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Abstract

KATAGUE, G. P. A Mixed-Integer Linear Programming Reformulation Approach to
Maximum A Posteriori Inference in Sum-Product Networks. Thesis (Masters). Institute
of Mathematics and Statistics, University of São Paulo, São Paulo, 2020.

Sum-Product Network (SPN) is a relatively new class of probabilistic graphical models. They
differ from other probabilistic graphical models by allowing explicit representation of context-
sensitive independence and marginal inference computation in linear time. Bayesian Networks
and Markov Networks, for example, require #P-hard effort for performing marginal inference.
However, it is still NP-hard to find the most probable configuration for a set of variables in an
SPN, and there is currently a shortage of efficient techniques to solve the problem.

A widely employed technique for solving NP-hard optimization problems consists in translat-
ing them into Mixed-Integer Linear Programming (MILP) programs, which hence can be solved
by highly efficient commercial solvers. Besides harvesting the power of current solvers, formu-
lating the problem as a MILP program immediately allows us to obtain an anytime algorithm
that continuously improves its solution as more resources are given (time and memory), and can
be stopped at any time with a feasible solution with error bounds.

In this work, we developed a new algorithm that finds the most probable configuration for a
set of variables in SPNs (Maximum A Posteriori inference) by reformulating it as a MILP pro-
gram. This translation is rather intricate and relies on several results scattered throughout this
field of study, such as the reformulation of SPNs as Bayesian Networks with latent variables, the
compact representation of conditional probability tables through Algebraic Decision Diagrams
and the symbolic manipulation of multilinear expressions by Parameterized Algebraic Decision
Diagrams.

Keywords: probabilistic graphical models, sum-product networks, maximum a posteriori
inference, parameterized algebraic decision diagrams, mixed-integer linear programming.
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Resumo

KATAGUE, G. P. Uma abordagem de reformulação à Programação Linear Inteira
Mista para a Inferência de Máximo a Posteriori em Redes Soma-Produto. Dissertação
(Mestrado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2020.

Rede Soma-Produto (SPN) é uma classe de modelos probabilísticos baseados em grafos rel-
ativamente nova. Elas diferem de outros modelos probabilísticos por permitir a representação
explícita de independência sensível a contexto e a computação de inferência marginal em tempo
linear. Redes Bayesianas e redes de Markov, por exemplo, exigem esforço #P-difícil para com-
putar inferência marginal. Entretanto, continua sendo NP-difícil encontrar a configuração mais
provável para um conjunto de variáveis em uma SPN, e atualmente há uma escassez de técnicas
eficientes que solucionam o problema.

Uma técnica amplamente utilizada para solucionar problemas de otimização NP-difíceis con-
siste em transformá-los em um programa de Programação Linear Inteira Mista (MILP), que
então poderia ser solucionado por otimizadores de alta performance disponíveis comercialmente.
Além de aproveitar o potencial dos otimizadores atuais, formular o problema como um programa
MILP nos permite obter um algoritmo anytime que continuamente encontra soluções melhores
quanto mais recursos (tempo e memória) forem disponibilizados, e pode ser interrompido a
qualquer momento obtendo-se uma solução válida com margens de erro.

Neste trabalho nós desenvolvemos um novo algoritmo que soluciona o problema de computar
a configuração mais provável (inferência de Máximo A Posteriori) para um conjunto de variáveis
em SPNs através de sua reformulação como um programa MILP. Esta reformulação é consid-
eravelmente complexa e se baseia em diversos resultados dispersos pela literatura, tal como a
reformulação de SPNs em Redes Bayesianas com variáveis latentes, a representação compacta
das tabelas de probabilidades através de Diagramas de Decisão Algébrica, e manipulações sim-
bólicas de expressões multilineares na forma de Diagramas de Decisão Algébrica Parametrizados.

Palavras-chave: modelos probabilísticos baseados em grafos, redes soma-produto, inferência de
máximo a posteriori, diagramas de decisão algébrica parametrizados, programação linear inteira
mista.
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Chapter 1

Introduction

“The studies reported here have been concerned with the programming of a digital
computer to behave in a way which, if done by human beings or animals, would be
described as involving the process of learning. While this is not the place to dwell on
the importance of machine-learning procedures, or to discourse on the philosophical
aspects, there is obviously a very large amount of work, now done by people, which
is quite trivial in its demands on the intellect but does, nevertheless, involve some
learning.” [Sam59]

The citation above was taken from the introduction of an article called “Some Studies in
Machine Learning Using the Game of Checkers”, written in 1959 by Arthur Lee Samuel, a
pioneer regarding to artificial intelligence research, who spent research time on programming
self-learning computers and based much of his work on the famous game checkers [MF90]. As
far as we know, it is likely to be the first mention ever made about the term Machine Learning.

Since then, several improvements in terms of computational resources have arisen, and new
statistical techniques and new models were introduced or existing ones adapted to perform
Machine Learning. Among these models, there is a particular class called Probabilistic Graphical
Models (PGMs), that encode complex joint multivariate probability distributions using graphs,
and given that graphs have been a research subject for long time, the knowledge gathered
around them becomes fairly convenient when dealing with such models. Among PGMs, Bayesian
Networks, introduced by Judea Pearl in 1985 [Pea85], and Markov Networks are probably the
most known nowadays. Most recently, Hoifung Poon and Pedro Domingos proposed a new PGM
called Sum-Product Network [PD11], which is one of the focuses of this work.

There are several tasks related to PGMs, such as learning, classification, and inference.
Learning concerns using data to estimate the parameters of probability functions and even to
assemble the graph structure itself. Classification consists in categorizing unseen instances based
on the knowledge stored in the graph structure. Inference relates to computing the marginal
distribution of one or more random variables, which is also based on the graph structure. This
work does not have learning neither classification under its scope, but focuses upon a specific type
of inference called Maximum A Posteriori, which consists in finding the most likely combination
of values for a set of variables, given previous observed data.
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2 INTRODUCTION 1.2

1.1 Objective

In this research, we aim the development of an anytime algorithm for Maximum A Posteriori
(MAP) inference in Sum-Product Networks (SPNs) through its reformulation as a Mixed-Integer
Linear Programming (MILP) optimization problem. The first part of this algorithm is based on
the ideas proposed in [ZMP15] to efficiently extract a set of Algebraic Decision Diagrams (ADDs)
from an SPN, while the second part, where the extracted ADDs are used to build the MILP
program, comes as our main contribution.

1.2 Motivation

In order to develop the proposed algorithm, we need to deal with several, and eventually scat-
tered, fields of study within computer science. We believe that it becomes easier to comprehend
the applications of this research by giving a concrete and simple example where the algorithm
could be useful. Later in this section, we also provide answers for major questions such as why
SPNs, MAP inference and the MILP reformulation approach were chosen.

1.2.1 Example: Statistical Imputation

The following situation is described in the book “Missing Data”, by Paul Allison [All01]:

“Suppose you have collected data on a sample of 1000 people and you want to
estimate a multiple regression model with 20 variables. Each of the variables has
missing data on 5% of the cases, and the chance that data are missing for one
variable is independent of the chance that it is missing on any other variable. You
could then expect to have complete data for only about 360 of the cases, discarding
the other 640. If you merely downloaded the data from a web site, you might not feel
too bad about this, although you might wish you had a few more cases. On the other
hand, if you had spent $200 per interview for each of the 1000 people, you might
have serious regrets about the $130000 that was wasted (at least for this analysis).
Surely there must be some way to salvage something from the 640 incomplete cases,
many of which may lack data on only one of the 20 variables.”

Missing data are a considerable frequent problem when dealing with statistical analysis,
although most of the standard statistical methods presume that every case has information on all
the variables to be included in the analysis. Although there are proper statistical techniques used
to fill the gap of missing data, such as maximum likelihood imputation and multiple imputation,
considering the topic of this research, another practicable solution is to find the missing data
through MAP inference in a PGM.

Looking back at the situation described above, it would be possible to use the 360 complete
instances in the data set to define the structure and probability functions of a PGM, and then
performing MAP inference for each 640 incomplete instances of the data set to find the most
likely value for each lacking variable.
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1.2.2 Example: Structured Prediction

To exemplify these terms in practical matters, let us suppose there is a database with a con-
siderable number of black and white images of human faces, following certain criteria of size,
orientation, and inclination. It would be possible to make an SPN learn the patterns of these im-
ages, that is, how the variables (in this case, pixels) are related to store in its structure relevant
information regarding the dependence between them.

After learning, to verify how accurately the knowledge was stored in the SPN structure, new
face images as previously described can be provided to the SPN, but now with a particular
condition: missing data. Let us say that half of the image is missing, although the missing
part does not necessarily have to be defined as a slice of the image, but any pixels scattered
throughout the image. Thus, by performing an inference process (in this case, MAP inference),
the SPN fills in the missing data.

Figure 1.1: Examples of SPN image completion without prior face knowledge made by the package
GoSPN [Geh]. The grey half is the known part of the picture given to an SPN, and the green half is the
most probable combination of values inferred by the SPN.

In fact, this is an exercise of Structured Prediction, which consists in predicting a whole
structured object instead of just values. Hence, an artificial missing data occasion, made up for
testing the learning process. The most important aspect in our case, the MAP inference executed
by the SPN when dealing with the missing data. The completion likelihood naturally depends on
how well the learning algorithm captured the dependencies between variables and how accurate
is the inference algorithm. Nevertheless, the image completion task itself can be formulated as
a MAP inference problem: the computer must seek the combination of the unknown variables
that is most likely to occur given a previous configuration of the known variables.



4 INTRODUCTION 1.2

1.2.3 Why Sum-Product Networks?

It would be convenient to have proper models to represent statistical information considering
the computer architecture, since our purpose was doing probabilistic reasoning in an automated
fashion. There are several established probabilistic models that represent information under
uncertainty, as mentioned previously in this chapter, but some complications arise in regard to
computational processing. For example, marginal inference, which is to compute the probability
of a variable taken to a certain value, takes #P-hard effort both in Bayesian Networks and in
Markov Networks [Rot96].

Sum-Product Networks (SPNs) were chosen because of their simple representation of prob-
abilistic distributions in computational terms. They encode a complicated mixture model by a
rooted graph whose internal nodes denote arithmetic operations (sum and product) and whose
leaves are associated with univariate distributions. They differ from Bayesian Networks and
Markov Networks in many characteristics, such as the ability to enable linear-time marginal
inference in its size and to capture event-level independence, thus allowing the modeling of
complex phenomena such as determinism, context-specific independence and symmetry.

Also, since SPNs have been proposed recently if compared with other well-known established
probabilistic graphical models, there are considerably fewer researches developed about it and
hence there are several topics related to SPNs that are still to be explored.

1.2.4 Why Maximum A Posteriori inference?

Maximum A Posteriori inference, sometimes referred as Most Probable Explanation depending
on the context, consists in finding the most probable configuration for a set of variables over a
probabilistic distribution. Computationally speaking, we would like to have a Machine Learning
based system that seeks the combination of values for variables that is most likely to occur given
a previous configuration of the valued variables. Generally speaking, given a part of a pattern,
the computer must seek the most probable pattern that fits the given one. It is still a NP-hard
problem in SPNs and there is currently a shortage of efficient techniques to solve the problem.
As far as we know, there are few approaches for approximating MAP inference in SPNs. We
provide further explanations about these approaches later in this work.

Many tasks can be solved by computing the most probable configuration under a probabilistic
model consistent with an evidence, such as image segmentation [GG84], 3D image reconstruc-
tion [BVZ98], natural language processing [KRC+10], speech recognition [PKMP14], sentiment
analysis [ZNSS11], protein design [SZS+08] and multicomponent fault diagnosis [SS04].

1.2.5 Why Mixed-Integer Linear Programming?

The reformulation of optimization problems through Linear Programming and its derivatives is
a very well-known and established technique for solving such kind of problems, and we believe
that it brings us several advantages.

Firstly, it allows us to describe our original problem by using the language that describes
MILP problems, that is, by using constraints expressed as equations. This can be considered
a gain in matters of expressiveness in a way that, for example, we become able to explore
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constraints relaxation to have solutions in less time and with error bounds, or even to add new
constraints to restrict the scope of possible answers.

Secondly, this approach allows us to develop an anytime algorithm. An anytime algorithm
satisfies the following criteria: i) it can be stopped at any time with a valid solution; and ii) the
quality of the solution it finds improves monotonically as more resources (time and memory) are
given. For our case, MAP inference in SPNs, we might understand ii) such that the probability
of the found solution increases monotonically as more resources are given.

And last, since many commercial and efficient optimizers are available nowadays, it allows
us to use of any of them to find a reliable solution for our problem.

1.3 Contributions

Our theoretical contribution lies on the second part of the algorithm, which is based on manip-
ulating Algebraic Decision Diagrams (ADDs) and Parameterized Algebraic Decision Diagrams
(PADDs) obtained from the original SPN to generate a MILP program that solves the original
problem. These ADDs and PADDs will be seen as functions, and thus used to build a domain
graph. Then, based on the cliques of this domain graph, a path decomposition can be built and
used for message passing. Each message corresponds to a constraint on the MILP program, and
the last message specifies the objective function.

Finally, the values assumed by the set of variables after optimizing the MILP problem cor-
respond to the most probable configuration of the variables in the original SPN. The optimum
value for the objective function corresponds to the probability value of such configuration in the
original SPN.

Since the previous available packages for manipulation of Decision Diagrams would not
embed PADD functionality, as a side contribution, we developed an extension software package
that supports PADD manipulation into one of the existing ADD packages.

Once the developed algorithm has the characteristic of being anytime, the generated MILP
problem can be solved in an anytime fashion by available solvers, that is, this method can
be used to compute the variable configuration that leads to the maximum probability in an
SPN, but since solvers work continuously improving a feasible solution, it also might give an
approximation if the algorithm is prematurely stopped.

Finally, the overall contributions accomplished within this work are:

• the development of a PADD support package

• the development of a anytime algorithm that translates the MAP inference in SPNs as a
MILP optimization problem

• a performance analysis of the developed method in comparison with other existing ones

• the publication of the article "Two Reformulation Approaches to Maximum A Posteriori
Inference in Sum-Product Networks" [MRKA20], whose content is partly based on this
research.
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1.4 Text Organization

In this chapter, we present the motivation of our work, explaining why we chose to use SPNs as
a probabilistic model, why we chose to direct our research towards the MAP inference problem
and why we chose to reformulate it as a MILP problem, thus presenting our contributions within
this research area.

• In Chapter 2 we explore the formal definitions of all the models, structures and concepts
related with the scope of this work: Sum-Product Networks, Binary Decision Diagrams, Al-
gebraic Decision Diagrams, Parameterized Algebraic Decision Diagrams, Domain Graphs,
Path Decompositions and Mixed-Integer Linear Programming.

• In Chapter 3 we discuss the formal definition of the problem we want to solve: the MAP
inference. Also, we provide explanations about the existing methods to compute the MAP
inference in SPNs: Max-Product, Argmax-Product and MaxSearch.

• In Chapter 4 we present and explain the proposed algorithm for MAP inference in SPNs.
Since it can be divided in two major sequential steps, firstly we show how to generate
ADDs and PADDs from an SPN restricted by its variables (the reference for this step
can be found in [ZMP15] as part of the procedure which converts an SPN in a Bayesian
Network). Secondly, we show how to use the set of ADDs and PADDs generated in the
first step to obtain the MILP program that translates the MAP inference in the original
SPN. As an example, we provide an execution of a simple case throughout the algorithm
in both steps of the explanation. Finally, we present a high-level code that summarizes the
whole algorithm.

• In Chapter 5 we provide the tests done through synthetic and real learned SPNs, to assure
the validity and efficiency of the proposed algorithm.

• In Chapter 6 we recap the concepts and ideas presented in this document as a whole,
discussing its bottlenecks and relating to possible future works.

• In Appendix A we present some implementation details about this research that are sec-
ondary but still could help readers to understand better our work, such as how we developed
part of software during this research.



Chapter 2

Fundamentals

To ensure that this document is self-contained, in this chapter, we present all the models and
structures used in this work, as well as the necessary concepts of each of them for fully under-
standing of the algorithm described in Chapter 4. Firstly, there is a section for the notation used
in this work. Later, there are sections dedicated to explain essential concepts of Sum-Product
Networks, Decision Diagrams (including Binary Decision Diagrams, Algebraic Decision Dia-
grams and Parameterized Algebraic Decision Diagrams), Domain Graphs, Path Decomposition
and Mixed-Integer Linear Programming.

2.1 Notation

Finding a proper notation when dealing with structures from many different areas of mathemat-
ics and computer science is a quite complex task. In this section, we define a standard notation,
which however will have its exceptions throughout this document, since we have to deal, for
example, with the situation where a constant in one structure becomes a variable in another.
We will try to be as clear as possible whenever a notation exception occurs.

Then, we use as a standard:

• lowercase letters for constants and functions (the latter denoted usually by the letter f ,
and eventually both with lower numerical indexes, such as f1, xi). We also denote vertices
of a graph as i and j, since they can be seen as numerical indexes;

• uppercase letters for variables and random variables (also eventually followed by lower
numerical indexes, such as X1, Xi). For Boolean variables, we denote X̄1 as its negation;

• bold uppercase letters for sets and vectors of variables, whose dimensions are clear by
context;

• sans serif uppercase letters for sets, vectors and matrices of constants (also eventually
followed by lower numerical indexes, such as A1, Ii), whose dimensions are clear by context.
Exceptionally, we denote the set {1, 2, . . . , n} as [n]. We denote the instances of vector as
mentioned before, so that x1 is then the first instance of a vector X = (x1, . . . , xn). Note
that X1 and X2 are two distinct vectors;

7
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• blackboard bold uppercase letters for mathematical spaces such as integer (Z) and real (R)
sets;

• calligraphic uppercase letters for structures and models such as SPNs, PADDs, graphs,
MILP programs (also followed by lower numerical indexes when necessary, such as G1).
Structures such as SPNs (including their internal nodes) and PADDs can also be seen as
functions, so we might eventually denote them as S(X1, . . . , Xn) as well.

Still, the Greek letter λ is usually adopted to denote the indicator function in most articles
related to the subject. For a variable X and a fixed value a, the indicator function λa is such
that

λa(X) =

1 if X = a or X is unknown

0 otherwise .

For our purposes, we denote λX and λ̄X as indicator variables derived from the indicator
functions λ1(X) and λ0(X) when X is a Boolean variable.

2.2 Sum-Product Networks

Generally speaking, Sum-Product Network (SPNs) is a relatively new class of probabilistic graph-
ical model, proposed by Hoifung Poon and Pedro Domingos in 2011 [PD11]. It consists in a
Directed Acyclic Graph (DAG) with weighed arcs, leaves that represents variables and internal
nodes that represents sum or product operations. They rely on the ideas of Darwiche [Dar03]
specially for the notion of network polynomial, and we might as well think of an SPN as a
multilinear function of indicator variables. Although we know that a network polynomial has
exponential size of terms in the number of variables, SPNs will allow us to represent it and eval-
uate the probability of evidences in polynomial space and time. As said in [CMdC17], SPNs have
received increasing popularity in applications of machine learning due to their ability to repre-
sent complex and highly multidimensional distributions, such as in [AT12], [AT16], [CKP+14]
and [ND16]. For simplicity, we focus on SPNs with Boolean variables in this work.

Formally speaking, the following definition is close to the one in the SPNs debut paper
[PD11]:

Definition 2.2.1. A Sum-Product Network (SPN) is a rooted DAG whose leaves are indicators
variables λX1 , . . . , λXn and λ̄X1 , . . . , λ̄Xn and whose internal nodes are sums and products. Each
arc (i, j) emanating from a sum node i has a non-negative weight wij.

As we might note in Definition 2.2.1, we mentioned indicator variables instead of indicator
function as in Section 2.1. We chose this nomenclature because we could interpret an SPN S as
a function whose value is calculated given a configuration of its indicator variables λX1 , . . . , λXn

and λ̄X1 , . . . , λ̄Xn . Still, each indicator variable λXi and λ̄Xi is associated with a univariate
probability distribution Xi.

The value of each node in S depends on a given configuration of the input and are recursively
calculated as follows:
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+

× × ×

+ + + +

λX1 λ̄X1 λX2 λ̄X2

0.2 0.5 0.3

0.4
0.6 0.9

0.1 0.7
0.3 0.2

0.8

Figure 2.1: A very similar example of a Sum-Product network as showed in [PD11] over variables of
X1 and X2. The value along the arcs is their weight and for the arcs without a value it is implicit that
their weight is 1. Each internal node is associated with a symbol (+ or ×) when they represent sum and
product operations, respectively. Each leaf node λXi or λ̄Xi is an indicator variable of Xi in a specific
context.

• The value of a leaf node, which will always be an indicator value, is the value of the input
itself;

• The value of a product node is the product of the values of its children;

• The value of a sum node i is
∑

j∈Ch(i)wijvj , where Ch(i) are the children of i, vj is the
value of the node j and wij is the arc weight from i to j.

The value of an SPN is the value of its root node. We denote the value of an SPN S by
S(λX1 , . . . , λXn , λ̄X1 , . . . , λ̄Xn).

The scope Sc(·) of a node in an SPN is defined as the set of variables whose indicators appear
among the node’s children. For instance, if u is a leaf node, it is an indicator variable λXi or
λ̄Xi over the variable Xi, then we have Sc(u) = Xi. If u is an internal node, then we have it
recursively as Sc(u) =

⋃
v∈Ch(u) Sc(v).

The height of an SPN is defined as the size of the longest path (that is, the number of arcs)
in its graphical representation between the root and a leaf node.

It is shown in Figure 2.1 an intuitive graphical representation of an SPN. Since the value of
a product node is the product of the value of its children, it is implicit that the arcs it emanates
have weight 1, therefore the weights of the product nodes are omitted. Its height is 3, since it is
the number of arcs in the longest path from the root to a leaf node. The leftmost sum node has
the scope {X1}, since its children are leaf nodes and indicators λX1 and λ̄X1 over the variable
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X1. We can represent this SPN as the function

S(λX1 , λX2 , λ̄X1 , λ̄X2) = 0.2((0.4λX1 + 0.6λ̄X1)(0.7λX2 + 0.3λ̄X2))

+ 0.5((0.4λX1 + 0.6λ̄X1)(0.2λX2 + 0.8λ̄X2))

+ 0.3((0.9λX1 + 0.1λ̄X1)(0.2λX2 + 0.8λ̄X2)) .

For instance, the probability of the complete state X1 = 1 and X2 = 0, where λX1 = 1,
λX2 = 0, λ̄X1 = 0 and λ̄X2 = 1, can be computed as

S(1, 0, 0, 1) = 0.2((0.4)(0.3)) + 0.5((0.4)(0.8)) + 0.3((0.9)(0.8))

= 0.024 + 0.16 + 0.216

= 0.4 . (2.1)

Moreover, it is important to mention the following definitions so that we can restrict the
class of SPNs on which we focus to work.

Definition 2.2.2 (Completeness). An SPN is complete iff all children of the same sum node
have the same scope.

Definition 2.2.3 (Consistency). An SPN is consistent iff no variable appears negated in one
child of a product node and non-negated in another.

Definition 2.2.4 (Decomposability). An SPN is decomposable iff no variable appears in more
than one child of a product node.

We might note that decomposability is more restricted than consistency, which makes SPNs
more general than several other representations, such as arithmetic circuits [Dar03], probabilistic
context-free grammars [Col03], mixture models [Zha04], junction trees [CG08], which all require
decomposability. We might also note that, hence, a decomposable SPN implies a consistent
SPN. Peharz et al. [PTPD15] showed that consistent SPNs over discrete random variables can
be transformed into equivalent decomposable SPNs with a polynomial increase of size.

With the purpose of relating SPNs to probability distributions, we define an evidence e as

e = {Xi = bi : i ∈ I} , (2.2)

where bi is a Boolean value and I ⊆ [n] is a set of indexes. Specifically, in the case where I = [n],
we say that e is a complete evidence. For us, it means that the indicator variables are defined as

λXi =

bi if i ∈ I

1 if i /∈ I
λ̄Xi =

1− b1 if i ∈ I

1 if i /∈ I

Thus, we say that S(e) = S(λX1 , . . . , λXn , λ̄X1 , . . . , λ̄Xn), such that λXi and λ̄Xi are defined
as above. For example, if we assume S to be the SPN shown in Figure 2.1 with I = {1, 2} and
(b1, b2) = (1, 0), we have that S(e) has the same result as the one shown in Equation 2.1.



2.2 SUM-PRODUCT NETWORKS 11

An SPN S can represent a probability distribution PrS(X1, . . . , Xn) over Boolean variables
by PrS(X1 = b1, . . . , Xn = bn) = S(b1, . . . , bn, 1 − b1, . . . , 1 − bn)/z where z is the partition
function. The partition function is the sum of the evaluation of all complete evidences e, that
is, when I = [n].

Definition 2.2.5 (Validity). An SPN S is valid iff S(e)/z = PrS(e) for all evidence e.

Completeness and consistency are not necessary, although sufficient, conditions for validity.
However, they are necessary for a stronger property that every subnetwork of an SPN to be
valid.

Theorem 2.2.1. An SPN is valid if it is complete and consistent.

A proof for Theorem 2.2.1 can be found in [PD11].
Gens and Domingos [GD13] later redefined SPN as follows:

Definition 2.2.6.

1. A tractable univariate distribution is an SPN.

2. A product of SPNs with disjoint scopes is an SPN.

3. A weighted sum of SPNs with the same scope is an SPN, provided all weights are positive

4. Nothing else is an SPN.

The definition above (called generalized SPNs by Peharz et al. in [PTPD15]) gives us a
broader intuition of what an SPN is, although it implies decomposability. The Definitions 2.2.2
and 2.2.4 are quite important to us because part of our work relies on the SPN to Bayesian
Network transformation proposed by Zhao et al. in [ZMP15]. Their reformulation algorithm
admits as input an SPN said to be in the normal form, whose definition depends primarily on
the concepts of completeness, decomposability and normalization. In order to simplify and relate
our work with the last mentioned, we present the concept of normalization and define the normal
form of an SPN.

A normalized SPN S is such that, for each sum node in S, the weight of the arcs emanating
from it are nonnegative and sum up to 1. Under these conditions, we have that S represents a
normalized probabilistic distribution, that is,

∑
e S(e) = 1, for all complete evidence e.

Definition 2.2.7 (Normal Form). An SPN is said to be normal if

1. It is complete and decomposable.

2. It is normalized.

3. Every leaf node in the SPN is a univariate distribution over a Boolean variable and the
size of the scope of a sum node is at least 2 (sum nodes whose scope is of size 1 are reduced
to terminal nodes).
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Figure 2.2: A normal SPN based on the one shown in Figure 2.1. We might see that since the original
SPN was already normalized, the only difference between them is the representation of the leaf nodes,
which previously represented indicator variables of Xi and now represent the variable Xi itself. Below
the leaf nodes, only the probabilities Pr(Xi = 1) are shown.

As we might see, the SPN described in Definition 2.2.7 is contained in the one described
in Definition 2.2.6: i) a leaf node is a tractable univariate distribution, ii) a product node is
a product of SPNs with disjoint scopes and iii) a sum node is a weighted sum of SPNs with
the same scope. For an SPN S and a vector of random variables X = (X1, . . . , Xn), we denote
S(X) = S(λX1 , . . . , λXn , λ̄X1 , . . . , λ̄Xn), where λXi = Xi and λ̄Xi = 1−Xi, for i ∈ [n].

Theorem 2.2.2. For any complete and consistent SPN S, there exists a normal SPN S ′ such
that PrS(·) = PrS′(·) and |S ′| = O(|S|2).

The key points of Theorem 2.2.2 are two:

1. S and S ′ represent the same probability distribution (beside the fact that S might not be
normalized), and

2. S ′ can be built within a polynomial increase of size from S.

There is no formal proof of Theorem 2.2.2 in [ZMP15], and we understand that it is not
under the scope of this work to show its correctness. However, we assume that the SPN used as
input for our algorithm in Chapter 4 is normal, since it is provided that any SPN has its normal
form representation.

2.3 Decision Diagrams

Boolean functions are considerably hard to be expressed in computational terms because they
yield an exponential number of outputs on the number of inputs. In a broader sense, Deci-
sion Diagrams handle such problem because are a compact representation of not only Boolean
functions but functions with Boolean domain through Directed Acyclic Graphs (DAGs). In this
section, we discuss how Decision Diagrams evolved, firstly introducing Binary Decision Diagrams
(BDDs) [Bry86], then Algebraic Decision Diagrams (ADDs) [BFG+97] and finally Parameterized
Algebraic Decision Diagrams (PADDs) [DSDB11].



2.3 DECISION DIAGRAMS 13

In fact, they share many properties since each of them was proposed successively as a con-
ceptual expansion of the previous. In this work, we are interested in the memory gain and the
tractable arithmetic operations provided by such structure, once we might deal with a large
number of variables. In addition, all Decision Diagrams mentioned in Chapter 4 are considered
PADDs once their expanded structure covers the concepts of BDDs and ADDs.

2.3.1 Binary Decision Diagrams

The basic idea behind BDDs’ structure is the Boole’s Expansion Theorem1 [Boo54] (or some-
times referred as Shannon Expansion, since it was part of Shannon’s work such as in [Sha38] and
in [Sha49]). A first glimpse of what was to become a BDD was the Binary Decision-Programs
presented by Chang-Yeong Lee in [Lee59], but the breakthrough came when Randal Bryant pub-
lished his article about "Graph-Based Algorithms for Boolean Function Manipulation" [Bry86].
There, we find how Boolean functions can be represented by a DAG with some restrictions of
how to order the variables. He argued that, although in the worst case a function requires a
graph of exponential size in the number of arguments, many of the functions found in common
applications have a reasonable representation.

Formally, we might present BDDs as follows:

Definition 2.3.1. A Binary Decision Diagram (BDD) is a graphical representation of a Boolean
function f : {0, 1}n → {0, 1}, where the graph is a rooted DAG. There are two kinds of nodes
in a BDD. Leaf nodes, whose outdegree is 0, are associated with Boolean values. Internal nodes,
whose out-degree is 2, are associated with Boolean variables Xi, i ∈ [n]. For each internal node
Xi, the dashed out-arc is labeled with Xi = 0 and the straight out-arc is labeled with Xi = 1.

X1

X2

X3

0 1

X1 X2 X3 X1X2X3
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
1 0 1 0
0 1 1 0
1 1 1 1

Figure 2.3: The Boolean function f(X1, X2, X3) = X1X2X3 represented as a BDD. It clearly shows that
any variable assuming the 0 (or FALSE) value leads the function to return the value 0. It is also possible
to see how it avoids redundant information representation in comparison with a tabular representation.

It is shown in Figure 2.3 the representation of a 3-input and function as a BDD. We might
as well see in literature and software libraries a different representation of BDDs where the
FALSE and TRUE are respectively represented as the left and right out-arc, instead the dashed

1For a Boolean funcion f , we have f(X, Y ) = f(1, Y )X + f(0, Y )(1 − X)
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and straight lines emanating from the internal nodes. We rather use the latter since it becomes
easier to differ the FALSE and TRUE choice for each variable.

At this point, it is important to mention that the variable layers ordering may change consid-
erably the complexity of a BDD. Figure 2.4 shows how the representation of a BDD depends on
the order in which the variables appear. Hence, we might note that the property of canonicity is
directly associated with the variable layer ordering. A Boolean function f can be represented by
two distinct BDDs (necessarily with distinct layer ordering), which have two distinct canonical
forms.

X1

X2

X3

X4

0 1

X1

X3 X3

X2 X2

X4

0 1

Figure 2.4: Both BDDs represent the function f(X1, X2, X3, X4) = X1X2 +X3X4. On the left, we can
see that the layers of variables (from top to bottom) were defined according to the order they appear in
the expression. On the right, we can see that a simple scramble in the order increases considerably the
complexity of representation

In Chapter 4 we will be interested in performing some specific operations between PADDs.
Since they inherit most of BDDs properties, we might explain these details by now. Together with
the BDD structure, Bryant also proposed polynomial time procedures for BDD manipulation
[Bry86]: apply, reduce and restrict. For complexity matters, we assume that B is a BDD
representing a Boolean function f through the DAG G in the following explanations in this
subsection.

• apply

The procedure apply allows binary operations between two BDDs, providing the basic
method for creating the representation of a function according to the operators in a
Boolean expression or logic gate network. It takes DAGs representing functions f1 and
f2, a binary operator <op> (that is, any Boolean function of 2 arguments) and produces a
DAG representing the function f1 <op> f2 defined as

[f1<op>f2](X1, . . . , Xn) = f1(X1, . . . , Xn)<op>f2(X1, . . . , Xn) .

The algorithm starts from the roots of the two DAGs downward, creating vertices in the
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resultant DAG at the branching points of the two DAGs.

In other words, let us interpret BDDs B1 and B2 as representations of Boolean functions
f1(X1, X3) = X̄1X̄3 and f2(X2, X3) = X2X3, respectively, as shown in Figure 2.5. If a
new BDD B3 was to represent, let us say, f3 = f1 ∨ f2, the <op> placeholder would turn
into the logical or Boolean operator. As result, B3 would represent the Boolean function
f3(X1, X2, X3) = X1X̄2X3, as shown in Figure 2.6.

X1

X3

1 0

X2

X3

0 1

Figure 2.5: BDDs B1 and B2 representing of Boolean functions f1(X1, X3) = X̄1X̄3 and f2(X2, X3) =
X2X3, respectively.

X1

1 X2

X3 X3

0 1 1

Figure 2.6: BDD B3 representing the Boolean function f3(X1, X2, X3) = X1X̄2X3

However, as we can see from Figure 2.6, the result of the apply procedure left the DAG’s
structure redundant. For that reason, Bryant included, in the end of the apply, another
procedure called reduce, which is explained next.

We might note that it could be quite complex to compute such Boolean operations between
Boolean functions if we look over the distributive property, since it depends on the number
of terms in each Boolean function. Bryant took advantage of the compact DAG structure
to simplify the apply procedure, whose polynomial complexity is, including the complexity
of the reduce in the end, O(|G1| · |G2|).

• reduce

The reduce procedure transforms an arbitrary function DAG into a reduced DAG denoting
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the same function, that is, it simplifies the BDD structure to its canonical form. This
procedure is essential because many isomorphic BDDs’ DAGs can express the same Boolean
function, but it is interesting to keep the most compact one. It is implicit that all BDDs
are in their canonical form. Figure 2.7 shows how the BDD from Figure 2.6 becomes after
the reduce procedure.

X1

X2

X3

1 0

Figure 2.7: BDD B3 from Figure 2.6 after the reduce procedure, yielding a canonical BDD B′
3 that

represents the Boolean function f3(X1, X2, X3) = X1X̄2X3

The complexity of this procedure is O(|G| · log(|G|)).

• restrict

The restrict procedure transforms the DAG of a function f(X1, . . . , Xi, . . . , Xn) into
one representing the function f |Xi=a = f(X1, . . . , Xi = a, . . . ,Xn) for specified values of
i ∈ [n] and a ∈ {0, 1}. It removes the layer where all nodes reference variable Xi and adjust
the BDD’s DAG connecting dangling nodes which had their parent removed to the nodes
that lost a child.

If the restrict procedure was to be used on the BDD shown in Figure 2.7, let us say, by
restricting f3|X2=0, we would have the following BDD shown in Figure 2.8.

X1

X3

1 0

Figure 2.8: BDD B4 representing the Boolean function f4 = f3(X1, 0, X3) = X̄1X̄3. Note that B4 = B1,
hence f4 = f1, from Figure 2.5.

The computation required for each vertex is constant, and hence its complexity is O(|G| ·
log(|G|)). We might note that this procedure could simultaneously restrict several of the
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function variables without changing the complexity.

2.3.2 Algebraic Decision Diagrams

In order to create a broader concept for BDDs, Bahar et al. proposed ADDs as an extension of
BDDs [BFG+97], allowing not only the representation of Boolean functions but also functions
with Boolean domain and real codomain f : {0, 1}n → R. We might see a range of applications
for ADDs, such as matrix multiplication in semirings, stochastic planning and SPN to Bayesian
Network conversion algorithm.

Formally:

Definition 2.3.2. An Algebraic Decision Diagram (ADD) is a graphical representation of a real
function with Boolean input variables f : {0, 1}n → R, where the graph is a rooted DAG. There
are two kinds of nodes in an ADD. Leaf nodes, whose outdegree is 0, are associated with real
values. Internal nodes, whose out-degree is 2, are associated with Boolean variables Xi, i ∈ [n].
For each internal node Xi, the dashed out-arc is labeled with Xi = 0 and the straight out-arc is
labeled with Xi = 1.

We might note that the only difference between BDDs and ADDs is that their leaf nodes
have values in distinct domains: the first contains leaf nodes with Boolean values, the last, leaf
nodes with real values. Figure 2.9 shows an example of an ADD A that represents the function

A(X1, X2) = (3.14)X̄1X̄2 + (7)X̄1X2 + (7)X1X̄2 + (−0.8)X1X2 ,

where X̄i = 1−Xi.

X1

X2 X2

3.14 7 −0.8

Figure 2.9: An ADD that represents the expression (3.14)X̄1X̄2 + (7)X̄1X2 + (7)X1X̄2 + (−0.8)X1X2.
We might see that its whole structure is similar to the BDD structure with the exception that the values
in the leaf nodes have different domains.

For instance, if we evaluate the function it represents assuming that X1 = 1 and X2 = 0, we
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would have

A(1, 0) = (3.14)(0)(1) + (7)(0)(0) + (7)(1)(1) + (−0.8)(1)(0)

= 0 + 0 + 7 + 0

= 7 .

ADDs inherited the BDDs’ DAG structure, properties of canonicity and variable layers or-
dering complexity, and the procedures apply, reduce and restrict, but allowing real values in
its leaf nodes. However, it is interesting to note that ADDs apply procedure requires algebraic
operations, such as sum and product, differently from BDDs, which required operations such
as and and or. Also, the reduce procedure in BDDs worked by means of equality comparison
between leaf nodes values, which is quite simple when such nodes contain Boolean values. In the
ADDs’ context, it depends on a computational comparison between floating point numbers, so
it is convenient to set an acceptable precision to determine whether two constants are equal or
not.

2.3.3 Parameterized Algebraic Decision Diagrams

To our knowledge, PADDs were firstly introduced by Delgado, Sanner, and de Barros to per-
form symbolic reasoning with Markov Decision Processes with Imprecise Transition Probabilities
(MDP-IP) [DSDB11]. Such problems require the manipulation of multilinear expressions, not
supported by traditional ADDs.

Since their goal differs from ours, they presented a slightly different definition from the one
that follows:

Definition 2.3.3. A Parameterized Algebraic Decision Diagram (PADD) is a graphical rep-
resentation of a function with Boolean domain and f : {0, 1}n → E, where E is the space
of multilinear expressions and the graph is a rooted DAG. There are two kinds of nodes in a
PADD. Leaf nodes, whose outdegree is 0, are associated with multilinear expressions. Internal
nodes, whose out-degree is 2, are associated with Boolean variables Xi, i ∈ [n]. For each internal
node Xi, the dashed out-arc is labeled with Xi = 0 and the straight out-arc is labeled with Xi = 1.

We might see from this definition that its scope is restricted for our purposes, since we want to
manipulate multilinear expressions as well. PADDs rely on the structure of Decision Diagrams
inherited from ADDs (and hence, BDDs), however, in a much broader sense, they allow the
representation of functions whose codomain is any space, including multilinear expressions. As
a result, we might note that our definition of PADD encloses the previously given definition of
ADD, once a single real constant can be considered a multilinear expression with only one term
and no variables.

PADDs’ DAG complexity is also sensitive to the variable ordering. Moreover, they inherited
the apply, reduce and restrict procedures, which work similarly as in BDDs and ADDs on
the matter of structural changes on the DAG.

Still, it is important to mention that PADDs’ apply is more related to ADDs’ apply, since
multilinear expressions are made over the sum and product operations, than BDDs’ apply, that
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X1

a+ b ab

Figure 2.10: A PADD that represents the function (a+ b)X̄1 + (ab)X1. Instead of having values in the
leaf nodes, as do BDDs and ADDs, PADDs have symbolic expressions. It is important to note that the
variables a and b in the leaf nodes are not decision variables.

is made over, for example, and and or operations. Delgado, Sanner and de Barros define the sum
and product of PADDs in MDP-IP problems by the operators ⊕ and ⊗ respectively. Considering
that their PADDs have multilinear expressions in the leaf nodes, we might see that ⊕ is a closed
operation while ⊗ is not. This is because the product between two expressions with the same
variables yields an expression where such variables carry an exponent, hence not multilinear,
while, on the other hand, product is closed for polynomials. Their claim is that, in the context
of MDP-IP problem, they would never perform any product operation between two multilinear
expressions that share a same variable, which means that the result would also be a multilinear
expression, which also applies for our work.

For the reduce procedure, it is important to define the relationship of equality between two
objects in the leaf nodes. This is because reducing a PADD would imply to seek two or more leaf
nodes that contain the same object to merge them into one only leaf node, for later adjusting
properly the out-arcs from some internal nodes. Then, a reduced PADD, for a given variable
ordering, is such that its size is minimal. The proof of existence and uniqueness is mostly based
on BDDs concepts, besides the fact that it is necessary to ensure that there exists a way to
identify two leaf nodes with the same object. Since we are dealing with multilinear expressions
as objects in the leaf nodes, this could be done by:

1. sorting the previously indexed variables in each expression term

2. factoring out and summing constants in identical expression terms

3. sorting the list of terms according to the lowest variable index and number of param-
eters (as a lexicographical order by indexes)

These three steps were presented in [DSDB11] where PADDs contain only multilinear ex-
pressions. However, it is not hard to see that it could work as well for expressions such as
polynomials, as long as terms where the same variable has different exponents, such as X3 and
X7, have a unique representation. And similarly to ADDs, it is necessary to define an acceptable
precision to determine whether two real constants are equal or not.

Finally, once ⊕ is well defined, the restrict procedure can be used to compute the sum of
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the FALSE and TRUE restricted functions for a variable (f |Xi=0⊕f |Xi=1) eliminating the variable
Xi from the PADD. This unary operation is called marginalization, which is closed since ⊕ is
closed for PADDs. Marginalization plays an important role in the algorithm proposed here, as
it will be explained in Subsection 4.2.1.

2.4 Domain Graphs

The domain graph of a set of functions is a graph whose nodes are the variables appearing in
any of these functions, and such that two nodes are connected by an edge if and only if the two
corresponding variables appear in the same function.

For instance, let us consider the following set of functions:

S = {f1(X1, X2), f2(X1, X2, X3), f3(X3, X4, X5)} .

Figure 2.11 shows how graph G is built over the variables that appear as argument in the
functions of set S.

X1

X2

X3

X4

X5

Figure 2.11: The domain graph G over the variablesX1,X2,X3,X4 andX5, which are used as arguments
of functions f1, f2 and f3 in set S. We can see, for example, that X1 and X4 have not appeared together
as arguments of the same function.

We might note that all variables that appear as argument for a specific function will appear
connected in the domain graph, hence, generating a clique in G.

2.5 Path Decompositions

A path decomposition of a graph G is a new graph P whose nodes are cliques of G and such that
it satisfies the following properties:

1. Every node of P has at most two neighbors.

2. For any variable/node in G, the subgraph obtained by considering only nodes of P that
contain that variable is connected. Which is also known as the running intersection prop-
erty.
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3. The union of all variables/nodes associated to some node of P is the set of variables/nodes
in G.

X1,X2,X3 X3,X4,X5

Figure 2.12: The path decomposition for the domain graph G shown in Figure 2.11. We might see that
the set {X1, X2, X3} composes a clique in G as well as {X3, X4, X5}, and hence, they both become nodes
in P.

A path decomposition is so-called because it organizes the variables in cliques of G in a path.
We might note that the path decomposition can be applied to any graph, however we will be
interested to apply it specifically over the domain graphs mentioned in section 2.4, since it will
be part of the algorithm described in Chapter 4. Figure 2.12 shows the path decomposition of
the domain graph shown in Figure 2.11.

While obtaining a path decomposition of small size (given by the size of the largest node in
P) is NP-hard, there are efficient heuristics, such as shown in Bodlaender et al. [BGHK95] and
Catell et al. [CDF96].

2.6 Mixed-Integer Linear Programming

Mixed-integer linear programming (MILP) is a method used to find the maximum or minimum
value of a function under a set of constraints. Differently from linear programming and integer
programming, where all variables are assumed to be continuous and integers, respectively, MILP
allow us to optimize functions with variables from both domains: continuous and integers.

A MILP program can be formulated as following:

maximize CT X

subject to A1X ≤ B1

A2X = B2

A3X ≥ B3

X ∈ Zn × Rp ,

where C and Bi are vectors of known coefficients used in the objective function and constraints,
respectively; Ai is a matrix of known coefficients used in the set of constraints; and X is the
vector of n integer variables and p continuous variables.

In this work, we will be focus on MILP programs where the integer variables are, in fact,
restricted to the Boolean domain. Hence, the last constraint shown in the formulation above
would actually be

X ∈ {0, 1}n × Rp .
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Chapter 3

Current Algorithms for MAP
Inference

In this chapter, we present a brief explanation of the current solutions for MAP inference in SPNs:
Max-Product and Argmax-Product, which are approximate algorithms; and the MaxSearch, a
branch-and-bound exact solver.

Some of these algorithms focus on approximate solutions, which we understand as consider-
ably more efficient than a brute force algorithm, that demand exponential effort to compute all
solutions. The branch-and-bound approach for the exact solution is more related to our work,
since it is also an anytime algorithm. Although not necessary for the understanding of the al-
gorithm proposed in this work itself, these are solutions for the same problem, and mentioning
them would clarify the context of MAP inference in SPNs and contrast with the algorithm de-
veloped in this research, which has as goal an exact solution for MAP inference in SPNs through
a MILP reformulation approach.

Let us recall Equation 2.2 for an evidence e and assume X = (X1, . . . , Xn), where Xi is a
random Boolean variable, i ∈ [n]. We denote X ∼ e when X is a value of X consistent to e (that
is, the projection of X onto I ⊆ [n] is e). Finally, we present a formal definition of the problem
we aim to solve as follows:

Definition 3.0.1 (MAP Inference). Given an SPN S and an evidence e, find X∗ such that
S(X∗) = maxX∼e S(X).

We might understand it as a problem where we want to maximize S only for variables Xj

where j /∈ I, since Xi, i ∈ I, is part of evidence e and already has an assignment.

3.1 Max-Product

The first approximation for MAP inference in SPNs is the Max-Product algorithm, which takes
linear time in the size of the network. It was proposed by Poon and Domingos in the article
where they introduced SPNs as a new PGM [PD11].

Their approximation can be computed by replacing the sum nodes by max nodes. The first
step is to sweep the SPN from the bottom to the top, when the max nodes output the maximum
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weighted value among its children instead of their weighted sum, as did a sum node. We might
note that the new value of the SPN, that is, the value of the root node, does not correspond to
a any probability value.

After reaching the root node, the last step is to trace back the variables configuration that
originated the maximized value of the root node. It starts from the root node and recursively
selects the highest-valued child of a max node, or any highest-valued child if there are more than
one, and all children of a product node. According to Definition 2.2.4, if an SPN is decomposable,
each variable will be chosen only once by the end of the algorithm.

The following figures show how the algorithm proceeds through the normal SPN shown in
Figure 2.2.

max

0.24

0.084
0.24

0.216

×
0.42

×
0.48

×
0.72

X2
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0.7
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0.4
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X2

0.2

0.8
X1

0.9

0.9

0.2
0.5

0.3

Figure 3.1: The upward pass of the Max-Product. The values of each node of the SPN are marked in red
above them. The values beside and below the max node are marked in blue and represent the weighted
values from its children. We might note that the max node value is 0.24 since it is the value of its highest
input, and also that the center leaf nodes X1 and X2 yielded the values 0.6 and 0.8, respectively, since
the assignments X1 = 0 and X2 = 0 maximize their output.
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× × ×

X2

0.7

X1

0.4

X2
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X1

0.9

0.2
0.5

0.3

Figure 3.2: The downward pass of the Max-Product. The red nodes are the result after i) selecting
the highest value input into a max node, which came from the center product node; and ii) selecting all
children of a product node.
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In fact, the output value 0.24 of the max node is not the final Max-Product approximation.
As we might note from Figure 3.2, the selected variables X1 and X2, which can be seen as
sum nodes, recalling the first SPN representation from Figure 2.1, output 0.6 and 0.8 from the
assignments X1 = 0 and X2 = 0, respectively. Hence, if we assume these assignments for X1

and X2, we finally obtain 0.3 in the original SPN value, which is not the exact solution for the
MAP inference, as it will be shown later in Chapter 4

3.2 Argmax-Product

The Argmax-Product algorithm was proposed by Conaty, Mauá and de Campos [CMdC17] as a
variant of the Max-Product. In their paper, they were concerned about proving the NP-hardness
of the MAP inference in SPNs, arguing that it can be solved efficiently in SPNs of height less
or equal to one, but it is NP-hard to approximate when the height is strictly greater than one.
Their proof is based on the reduction of MAP inference problem from the NP-hard problem
Maximal Independent Set (MIS) in graphs, which relates to deciding whether there is a subset
of vertices of a certain size such that no two vertices in the set are connected. From that, they
showed how to build an SPN of height two that encodes the MIS problem. As an advantage
of this result, they obtained a corollary of the non-approximability of MAP inference within a
sublinear factor in SPNs of height two.

By applying simple modifications in the Max-Product, they proved that the Argmax-Product
returns i) a solution at least as good as the one returned by the Max-Product for any instance;
and ii) solutions exponentially better than the Max-Product for some instances. Tests were
made with synthetic SPNs, which encode instances of the MIS problem described previously,
and SPNs learned from real-world data to compare the performance of the Argmax-Product with
the Max-Product in several structured prediction tasks. Although Argmax-Product complexity
is quadratic in the size of the SPN, their empirical results have shown that it finds significantly
better solutions than the Max-Product with a small increase in runtime. This improvement is less
pronounced in networks learned from real data, but it still is a viable and improved alternative.

After all, the algorithm is presented as it follows, assuming an SPN S and an evidence e,
where amap stands as a short for Argmax-Product. Later, we offer a more detailed explanation
concerning how the algorithm proceeds, using again the normal SPN shown in Figure 2.2.

• If S is a sum node with children S1, . . . ,St, then compute

amap(S, e) = arg max
X∈{X1,...,Xt}

t∑
i=1

wi · Si(X)

where Xk = amap(Sk, e), that is, Xk is the solution of the MAP inference problem
obtained by Argmax-Product for network Sk (it runs from the bottom to the top)

• Else if S is a product node with children S1, . . . ,St, then amap(S, e) is the concate-
nation of amap(S1, e), . . . , amap(St, e)

• Else, S is a leaf node, and amap(S, e) = arg maxX∼e S(X)
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Figure 3.3: The status of the Argmax-Product algorithm after completing two layers of nodes. The
tuples marked in red above each node represent the argument returned from amap evaluation. We might
note that the tuples above the leaf nodes have only one value, since leaf nodes have only themselves as
scope. The tuples above the product nodes are concatenations of the results from their children and are
sorted according to the variables indexes.

As we can see, Figure 3.3 shows how the algorithm proceeds for leaf and product nodes.
Since the sum node requires more complex calculations, we decided to present its last iteration
by writing all expressions computed until its conclusion.

Then, we can assume that S is the last sum node, which gives us t = 3, and let us say that
S1, S2 and S3 are the product nodes from left to right, in order. From this indexation, we have
(X1,X2,X3) = ((0, 1), (0, 0), (1, 0)) and (w1, w2, w3) = (0.2, 0.5, 0.3). The goal is to maximize∑3

i=1wi · Si(X) by evaluating the options of X ∈ {X1,X2,X3}.

X = X1 =⇒


S1(X1) = 0.42 w1 · S1(X1) = 0.084

S2(X1) = 0.12 =⇒ w2 · S2(X1) = 0.060

S3(X1) = 0.02 w3 · S3(X1) = 0.006

 =⇒
3∑

i=1
wi · Si(X1) = 0.15 (3.1)

X = X2 =⇒


S1(X2) = 0.18 w1 · S1(X2) = 0.036

S2(X2) = 0.48 =⇒ w2 · S2(X2) = 0.240

S3(X2) = 0.08 w3 · S3(X2) = 0.024

 =⇒
3∑

i=1
wi · Si(X2) = 0.30 (3.2)

X = X3 =⇒


S1(X3) = 0.12 w1 · S1(X3) = 0.024

S2(X3) = 0.32 =⇒ w2 · S2(X3) = 0.160

S3(X3) = 0.72 w3 · S3(X3) = 0.216

 =⇒
3∑

i=1
wi · Si(X3) = 0.40 (3.3)
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We can confirm from Equations 3.1, 3.2 and 3.3 that the Argmax-Product approximation for
the SPN in Figure 2.2 returns X3 = (1, 0), with S(X3) = 0.4. In fact, this SPN was convenient
since the Argmax-Product solved the MAP inference problem exactly, returning the actual prob-
abilities for S(X1), S(X2) and S(X3). As discussed previously, a improved solution if compared
to the one given by Max-Product.

3.3 MaxSearch

Mei, Jiang and Tu discuss in [MJT18] some theoretical results about the MAP inference in SPNs,
proving its approximation is NP-hard with a similar (simpler, but weaker) result as Conaty,
Mauá and de Campos did in [CMdC17]. Also, they propose some approximation algorithms as
solutions for the problem, and among them a exact branch and bound solver, which they claim
to run reasonably fast and it could handle SPNs with up to 1000 variables and 150k arcs.

Since MAP inference is NP-hard in SPNs, there is no efficient solution for MAP inference
in SPNs, although they say that a combination of pruning, heuristic and optimization might
allow us to have a reasonably fast exact solver. Their technique is based on a systemic search
within the configuration space of the MAP inference, using marginal checking for pruning such
space and then setting an upper-bound value for the solution. As a standard branch-and-bound
algorithm, it is necessary to start from an initial valid solution, which, in this case, could be
simply obtained by assuming random values for each variable, or even by using the previous
algorithms to provide a solution closer value to the MAP inference solution (if not the MAP
inference solution itself).

To better explain their algorithm, we use their notation val(X) to represent the set with all
possible values that a random variable X can assume, and also, for a variable X ∈ X, X[X] as
the projection of X onto X. Hence, for a Y ⊆ X, X[Y] is the projection of X onto Y. For a initial
solution X and the set S = val(X), where val(X) := ×i∈[n]val(X), the following scheme shows
how the procedure search(S,X) works.

1. Take for instance a variable X where |S[X]| > 1

2. If there is no such variable, return the only element in S

3. For all elements x ∈ S[X], assume S′ = {x} × S[X \ {X}] and call

S′ ← checking(S′,X)

• If S′ = ∅, call

X← search(S′,X)

4. Return X

The checking procedure can be seen with more details at Mei, Jiang and Tu paper [MJT18].
In fact, they describe two different checking procedures: the marginal checking and forward



28 CURRENT ALGORITHMS FOR MAP INFERENCE 3.3

checking. The marginal checking compares the best solution so far during the algorithm with
the configuration space already pruned, however marginalized according to the remaining values
for each variable. The forward checking uses the first derivative on the configuration space
under search. The important part is that both of them return a smaller configuration space S′

than the previous one S. However, it is not clear which criteria they use to call one specific
checking over the other. Also, they do not clearly explain their heuristic when choosing one
variable over another, or how to order them on for all X ∈ X loop, which could change the
performance of their algorithm.
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Figure 3.4: The configuration space for the SPN S in Figure 2.2 with layers ordered from X1 to X2.
Each node has a value inside that represents the assignment for the respective variable in its layer. The
values in red above each node represent the evaluation of such decision in S. Note that a variable that
has not been assigned yet is considered to be marginalized, hence the topmost node has value 1, since it
represents the marginalization of both variables X1 and X2.
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Figure 3.5: The configuration space for the SPN S in Figure 2.2 with layers ordered from X2 to X1.
Each node has a value inside that represents the assignment for the respective variable in its layer. The
values in red above each node represent the evaluation of such decision in S. Note that a variable that
has not been assigned yet is considered to be marginalized, hence the topmost node has value 1, since it
represents the marginalization of both variables X2 and X1.

To illustrate at least how the marginal checking procedure works, Figures 3.4 and 3.5
show the behavior of the SPN from Figure 2.2 when variables X1 and X2, respectively, are
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marginalized. We might note that the values above the nodes add up to 1 for each layer, since
the bottom layer explores all the configurations for variables X1 and X2 and the middle layer
explores the all configurations of X1 when X2 is marginalized, and vice-versa.

For example, let us imagine the first iteration of the algorithm, assuming that the initial
solution is X = (X1, X2) = (1, 1), thus S(X) = 0.15, and where S = {(0, 0), (1, 0), (0, 1), (1, 1)}.
Let us take X1, once |S[X1]| = |{0, 1}| > 1. Then, for all x ∈ S[X]:

• x = 0→ S′ = {(0, 0), (0, 1)}

• x = 1→ S′ = {(1, 0), (1, 1)}

Let us suppose the marginal checking call with x = 0. It then compares if S(S′) > S(X).
Since S(S′) = 0.45, as we can see from Figure 3.4, and S(X) = 0.15, the next call on the search

procedure will already happen with a pruned configuration space S′.
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Chapter 4

MILP Reformulation Algorithm to
MAP Inference in SPN

In this chapter, we present the algorithm for reformulation of the Maximum A Posteriori infer-
ence problem in Sum-Product Networks as a Mixed-Integer Linear Programming optimization
problem.

Firstly, we present an explanation through the means of an example, but later on, we also
provide a formal description of the algorithm as shown in Section 4.3. We believe that both
approaches are important, allowing a practical and theoretical perspective of our work.

In practical terms, the algorithm is divided in two major parts:

1. In Section 4.1, we show the first part of algorithm, which generates a set of PADDs based
on the normal SPN used as input. It is based on part of the algorithm proposed in [ZMP15]
that converts SPNs into Bayesian Networks;

2. In Section 4.2, we show the second part of the algorithm, explaining how to use of the set
of PADDs generated in Section 4.1 to formulate the MILP program. As we understand, it
counts as the main contribution of this work.

Shown once more for the purpose of convenience, we use the SPN in Figure 2.2 as input, and
the explanation throughout this chapter explains how each procedure of the algorithm operates
the SPN until we have a MILP program at the end of Section 4.2.

We are interested in finding values for variables X1 and X2 which maximizes the value of
the root node, that is, the value of the SPN S shown in Figure 2.2. Let us remember that the
value of the root node represents the probability of occurrence of such configuration under the
probability distribution represented by a normalized SPN.

Since S is a fairly small SPN, we could simply list the probability for all configurations of
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Figure 2.2: The normal SPN showed in Section 2.2. However, in order to use this SPN as input, we
need to rearrange the topmost sum node so that it has only 2 children. This procedure will be explained
in Section 4.1.1 (repeated from page 12)

X1 and X2 to find the solution for the MAP inference.

S(0, 0) = 0.3

S(1, 0) = 0.4

S(0, 1) = 0.15

S(1, 1) = 0.15 (4.1)

We can see that the configuration that maximizes the value of S is (X1, X2) = (1, 0). This
is actually the solution for MAP inference in this network, but listing all configurations is an
intractable procedure, as its processing runtime increases exponentially over the linear increase
of variables.

4.1 SPN to PADDs

As we said previously, this is the part of our algorithm which is based on the work of Zhao,
Melibari and Poupart, where they developed a procedure for efficiently extracting from an SPN
a set of ADDs such that, when combined, represent the same distribution with only a polynomial
increase of size [ZMP15].

Although the procedures presented in this section are slightly different from those presented
in their article, it is not hard to see that the principles behind them are the same. However, as
mentioned in Section 2.3, the space of functions with Boolean domain and multilinear expressions
codomain actually contains the space of functions with Boolean domain and real codomain, and
thus we formally say our algorithm generates PADDs instead of ADDs, since we deal with
multilinear expressions in the end.
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4.1.1 Sum nodes binarization

As we might see in [ZMP15], Zhao, Melibari and Poupart extended the definition of ADD so
that its nodes could not only represent binary decisions, thus making their proofs and algorithm
simplified. Since we intend to rely on established software packages, we believe to be more
intuitive to slightly change the structure of the SPN used as input to fit them into the standard
definition of ADD, whose nodes represent only binary decisions. Since standard ADDs (and
PADDs as well, by extension) have internal nodes with only 2 children (representing the Boolean
decisions FALSE and TRUE), we must have a normal SPN where each sum node has only 2 children.
A sum node with k children can be replaced by a binary tree with k − 1 sum nodes, where the
arc weights of the original sum node are to be associated with the leaf nodes of this subtree.
The same could be done with the product nodes with more than 2 children if necessary.

Then, let us start recalling the SPN from Figure 2.2 again. It will serve as input example for
the explanation of the algorithm as a whole. We might change the SPN (but keeping the same
probability distribution) by adding a new sum node appended as child of the topmost sum node.
In this case, we chose to append a sum node by replacing the arcs whose weights are 0.2 and
0.5, but in any case it should not matter where to append a child sum node. Then, we transfer
the arcs weights of the parent sum node consistently to the arcs of the child sum node, and we
set as 1 the weight between the parent and the child sum node.

It is important to note that this transformation keeps the properties of completeness (Def-
inition 2.2.2), once the children of the sum node in focus have all the same scope, and decom-
posability (Definition 2.2.4), since we did not changed any product node. However, we might
note that now we have an unnormalized SPN. We can find in [ZMP15] a bottom-up propagation
procedure to normalize any SPN. Hence, we assume that processing it back to the normal form
is not a major issue, and it is shown in Figure 4.2 what the input SPN looks like at this point.
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Figure 4.2: The SPN showed in Section 2.2 after the sum nodes binarization procedure and normalized
again. We might note that the topmost sum node has now only 2 children.
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4.1.2 Adding auxiliary variable Yi

This part consists in associating a random Boolean variable to each sum node in the SPN.
If there are m sum nodes, we must add, let us say, variables Y1, ..., Ym, associated with each
sum node. It is important to note that these variables do not represent anything related to the
original variables Xi, they just represent the decision of which path from the leaf nodes to the
root node our algorithm will choose to compute.

There is no need to change any arc weight in this procedure, since no sum nodes were added,
and those which had any changes were just dragged around and appended in a new product
node. Also, product nodes are the only new nodes added to the structure, and it is implicit that
their arc weights are 1.

As Zhao, Melibari and Poupart would describe, this procedure might be understood as the
association of a hidden variable to each sum node. Let us consider a sum node s ∈ [m], for
instance. Since every sum node in an SPN have only two children, as result of the procedure
described in Subsection 4.1.1, s also has only two children. In addition, since we are dealing with
normal SPNs, we have

∑2
i=1wsi = 1 and wsi ≥ 0, where each wsi is a weight of s for i ∈ [2].

This naturally suggests that each sum node s in an SPN can be associated to a hidden
random variable Ys with binomial distribution P(Ys = i) = wsi . Thus, an SPN might be thought
as defining a joint probability distribution overX1, . . . , Xn as observable variables and Y1, . . . , Ym

as hidden variables. As for inference in such SPN, its computation can be done as described in
Section 2.2, with all the hidden variables Ys summed out, that is, λYs = λ̄Ys = 1.

Structurally, we could follow the next sequence of steps for each sum node:

1. Insert a intermediate product node between the sum node s and each one of its chil-
dren. We might note that the sum node still has two children, both product nodes,
and now each product node is the parent of one child of the original sum node.

2. Append the indicator λYs to one of the product nodes and the indicator λ̄Ys to the
other. These indicators are both related with the random Boolean variable Ys, which
is associated with the original sum node.

It is relevant to mention that we may lose the property of completeness of the SPN, since
sum nodes might not have the same scope. The size of our structure will increase by four
times the number of sum nodes. Also, this procedure might generate redundant pairs of product
nodes. They can be taken out without loss of representativity, either at this procedure or at
next explained in Section 4.1.3, although it might be more efficient to do it now. However, for
understanding purposes, to explicitly illustrate the inclusion of extra nodes related with such
auxiliary variables, we left the redundant pairs of product nodes in Figure 4.3, which shows the
state of our structure at this point.

4.1.3 Restricting SPN by variable Xi

Once we have added the auxiliary variables into the SPN, we can start restricting our input
structure. The idea is to generate, for each variable Xi, a restricted SPN discarding every sub-
network not containing Xi on its scope, or, in other words, we want a restricted SPN where
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Figure 4.3: The SPN after adding nodes related to the variables Y1 and Y2. It is possible to see that
its complexity has increased, as well as its height. The completeness property was lost, once the topmost
sum node has different scopes for each child: {X1, X2, Y1, Y2} for the one whose arc weight is 0.7, and
{X1, X2, Y1} for one whose arc weight is 0.3

all the other variables Xj , j ∈ [n]\{i}, are out. Also, let us say, without loss of generality, that
the set {Y1, ..., Yk} contains are all the variables associated with sum nodes that appear on a
path from a leaf node with scope Xi up to the root node. These variables must appear in the
restricted SPN as well.

One way of doing that is to select such variable Xi, to look at all leaf nodes containing this
variable, and thus start tracing all the possible paths up from them to the root node. This could
be done with a simple depth-first search (DFS) algorithm. If, along the way, the path contains a
product node that has as a child a node that references some auxiliary variable Yj∈[k], it must be
taken as part of the subnetwork as well. Our goal with this procedure is to obtain a subnetwork
for each Xi∈[n].

Since we did not remove those redundant product nodes which appeared in the last procedure
described in Section 4.1.2, we do it now without losing representativity. Figure 4.4 shows the
restricted SPNs for variables X1 and X2 based on our example.

4.1.4 Building PADDs

One of the reasons why we want to convert SPNs into PADDs is the fact that, as mentioned
in Sections 2.2 and 2.3, the operations between two SPNs are not tractable, while operations
between PADDs are. Since we intend to multiply each PADD generated from the original SPN
restricted by variables Xi among themselves, we understand that this conversion is necessary.

From a theoretical perspective, the PADDs built in this subsection suggest the individual
behavior of each variable Xi inside the SPN. Naturally, we may not compute the inference
separately for each observable variable, and that is one of the reasons why the auxiliary (or
hidden) variables Y were associated to each sum node in the original SPN. These auxiliary
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Figure 4.4: On the left, the SPN restricted for variable X1. On the left, the SPN restricted for variable
X2. Eventual redundancies caused by the concatenation of two product nodes in sequence were suppressed,
and a single product node was put in place.

variables create a binding between the PADDs generated for each variable Xi and allow us to
represent how they influence each other probabilistically.

4.1.4.1 PADD Ai from SPN restricted by variable Xi

Once we have a restricted SPN for each variable Xi, it is possible to build specific PADDs for
each of them. Here, we take advantage of the fact that both PADDs and SPNs can represent
expressions of Boolean variables. By now, our restricted SPN by variable X1, as shown in Figure
4.4, encodes the expression

0.7(2/7X1(λ̄Y2) + 5/7X1(λY2))(λ̄Y1) + 0.3X1(λY1) ,

and we want to generate a PADD which encodes it as well. Above, we tried to focus on the
indicators of both variables Y1 and Y2 to highlight that they are related with the selection of
what part of the expression should be calculated.

The process of converting a restricted SPN to a PADD can be made recursively starting
from the root node and searching all ways down to leaf nodes. When building the PADD, each
sum and product operation represented by restricted SPN nodes can be reproduced by using the
operation apply, such as mentioned in Section 2.3. For example, Figure 4.5 shows the PADDs
built from the restricted SPN by variable X1 and X2.

We might note that PADD A1 does not include the weights of the sum nodes associated with
variables Y1 and Y2. The reason is that we will represent such weights in external PADDs, so
that we can still recover the probability distribution of the original SPN. This will be explained
in the Subsection 4.1.4.2 right ahead. Thus, variable X1 does not depend on the value of the
auxiliary variable Y2, which is not represented in PADD A1.
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Figure 4.5: On the left, the PADD A1 built based on the SPN restricted by the variable X1. Note that,
since the weight values of the sum node associated with variable Y2 will be represented in an external
PADD, A1 is independent of such variable. On the left, the PADD A2 built based on the SPN restricted
by the variable X2.

4.1.4.2 PADD Âi from variable Yi

Since we can not explicitly keep the weights of the sum nodes in the PADDs generated in Sub-
section 4.1.4.1, we must have a simple external PADD Âi representing the values of the weights
for each variable Yi as well. For example, Figure 4.6 shows the external PADDs representing the
weights of the variables Y1 and Y2.

Y1

0.7 0.3

Y2

2/7 5/7

Figure 4.6: PADDs Â1 and Â2 representing the weights of the sum nodes associated with variables Y1
and Y2.

4.1.4.3 PADD Xi from variable Xi

It is important to note that the MILP problem must contain only variables Xi and no variables
Yi, so, besides the already generated PADDs, we must have a structure that represents the
symbolic expression for each Xi. For that reason, we must then use a PADD, let us say, Xi, for
each variable Xi which contains as leaf nodes the symbolic expressions x̄i and xi. It might be
an obvious structure, but necessary since we do not want these variables to assume any value.
For our example, Figure 4.7 shows how X1 and X2 should look like.
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X1

x̄1 x1

X2

x̄2 x2

Figure 4.7: PADDs X1 and X2 representing the symbolic values x̄1 and x1 for variable X1, and x̄2 and
x2 for variable X2. Generically they represent the expression (x̄i)X̄i + (xi)Xi for any variable Xi.

We can see that when Xi = 0, we will have the expression (x̄i)1 + (xi)0 = x̄i, and when
Xi = 1 we will have (x̄i)0 + (xi)1 = xi.

4.1.5 Recovering the original SPN distribution

The content of this subsection is not intrinsically related to the algorithm itself, but it shows that
the PADDs generated previously can be used to recover the probability distribution represented
by the original SPN.

At this point we have generated a set of PADDs Ai and Xi from each variable Xi and a set of
PADDs Âi from each variable Yi. By construction, we might note that Xi and Âi depends only
on Xi and Yi respectively, while Ai depends on Xi and a subset of {Y1, ..., Ym}. Also, we might
note below that the PADDs Xi are not necessary for recovering the original SPN distribution,
but only for building the MILP program.

We can build back the probability distribution of the original SPN by calling the procedure
apply and restrict. Firstly, let us consider the following PADD A, which is the multiplication
of all generated PADDs:

A =
( n∏

i=1
Ai

)( m∏
j=1
Âj

)
. (4.2)

If we use the procedure restrict over all the possible combinations for variables Yi over A, and
use the procedure apply with the sum operation, we would have the equation

1∑
i1=0

...
1∑

im=0
A|Y1=i1,...,Ym=im (4.3)

that builds back the original SPN distribution.
Following our example and considering Equation 4.2, we would have

A = A1A2Â1Â2

Then, summing all A restricted by each possible combination of Yi as described in Equation 4.3,

A|Y1=0,Y2=0 +A|Y1=0,Y2=1 +A|Y1=1,Y2=0 +A|Y1=1,Y2=1

would lead to the PADD shown in Figure 4.8. As we might see, it represents the set of equations
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shown in 4.1.

X1

X2 X2

0.3 0.15 0.4 0.15

Figure 4.8: The PADD whose leaf nodes are values equivalent to the ones of the original SPN under a
specific configuration. In our example in Section 2.2, S(X1 = 1, X2 = 0) = 0.4, such as it is shown above.

We might confirm the correctness of such construction in a probabilistic point of view. We
could see each PADD Ai as the probability function P(Xi|Y1, ..., Yk) and each PADD Âi as
P(Yi). The PADD A from our example could then be interpreted as

P(X1, X2, Y1, Y2) = P(X1|Y1)P(X2|Y1, Y2)P(Y1)P(Y2) .

For instance, if we want to evaluate a specific configuration, let us say, X1 = 1 and X2 = 0, we
would have

P(X1 = 1, X2 = 0) =
∑
Y1

∑
Y2

P(X1 = 1|Y1)P(X2 = 0|Y1, Y2)P(Y1)P(Y2)

= P(X1 = 1|Y1 = 0)P(X2 = 0|Y1 = 0, Y2 = 0)P(Y1 = 0)P(Y2 = 0)

+ P(X1 = 1|Y1 = 1)P(X2 = 0|Y1 = 1, Y2 = 0)P(Y1 = 1)P(Y2 = 0)

+ P(X1 = 1|Y1 = 0)P(X2 = 0|Y1 = 0, Y2 = 1)P(Y1 = 0)P(Y2 = 1)

+ P(X1 = 1|Y1 = 1)P(X2 = 0|Y1 = 1, Y2 = 1)P(Y1 = 1)P(Y2 = 1) .

Based on the Figure 4.5, we have the values for P(X1|Y1) and P(X2|Y1, Y2), and based on Figure
4.6, we have the values for P(Y1) and P(Y2).

P(X1 = 1, X2 = 0) = (0.4)(0.3)(0.7)(2/7)

+ (0.9)(0.8)(0.3)(2/7)

+ (0.4)(0.8)(0.7)(5/7)

+ (0.9)(0.8)(0.3)(5/7) = 0.4

As showed previously, the evaluation of X1 = 1 and X2 = 0 is 0.4 both in the original SPN
representation and in the PADD representation shown in Figure 4.8. Hence, we might see that
the generated PADDs can be seen as probability functions over the variables Xi and Yi.
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4.2 PADDs to MILP

In this section, we explain our contribution by proposing an algorithm for MAP inference. At
this point, we will stop following the algorithm proposed in [ZMP15], since their goal was to
obtain a Bayesian Network from the original SPN, and ours is to offer a solution for MAP
inference.

Our MILP reformulation approach consists in modifying Zhao, Melibari and Poupart’s ap-
proach to replace the Variable Elimination step with a symbolic variant that represents PADDs
as sets of multilinear constraints. In addition to the PADDs created by the approach, we might
also include distributions Xi(Xi), that represent the "choice" of a configuration of variable Xi

in the MAP inference solution. To ensure that only bilinear constraints are generated, we per-
form the symbolic variable elimination using the same ordering as the one defined by the path
decomposition of the domain graph of the PADDs, that is, we can perform symbolic message
passing in the path decomposition. The effectiveness of this approach depends on the size of the
generated MILP program.

4.2.1 Variable Elimination

Once we have a set of PADDs, as described in Subsection 4.1.4, we might now focus on finding
a path decomposition for the domain graph of the set of functions represented by such.

As mentioned in Section 2.4, the domain graph of a set of functions (represented in any form;
in our case, PADDs) is a graph whose nodes are the variables appearing in any of these functions,
and such that two nodes are connected by an edge it and only if the two corresponding variables
appear in the same functions. Figure 4.9 shows how the variables Xi and Yi are organized based
on the set of PADDs generated previously.

X1 X2

Y1

Y2

Figure 4.9: The domain graph over the variables X1, X2, Y1 and Y2, based on their appearances on the
functions described by the PADDs. We can see that X1 and X2 have not appeared together as argument
of the same function.

We understand that such graph is not hard to obtain since it is possible to keep track of the
variables used in each restricted PADD. We might note two facts about its structure: i) since the
restricted SPNs are based on variables Xi, we never have a domain graph where two variables
Xi and Xj , with i 6= j, are connected, and ii) each PADD built from this process generates a
clique in the domain graph. From now on, since we want to relate each PADD as a function, we
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will write them followed by their arguments, such as A1(X1, Y1), Â2(Y2) or Xi(Xi).
Once we have obtained the domain graph, the following step consists in finding it a path

decomposition, as explained in Section 2.5.

X1,Y1 X2,Y1,Y2

Figure 4.10: The path decomposition for the domain graph shown in Figure 4.9. We might see that X1
and Y1 compose a clique in the domain graph as well as X2, Y1 and Y2, and hence, they both became
nodes. The functions associated with each node are displayed above them.

In fact, instead of finding an optimal path decomposition to perform variable elimination,
which can be related to a future work within this research, we use an established order according
to the degree of each variable Xi in the domain graph. To better understand our procedure, let
us assume, without loss of generality, that variables X1, . . . , Xn ∈ X are sorted according to their
degree in the domain graph G, that is, for whatever i and j such that i < j, deg(Xi) ≤ deg(Xj),
where deg(Xi) is the number of edges that are incident to node Xi in G. Also, without loss
of generality, let us assume that Y1, . . . , Ym ∈ Y are sorted in the topological order according
to the original SPN, that is, for whatever i and j such that i < j, Yi is closer or at most
at the same depth of Yj from the root of the SPN. Then, the variable elimination order is
X1, . . . , Xn, Ym, . . . , Y1.

Since we want to fit this ordering in terms of path decomposition, we would have it as
described by Figure 4.11.

{X1} ∪ Y . . . {Xn} ∪ Y Y Y \ {Ym} . . . Y1

Figure 4.11: The generic path decomposition used to perform variable elimination in this research.

Each node of the path decomposition will be related to a set of variables Xi and Yi, which
are the arguments for the functions (PADDs) we have generated before. We want to associate
each function to a node in the path decomposition if a variable is both in the set of such node
and in the argument of such function. For example, variables X1 and Y1 appear both in the first
left node of the path decomposition and as arguments in A1(X1, Y1). Then, we can associate
A1(X1, Y1) to the left node.

4.2.2 Building the MILP program

Now that we have a set of functions associated with each node in the path decomposition, we
can start building the MILP program by choosing one of the ends in such path to begin the
message passing. Let us start from the left node as in the example shown in Figure 4.12.



42 MILP REFORMULATION ALGORITHM TO MAP INFERENCE IN SPN 4.2

X1,Y1

A1(X1, Y1)
Â1(Y1)
X1(X1)

X2,Y1,Y2

A2(X2, Y1, Y2)
Â2(Y2)
X2(X2)

µ̃1 µ̃2

Figure 4.12: µ1 is the first message, sent from the left node to the right node. µ1(0) and µ1(1) will both
become constraints and µ2 will become the objective function in the MILP program.

Each message transmitted along the path will originate the constraints in our MILP program.
The messages will be represented by the symbol µi, and will be composed by the multiplication
of all functions in the set of the node which is transmitting. The first is then µ1(Y1). In our
example, we have

µ1(Y1) =
∑
X1

A1(X1, Y1)Â1(Y1)X1(X1)

We can see that µ1 is a PADD that can be interpreted as a function. We might just slightly
change the notation for the purpose of simplification. Instead of writing the restrict operation
as µ1(Y1)|Y1=0, we might only write µ1(0). Both µ1(0) and µ1(1) will become variables associated
with constraints in the MILP problem. Then, to pass the message µ1 along the path, we take a
copy µ̃1(Y1) of PADD µ1(Y1) and correspondingly substitute the expression on each leaf for the
actual symbolic variables µ1(0) and µ1(1), to be multiplied in the next step.

The same procedure can be done to obtain the second message and so on. The only difference
is that besides multiplying all functions related to the second node of the path, we must also
multiply the message coming from the previous node. Thus, in this case, we would have µ2 as
follows

µ2(Y2, Y1) = µ̃1(Y1)
∑
X2

A2(X1, Y1, Y2)Â2(Y2)X2(X2)

The last node in the path decomposition has no other node to pass the message, hence the last
generated message µn will become the objective function of a mixed-integer bilinear program,
which can then be linearized using standard techniques from the literature to generate a MILP
program. In your case, once we have only 2 nodes in the path decomposition, µ2 will become
the objective function.

However, it would not mean anything for us to have Yi as variables in our MILP program.
For that reason, we should assume values for variables Yi in order to eliminate them from the
constraints and the objective function, such as shown in the expression below.

µ2 =
∑
X2

∑
Y1

∑
Y2

A2(X2, Y1, Y2)Â2(Y2)µ̃1(Y1)X2(X2)
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Theoretically, our mixed-integer bilinear program would be the following:

maximize µ2

subject to µ1(0) = A1(0, 0)Â1(0)X1(0) +A1(1, 0)Â1(0)X1(1)

µ1(1) = A1(0, 1)Â1(1)X1(0) +A1(1, 1)Â1(1)X1(1)

µ2 = A2(0, 0, 0)Â2(0)µ1(0)X2(0) +A2(0, 0, 1)Â2(1)µ1(0)X2(0)

+A2(0, 1, 0)Â2(0)µ1(1)X2(0) +A2(0, 1, 1)Â2(1)µ1(1)X2(0)

+A2(1, 0, 0)Â2(0)µ1(0)X2(1) +A2(1, 0, 1)Â2(1)µ1(0)X2(1)

+A2(1, 1, 0)Â2(0)µ1(1)X2(1) +A2(1, 1, 1)Â2(1)µ1(1)X2(1)

X1(0) + X1(1) = 1

X2(0) + X2(1) = 1

µ1(0), µ1(1), µ2 ∈ [0, 1]

X1(0),X1(1),X2(0),X2(1) ∈ {0, 1}

It might look complex at first sight, but it will look simpler if we use values instead. We will use
the values from Figures 4.5 and 4.6 for substitution.

maximize µ2

subject to µ1(0) = 0.42x̄1 + 0.28x1

µ1(1) = 0.03x̄1 + 0.27x1

µ2 = (0.3(2/7) + 0.8(5/7))µ1(0)x̄2 + (0.8(2/7) + 0.8(5/7))µ1(1)x̄2

+ (0.7(2/7) + 0.2(5/7))µ1(0)x2 + (0.2(2/7) + 0.2(5/7))µ1(1)x2

x̄1 + x1 = 1

x̄2 + x2 = 1

µ1(0), µ1(1), µ2 ∈ [0, 1]

x̄1, x1, x̄2, x2 ∈ {0, 1}

We might note that, by construction, these bilinear expressions contain only products of
nonnegative linear and integer variables, so it can be easily transformed into a mixed-integer
linear program by including, for each product µ · X , where µ is continuous and X is binary, a
new continuous variable γ and constraints X − 1 + µ ≤ γ ≤ µ and 0 ≤ γ ≤ X . For example, the
product of variables µ1(0)x̄2 can be transformed into the variable γ1.

The MAP inference solution can be extracted by the value of the integer valued variables in
the program (the variables X1(0), X1(1), X2(0) and X2(1), which are the same as x̄1, x1, x̄2 and
x2 in our example). If we apply these rules over the already generated mixed-integer bilinear
program, we can finally obtain our MILP program as described as follows:
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maximize µ2

subject to µ1(0) = 0.42x̄1 + 0.28x1

µ1(1) = 0.03x̄1 + 0.27x1

µ2 = (4.6/7)γ1 + (5.6/7)γ2 + (2.4/7)γ3 + (1.4/7)γ4

x̄2 − 1 + µ1(0) ≤ γ1 ≤ µ1(0), x̄2 − 1 + µ1(1) ≤ γ2 ≤ µ1(1)

x2 − 1 + µ1(0) ≤ γ3 ≤ µ1(0), x2 − 1 + µ1(1) ≤ γ4 ≤ µ1(1)

0 ≤ γ1 ≤ x̄2, 0 ≤ γ2 ≤ x̄2

0 ≤ γ3 ≤ x2, 0 ≤ γ4 ≤ x2

x̄1 + x1 = 1, x̄2 + x2 = 1

µ1(0), µ1(1), µ2 ∈ [0, 1]

x̄1, x1, x̄2, x2 ∈ {0, 1}

This program was tested by using the software Gurobi Optimizer [GO16] under academic license.
The optimal value for the objective function was 0.4 with the variables assuming the following
values: x1 = 1, x̄1 = 0, x2 = 0, x̄2 = 1, µ1(0) = 0.280000, µ1(1) = 0.269999, µ2 = 0.399999,
γ1 = 0.279999, γ2 = 0.269999, γ3 = 0.0 and γ4 = 0.0. We can see that it matches the result
shown in the set of equations 4.1, since (X1, X2) = (1, 0) is given as the optimal solution, with
little numerical imprecision.

4.3 Formal Description

The following explanation can be found as well in [MRKA20], however, to better fit with the
notation in this document and with the ideas shown through Sections 4.1 and 4.2, we present it
here with minor modifications.

Formally, the proposed algorithm works as follows. For simplification, let us consider an SPN
S over variables Xi where each sum node has two children, skipping the part of the algorithm
described in Subsection 4.1.1. Associate with every sum node i a new binary random variable
Yi. It is important to note here that only sum nodes are associated to latent variables. Interpret
Yi = 0 and Yi = 1 as selecting the left and right child of node i, respectively, and let Y denote
the set of all such variables.

As in the work of Zhao et al. [ZMP15], construct a PADD Âi for each Yi ∈ Y that represents
the function f(Yi) = (1 − Yi)wl + Yiwr, where wl and wr are the weights of the outgoing arcs
of i in S. However, differently from the construction proposed by Zhao et al. [ZMP15], for each
variable Xi in the scope of S, obtain a PADD Ai as follows:

1. Construct the restriction S|Xi of S from Xi by removing any node whose scope does
not contain Xi

2. Replace sum nodes with the corresponding variables Yi
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Furthermore, for each variableXi, construct a PADD Xi that represents the function f(Xi) =
(1 − Xi)x̄i + Xixi, where x̄i and xi are symbolic constants that will respectively become the
variables in the MILP program codifying the indicator variables λ̄Xi and λXi .

As mentioned previously in Section 2.4, the domain graph of a collection of functions, or
their representation as PADDs, is the graph whose nodes are the variables in the domain and
two variables are connected if and only if they cooccur in some function. As well in Section 2.5, a
path decomposition of an undirected graph G = (V,E) is a collection of subsets Z1, . . . ,Zm ⊆ V
called clusters or paths, such that the endpoints of any edge in E co-occur in some Zi, and for
any Zi,Zj ,Zk, Zi ∩ Zk ⊆ Zj .

The MILP program is generated by processing the generated PADDs using a variable elim-
ination procedure that operates according to a path decomposition of the domain graph of the
PADDs. The use of a path decomposition ensures that at most one PADD obtained by restrict-
ing a variable Xi is combined at each step, which means that the generated constraints can
be cast into the mixed-integer linear form. To this end, associate to each cluster of the path
decomposition a collection of PADDs whose scope is contained in that cluster, with at most one
PADD generated by a restriction of a variable Xi per cluster. Assume that clusters are numbered
from left to right in the path decomposition. Let Ci denote the collection of PADDs associated
with cluster i, and Zi ⊆ (X ∪ Y) denote the variables in that cluster, where X is the set of the
original variables Xi from S. We obtain a new PADD µi by multiplying all PADDs in Ci and
marginalizing the variables in the set Zi+1 \ Zi:

µi(Zi ∩ Zi+1) =
∑

Zi+1\Zi

 ∏
Aj ,Âk,Xl∈Ci

AjÂkXl

 (4.4)

Create a new PADD µ̃i by replacing every leaf of µi by a new fresh variable uk. Insert µ̃i in
the collection Ci+1 and repeat the operation. When the rightmost cluster m is reached, generate
a PADD µm by eliminating all variables Zm. The MILP program’s constraints are such that

µ̃i(φ) = µi(φ) for each leaf φ in µi, i = 1, . . . ,m, (4.5)

where µ̃i(φ) is the new variable at leaf φ associated with the multilinear expression µi(φ).
Recall that a leaf in a PADD corresponds to the set of configurations of its scope which map to
the same value. In particular, the PADD µm contains a single node, as all variables have been
marginalized, with an expression that is used as the objective of the program.

4.4 High Level Implementation

Since we have detailed each step of the algorithm, we present a succinct sequence of steps to
convert the MAP inference problem in a normal SPN to a MILP optimization problem.
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Algorithm 1 MILP Reformulation Algorithm to MAP Inference in SPN
Input: Normal SPN S
Output: MILP programM

1: S ′ ← binarized S
2: for each sum node i in S ′ do
3: Add a latent variable Yi in S ′
4: Âi ← PADD built from weights of i
5: for each variable Xi in S ′ do
6: S ′i ← S ′ restricted by Xi

7: Ai ← PADD built from S ′i
8: Xi ← PADD built from Xi

9: G ← domain graph over every Ai . We may see each Ai as a function
10: P ← variable elimination ordering from G
11: M← MILP program built on message passing through P over Ai, Âi and Xi

12: returnM



Chapter 5

Empirical Analysis

This chapter contains the results achieved so far. Firstly, we tested the algorithm developed in
this work by creating SPNs whose MAP inference corresponds to the solution of Maximal Inde-
pendent Set problem in Section 5.1, which works as a sanity check as we understand. However,
these tests do not correspond to any real problem involving SPNs or its learning process as they
are merely a benchmark.

Lately, we tested our algorithm on some SPNs obtained through learning from real data.
These tests were made by using the package pyspn [PU20b] developed by the Probabilistic
Artificial Intelligence Lab of University of São Paulo (ProbAI-USP), also written in Python,
which contains several functionalities for SPNs such as learning, classification and inference.
Among them, they provide the algorithms mentioned in Chapter 3, Max-Product (Section 3.1),
Argmax-Product (Section 3.2) and MaxSearch (Section 3.3), used to solve MAP inference in
SPNs through a different approach than the one presented in this work. They also offer a
repository of learned SPNs [PU20a], where raw data for training and testing SPNs, as well as
already learned SPNs through LearnSPN algorithm, presented by Poon and Domingos in [PD11],
are available.

We used Gurobi [GO16] as solver to optimize the MILP program in all tests.

5.1 Maximal Independent Set Tests

One of the used ways to check the assertiveness and effectiveness is of our approach was running
it on cases where we can easily know the optimal solution.

Formally, for a given graph G = (V,E), an independent set of vertices is a subset W ⊆ V such
that no two vertices of are linked. Then, we say that W is the maximal independent set (MIS)
of graph G if there is no independent set W′ ⊆ V containing more elements than W.

There are several algorithms for solving the MIS problem. Still, a very simple approach
consists in its modeling as a linear programming problem such as follows:

maximize
∑

v∈V xv

subject to xu + xv ≤ 1, ∀uv ∈ E
xv ≥ 0, ∀v ∈ V
xv ≤ 1, ∀v ∈ V ,
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where each variable xv indicates whether the corresponding vertex v is or is not in the indepen-
dent set. Independence is enforced by the xu + xv ≤ 1 constraint.

Conaty, Mauá and de Campos showed how to reformulate the MIS problem in graphs as
the MAP inference problem in SPN [CMdC17], so it was chosen as a first test for the software
we developed. The MIS problem has a very simple direct formulation as a linear optimization
problem and, for the tested cases, the solution our approach output is correct and optimal as
are the ones output by the direct formulation.

For the following tests, graphs were randomly generated based on the number of vertices as
parameter. Initially, a graph is generated as complete, however each edge has 0.5 probability to
be removed. For the same graphs, we ran experiments with the algorithms presented in Chapter
3 and we show their comparative performance in the tables and graph below.

Nodes MAP MILP MP AMP MS MC
10 0.009615384615 1 0.25 0.25 1
11 0.005411255411 1 0.20 0.20 1
12 0.006443298969 1 0.20 0.20 1
13 0.001619170984 1 0.20 0.20 1
14 0.001474056604 1 0.20 0.20 1
15 0.001726519337 1 0.20 0.20 1
16 0.000423728813 1 0.14 0.14 1
17 0.000466417910 1 0.17 0.17 1
18 0.000494071146 1 0.20 0.20 1
19 0.000267551369 1 0.20 0.20 1
20 0.000231481481 1 0.20 0.20 1

Table 5.1: The "Nodes" column contains the number of nodes in the original graph. The numbers shown
in the "MAP" column are the real MAP inference value for each SPN generated from a graph. The
remaining numbers are the ratio between the MAP inference value that the algorithm in its column
output over the actual MAP inference value for that instance.

Nodes Building Solver MILP MP AMP MS MC
10 0.44 0.09 0.53 0.00 0.00 0.59
11 0.57 0.11 0.68 0.00 0.00 1.28
12 0.79 0.15 0.94 0.00 0.00 2.20
13 0.91 0.23 1.14 0.00 0.00 5.95
14 1.16 0.36 1.52 0.00 0.00 10.08
15 1.42 0.44 1.87 0.00 0.00 17.89
16 1.71 0.51 2.21 0.01 0.00 51.19
17 2.13 0.64 2.76 0.01 0.00 80.25
18 2.61 0.59 3.19 0.01 0.00 150.19
19 2.96 1.12 4.08 0.01 0.01 322.35
20 3.39 1.00 4.39 0.01 0.01 748.80

Table 5.2: The "Nodes" column contains the number of nodes in the original graph. The remaining
columns contain numbers that show the time spent to obtain the MAP inference value through the
respective algorithm. Note that "Building" + "Solver" = "MILP" for each instance.
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Figure 5.1: Performance comparison between MILP Reformulation and MaxSearch with Marginal
Checking algorithms for MIS problem reformulated as MAP inference in SPN.

Although efficient, it is important to note that such SPNs derived from the MIS problem in
graph are not related to any real problem, which would generate SPNs with completely different
structures, certainly affecting the performance of our algorithm.

We also tested our algorithm with hard instances for the MIS problem. As described by
Ke Xu in [Xu], finding challenging benchmarks for the MIS problem is not only of significance
for experimentally evaluating the algorithms of solving this problem but also of interest to the
theoretical computer science community. In fact, he proposed an algorithm to generate hard
MIS problem instances by generating random graphs as follows:

1. Generate n disjoint cliques, each of which has na vertices (where a > 0 is a constant)

2. Randomly select two different cliques and then generate, without repetitions, pn2a

random edges between these two cliques (where 0 < p < 1 is a constant)

3. Run step 2 (with repetitions) for another rn ln(n−1) times (where r > 0 is a constant).

It is easy to see that for the graph model above, the size of maximum independent sets is
at most n. During these tests, we checked the answer of our algorithm, but also checked the
validity of the selected variables in the original graph, confirming that the solution provided by
the solver was a maximal independent set in fact. For larger graphs, with more than 50 vertices,
we started to find failures in the optimal solution due to numerical issues. The MAP inference
values for larger translated SPNs were below the minimum tolerance value allowed by Gurobi
(10−6) for verifying constraint feasibility and integrality.

5.2 Real Data Tests

Real datasets can be obtained throughout the web, and among them some are gathered at the
ProbAI-USP GitLab repository, as described in the beginning of this chapter. Some tests with
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real data were already made, but still they were somehow biased by how the SPNs were learned
from the data. Since our goal was not related to SPN learning, we used the LearnSPN algorithm
embedded in the package mentioned previously to generate SPNs through raw data. However,
from the perspective of likelihood, these SPNs do not necessarily describe the best probability
distribution that could be obtained from the dataset. Thus, is still one of our goals to find a
good benchmark set of SPNs to properly understand the nuances of the algorithm developed in
this research.

The experiments in this section were shown by Mauá et al. in [MRKA20]. We performed
them with SPNs learned from a selected collection of datasets where all variables are discrete or
have been discretized. We learn tree-shaped SPNs with our own implementation of the LearnSPN
algorithm presented by Gens and Domingos in [GD13], selecting hyperparameters by grid search.
We then modified the networks so that each node has at most two parents. Figure 5.3 contains
the characteristics of the datasets and the SPNs we use, sorted by the number of indicators
(which are related to the size of the space of configuration).

SPN Variables Nodes Sum Nodes Product Nodes Indicator Nodes
NLTCS 16 3939 2315 1592 32
Mushrooms 112 8489 4587 3678 224
Molecular 58 10207 7515 2462 230
DNA 180 33465 17953 15152 360
US Census 68 162118 140722 20752 644
NIPS 500 13563 6876 5687 1000
Optdigits 65 23008 20739 1171 1098

Table 5.3: Details of the SPN learned from real data through LearnSPN algorithm [PD11].

For each SPN/dataset we generate MAP inference tasks as follows. First we randomly par-
tition the variables into equally sized sets of optimized, marginalized and fixed (the partition
is constant for each SPN). Then we select values for the fixed/evidence variables using the test
set such that Max-Product is suboptimal. This procedure generated from 10 to 30 interesting
instances per SPN/dataset (the maximum of 30 instances was imposed for computational con-
venience). We verify sub-optimality by obtaining a higher value solution from Argmax-Product.
Thus, our results here approximate a worst-case performance for Max-Product rather than the
expected performance. They also slightly favor Max-Product (as we might discard instances
where Argmax-Product does not find an improving solution and some other competing method
does.)

We compare the reformulation approaches against Max-Product (MP) presented by Poon
and Domingos in [PD11], Argmax-Product followed by local search (AMP) presented by Conaty
et al. in [CMdC17], and MaxSearch (MS) presented by Mei et al. in [MJT18]. We initialize MS
with the solution found by MP, and use the forward checking heuristic. Except for MS, which
performs branch-and-bound search, all other methods are approximate and run reasonably fast.
The runtime limit of MS was set to 1 hour.

For the MILP reformulation, we obtain a path decomposition by eliminating variables ac-
cording to the min-degree heuristic. We used Gurobi to optimize the corresponding MILP pro-
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gram, multiplying the objective function and the constraints by some large constant (e.g., 106),
to improve numerical stability. For the two smaller networks (NLTCS and Mushrooms), the
translation to a MILP program was very fast, and the optimization finished within a couple
of minutes with the guaranteed optimal solution. The translation was also very fast for the
Molecular network, but Gurobi failed at finding an optimal solution due to numerical issues.
The MAP inference values for that network ranged from 10−23 to 10−14, below the minimum
tolerance value allowed by Gurobi (10−6) for verifying constraint feasibility and integrality. For
the larger networks, the translation took more than 1 hour, at which point it was interrupted.

The results for the different approaches appear in Table 5.4. The numbers show the mean
and standard deviation of the ratio between the value of a given solution and the value of the
corresponding solution obtained by MP.

SPN AMP MS MILP
NLTCS 2.35± 1.56 2.35± 1.56 2.35± 1.56
Mushrooms 1.44± 0.30 1.44± 0.29 1.44± 0.29
Molecular 3.01± 2.88 1.00± 0.00 •
DNA 1510.9± 1247.7 313.2± 363.9 ?
US Census 1.81± 0.63 1.81± 0.63 ?
NIPS 27325.3± 33348.6 1.00± 0.00 ?
Optdigits 80.19± 210.30 1.02± 0.13 ?

Table 5.4: The numbers show the mean and standard deviation of the ratio between the value of a given
solution and the value of the corresponding solution obtained by Max-Product. For the MILP algorithm,
entries marked with bullet had numerical issues during the solver processing, and entries marked with ?
passed the 1 hour runtime limit.

As we might see, our algorithm still can not handle larger networks. Thus, in a second round
of tests with real data, we decided to select more manageable size of datasets, for which we
generated the SPNs as shown in Table 5.5. This is so we could better analyze how the number
of variables and nodes affect the complexity of the generated MILP program, further detailed
in Subsections 5.2.1 and 5.2.2.

SPN Variables Nodes Sum Nodes Product Nodes Indicator Nodes
Balance Scale 6 432 154 54 224
Haberman 7 861 293 98 470
EColi 8 787 266 79 442
Diabetes 9 3121 1054 333 1734
Glass 10 1056 355 91 610
Hepatitis 20 2282 761 133 1388

Table 5.5: Details of the SPNs obtained from real data through LearnSPN algorithm [PD11].

Next, we present the tables with details of the performance for each algorithm mentioned in
this work, tested with the SPNs mentioned in Table 5.5. As we might see from the graphic in
Figure 5.2, we have an intuition that there might exist some factors influencing the performance
other than just the number of variables in the original SPN.
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Algorithm Time Value Variable Configuration
Max-Product 0.01024199 0.09099970 001000
Argmax-Product 0.00327550 0.09099970 001000
MaxSearch with MC 0.06409350 0.09099970 001000
MaxSearch with FC 0.09099970 0.09099970 001000
SPN-to-MILP 3.73637485 0.09099970 001000

Table 5.6: Performance details for the SPN "Balance Scale".

Algorithm Time Value Variable Configuration
Max-Product 0.03250750 0.02582258 0001100
Argmax-Product 0.00646349 0.02582258 0001100
MaxSearch with MC 0.33531900 0.02582258 0001100
MaxSearch with FC 2.94009450 0.02582258 0001100
SPN-to-MILP 11.0407509 0.02582258 0001100

Table 5.7: Performance details for the SPN "Haberman".

Algorithm Time Value Variable Configuration
Max-Product 0.03596050 0.10613223 11111000
Argmax-Product 0.00640099 0.10613223 11111000
MaxSearch with MC 0.28329500 0.10613223 11111000
MaxSearch with FC 2.00685500 0.10613223 11111000
SPN-to-MILP 7.32611107 0.10613223 11111000

Table 5.8: Performance details for the SPN "EColi".

Algorithm Time Value Variable Configuration
Max-Product 0.13135750 0.02541521 1111111110
Argmax-Product 0.02774799 0.02541521 1111111110
MaxSearch with MC 1.49628350 0.02541521 1111111110
MaxSearch with FC 14.3683209 0.02541521 1111111110
SPN-to-MILP 242.578780 0.02541522 1111111110

Table 5.9: Performance details for the SPN "Diabetes".
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Algorithm Time Value Variable Configuration
Max-Product 0.03793299 0.06015176 0001110000
Argmax-Product 0.00901450 0.06015176 0001110000
MaxSearch with MC 0.63130249 0.06015176 0001110000
MaxSearch with FC 3.76724099 0.06015176 0001110000
SPN-to-MILP 11.1868999 0.06015178 0001110000

Table 5.10: Performance details for the SPN "Glass".

Algorithm Time Value Variable Configuration
Max-Product 0.38725849 0.00195443 11100001000001110001
Argmax-Product 0.02245049 0.00195443 11100001000001110001
MaxSearch with MC 483.841924 0.00256849 11100001000001010001
MaxSearch with FC 607.224486 0.00256849 11100001000001010001
SPN-to-MILP 67.6663408 0.00256853 11100001000001010001

Table 5.11: Performance details for the SPN "Hepatitis".
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Figure 5.2: Performance comparison between MILP Reformulation and other algorithms for MAP
inference in SPNs.
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5.2.1 Generated MILP program size

To understand which are the causes correlated to the performance shown in Figure 5.2, we
believe that one of the first places to look at is the size of the generated MILP program. For the
next test, we used the set of SPNs as shown in Table 5.5.
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Figure 5.3: The relations between the time of execution for our algorithm and the size of the generated
MILP program file .lp.

As we might see from Figure 5.3, there seems to be a close relation between the runtime of
our algorithm and the size of MILP program files that it generates. Further on, we analyze what
are the possible causes for such variance in the MILP program file size.

5.2.2 Relation between Variables and Constraints

One of the possible relations we can try to find is the one relating the number of variables Xi

and the number of constraints in the MILP program file. The graph in Figure 5.4 shows such
relation.

However, it shows basically what has been shown in Figure 5.3. But since the size of PADDs
are mostly related to the number of variables Yi as well, it would be interesting to check such
relation but using the amount of sum nodes in the original SPNs.

As we might see, the performance of our algorithm seems to be very affected from the number
of variables Yi, that is, the number of sum nodes in the original SPN. Naturally, our tests show
very little variation in the number of variables Xi, since they have a strong relation with the
amount of sum nodes learned by an SPN. It makes sense to think that the more variables Xi

there are in an SPN, more sum nodes are necessary to describe the relation between these
variables.
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Figure 5.4: The number of constraints generated by the SPN-MILP algorithm according to the number
of variables Xi in the original SPN.
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Figure 5.5: The number of constraints generated by the SPN-MILP algorithm according to the number
of sum nodes in the original SPN.
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Chapter 6

Discussion

In this document we present what has been studied and achieved until now within the field of
study of MAP inference in SPNs as translated to a MILP optimization problem. We provided the
concepts and details of implementation that we believe to be important for the understanding
of what we developed.

Sum-Product Networks are often justified for their ability to deliver complex probabilistic
queries in polynomial time. However, several successful examples of applications of SPNs require
solving MAP inference, that is, maximizing over part of the variables given the values of some
others. This is the case for example, when performing data imputation with SPNs, completing
images, building multidimensional classifiers, and so on. Solving such a task is however NP-hard.
As our main contribution, we presented a reformulation of the MAP problem as a Mixed-Integer
Linear Program. This opens up the vast work on mathematical programming, as well as access
to the very efficient commercial solvers available.

We understand that the presented research deals with several fields of study that were not
related until now, and we believe our research to be a way of connecting them. We believe to
have some meaningful contributions, such as i) the development of a PADDs support software
package, ii) the development of the translation algorithm itself from MAP inference in SPN
problem to a MILP optimization problem, iii) analysis related to how our proposed algorithm
performs in comparison with other algorithms available and analysis of the performance of our
algorithm depending on the input, and finally iv) the publication of an article whose content is
partly based on this research.

6.1 Limitations

Naturally, we had limitations along this research that hindered us to obtain better results for
the developed software. Some of them are listed below.

• The lack of adequate datasets/SPNs for an initial testing and analysis of the proposed
algorithm.

• The numerical precision of the optimization solver. As we deal with small numbers that
are multiplied in sequence.
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• The experimental code and its suboptimal performance, developed in not such efficient
programming language.

6.2 Future Work

In this section we suggest to where next research related to our work should point towards.
Naturally, there are still many aspects to explore. For example, finding better path decomposition
methods in order to perform variable elimination in the most efficient way possible, or finding
better ways to develop the PADD software.

• Finding algorithms to provide better path decompositions in order to perform variable
elimination more efficiently. Future work should evaluate different heuristics for obtaining
path decomposition.

• Finding better datasets and SPNs, not only those learned through LearnSPN, to provide
a more diverse and precise analysis of the current reformulation algorithm.



Appendix A

Implementation

In this appendix we present some implementation details about the software developed during
this work, such as how the pyddlib was expanded and how we built PADDs Ai from Subsection
4.1.4.1. As for the source code, it was entirely written in Python 3.6.

A.1 Extending pyddlib

In order to work with PADDs, we extended the BDD and ADD Python package pyddlib [Bue].
To encode a PADD, we firstly had to find a way to change the type of the objects in the
leaf nodes. Our purpose in using PADDs was for the manipulation of functions that output
multilinear expressions, hence we focused on building a object class based on such expressions.
It is possible to find our implementation on the ProbAI-USP GitLab repository [PU20b]. To use
it, firstly we must import the PADD and the Multilinear Expression modules:

from pyddlib.mlexpr import MLExpr

from pyddlib.padd import PADD

To represent a multilinear expression we used the Python dictionary. Each of its elements is a
pair (key, value) that represents a term in the original expression, hence, each term is implicit
to be part of a sum. The key of an element is a tuple of numbers, where each number is the
index of an specific variable. The tuple represents the multiplication of the variables related to
each index, and the correspondent value is the coefficient of the term it represents.

For example, let us say that we are trying to encode the following multilinear expression:

3.4Y2Y4 − 0.3Y1Y2Y3

We can associate each variable Yi with the index i to create the dictionary that will represent
the expression above. Remember that the dictionary is the whole expressions, while each of its
elements are terms.

e1 = MLExpr({(2, 4): 3.4, (1, 2, 3): -0.3})

We assume, in the MLExpr class, that all the tuples in a dictionary are sorted, so as to
avoid the case of having the last tuple as key, then avoiding inconsistent representation. Also,
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this representation actually could handle not only multilinear expressions but also polynomial
expressions, since we could have a tuple like (1, 1, 2, 3) as key, which could mean Y 2

1 Y2Y3.
Yet, we understand that it is not the most efficient one for such general purposes.

Once we had the structured the multilinear expressions objects, we just had to use them
as elements for the terminal leaves, exchanging the usage of real numbers of the previous ADD
already built in the pyddlib. And since we wanted to manipulate PADDs in terms of sums
and products, we expanded such operations for multilinear expressions as well. The nature of
our work allows us to handle the product of multilinear expressions because we assure that only
multilinear expressions with disjoint scope are going to be multiplied, which means, for example,
that Xi will never appear in both expressions, and hence we will never have to handle terms
where variables carry exponents greater than 1. However, such rule is not coded in the package
expansion, which means that the product of multilinear expressions that are not disjoint would
yield an expression that is not multilinear.

A.2 Building PADDs

The PADDs building process is basically an execution of the DFS (Depth-First Search) algo-
rithm, starting from the root node of the SPN. During its run-time, a stack is assembled based
on what is the current taken path in every sum node, and every time the search reaches a leaf
node, the stack is checked to assure what is the configuration of such a particular path between
the root and a leaf node.

In addition, for every first visit of a sum node, a PADD Âi is built, as described in Subsection
4.1.4.2, and for every visit of leaf node that references a variable Xi for the first time, the PADD
Xi is created, according to Subsection 4.1.4.3.

At this stage, such path contains two important data:

• the variable Xi to which the leaf node is related

• the way taken in the SPN (or decision, in PADD terms) for each sum node, which will be
used as reference to build the PADD Ai (since it is related to the variable Xi)

Let us say that the DFS reached a leaf node with variable Xi. If Xi is not created, than
the algorithm creates it. Now that we have a complete path from the root down to one leaf
containing Xi, the path stored in the stack is updated in Ai. When the DFS is completed, all
the paths between the root and leaf nodes with variables Xi are updated in Ai.

At the end of the DFS, all the PADDs Ai, Âi and Xi are created.
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