment Activities

Investment instruments specific to start-ups, such as venture rounds and stock option plans,

are formalized through contracts written in natural language. The execution of these con-

tracts, subsequent to being ratified by all involved parties, activates various provisions and

stipulations, including the allocation and pricing of instruments like shares or options.

Incompleteness and Reliance on Legal Frameworks

Traditional contracts, although exhaustive in defining roles, obligations, and privileges, are

intrinsically incomplete. They function under the overarching structure of the law, which

serves as the foundational contract dictating the rules of interaction. Very often, contracts

may include direct or implied references to legal clauses or other contractual documents to

fill in the gaps in their stipulations.

The Challenge for Software Engineers: From Prose to Code

For software engineers responsible for developing cap table management systems, the

narrative-driven contracts present an obstacle. Translating these contracts into functional

data models and algorithms is neither trivial nor direct, given the lack of formal language

and machine-readability in the contracts. The same legal construct might be represented

in myriad ways across different contracts, adding to the complexity of translation.

Simplifying Contracts Through Our Model

Our computational model distills contracts to their essential elements, focusing on what is

pertinent to cap tables:

• Stock issuances and both partial and total transfers correlate with share purchase

agreements.

• Vesting systems and plan transactions can be represented by stock option plan grant

awards.

• Option exercises correspond to stock option exercise agreements.

We do not assert that traditional contracts are no longer relevant; nonetheless, the integra-

tion of formal specifications in conjunction with traditional contracts would undoubtedly

98

enhance the efficiency of the execution process.

5.2 Code Normativity and Community Efforts

Two emerging trends within the community underscore the concept of code normativity in

the context of financial transactions.

5.2.1 Smart Contracts

The notion of smart contracts, conceptualized by Nick Szabo in 1994, encapsulates com-

puter protocols that automate, verify, or even eliminate the need for conventional contracts.

The advent of Bitcoin propelled the development and adoption of smart contracts, with

Ethereum pioneering the field by offering a general-purpose blockchain featuring an embed-

ded programming language. This enabled the creation of smart contracts in a high-level

language called Solidity, which is compiled to Ethereum Virtual Machine (EVM) bytecode.

However, Solidity was initially susceptible to security vulnerabilities, notably reentrancy

attacks, which were exploited in the notorious DAO hack. The incident was not only

financially devastating—resulting in the loss of 3.6 million Ether—but also socially divisive,

as it led to an Ethereum hard fork.

We can certainly find plenty research on verification of smart contracts. KEVM represents

a formal semantics for the Ethereum Virtual Machine (EVM) and is grounded in the K

framework, a tool for modeling programming languages [5]. On the other hand, Lolisa

[6] provides formal syntax and semantics for a specific subset of the Solidity programming

language, a key component of Ethereum smart contracts. In the realm of smart contract

development, there’s also notable work on safer contract programming, exemplified by Safer

Smart Contracts through Type-Driven Development [25]. Furthermore, Scilla, based on

Coq, serves as a language designed explicitly for smart contracts and emphasizes safety in

its programming model [7].

Indeed, these contributions significantly enhance the formal foundations of blockchain and

smart contract technologies by focusing on the program level to prevent bugs and errors.

However, it’s important to note that their primary emphasis is on the technical aspects

of smart contract development, ensuring correctness and safety within the programming

language and execution environment.

Addressing domain-level concerns, such as the interpretation and management of financial

99

and contractual obligations, often remains a separate challenge that requires a combination

of technical and legal expertise.

Our model not only captures individual contracts but also models the global dynamics of

the system, which individual smart contracts often overlook. It integrates domain-level

business rules.

5.2.2 Tax and Accounting: The Catala Approach

The second trend focuses on leveraging formal languages for tax and accounting, exemplified

by Catala, a domain-specific language[4]. Catala facilitates the definition of rules in a

manner that is both interpretable by humans and machines. A notable feature of Catala

is its ability to identify contradictions within the rules, addressing a common issue in the

domain of tax and accounting.

Similarly, our use of Alloy serves analytical purposes, allowing us to examine the collective

consistency of various contracts and rules. This analytical power aligns our work closely

with the spirit of the Catala approach.

By harnessing formal languages like Alloy, we aim to bridge the gap between natural lan-

guage contracts and computational representations, thereby contributing to the broader

discourse on code normativity in financial systems.

5.3 An example rendition of our model as prose contracts

In this section, we illuminate the process of outlining a stock option plan utilizing an instance

of an Alloy model, showcased in Listing 42.

100

pred sop1 {

one p : PlanIssuanceTx {

p.strikePrice = 10

// Vesting Schedule

one c : p.conditions | c.trigger in AfterDate && c.trigger.afterDate = Date1 and

eq[c.shars, 20]↪→

one c : p.conditions | c.trigger in AfterDate && c.trigger.afterDate = Date2 and

eq[c.shars, 20]↪→

one c : p.conditions | c.trigger in AfterDate && c.trigger.afterDate = Date3 and

eq[c.shars, 20]↪→

one c : p.conditions | c.trigger in AfterDate && c.trigger.afterDate = Date4 and

eq[c.shars, 20]↪→

// A bonus of 10 shares is issued if the share price is greater than £20 by Date2

(Event1)↪→

one c : p.conditions | c.trigger in AfterEvent && c.trigger.afterEvent = Event1 and

eq[c.shars, 10]↪→

// A bonus of 10 shares is issued if the share price is greater than £30 by Date2

(Event1 again)↪→

one c : p.conditions | c.trigger in AfterEvent && c.trigger.afterEvent = Event1 and

eq[c.shars, 10]↪→

#p.conditions = 5

}

}

Listing 42: Predicate describing an stock option grant

This model is further converted into a closely analogous prose rendition, offering an illus-

tration of how the logical and structured format of an Alloy model can be translated into

the legal language used in contractual agreements.

101

STOCK OPTION AGREEMENT

This Stock Option Agreement (the ”Agreement”) is made and entered into as of [Date],

by and between [Company Name], a [State of Incorporation] corporation (the ”Com-

pany”), and [Name of Optionee], an employee of the Company (the ”Optionee”).

Grant of Option. The Company hereby grants to the Optionee an option (the ”Option”)

to purchase a total of up to 60 shares of common stock, $10 strike price per share, of

the Company (the ”Shares”) on the terms and conditions set forth in this Agreement.

Vesting Schedule. Subject to the terms and conditions set forth herein, the Option will

vest in accordance with the following schedule:

a. 20 Shares shall vest on [Date1];

b. An additional 20 Shares shall vest on [Date2];

c. An additional 20 Shares shall vest on [Date3];

d. An additional 20 Shares shall vest on [Date4].

Additional Vesting Conditions.

a. A bonus of 10 additional Shares shall be issued to the Optionee if the closing price

of the Company’s common stock is greater than $20 on [Date2];

b. An additional bonus of 10 Shares shall be issued to the Optionee if the closing price

of the Company’s common stock is greater than $30 on [Date2].

While this example is not exhaustively detailed, it demonstrably highlights the feasible

potential that tools might aptly employ our model to specify particular instances and pro-

ficiently generate legal text, contingent upon their validation. This facilitates the seamless

transition from structured Alloy models to comprehensive and legally sound prose contracts,

enhancing the efficiency and efficacy of contract creation and management.

102

Chapter 6

Conclusion

This thesis commenced with an examination of a data-centric domain model, endowed with

extensive business logic and domain-specific knowledge, yet constrained by its technological

underpinning. It was posited that the Open Cap Table Format (OCF) is inherently limited

in its computational capabilities; its constraints are particularly manifest in its inability

to be fully specified using JSON Schema. While the OCF excels in data format valida-

tion—consonant with its role as a data interchange format—it lacks the mechanism for

managing capitalization tables in a semantically rigorous manner.

By employing Alloy, a lightweight formal modeling language, this research has led to the

development of a more robust model capable of calculating the state of a capitalization table,

validating transaction and security input data, and subjecting the model to automated

validation to ensure its correctness. Contrary to the original model, the resultant model

facilitates exhaustive tests concerning business logic.

Transitioning from a data specification to a domain specification, this research took the

implicit domain knowledge of the original model as its foundation. It then identified and

formalized the key abstractions in Alloy, effectively moving from a syntactic to a seman-

tic model that accounts for relationships between different types of entities and expected

invariants based on domain knowledge.

The benefits accrued from this transition include:

1. Computational ability to derive the state of a capitalization table given a set of secu-

rities and transactions.

103

2. Preservation of immutable data, akin to the original model, while ensuring a readily

computed state.

3. Assured traceability back to the original issuance of shares for any given security.

4. Implementation of accounting constraints to prevent the erroneous creation or elimi-

nation of shares.

5. Introduction of count checks for additional validity by eliminating implausible graphs.

6. Explicit, machine-checkable assertions of model correctness.

7. Enhancement of the vesting system to express a broader range of conditions through

logical operators.

Consequently, this research not only offers a system specification for capitalization tables

but also lays the foundation for formalizing financial transaction contracts. The resulting

transaction constraints, when articulated as contract clauses, yield a representation that is

more explicit, rigorous, and concise than conventional legal language, focusing particularly

on operational facets of contracts.

Moreover, as shown in Chapter 5, our work has implications for the field of code normativity,

which are reflected in the future work as opportunities for contract generation from Alloy

or other formal models.

6.1 Limitations of our Model

Our model exhibits certain limitations that are essential to acknowledge:

1. Scope Size Constraints: The scope size for model checking and model finding is

inherently constrained by the current capabilities of modern SAT technology.

2. Execution Time Challenges: As our Alloy models increase in complexity and scope

size, the execution time also experiences a substantial increase. Consequently, running large

Alloy models may become impractical, particularly for tasks such as simulation or validation

involving more than a few transactions.

3. Arithmetic Constraints: Alloy’s arithmetic capabilities are rooted in set-based repre-

sentations rather than dedicated arithmetic theory solvers. This is due to Alloy’s reliance

on SAT solving. This constraint imposes limitations on our model, especially when dealing

104

with real capitalization tables, which often involve substantial financial data and numbers

much larger than what Alloy supports.

4. Over-Specification: It is plausible that our model is more extensive than necessary, dis-

playing characteristics of over-specification, since during development we found predicates

that where implied by other predicates, that is, are already a consequence of the model.

In principle, there is an opportunity to refactor the code to promote the reuse of common

logic. The presence of such over-specification introduces redundancy into the model, which

is generally considered undesirable in formal modeling and specification.

Recognizing these limitations is crucial for effectively leveraging our model in practical

applications within the domain of the Open Cap Table Format.

6.2 The New Model: technical issues

A few aspects of the model are worth mentioning, because they solve complicated imple-

mentation problems in a simple manner.

Mostly local constraints

Most constraints are stated locally, in the sense that they are stated in terms of the fields

of a single transaction. This makes it easier to write validation code because we can check

each transaction in isolation. Global constraints are much harder to reason about.

Current state is always kept reified

The current state is always kept reified, avoiding the need to replay the whole history to

get the current state. This is a big win, not only performance-wise but also in terms of

simplicity: it makes the model much more understandable.

Each security issuance gives rise to a separate graph of transactions

It is clear that each security issuance gives rise to a graph of transactions that is separate.

This can be a boundary of transactions in the sense of concurrency since it identifies or-

thogonal partitions of the state. This allows concurrency, which aids both in performance

and in high availability.

It is time to consider what have we gained by using Alloy to model the system.

105

6.2.1 What have we gained?

The original model had ambiguities in its interpretation and no properties of any kind

specified. The state of the system had to be reconstructed by replaying all transactions, for

which no unambiguous interpretation is available.

We have gained the following:

1. We have a formal model of the system that is unambiguous and that can be used to

reason about the system.

2. Our model is practical from the point of view of implementation.

3. We can ensure that the model behaves correctly by respecting constraints over the

bipartite graph of transactions and securities and over accounting restrictions.

4. The visualizations provided by the Alloy Analyzer are very useful to understand the

model and to comunicate it to others.

5. The current state of the system is now reified and easy to access.

Both were possible only after:

1. Carefully analyzing the original model and identifying the key concepts and mapping

them conceptually as entities and constraints.

2. Establishing what properties define the system as correct.

3. Using model-checking and simulations to refine the model.

All three steps above require using Alloy as a modeling language. The kinds of properties

and constraints we require are not expressible in JSON Schema, and we certainly do not

enjoy the benefits of model checking and simulation without Alloy.

6.3 Future Work

The research presented herein serves as an initial platform for continued exploration into the

application of lightweight formal methods in financial software design. Possible extensions

and directions for future work are:

• Model Extension: Incorporate additional securities and transaction types.

106

• Temporal Modeling: Utilize the temporal logic capabilities introduced in Alloy

version 6 for constructing state-machine-based capitalization table models.

• Automated Contract Generation: Investigate the feasibility of auto-generating

textual contracts through Alloy-to-text translators, thereby eliminating the laborious

manual verification process.

• Code Generation: Explore automated code generation using Alloy’s Java API.

Given that most business logic is succinctly encapsulated as constraints, the target

programming language would require minimal features to support the generated code.

• Alternative Formalisms: Examine the applicability of other formal methods, such

as TLA plus, for specifying similar problems from different perspectives.

107

Appendix A

Types and enums in the OCF

Below, we provide a overview of the common usage types and enumerations found within

the Open Cap Table Format (OCF). These are utilized as attributes for both securities and

transactions, aiding in better understanding the format’s structure and purpose.

General use types

There are 50 available types in the OCF, of which 22 are types for general use, such as address

types, currencies, monetary values et cetera. Figure A.1 details the directory structure of

the general use types.

108

schema/

types/

Address.schema.json

CapitalizationDefinition.schema.json

ContactInfo.schema.json

CountryCode.schema.json

CountrySubdivisionCode.schema.json

CurrencyCode.schema.json

Date.schema.json

Email.schema.json

File.schema.json

InterestRate.schema.json

Md5.schema.json

Monetary.schema.json

Name.schema.json

Numeric.schema.json

Percentage.schema.json

Phone.schema.json

Ratio.schema.json

SecurityExemption.schema.json

ShareNumberRange.schema.json

StockParent.schema.json

TaxID.schema.json

TerminationWindow.schema.json

Figure A.1: Types in the OCF for general use

Types supporting transactions and securities

Beyond the general use types for common concepts such as addresses and monetary values,

there are types defining the entities and transactions that participate in the lifetime of a

capitalization table. Figure A.2 shows the directory structure of the types supporting

transactions and securities.

109

schema/

types/

conversion mechanisms/

CustomConversionMechanism.schema.json

SAFEConversionMechanism.schema.json

NoteConversionMechanism.schema.json

PercentCapitalizationConversionMechanism.schema.json

FixedAmountConversionMechanism.schema.json

RatioConversionMechanism.schema.json

Figure A.2: Conversion mechanisms

Figure A.3 shows the directory structure of the conversion rights.

schema/

types/

conversion rights/

WarrantConversionRight.schema.json

ConvertibleConversionRight.schema.json

StockClassConversionRight.schema.json

Figure A.3: Conversion rights

Figure A.4 shows the directory structure of the vesting types.

schema/

types/

vesting/

VestingPeriodInMonths.schema.json

VestingConditionPortion.schema.json

VestingEventTrigger.schema.json

VestingStartTrigger.schema.json

VestingScheduleRelativeTrigger.schema.json

VestingCondition.schema.json

VestingPeriodInDays.schema.json

VestingScheduleAbsoluteTrigger.schema.json

Figure A.4: Vesting events and conditions, periods and portions

Figure A.5 shows the directory structure of the conversion triggers.

110

schema/

types/

conversion triggers/

ElectiveConversionInDateRangeTrigger.schema.json

AutomaticConversionOnDateTrigger.schema.json

AutomaticConversionOnConditionTrigger.schema.json

UnspecifiedConversionTrigger.schema.json

ElectiveConversionAtWillTrigger.schema.json

ElectiveConversionOnConditionTrigger.schema.json

Figure A.5: Conversion triggers, divided in elective and automatic

Enums

Enums are constant values. Figure A.6 shows the directory structure of the enums.

111

schema/

enums/

AccrualPeriodType.schema.json

AddressType.schema.json

AllocationType.schema.json

CompensationType.schema.json

CompoundingType.schema.json

ConversionMechanismType.schema.json

ConversionRightType.schema.json

ConversionTimingType.schema.json

ConversionTriggerType.schema.json

ConvertibleType.schema.json

DayCountType.schema.json

EmailType.schema.json

FileType.schema.json

InterestPayoutType.schema.json

ObjectType.schema.json

OCFVersionType.schema.json

OptionType.schema.json

ParentSecurityType.schema.json

PeriodType.schema.json

PhoneType.schema.json

RoundingType.schema.json

StakeholderRelationshipType.schema.json

StakeholderType.schema.json

StockClassType.schema.json

TerminationWindowType.schema.json

ValuationType.schema.json

VestingDayOfMonth.schema.json

VestingTriggerType.schema.json

Figure A.6: Enums in the OCF

They at principle look simple or trivial; actually, they consolidate important domain ex-

pertise. The Allocation type, for example, defines that shares in a vesting term can be

allocated with different rounding methods, and whether to allocate shares unevenly divis-

ible by the number of vesting periods by front-loading (i.e., allocating the remainder to

the first vesting period) or back-loading (i.e., allocating the remainder to the last vesting

periods). From the author’s experience, this sort of low-level business rule detail takes a

large part of developing systems for financial domains. There are specific enums for period-

112

icity classes, different methods of calculating the day of vesting in the month (i.e., business

days versus calendar days), and different methods of calculating interest accruals, rounding

methods et cetera. These details are often overlooked during the design of a system for

managing financial information, so we value that they are explicitly defined in the OCF.

113

Bibliography

[1] D. Caines, Global venture capital investment shatters records — kpmg.com, https:

//kpmg.com/xx/en/home/media/press-releases/2022/01/global-venture-

capital-annual-investment-shatters-records-following-another-healthy-

quarter.html, [Accessed 10-Jun-2023].

[2] Open Cap Table Coalition (OCT) — opencaptablecoalition.com, https : / / www .

opencaptablecoalition.com/, [Accessed 27-May-2023].

[3] S. P. Jones, J.-M. Eber, and J. Seward, “Composing contracts,” ACM SIGPLAN

Notices, vol. 35, no. 9, pp. 280–292, Sep. 2000. doi: 10.1145/357766.351267. [Online].

Available: https://doi.org/10.1145/357766.351267.

[4] D. Merigoux, N. Chataing, and J. Protzenko, “Catala: A programming language for

the law,” Proceedings of the ACM on Programming Languages, vol. 5, no. ICFP, pp. 1–

29, 2021. doi: 10.1145/3473582. [Online]. Available: https://doi.org/10.1145%

2F3473582.

[5] E. Hildenbrandt, M. Saxena, N. Rodrigues, et al., “Kevm: A complete formal se-

mantics of the ethereum virtual machine,” in 2018 IEEE 31st Computer Security

Foundations Symposium (CSF), 2018, pp. 204–217. doi: 10.1109/CSF.2018.00022.

[6] Z. Yang and H. Lei, “Lolisa: Formal syntax and semantics for a subset of the so-

lidity programming language,” ArXiv, vol. abs/1803.09885, 2018. [Online]. Available:

https://api.semanticscholar.org/CorpusID:4398330.

[7] I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar, A. Trunov, and K. C. G. Hao, “Safer

smart contract programming with scilla,” vol. 3, no. OOPSLA, 2019. doi: 10.1145/

3360611. [Online]. Available: https://doi.org/10.1145/3360611.

[8] A Metrick, Venture capital and the finance of innovation, third edition, 3rd ed.

Nashville, TN: John Wiley & Sons, Apr. 2021.

[9] JSON Schema — json-schema.org, https://json-schema.org/, [Accessed 10-Jun-

2023].

114

https://kpmg.com/xx/en/home/media/press-releases/2022/01/global-venture-capital-annual-investment-shatters-records-following-another-healthy-quarter.html
https://kpmg.com/xx/en/home/media/press-releases/2022/01/global-venture-capital-annual-investment-shatters-records-following-another-healthy-quarter.html
https://kpmg.com/xx/en/home/media/press-releases/2022/01/global-venture-capital-annual-investment-shatters-records-following-another-healthy-quarter.html
https://kpmg.com/xx/en/home/media/press-releases/2022/01/global-venture-capital-annual-investment-shatters-records-following-another-healthy-quarter.html
https://www.opencaptablecoalition.com/
https://www.opencaptablecoalition.com/
https://doi.org/10.1145/357766.351267
https://doi.org/10.1145/357766.351267
https://doi.org/10.1145/3473582
https://doi.org/10.1145%2F3473582
https://doi.org/10.1145%2F3473582
https://doi.org/10.1109/CSF.2018.00022
https://api.semanticscholar.org/CorpusID:4398330
https://doi.org/10.1145/3360611
https://doi.org/10.1145/3360611
https://doi.org/10.1145/3360611
https://json-schema.org/

[10] T. Bray, “The JavaScript Object Notation (JSON) Data Interchange Format,” IETF,

RFC 8259, Dec. 2017. [Online]. Available: http://tools.ietf.org/rfc/rfc8259.

txt.

[11] Implementations — json-schema.org, https://json-schema.org/implementations.

html, [Accessed 27-May-2023].

[12] O. C. T. Coalition, Vesting System - Open Cap Table Format Documentation, https:

//open-cap-table-coalition.github.io/Open-Cap-Format-OCF/explainers/

VestingTerms/, [Accessed 08-Jun-2023].

[13] D. Jackson, “Alloy: A lightweight object modelling notation,” ACM Trans. Software

Engineering Methodology, vol. 11, no. 2, 256–290, 2002, issn: 1049-331X. doi: 10.

1145/505145.505149. [Online]. Available: https://doi.org/10.1145/505145.

505149.

[14] D. Jackson, Software Abstractions: Logic, Language, and Analysis. The MIT Press,

2012, isbn: 0262017156.

[15] A. Milicevic, J. P. Near, E. Kang, and D. Jackson, “Alloy∗: A general-purpose higher-

order relational constraint solver,” Formal Methods in System Design, vol. 55, no. 1,

pp. 1–32, Jan. 2017. doi: 10.1007/s10703-016-0267-2. [Online]. Available: https:

//doi.org/10.1007/s10703-016-0267-2.

[16] I. Milicevic Aleksandar Erfrati and D. Jackson, “Arby—an embedding of alloy in

ruby,” in Abstract State Machines, Alloy, B, VDM, and Z, ser. Lecture Notes in

Computer Science, Springer Berlin Heidelberg, 2014.

[17] Alloy: Case studies – http://alloytools.org/citations/case-studies.html, http : / /

alloytools.org/citations/case-studies.html.

[18] A. Spiridonov and S. Khurshid, “Pythia : Automatic generation of counterexamples

for acl 2 using alloy,” 2007. [Online]. Available: https://api.semanticscholar.

org/CorpusID:18896003.

[19] J. C. Blanchette and T. Nipkow, “Nitpick: A counterexample generator for higher-

order logic based on a relational model finder,” in Interactive Theorem Proving, M.

Kaufmann and L. C. Paulson, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,

2010, pp. 131–146, isbn: 978-3-642-14052-5.

[20] R. Carpio and I. Alsmadi, “Websites security policies implementation using alloy

analyzer,” SSRN Electronic Journal, 2021. doi: 10.2139/ssrn.3939856. [Online].

Available: https://doi.org/10.2139/ssrn.3939856.

[21] C. Chen, P. Grisham, S. Khurshid, and D. Perry, “Design and validation of a general

security model with the alloy analyzer,” Jan. 2006.

115

http://tools.ietf.org/rfc/rfc8259.txt
http://tools.ietf.org/rfc/rfc8259.txt
https://json-schema.org/implementations.html
https://json-schema.org/implementations.html
https://open-cap-table-coalition.github.io/Open-Cap-Format-OCF/explainers/VestingTerms/
https://open-cap-table-coalition.github.io/Open-Cap-Format-OCF/explainers/VestingTerms/
https://open-cap-table-coalition.github.io/Open-Cap-Format-OCF/explainers/VestingTerms/
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/505145.505149
https://doi.org/10.1007/s10703-016-0267-2
https://doi.org/10.1007/s10703-016-0267-2
https://doi.org/10.1007/s10703-016-0267-2
http://alloytools.org/citations/case-studies.html
http://alloytools.org/citations/case-studies.html
https://api.semanticscholar.org/CorpusID:18896003
https://api.semanticscholar.org/CorpusID:18896003
https://doi.org/10.2139/ssrn.3939856
https://doi.org/10.2139/ssrn.3939856

[22] R. Podorozhny, S. Khurshid, D. Perry, and X. Zhang, “Verification of multi-agent

negotiations using the alloy analyzer,” in Lecture Notes in Computer Science, Springer

Berlin Heidelberg, pp. 501–517. doi: 10.1007/978-3-540-73210-5_26. [Online].

Available: https://doi.org/10.1007/978-3-540-73210-5_26.

[23] J. Johnson and I. Alsmadi, “Formal modeling of banking policies using alloy analyzer,”

SSRN Electronic Journal, 2021. doi: 10.2139/ssrn.3939880. [Online]. Available:

https://doi.org/10.2139/ssrn.3939880.

[24] E. Kang, S. Perez De Rosso, and D. Jackson, 500 lines or less - the same-origin policy,

https://aosabook.org/en/500L/the-same-origin-policy.html, (Accessed on

05/23/2023).

[25] J. Pettersson and R. Edström, “Safer smart contracts through type-driven develop-

ment,” 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:

62247546.

116

https://doi.org/10.1007/978-3-540-73210-5_26
https://doi.org/10.1007/978-3-540-73210-5_26
https://doi.org/10.2139/ssrn.3939880
https://doi.org/10.2139/ssrn.3939880
https://aosabook.org/en/500L/the-same-origin-policy.html
https://api.semanticscholar.org/CorpusID:62247546
https://api.semanticscholar.org/CorpusID:62247546

	Glossary
	I Background
	Introduction
	The economic motive to adopt a specification
	Complexities in managing capitalization tables
	Open-source efforts
	Structure
	Related works

	Capitalization tables and the need for specifications
	Overview
	Use in startup financing
	Capitalization table over two investment rounds and a final sale transaction

	JSON Schema
	Validating the presence of specific keys in a document
	Composing schemas to form more complex schemas
	Validating numeric, string and array values
	Achievements and limitations of JSON Schema

	The Open Cap Table format
	File format
	The existence of an implied conceptual model within the data model
	Organizing principles of the underlying model
	Opening example of the complete lifetime of a security
	A note on the current folder structure of the OCF
	Transactions
	Entities and other objects

	Key components and patterns in the OCF
	Transaction tracing system
	Vesting system
	Convertible securities

	Discussion
	Advantages and achievements of the OCF
	Disadvantages and limitations of the OCF

	II A new model for capitalization tables
	Key Concepts and Methodology
	The new model versus the Open Cap Table Format
	Key Concepts in the Model
	Treatment of Securities
	Treatment of transactions

	Constructing the Model
	Parts of an Alloy model
	A brief overview of Alloy-related literature
	Methodology

	The New Model
	Signatures for Securities, Transactions, and Stakeholders
	Abstract security signature
	Abstract signature for transactions
	Concrete transactions signatures
	Constraints

	Vesting system
	Conditions
	Triggers
	Event and Date-related
	Propositional logic

	Unrolled evaluation function
	Checks
	Accounting checks
	Count checks
	Structure checks

	Discussion and contributions

	III Reflections on the Model Usage and Conclusions
	Towards Legal Contracts and Code Normativity
	Our Work in the Context of Code Normativity
	Code Normativity and Community Efforts
	Smart Contracts
	Tax and Accounting: The Catala Approach

	An example rendition of our model as prose contracts

	Conclusion
	Limitations of our Model
	The New Model: technical issues
	What have we gained?

	Future Work

	Types and enums in the OCF

