
Analyzing Natural Language Inference from a Rigorous Point of
View

Felipe de Souza Salvatore

Tese apresentada
ao

Instituto de Matemática e Estatística
da

Universidade de São Paulo
para

obtenção do título
de

Doutor em Ciências

Programa: Ciência da Computação
Orientador: Prof. Dr. Marcelo Finger

Coorientador: Prof. Dr. Roberto Hirata Jr.

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da CAPES

São Paulo, Outubro de 2020

Analyzing Natural Language Inference from a Rigorous Point of
View

Esta versão da tese contém as correções e alterações sugeridas
pela Comissão Julgadora durante a defesa da versão original do trabalho,
realizada em 14/12/2020. Uma cópia da versão original está disponível no

Instituto de Matemática e Estatística da Universidade de São Paulo.

Comissão Julgadora:

• Prof. Dr. Marcelo Finger - IME-USP

• Profa. Dra. Valéria de Paiva - PUC-RJ

• Prof. Dr. Thiago Salgueiro Pardo - ICMC-USP

• Prof. Dr. Marcos Lopes - FFLCH-USP

• Prof. Dr. Denis Deratani Mauá - IME-USP

Acknowledgements

I would first like to acknowledge the academic and personal support of my supervisor Marcelo
Finger. He was willing to take me on as a student, and he gave me tremendous freedom in pursuing
my ideas while ensuring that I was developing productive research. I will be forever grateful for his
help.

Roberto Hirata Jr is responsible for a great part of my education in machine learning. His
comments and suggestions were very influential for all my research in the field of natural language
processing.

I owe special thanks to my colleagues and collaborators in the statistics department Alexandre
Patriota and Alexandre Simas. They both have help me to frame my research problem inside the
statistical theory in a productive manner.

I am grateful to the faculty and staff from IME. They have provided a great environment in
which to pursue my studies. I would also like to thank all my colleagues and friends from LIAMF;
especially: Thiago Bueno, Thiago Lira, Fabiano Luz, Paula Moraes, Lucas Moura, and Sandro
Preto. Thank you, everyone, for the warm companionship and the meaningful discussions.

I would like to thank my thesis committee: Marcos Lopes, Denis Mauá, Valéria de Paiva, and
Thiago Pardo.

Eu gostaria de agraceder meus pais, meu irmão e minha família por todo o amor, apoio e
compreensão na minha trajetória acadêmica.

Finally, I would like to thank the CAPES foundation (fundação Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior) for the financial support both in Brazil and abroad.

i

ii

Resumo

Salvatore, F. Analizando Inferência em Linguagem Natural de um Ponto de Vista Rig-
oroso. 2020. 119 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São
Paulo, São Paulo, 2010.

Inferência em linguagem natural (natural language inference - NLI) é uma tarefa de classificação
de texto baseada em determinar a relação de implicação entre um par de sentenças. Nessa tese es-
tamos interessados em verificar se os modelos de deep learning usados em NLI satisfazem algumas
propriedades lógicas. Aqui, focamos em duas propriedades: i) a capacidade de resolver problemas
de dedução usando algumas formas lógicas (por exemplo, coordenação Booleana, quantificadores,
descrição definida e operadores de contagem); e ii) a propriedade de ter a mesma conclusão partindo
de premissas equivalentes. Para cada uma dessas propriedades, desenvolvemos um novo procedi-
mento de avaliação. Para i) oferecemos um novo conjunto de dados sintético que podem ser usados
tanto para a classificação quanto para a geração de inferência; e para ii) propomos um teste de
hipóteses construído para representar as diferentes maneiras que a inclusão de sentenças com o
mesmo significado pode afetar o treinamento de um modelo de aprendizado de máquina. Nossos
resultados mostram que, embora os modelos de deep learning tenham um desempenho excelente
na maioria dos problemas de NLI, eles ainda carecem de algumas importantes habilidades de infer-
ência, como lidar com operadores de contagem, prever qual palavra pode formar uma implicação
em um contexto específico e apresentar as mesmas deduções para duas entradas de texto que são
diferentes mas possuem o mesmo significado. Isso indica que, apesar do grande poder de predição
desses novos modelos, eles apresentam alguns viéses de inferência que não podem ser facilmente re-
movidos. Futuras investigações precisam ser feitas para se entender o alcance desse víes. É possível
que aumentando o tamanho da amostra de treinamento na fase de fine-tuning esse viés seja reduzido.

Palavras-chave: Processamento de Linguagem Natural, Classificação de Texto, Inferência em Lin-
guagem Natural, Víes em Modelos de Aprendizado de Máquina.

iii

iv

Abstract

Salvatore, F.Analyzing Natural Language Inference from a Rigorous Point of View. 2020.
119 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São
Paulo, 2020.

Natural language inference (NLI) is the task of determining the entailment relationship between
a pair of sentences. We are interested in the problem of verifying whether the deep learning models
current used in NLI satisfy some logical properties. In this thesis, we focus on two properties: i)
the capacity of solving deduction problems based on some specific logical forms (e.g., Boolean co-
ordination, quantifiers, definite description, and counting operators); and ii) the property of having
the same conclusion from equivalent premises. For each one of these properties we develop a new
evaluation procedure. For i) we offer a new synthetic dataset that can be used both for inference
perception and inference generation; and for ii) we propose a null hypothesis test constructed to
represent the different manners that the inclusion of sentences with the same meaning can affect the
training of a machine learning model. Our results show that although deep learning models have an
outstanding performance on the majority of NLI datasets, they still lack some important inference
skills such as dealing with counting operators, predicting which word can form an entailment given
an specific context, and presenting the same deductions for two different text inputs with the same
meaning. This indicates that despite the high prediction power of these new models, they do present
some inference biases that cannot be easily removed. Future investigations are needed in order to
understand the scope of this bias. It is possible that by increasing the training sample size in the
fine-tuning phase, this bias can be reduced.

Keywords: Natural Language Processing, Text Classification, Natural Language Inference, Bias
in Deep Learning.

v

vi

Contents

List of Abbreviations xi

List of Symbols xiii

List of Figures xv

List of Tables xix

1 Introduction 1
1.1 Natural Language Inference . 1
1.2 Motivation . 2

1.2.1 Current State of the Art 1: The Success of the Machine Learning Models . . . 2
1.2.2 Current State of the Art 2: The Failure of the Machine Learning Models . . . 3
1.2.3 A Rigorous Point of View . 4

1.3 Objectives . 5
1.4 Contributions . 6
1.5 Organization . 6

2 Theoretical Background 7
2.1 Text Classification . 7

2.1.1 Basic Formulation . 7
2.1.2 Technical Formulation . 7
2.1.3 Bag-of-Words . 8
2.1.4 Heuristics Based Representations . 8
2.1.5 Classifiers and Performance Metrics . 9

2.2 Word Embeddings . 9
2.2.1 Probabilistic Language Modeling . 9
2.2.2 Neural Language Models . 10
2.2.3 Continuous Bag-of-Words Representation . 12

2.3 Sequence Modeling . 12
2.3.1 Recurrent Models . 12
2.3.2 Gated Recurrent Unit . 13
2.3.3 Long Short-Term Memory . 14

2.4 Combining Recurrent Models . 15
2.4.1 Neural Machine Translation . 15
2.4.2 Attention . 16

vii

viii CONTENTS

2.5 The Transformer . 17
2.5.1 Self-Attention . 17
2.5.2 Positional Encoding . 19
2.5.3 The Transformer Architecture . 20

2.6 Transformer Based Models . 22
2.6.1 Transfer Learning . 22
2.6.2 BERT . 23
2.6.3 RoBERTa . 25
2.6.4 ALBERT . 26
2.6.5 XLNet . 26

2.7 Hypothesis Testing . 27
2.7.1 Basic Formulation . 27
2.7.2 Technical Formulation . 27
2.7.3 Power and Size . 28
2.7.4 p-Value . 31
2.7.5 Paired t-Test . 31
2.7.6 Bootstrap Hypothesis Test . 33

3 Structural Inference 35
3.1 Template Language . 36
3.2 Logical Rules and Templates . 37
3.3 Translation . 38
3.4 Analysis I: Contradiction Detection . 39

3.4.1 A Logical-Based Corpus for Cross-Lingual Evaluation 39
3.4.2 A Dataset of Contradictions . 40
3.4.3 Models . 42
3.4.4 Evaluation . 42
3.4.5 Experimental Settings . 43
3.4.6 Implementation . 43
3.4.7 Results . 44
3.4.8 Discussion . 47
3.4.9 Analysis Conclusion . 48

3.5 Analysis II: Inference Generation . 48
3.5.1 A New Type of NLI Task . 49
3.5.2 From Perception to Generation . 49
3.5.3 Masked Inference . 49
3.5.4 Boolean Coordination . 50
3.5.5 Quantifier Reasoning . 51
3.5.6 Counting . 51
3.5.7 Experiments . 51
3.5.8 Analysis Conclusion . 54

3.6 Benefits and Limitations of Synthetic Corpora . 54

CONTENTS ix

4 Equivalences 57
4.1 A New Resampling-Based Method to Evaluate NLI Models 57
4.2 Equivalence . 58

4.2.1 Equivalence in Formal and Natural Languages 58
4.2.2 The IE Property for the NLI Task . 59

4.3 Testing for Invariance . 60
4.3.1 Training on a Transformed Sample . 60
4.3.2 A Bootstrap Version of the Paired t-Test . 61
4.3.3 Multiple Testing . 62
4.3.4 Invariance Under Equivalence Test . 62

4.4 Case Study: Verifying Invariance under Synonym Substitution 64
4.4.1 Defining a Transformation Function . 64
4.4.2 Datasets . 65
4.4.3 Methodology . 66

4.5 Results . 66
4.5.1 Baseline Exploration . 67
4.5.2 Testing Deep Learning Models . 67
4.5.3 Experimental Finding: Model Robustness . 70
4.5.4 Discussion and Limitations . 72

4.6 Related Work . 72

5 Conclusions 75
5.1 Synthetic Data: Lessons Learned and New Paths . 75
5.2 Invariance under Equivalence and Bias . 76

A Templates for the Dataset Presented in Section 3.4 79
A.1 Simple Negation . 79
A.2 Boolean Coordination . 79
A.3 Quantification . 80
A.4 Definite Description . 81
A.5 Comparatives . 82
A.6 Counting . 83

B Templates for the Dataset Presented in Section 3.5 85
B.1 Boolean Coordination . 85
B.2 Quantifier Reasoning . 85
B.3 Counting . 86

C Synonym Substitution Examples 87

D Hyperparameter Search 91

Bibliography 95

x CONTENTS

List of Abbreviations

ALBERT A Lite BERT.
BERT Bidirectional Encoder Representations from Transformers.
BOW Bag-of-Words.
CBOW Continuous Bag-of-Words.
CD Contradiction Detection.
FraCaS Framework for Computational Semantics.
GLUE General-Purpose Language Understanding.
GPT Generative Pre-trained Transformer.
GRU Gated Recurrent Unit.
IE Invariance under Equivalence.
iff if and only if.
IG Inference Generation.
IID Independent and Identically Distributed.
IP Inference Perception.
LSTM Long Short-Term Memory.
MI Masked Inference.
MLM Masked Language Modeling.
NHST Null Hypothesis Significance Testing.
NLI Natural Language Inference.
NLP Natural Language Processing.
NLU Natural Language Understanding.
NSP Next Sentence Prediction.
QA Question Answering.
RNN Recurrent Neural Network.
RTE Recognizing Textual Entailment.
ReLU Rectified Linear Units.
RoBERTa Robustly optimized BERT approach.
SNR Signal-to-Noise Ratio.
SOP Sentence-Order Prediction.

xi

xii LIST OF ABBREVIATIONS

List of Symbols

x,y, . . . Vectors.
X,Y , . . . Matrices.
[x;y] Vector concatenation.
X> Transpose of matrix X.
X � Y Element-wise (Hadamard) product of X and Y .
sigm(x) The logistic function, 1

1+e−x .
tahn(x) The hyperbolic tangent, e

2x−1
e2x+1

.
X,Y, . . . Random variables.
X ∼ P The random variable X follows the distribution P .
P(X) Probability distribution over X.
P̂(X) Estimated probability distribution over X.
E[X] Expectation of X.
V(X) Variance of X.
Xn X Xn converges to X in probability.
N (µ, σ2) Normal distribution with mean µ and variance σ2.
I(condition) Indication function. It returns 1 if the condition is true, 0 otherwise.
CE(P,Q) Cross-entropy between the discrete distributions P and Q.
V Vocabulary.
w1, w2, . . . Words.
hot(w) One-hot encoding of the word w.
|A| Size of the set A.
P(A) Power set of the set A.
A\B Set subtraction, i.e., the set containing the elements of A that are not in B.
supx∈A f(x) The supremum (the least upper bound) of the set {f(x) : x ∈ A}.

xiii

xiv LIST OF SYMBOLS

List of Figures

1.1 State-of-the-art evolution for two NLI benchmarks. The figures display the best accu-
racy achieved on the SNLI and MNLI datasets by a machine learning model through
time. All model results are compared with human performance. The data from SNLI
was obtained from the work of Bowman et al. [2020] and the human performance
was estimated by Glockner et al. [2018]. For the MNLI dataset, the data for both
model and human performances is by Wang et al. [2020]. 2

2.1 Attention matrix α for the English/German translation example. For t = 1, . . . , 8,
the row αt displays the attention weights αt,i relating the target word w′t and the
source words wi (where i ∈ {1, . . . , 7}). 17

2.2 Self-attention output generated by the visualization tool introduced by Vig [2019].
Using a trained model based on self-attention (GPT-2 [Radford et al., 2019]), the
figure displays the attention weights related to the attention layer 4 and head 7.
The weights are represented as lines connecting the query words (left) with the value
words (right). In the left figure, the weights may indicate that this attention head is
involved in anaphora resolution. However, by changing the pronoun in the sentence,
the right figure, we loose this possible interpretation. 19

2.3 Positional encoding of dimension 80. Each row t represents the positional vector PE(t). 20
2.4 Transformer model represented as a diagram (Figure by Vaswani et al. [2017]) The

figure displays a visual representation of equations (2.32), (2.33), (2.34), and (2.35). . 22
2.5 Input format for the BERT model (Figure by Devlin et al. [2019]). 24
2.6 BERT performing text classification. In this example the input text is composed of

two sentences (Figure by Lin [2020]). 25
2.7 Power function for the tests te0.022, te0.132, and te0.198. In all cases, n = 100 and

σ = 1. 30
2.8 Schematic of the bootstrap process for the paired t-test. We generate S bootstrap

samples forcing them to satisfy the null hypothesis, then we calculate the test statistic
for each sample and obtain the empirical distribution of this statistic. 33

3.1 Results of the experiment (i). In the x-axis we have different proportions of the
training data used in training. The y-axis displays the average accuracy among all
tasks (English corpus). 45

3.2 Results of the experiment (i). In the x-axis we have different proportions of the
training data used in training. The y-axis displays BERTeng’s accuracy on different
tasks (English corpus). 45

xv

xvi LIST OF FIGURES

3.3 Results of the experiment (iii). Accuracy distribution on all tasks for different pre-
trained versions of the model BERT (Portuguese corpus). 46

3.4 Results of the experiment (iii). In the x-axis we have different proportions of the
training data used in training. The y-axis displays the average accuracy among all
tasks (Portuguese corpus). 46

3.5 Results of the experiment (iv). In the x-axis we have different proportions of the
training data used in training. The y-axis displays the average accuracy among all
tasks. All results presented in the figure are associated with the performance of the
model BERTeng’ on different versions of the data (English corpus). 47

3.6 Test accuracy for each connective inside the Boolean coordination module in the MI
task. The figure shows BERT’s accuracy with and without fine-tuning. 52

3.7 Test accuracy for each quantifier inside the quantifier reasoning module in the MI
task. The figure shows BERT’s accuracy with and without fine-tuning. 53

3.8 Test accuracy for each numeral inside the counting module in the MI task. The figure
shows BERT’s accuracy with and without fine-tuning. 53

3.9 Accuracy results for BERT on the different logic fragments (Figure by Richardson et al.
[2020]). 54

3.10 Flesch score distribution for the datasets CD data (the dataset presented in Section
3.4.2), SNLI and MNLI. 56

4.1 The bootstrap version of the paired t-test applied multiple times. For m = 1, . . . ,M ,
gm is a classifier trained on the transformed sample (DmT ,DmV). The p-value pm is
obtained by comparing the observable test statistic associated with gm, t̂m, with the
bootstrap distribution of t under the null hypothesis. 63

4.2 Example of sentence transformation. In this case, there are two synonyms associated
with the only noun appearing in the source sentence (dog). Since both synonyms
have the same frequency in the corpus (zero), the selected synonym is the one with
the lower edit distance (domestic dog). 65

4.3 Baseline results. In the x-axis we have different choices of transformation probabilities
used in training. The y-axis displays the minimum value for the p-values acquired in
five paired t-tests. We reject the null hypothesis if the minimum p-value is smaller
than 1%. 67

4.4 SNLI results. In the x-axis we have different choices of transformation probabilities
in training. The y-axis displays the accuracy. Each point represents the average ac-
curacy in five runs. The vertical lines display the associated standard deviation. The
black and grey lines represent the values for the original and transformed test sets,
respectively. 68

4.5 MNLI results. In the x-axis we have different choices of transformation probabilities
in training. The y-axis displays the accuracy. Each point represents the average ac-
curacy in five runs. The vertical lines display the associated standard deviation. The
black and grey lines represent the values for the original and transformed test sets,
respectively. 69

LIST OF FIGURES xvii

4.6 Test statistics from the IE test for all models. In the x-axis we have different choices
of transformation probabilities used in training. The y-axis displays the values for the
test statistic. Each point represents the average test statistics in five paired t-tests.
The vertical lines display the associated standard deviation. 70

4.7 Models’ accuracy on the original test set. In the x-axis we have different choices
of transformation probabilities used in training. The y-axis displays the accuracy.
Each point represents the average accuracy in five runs. The vertical lines display
the associated standard deviation. 70

4.8 Robustness as a function of model size. Robustness is measured as the average SNR
on the datasets SNLI and MNLI. Although we observe a linear relationship between
SNR and model size, this relationship is heavily influenced by the results related to
the model ROBERTALARGE . 72

xviii LIST OF FIGURES

List of Tables

3.1 Task description. Column 1 presents two realizations of the described tasks - one in
English (Eng) and the other in Portuguese (Pt). Column 2 presents the vocabulary
size for the task. Column 3 presents the number of words that occurs both in the
training and test data. Column 4 presents the average length in words of the input
text (the concatenation of P and H). Column 5 presents the maximum length of the
input text. 41

3.2 Results of the experiment (i). Test accuracy (%) for all models in the English (Eng)
and Portuguese (Pt) corpora. 44

3.3 Test accuracy (%) for the two types of inference task (all modules). 52

4.1 Sound percentages for the transformation function based on the WordNet database.
The values were estimated using a random sample of 400 sentence pairs. 66

4.2 Ranked models according to the SNR metric. In this case, the noise is the synonym
substitution transformation. 71

C.1 Sound transformations for SNLI. 87
C.2 Unsound transformations for SNLI. 88
C.3 Sound transformations for MNLI. 89
C.4 Unsound transformations for MNLI. 90

D.1 Best hyperparameter assignments for the gradient boosting classifier. 91
D.2 Best hyperparameter assignments for ALBERT. 91
D.3 Best hyperparameter assignments for BERT. 92
D.4 Best hyperparameter assignments for XLNet. 92
D.5 Best hyperparameter assignments for RoBERTaBASE 92
D.6 Best hyperparameter assignments for RoBERTaLARGE 93

xix

xx LIST OF TABLES

Chapter 1

Introduction

1.1 Natural Language Inference

Among the natural language processing (NLP) tasks, the one centered on deduction is the task
known as natural language inference (NLI). In this task, a system determines the logical relationship
between a pair of sentences P and H (referred to as premise and hypothesis, respectively). It
asserts either that P entails H, P and H are in contradiction, or P and H are neutral (logically
independent).

NLI has a long history within the NLP field. The first instance of the NLI problem was initially
formulated in the Framework for Computational Semantics (FraCaS) [The Fracas Consortium et al.,
1996]. When constructing that framework, the creators of FraCaS also constructed a series of ques-
tion answering (QA) modules, where a system should respond “yes”, “no” or “don’t know” to a
query based on a logical/linguistic puzzle. For example,

Q = John and his colleagues went to a meeting. They hated it.

Did John’s colleagues hate the meeting?

A = Yes,

where Q is a question and A is the right answer. Each module on the FraCaS dataset corresponds to
a semantic competence (the use of generalized quantifiers, monotonicity, etc.). The idea behind this
QA style dataset was to evaluate the proficiency of a NLP system regarding the different semantic
competences.

After this initial effort, the introduction of a series of workshops called the PASCAL recognizing
textual entailment (RTE) challenges helped to transform this initial idea into an active empirical
research field [Bar-Haim et al., 2014]. During these contests the field acquired its present format:
the use of two text inputs P and H, and three possible prediction classes. At this time the focus of
analysis has shifted from formal puzzles to inference problems that can be found in everyday speech.
It is worth mentioning that there are two sub-tasks associated with NLI: i) entailment detection,
where a system should assert whether the pair (P,H) is an entailment or not; and ii) contradic-
tion detection (CD), a similar binary classification task centered on the notion of contradiction
[de Marneffe et al., 2008].

The modern era of the field started when large crowdsourced datasets were introduced. At this
time, the name “NLI” was adopted and the term “RTE” was dropped.1 The change in size, compared
to the old datasets, is striking: the FraCas dataset is composed of 346 examples, some older datasets
like RTE-6 [Bentivogli et al., 2009] and SICK [Marelli et al., 2014] have 16K and 10K examples,
respectively. On the other hand, the datasets that have become benchmarks for the NLI community:
Stanford natural language inference corpus (SNLI) [Bowman et al., 2015a] and Multigenre NLI
corpus (MNLI) [Williams et al., 2018] are composed of 570K and 433K observations, respectively.

1It is possible to find recent uses of this term to denote the entailment detection task [Khot et al., 2018].

1

2 INTRODUCTION 1.2

Recently, some authors formulate the NLI problem as a specific task under the more general
problem of natural language understanding (NLU) [Wang et al., 2019, 2018]. It is not clear what the
precise definition of NLU is. Without entering in the philosophical discussion of what constitutes
“understanding” in the computer science domain (or if it is even possible), it is safe to say that NLU
is just an aggregation of a variety of text classification tasks including QA, sentiment analysis and
NLI. In this line, we say that a system has a “comprehensive text understanding capability” if such
system performs with equal competence in all these different tasks.

It is important to highlight that there are two traditions in the NLI field: the symbolic and
the machine learning tradition. The symbolic approach uses a process of translation the natu-
ral sentence pair (P,H) into a symbolic representation (e.g. a formula from a formal language
[MacCartney and Manning, 2009], or a semantic graph [Kalouli et al., 2018]), after this translation
is done, the transformed information is passed to an inference engine. The researchers from the
machine learning tradition formulate the NLI task as a text classification problem: they transform
the sentence pair (P,H) in a vector of covariates that captures some textual pattern, and after that
they fit a statistical model to the textual data.

Since statistical models have dominated the NLI field, in this thesis, we focus exclusively on the
machine learning tradition.

1.2 Motivation

1.2.1 Current State of the Art 1: The Success of the Machine Learning Models

The rapid progress in NLP has strongly influenced both NLI and NLU. After the introduction
of the recent deep learning methods based on the transformer architecture [Devlin et al., 2019,
Radford et al., 2018, Vaswani et al., 2017], the NLI benchmarks are either solved or close of being
solved. Here, we say that a task is “solved” if such task can be performed by a computer with the
same (or better) level of proficiency than humans.

The evolution of the NLI field in the last five years can be visualized in Figure 1.1. The dataset
SNLI was created in 2015, and it took approximately thirty-one months for the NLI community to
solve this task. The MNLI dataset, created in 2018, has two different test sets: i) matched, a test
set with observations derived from the same sources as those in the training set; ii) mismatched,
test examples from sources different from the ones used in training. At the time of writing, the
matched module is solved and the best model accuracy for the mismatched module is 91.9%; the
human performance is estimated in 92.8% (only 0.9% of difference).

Figure 1.1: State-of-the-art evolution for two NLI benchmarks. The figures display the best accuracy
achieved on the SNLI and MNLI datasets by a machine learning model through time. All model results are
compared with human performance. The data from SNLI was obtained from the work of Bowman et al. [2020]
and the human performance was estimated by Glockner et al. [2018]. For the MNLI dataset, the data for
both model and human performances is by Wang et al. [2020].

1.2 MOTIVATION 3

The pace of solving NLP tasks is increasing. It took the community approximately fifteen months
to solve the matched module on the MNLI dataset. The general-purpose language understanding
(GLUE) dataset was an attempt of creating a robust NLU dataset [Wang et al., 2018]. The dataset
was created in the beginning of 2018 and it was solved in approximately thirteen months. This fact
have forced the authors to create a new and more challenging NLU dataset called SuperGLUE
[Wang et al., 2019]. SuperGLUE was released in May, 2019, the T5 Team at Google has almost
reached the human baseline at the score of 89.3% within eight months; the human baseline is 89.8%
(only 0.5% of difference) [Wang et al., 2020]. In an interview for the artificial intelligence index
report 2019, Sam Bowman whose group has developed GLUE and SuperGLUE state the following:

“We know now how to solve an overwhelming majority of the sentence or paragraph level
text classification benchmark datasets that we’ve been able to come up with to date.
GLUE and SuperGLUE demonstrate this out nicely, and you can see similar trends
across the field of NLP. I don’t think we have been in a position even remotely like
this before: We’re solving hard, AI-oriented challenge tasks just about as fast as we
can dream them up” Sam says “I want to emphasize, though, that we haven’t solved
language understanding yet in any satisfying way”. [Perrault et al., 2019, p. 58]

It is evident that the technological improvement on the NLP field have affected the life ex-
pectancy of the available text classification tasks. One may argue that the NLI field is not com-
pletely solved since the mismatch module of the dataset MNLI is still unsolved, however because
the gap between computer and human performance is so low, 0.9%, we believe that in a short period
of time this task will be solved (the same is applicable to SuperGLUE).

1.2.2 Current State of the Art 2: The Failure of the Machine Learning Models

Although the notion of “solving a benchmark NLI task” is helpful to summarize the evolution
of the field, it can be misleading. One recent finding regarding the machine learning models is that
the process of data collection highly influences the quality of the inferences presented in a dataset.

Large datasets were made possible with the use of crowdsource platforms like the Amazon
Mechanical Turk [Bowman et al., 2015a, Williams et al., 2018]. The annotation performed by a
formal semanticist, like in RTE 1-3 [Giampiccolo et al., 2007], was replaced by the work of an average
English speakers. One consequence of this process is the increasing number of undesirable text
patterns (annotation artifacts) [Gururangan et al., 2018]. For example, there is a high correlation
of occurrences of negative words (no, nobody, never, nothing) in the premise P of contradiction
instances. Similarly, there is a high correlation of generic words (such as animal, instrument,
outdoors, etc.) in entailment instances (also in the premise P). Hence, a simple model can achieve
a score significantly higher than random guessing by using only P as input [Gururangan et al., 2018,
Poliak et al., 2018].

In order to highlight how misleading is the success of the machine learning models in NLI,
a new literature emerged focusing on the limitations of those models. This new literature uses
the methodology of adversarial evaluation. Such methodology can be described as follows: train
a machine learning model on a benchmark dataset (or a collection of datasets), and observe how
well the model performs on a new test set with some linguistic features. The observations in the
new test set are often called adversarial examples. In this case, the term “adversarial” refers to the
phenomenon where the new observations are easily classified by humans but they force a machine
learning model to make a mistake.

In this vein of work, Glockner et al. [2018] have developed a new test set based on different
types of lexical knowledge (e.g., hypernymy and hyponymy relations). They shown that machine
learning models trained on the datasets SNLI and MNLI perform substantially worse on their new
lexical test set.

Nie et al. [2018] have created a new test set where the logical relations do not depend on lexical
information alone (for example, it is possible to obtain a new contradiction observation (P, P ′) from

4 INTRODUCTION 1.2

the pair (P,H), where P ′ is the result of swapping the subject and object in P). They shown that
models trained on SNLI perform poorly on their new adversarial test sets.

Dasgupta et al. [2018] have constructed a test set based on word composition (for example,
some entailment examples have the form: P = X is more cheerful than Y , and H = Y
is less cheerful than X). They have observed that different models trained on the SNLI
dataset perform badly on their adversarial test set, however they also noted that performance can
be corrected when the models are trained with observations similar as the ones from the new test
set.

Naik et al. [2018] offered three new adversarial test sets (they have called them “stress tests”)
based on different linguistic phenomena (e.g., antonymy relation, sentences containing numerals,
etc.). After training different models on the MNLI dataset, they have observed that the models
show a significant performance drop on their new test sets.

McCoy et al. [2019] have observed three “syntactical heuristics” presented on the benchmark
datasets: lexical overlap heuristic (the logical relation can be guessed solely based on word overlap);
subsequent heuristic (the logical relation can be guessed solely based on the fact that H is a
subsequence of P); constituent heuristic (the logical relation can be guessed from the fact that
H is a constituent of P). In order to understand how much a machine learning model rely on
such heuristics, McCoy et al. [2019] have constructed an adversarial test set where those heuristic
fail. They shown that different models trained on the MNLI dataset perform very poorly on their
adversarial test set. Similar to Dasgupta et al. [2018], they also noted that it is possible to obtain
good performances on the new test set when similar observations are introduced in the training
stage.

Yanaka et al. [2019] have constructed a new test set based on monotonicity inference (this
term includes different linguistic phenomena that can cause entailment, for example, the removal of
modifiers - I bought a movie ticket entails I bought a ticket). After training different
models on the SNLI and MNLI datasets, they have observed that the performance of the machine
learning models on their adversarial test set was unsatisfactory. They have also noted that the
performance of the models can be improved when monotonicity inference examples are added when
training those models.

1.2.3 A Rigorous Point of View

There is an question in artificial intelligence as old as the field itself, let us call it the cognition
question:

Can machines think? [Turing, 1950]

Although the cognition question belongs to the fields of psychology and/or philosophy, a version
of this question often appears in NLP and NLI. Because of the recent success of the deep learn-
ing models, the updated versions of the cognition question mention this specific model family. For
example: Evans et al. [2018] ask themselves “can neural networks understand logical entailment?”,
and Piotrowski et al. [2019] try to address the question “can neural networks learn symbolic rewrit-
ing?”. More recently, Bender and Koller [2020] offer an negative answer to the question “can neural
networks understand language?” (the answer is somewhat similar to the one given by Searle [1980]).

It seems to us that the starting point for some recent works in NLI is a version of the cognitive
question. Such version can be expressed as follows:

Can neural networks understand X?

where X stands for:

• “inferences that require lexical and world knowledge” [Glockner et al., 2018];

• “lexical and compositional semantics” [Nie et al., 2018];

1.4 OBJECTIVES 5

• “compositional information” [Dasgupta et al., 2018];

• “monotonic reasoning” [Yanaka et al., 2019].

Our basic assumption is that machine learning models (neural networks included) do not perform
inference or any kind of reasoning, they perform pattern recognition. Hence, we are not interested in
answering any version of the cognitive question. Alternatively, our research goal is more humble: we
investigate whether machine learning models, when applied to the NLI task, satisfy some desirable
logical properties. Such properties serve as minimum conditions to the inference task, i.e., the logical
properties are a necessary but not sufficient condition for the inference competence.

Furthermore, we believe that formal logic can be an inspiration source for this point of view.
The goal is not to reduce NLI to logic, but to use some ideas related to formal systems in order
to aid the investigation of NLI models. To be more precise, let g be a NLI classifier trained on a
benchmark dataset. For all sentence pairs (P,H), the classifier g defines the entailment relation |=g

as follows:

P |=g H ⇐⇒ g(P,H) = entailment,
P,H |=g ⊥ ⇐⇒ g(P,H) = contradiction,
P 6|=6|=g H ⇐⇒ g(P,H) = neutral, (1.1)

where “P,H” denotes the concatenation of sentences P and H (separated by the comma symbol),
⊥ denotes an absurd statement (e.g., “1 = 0”), and P 6|=6|=g H stands for “P 6|=g H and H 6|=g P ”.
From the logical point of view, it is expected that |=g satisfies some properties such as:

(Reflexive Entailment) P |=g P .

(Anti-symmetric Entailment) not always, P |=g H ⇒ H |=g P .

(Symmetric Contradiction) P,H |=g ⊥ ⇒ H,P |=g ⊥.

(Symmetric Neutral) P 6|=6|=g H ⇒ H 6|=6|=g P .

(Monotonic Entailment) P |=g H ⇒ P, P ′ |=g H.

(Monotonic Contradiction) P,H |=g ⊥ ⇒ P,H, P ′ |=g ⊥.

(Explosion) P,H |=g ⊥ ⇒ P,H |=g P
′.

These are just a few illustrative examples. Since NLI and formal inference are governed by
different rules, it is the task of the researcher to decide which properties inspired by formal logic
are suitable for NLI.

1.3 Objectives

Based on these considerations, we can describe the central workflow in this thesis: we start from
properties present in logical systems, we carefully consider which ones are applicable in the natural
language context, and then we analyse whether the NLI models satisfy these properties or not.

As the guiding objectives of our work, we have selected two main properties to be analyzed:

• The property of correctly performing deduction based on logical connectives (structural in-
ference).

• The property of having the same deductions from equivalent text inputs (invariance under
equivalence).

6 INTRODUCTION 1.5

1.4 Contributions

After investigating the two properties mentioned above, we have discovered five new facts about
NLI models:

1) Counting operators are the most challenging logical connectives to NLI models. We have cre-
ated a new CD synthetic dataset divided into different modules. Each module is based on
a type of logical connective. We have observed that the module associated with counting
inference is the most demanding module for all NLI models (Chapter 3).

2) When the entailment relation is based on structural information, cross-lingual transfer learning
can be successfully applied to NLI. We have shown that for entailment examples based on
structural features (the co-occurrence of words in P and H, the position of some connectives
in the text input, and the number of occurrences of some specific words) it is possible to use
a pre-trained model in one language, and obtain reasonable results in a NLI task defined in
other language (Chapter 3).

3) The task of predicting which word can form an entailment, given a context, is significantly
harder than the usual NLI task. It is possible to formulate a harder inference task: we ask
the NLI model to complete a sentence in order to create an entailment observation. When
we formulate this kind of “inference generation” task we can observe a significant drop in
performance of the current NLI models (Chapter 3).

4) Current deep learning models show two different inference outputs for sentences with the same
meaning. We propose a new test to measure the invariance under equivalence property. After
applying such test using both the SNLI and MNLI datasets, we have observed that the deep
learning models fail the test in the vast majority of cases (Chapter 4).

5) Some NLI models are clearly more robust than others. By measuring each model’s performance
on the test set when equivalent examples are present in training, we have observed that while
some deep learning models are quite robust, others perform worse than the baseline (Chapter
4).

These contributions were presented as the following papers:

• 1) and 2) are the results from a paper presented in theWorkshop on Deep Learning Approaches
for Low-Resource NLP at the conference Empirical Methods in Natural Language Processing
(EMNLP) in 2019 [Salvatore et al., 2019a].

• 3) is the contribution from a paper presented in the Workshop on Neural-Symbolic Learning
and Reasoning at the conference International Joint Conferences on Artificial Intelligence
(IJCAI) in 2019 [Salvatore et al., 2019b].

• 4) and 5) are the main results of a paper submitted to a relevant NLP journal, currently under
review.

1.5 Organization

The thesis is organized as follows: in Chapter 2 we define all the theoretical background; in
Chapter 3 we present the analyses centered on logical connectives; in Chapter 4 we present the
investigation based on equivalent transformations; and, finally, in Chapter 5 we address open issues
and future steps.

Chapter 2

Theoretical Background

There is no unified theory behind the NLP field. In different textbooks on the subject [Eisenstein,
2019, Goldberg, 2016, Manning and Schütze, 1999], the theory is presented as an amalgamation of
a variety of fields including machine learning, information theory, probability theory and numeri-
cal optimization. In this chapter, we present a brief description of the theoretical tools employed
throughout this thesis. We use the problem of text classification as a framework to unify all the
concepts, definitions and models presented in this chapter.

2.1 Text Classification

2.1.1 Basic Formulation

In many practical application, we want to assign classes or categories to text according to its
content. One of the most famous example is spam detection: given a new email in the inbox, it is a
spam of a meaningful email?

Since the categorization is based on the text content, many text classification tasks rely on
subjective judgments. Hence, when we ask “does the text T belongs to the class c?”, we are implicitly
asking “does the majority of speakers categorize the text T as c?”.

This distinction is especially important for the NLI task. Differently from formal logic where we
offer a precise definition of the terms entailment, contradiction, and neutral ; in NLI these categories
are more fluid. Thus, one research group can judge the logical categorization of other research group
as erroneous [Kalouli et al., 2017]. The subjective grounding of the NLI task also explains why the
human performance for the benchmark datasets is lower than 100% (Figure 1.1).

2.1.2 Technical Formulation

The task of text classification (text categorization) consists in categorizing texts (documents)
into different classes. We can formulate the categorization process as a statistical classification task
(a supervised learning task). The text data D is of the form:

D = {(T1, Y1), . . . , (Tn, Yn)}, (2.1)

where Ti is a text input (either a word, a sentence, a collection of sentences, or a document) and
Yi is a discrete random variable that takes values in some finite set Y. The NLI task is a version of
text classification. In this task, the input text is a tuple of sentences Ti = (Pi, Hi) and the target
Yi is either entailment, contradiction or neutral. For example, one NLI observation is of the form:

P = A man with a gray shirt holds a young infant in his hands.

H = A man is wearing a shirt.

Y = entailment.

7

8 THEORETICAL BACKGROUND 2.1

Different methods are used to transform a text input into a vector of covariates (features). We
call such methods representation functions.

2.1.3 Bag-of-Words

The most simple form to represent a text into a collection of measurements is by using word
frequency. For a text data D, by corpus we mean the set of all text inputs presented in D. Let
V = (w1, . . . , wV) be the sequence of all unique word types appearing in the corpus ordered by
their frequency (we call this sequence the vocabulary). The bag-of-words (BOW) representation of
the text Ti is defined as:

Xi = (Xi,1, . . . , Xi,V), (2.2)

where Xi,j captures some frequency information about the word wj in the text Ti. Usually we choose
one of the following types of representation:

• Xi,j ∈ {0, 1} indicates the absence or presence of the word wj in the text Ti.

• Xi,j ∈ N indicates the number of occurrences of the word wj in the text Ti.

• Xi,j ∈ R indicates the frequency of the word wj in the text Ti rescaled by how often this
word appear in all documents (this metric is know as the term frequency - inverse document
frequency ; tf-idf).

Since the vocabulary size can be large, this process can generate a substantial amount of features.
Hence, it is normal to combine the BOW method with dimensionality reduction techniques (e.g.,
principal component analysis) in order to simplify the input data.

2.1.4 Heuristics Based Representations

Instead of using a general approach like BOW, we can apply a heuristic (i.e., a strategy based
on domain knowledge) to construct an useful representation function. This sort of strategy is known
in the machine learning literature as “feature engineering”.

For example, sentiment analysis is the task of classifying text according to subjective judgements.
Normally such judgments are expressed as three sentiments related to a text: positive, negative and
neutral. For a specific version of this task, say sentiment analysis focused on political discourse, we
can simplify the feature creation process by defining only a couple variables related to the occurrence
of positive and negative words in the text. A concrete example can illustrate this point. The data
by Eight [2016] is a collection of tweets about the early August republican party debate predating
the 2016 United States presidential election. In this data we can find observations such as:

T = Before the #GOPDebate, 14 focus groupers said they had favorable
view of Trump.

Y = positive.

And

T = Fox News trying to convince us young Black Americans are more

worried about ISIS than police terrorism.

Y = negative.

Let Pos = {good,favorable, . . . } and Neg = {evil,terrorism, . . . } be previous selected
sets of positive and negative words, respectively. If our domain knowledge indicates that usually
the tweet sentiment is associated with the words on these sets, we can define simple covariates like:

2.2 WORD EMBEDDINGS 9

Xi,j =
|vocab(Ti) ∩ Sen|
|vocab(Ti)|

, (2.3)

where either j = 1 and Sen = Pos, or j = 2 and Sen = Neg, and vocab is a function associating a
text with the set of words concurring on it. If we have an adequate prior knowledge on the subject,
the engineered features can be more useful than the ones created by the BOW method.

2.1.5 Classifiers and Performance Metrics

After the representation function is selected, the text data in (2.1) is transformed in the usual
set of input-output pairs from a supervised learning task:

D = {(X1, Y1), . . . , (Xn, Yn)}, (2.4)

where Xi = (Xi,1, . . . , Xi,d) ∈ X ⊂ Rd, for some d ∈ N. At this point, the text classification problem
becomes a machine learning problem. Thus, we can use a variety of well-known models from this
field to solve the initial task: nearest neighbors, logistic regression, random forest, neural networks,
etc. In this context, a text classifier is just a machine learning model combined with a representation
function.

We asses the generalization performance of those classifiers using the usual metrics from the
field. Given a classifier g, the true accuracy of g is defined as:

acc(g) = E[I(g(X) = Y)]

= P({g(X) = Y }), (2.5)

where I is the indication function. In other words, the true accuracy is the probability of the
model correctly predicting a new observation. Since we do not have access to the join population
distribution for X and Y , we estimate the true accuracy using an independent test data DTe =
{(Xi, Yi) : i = 1, . . . ,m}. The estimate is called the test accuracy :

âcc(g) =
1

m

m∑
i=1

I(g(Xi) = Yi). (2.6)

2.2 Word Embeddings

One approach that has been achieving large success in text and image classification is known
as deep learning (feature learning, representation learning) [Bengio et al., 2013]. In this perspective
both the representation function and the classifier are parametric models whose parameters are esti-
mated in a classification task. We introduce this approach by detailing one of its first contributions
to NLP: word embedding, i.e., the process of representing a word as a vector in a multidimensional
space such that an aspect of the word meaning is captured by the representation.

2.2.1 Probabilistic Language Modeling

Before we comment on the word embedding, it is worthwhile to describe how such representation
can be obtained. For this reason, we describe one central NLP task: language modeling. The language
modeling task is focuses on estimating the probability of a sentence appearing on a language; more
precisely, in this task we are interested to estimate the probability:

P(w1, . . . , wn), (2.7)

for every sequence of words w1, . . . , wn obtained from a vocabulary V. Since this is a very demanding
task, language models made some simplifying assumptions. Usually, it is assumed the kth order

10 THEORETICAL BACKGROUND 2.2

Markov property for the language generation process, i.e., the next word in a sequence depends
only on the last k words. Thus, for every i ∈ N we assume that

P(wi |w1, . . . , wi−1) ≈ P(wi |wi−k, . . . , wi−1). (2.8)

Using this assumption and the chain-rule of probability, (2.7) can be approximated as

P(w1, . . . , wn) = P(w1)P(w2 |w1)P(w3 |w1, w2) . . .P(wn |w1, . . . , wn−1)

≈
n∏
i=1

P(wi |wi−k, . . . , wi−1), (2.9)

where w1−k, . . . , w0 are special padding tokens. For example, by setting k = 1, the probability of
the sentence let’s go dancing can be approximated as

P(let’s go dancing) ≈ P(let’s |[S])P(go |let’s)P(dancing |go), (2.10)

where [S] is the start-of-sequence token.1 With these simplifications, the problem of correctly
estimating P(wi |wi−k, . . . , wi−1) becomes the main focus of the language modeling task.

Although there is a long history of different techniques used to estimate these conditional prob-
abilities [Chen and Goodman, 1999], we concentrate on the recent approach where the language
modeling task is treated as a machine learning problem. Given k ∈ N, and a collection of documents
- a corpus with the associated vocabulary V - we can obtain multiple k sequences of consecutive
words from the corpus and create a text classification dataset as in (2.1) where each observation
(Ti, Yi) is of the form

(Ti, Yi) = ((w1, . . . , wk−1), wk). (2.11)

In essence, we are trying to classify a text compose of k − 1 words according to the next word
wk. The objective of this classification task is to obtain a model of the probability distribution
P(Wk |w1, . . . , wk−1) for each sequence w1, . . . , wk−1 ∈ V.2 In other words, a language model is the
function g : Vk−1 → [0, 1]|V| such that

g(w1, . . . , wk−1) = ŷ

ŷi = P̂(w |w1, . . . , wk−1), (2.12)

where i ∈ {1, . . . , |V|} and w is the ith word in V.
On a side note, since we are using a raw text to construct a text classification dataset, there is

no need to manually assign a label Yi to each observation from the data. Hence, many authors call
the language modeling task an “unsupervised” or a “self-supervised” task.

2.2.2 Neural Language Models

In the current stage of the NLP field, there are many possibilities of using a neural network to
construct a language model – the result of this construction is called a neural language model. Here,
we present the model described by Bengio et al. [2003]. It is a very simple solution to the language
modeling problem that can help us understand how to obtain word representations as vectors in a
multidimensional space.

1A token is a sequence of characters that comprises a semantic unit. We can use words or sub-words (like mor-
phemes) as tokens. Often, we add special tokens to the vocabulary in order to make some text information explicit.

2Wk denotes a random variable for a word in the k position. Hence, P(w |w1, . . . , wk−1) is just the abbreviation
of P(Wk = w |W1 = w1, . . . ,Wk−1 = wk−1).)

2.2 WORD EMBEDDINGS 11

Before describing the model, some notation is needed. Given a vocabulary V of size V , let w be
the ith word on V. We can represent w as a vector hot(w) ∈ {0, 1}V . This vector is called the one-
hot vector (one-hot encoding) associated with the word w. It indicates the position of w in V, i.e.,
for all j ∈ {1, . . . , V }, hot(w)j = 1 iff j = i. Given a matrix E ∈ Rd×V , let vE(w) = Ehot(w) ∈ Rd.
By the construction of hot(w), vE(w) is the ith column in E. The mapping vE : V → Rd is referred
to as an embedding, and vE(w) an embedding vector (word embedding).

Let ((w1, . . . , wk−1), wk) be an observation as defined in (2.11). A simple neural language model
is defined by the following set of equations

ŷ = softmax(W2h+ b2)

h = g(W1x+ b1)

x = [vE(w1); . . . ; vE(wk−1)], (2.13)

where

• θ = (E,W1, b1,W2, b2) is the set of model’s parameters such that E ∈ Rd1×V ,W1 ∈
Rd2×(k−1)d1 , b1 ∈ Rd2 ,W2 ∈ RV×d2 , b2 ∈ RV . The dimensions d1, d2 ∈ N are hyperparameters
for this model.

• The context vector x = [vE(w1); . . . ; vE(wk−1)] ∈ R(k−1)d1 is the result of concatenating the
word vectors vE(w1), . . . , vE(wk−1) ∈ Rd1 .

• g : Rd2 → Rd2 is a non-linear function (e.g., the logistic function sigm).

• softmax : RV → [0, 1]V is the mapping that forces the values in ŷ to be positive and sum to
one, i.e., for z ∈ RV :

softmax(z)j =
ezj∑V
l=1 e

zl
.

• ŷ ∈ [0, 1]V stands for the estimated probability distribution given the context words w1, . . . , wk−1,
i.e., for a word w in the ith position of the vocabulary, ŷi = P̂θ(w |w1, . . . , wk−1).

We evaluate the model by measuring the dissimilarity between the estimation and the observed
word distribution. Usually, we use the categorical cross-entropy loss for measurement:

CE(hot(wk), ŷ) = −
V∑
i=1

hot(wk)i log(ŷi). (2.14)

The model is trained using the cross-entropy loss for all observations in the dataset. What is
important for our discussion is a byproduct of this model.

Similar to the function vE , we can define the mapping vW2 : V → Rd2 such that vW2(w) =
hot(w)W2. Since the word representation in W2 is affected by the context vector h, one observed
side effect is that words that have a similar context have a similar representation in W2 (vector
correspondence is often measured using the cosine similarity). For example, words like king and
queen tend to have a more similar word representation compared to the words king and dog.
However, it should be clear that the complete meaning of a word is not captured by this method.
For example, since words that are opposite of each others (e.g., good and bad, hot and cold)
appear on similar contexts, their respective word vectors tend to be similar.

Both vE and vW2 are word embeddings. After the neural language model is trained we can
combine these functions into a single mapping (by taking the mean, or just by vector concatenation)
and use the resulting function as a word representation for other NLP tasks.

12 THEORETICAL BACKGROUND 2.3

2.2.3 Continuous Bag-of-Words Representation

What we have described is just one possibility of using a language model to obtain a word
representation function. The NLP field have developed a family of similar algorithms to obtain
word embeddings from non-annotated data. Popular examples are given by Joulin et al. [2017],
Mikolov et al. [2013], Pennington et al. [2014].

Going back to the problem of text classification, given an embedding v : V → Rd, we can define
a representation function as follows: let (Ti, Yi) be an observation of (2.1) such that Ti is a text of
length ki, i.e., Ti = (wi,1, . . . , wi,ki) for wi,1, . . . , wi,ki ∈ V. We define the feature vector associated
to this text as

Xi =
1

ki

ki∑
j=1

v(wi,j). (2.15)

This approach is called continuous bag-of-words (CBOW) representation.3 It is similar to the
BOWmethod in the sense that it generates a representation function that can be applied on any task
without the need of domain knowledge. There are two main advantages of the CBOW representation
compared to the BOW method: the former generates less features (d is usually significantly smaller
than V = |V|); and since the CBOW representation is usually obtained using a large amount of
raw data, this method can offer an useful representation for words not appearing in the training
data. For example, if the word king appears on the training data and the word queen is absent, a
new observation containing the word queen will present similar features to the ones in the training
dataset related to the word king.

2.3 Sequence Modeling

The representations presented in (2.2), (2.3), and (2.15) are different forms of transforming a
text input into a feature vector. One element in common among all representations presented so far
is the lack of any order information. In this section, we present one family of deep learning models
widely used in NLP to capture regularities in sequential data.

2.3.1 Recurrent Models

Recurrent neural network (RNN) is a family of non-linear autoregressive models. It is based
on the idea that the computation of an input xt ∈ Rd depend on past values x1, . . . ,xt−1 ∈ Rd.
Using the neural network terminology, a function applied to previous inputs is called a recurrent
computation and the product of that function is a hidden state (hidden layer) that encodes past
inputs.

An example is in order. Consider the language modeling problem where we use the word sequence
(w1, . . . , wk−1) to predict the next word wk. Instead of concatenating the k− 1 word vectors into a
single input, we can use a RNN model to generate an output for each sub-sequence. For example,
we can modify the neural network (2.13) in the following way:

ŷt = softmax(W2ht + b2)

ht = g(W1xt +Uht−1 + b1)

xt = Ehot(wt), (2.16)

where

• t ∈ {1, . . . , k − 1}.
3Here, we follow Goldberg [2016, p. 93] in calling the averaging of embedding vectors a “CBOW representation”.

The name CBOW is also used to define one specific neural architecture presented by Mikolov et al. [2013].

2.3 SEQUENCE MODELING 13

• The models parameters θ = (E,W1, b1,U ,W2, b2) are defined as in (2.13) with the following
additions: W1 ∈ Rd2×d1 and U ∈ Rd2×d3 , for d3 ∈ N.

• h0 ∈ Rd3 , the initial hidden state, is the zero vector.

One of the main advantages of using a recurrent model is that we are estimating a conditional
probability distribution for different context sizes, i.e., given t ∈ {1, . . . , k−1} and the subsequence
of words (w1, . . . , wt), ŷt = P̂θ(Wt+1 |w1, . . . , wt). This change allow us, at least in theory, to choose
large values for k in order to model long-range dependencies.

As is usual in neural network construction, we can define a variety of complex models based on
the idea of recurrence. The model (2.16) can be augmented by adding more hidden states or by
allowing information related to the future words within the sequence. This latter augmentation is
called bidirectional -RNN. For example, we can modify (2.16) by adding a hidden state st formed
by the future inputs st+1, . . . , sk−1:

ŷt = softmax(W3[ht; st] + b3)

st = g2(W2xt +U2st+1 + b2)

ht = g1(W1xt +U1ht−1 + b1)

xt = Ehot(wt), (2.17)

where both h0 and sk are the zero vector, and both g1 and g2 are non-linear functions.4 It is not
theoretically clear the benefits of using a complex model compared to simple RNNs like (2.16) or
(2.17), but it is reported that architectures with several layers obtain better results on different
NLP tasks [Goldberg, 2016, p. 172].

The RNN model is trained using the same cross entropy loss (2.14) – in this case, we compare
the dissimilarity between hot(wk) and ŷk−1. It should be clear that we are using the language
modeling task only as an example. The transition to the text classification task is straightforward:
for an observation (Ti, Yi) of (2.1) such that Ti = (wi,1, . . . , wi,ki) we obtain from models like (2.16)
or (2.17) the vector ŷki = P̂θ(Y |wi,1, . . . , wi,ki) ∈ [0, 1]|Y|. The final classification is obtained by
taking arg maxy P̂θ(Y = y |wi,1, . . . , wi,ki). Thus, in the text classification task, we can use the
same cross-entropy loss to compare the model’s estimated distribution with the dummy variable
associated with Yi.

When training recurrent neural networks, we obtain the models gradient with respect to the
loss function using the backpropagation algorithm (the application of this automatic differentiation
algorithm to a RNN model is often called backpropagation through time). Although this kind of deep
learning model is very useful, it presents a severe flaw. When computing the gradients there is a
lot of repeated matrix multiplication using the recurrent weight matrix (for example, in (2.16), the
matrix U). Depending on some configurations of this matrix the gradients may vanish or explode
exponentially with respect to k. In order to correct this problem, specialized architectures were
designed to handing long-term dependencies.

2.3.2 Gated Recurrent Unit

A new architecture called gated recurrent unit (GRU) was proposed by Chung et al. [2014].
This model was constructed so that each hidden state ht can adaptively capture dependencies of
different steps. In order to give a concrete formulation of this model, let us continue to use the
language modeling task. Again, for t ∈ {1, . . . , k− 1}, the GRU model is composed of the following
equations:

4For the sake of brevity, when a model is composed of multiple parameters matrices, we omit the full detailed
description.

14 THEORETICAL BACKGROUND 2.4

ŷt = softmax(W2ht + b2)

ht = ut � h̃t + (1− ut)� ht−1

h̃t = tahn(W1xt +U(ht � rt) + b1)

rt = sigm(Wrxt +Urht−1 + br)

ut = sigm(Wuxt +Uuht−1 + bu)

xt = Ehot(wt), (2.18)

where sigm is the logistic function, tahn is the hyperbolic tangent function, � is the Hadamard
product (the element-wise product), and h0 is the zero vector. There is some intuition behind the
construction of this model: rt is a vector with values in [0, 1] called a reset gate, i.e., a vector that
at each entry outputs the probability of resetting the corresponding entry in the previous hidden
state ht−1. Together with rt we define an update gate, ut. It is also a vector with values in [0, 1].
Intuitively, we can say that this vector decides how much information on each dimension of the
candidate update h̃t we use to form ht. Both rt and ut are defined by ht−1 and xt. The new hidden
state ht combines the candidate hidden state h̃t with the past hidden state ht−1 using both rt and
ut to adaptively copy and forget information.

2.3.3 Long Short-Term Memory

Long short-term memory (LSTM) is one of the most applied versions of the RNN family of
models [Hochreiter and Schmidhuber, 1997]. Historically it was developed before the GRU model,
but conceptually we can think in the LSTM as an expansion of the model presented in (2.18). First,
let us define the LSTM model using the following equations:

ŷt = softmax(W2ht + b2)

ht = ot � tanh(ct)

ct = ft � ct−1 + it � c̃t
c̃t = tahn(W1xt +Uht−1 + b1)

ft = sigm(Wfxt +Ufht−1 + bf)

it = sigm(Wixt +Uiht−1 + bi)

ot = sigm(Woxt +Uoht−1 + bo)

xt = Ehot(wt), (2.19)

where both c0 and h0 are the zero vector. The idea behind the LSTM model is to combined different
recurrent computation (called gates): the forget gate ft controls how much informative is discarded,
the input gate, it controls how much information is updated, and the output gate ot controls how
munch each component is outputted. A candidate cell, c̃t is formed as a normal RNN hidden state,
and a new cell ct is formed by forgetting some information of the previous cell c̃t−1 and by adding
new values from c̃t (scaled by the input gate). The new hidden state ht is formed by filtering ct
using the output gate.

A criticism of the LSTM and GRU architectures is that both seem ad hoc solutions for the
vanishing gradient problem. Although the authors of both models claim that the construction
of those gates has some grounding, the purpose of each construction decision is not immediately
apparent. This type of criticism seems reasonable, studies have shown that by a process of systematic
trial and error it is possible to find a set of equation defining a competitive RNN model without
the input of human intuition [Rawal and Miikkulainen, 2018, Schrimpf et al., 2018].

2.4 COMBINING RECURRENT MODELS 15

2.4 Combining Recurrent Models

In order to facilitate the description of the most recent deep learning model used in NLP, we
need to present two concepts built on top of the RNN model: the encoder-decoder architecture and
the notion of attention.

2.4.1 Neural Machine Translation

RNN based language models are successfully used in the machine translation task. In this task
we try to map sentences from a source language to a target language. A dataset for this task is
composed of sentence pairs (Tso, Tta) such that one sentence is the translated version of the other.
For example, by taking English and German as the source and target language, respectively; we
have observations of the form:

Tso = Gentleman, today you see me washing glasses.

Tta = Meine Herren, heute sehen Sie mich Gläser abwaschen.

One translation model based on RNNs is known as the encoder-decoder architecture (or sequence-
to-sequence model) [Sustskever et al., 2014]. The main idea is to use one neural language model to
encode the sentences from the source language (the encoder), and use another neural network to
predict the next word in the target language conditioned to previously selected words from the
source and target languages (the decoder).

For instance, let Tso = (w1, . . . , wk), Tta = (w′1, . . . , w
′
m) and let Vso and Vta be the vocabularies

for the source and target languages, respectively, such that |Vso| = V1 and |Vta| = V2. We define
the encoder, fenc : Rd1 × Rd2 → Rd2 and the decoder, fdec : Rd1 × Rd2 → Rd2 as two different
realizations of the same RNN architecture (either a simple RNN, a GRU or a LSTM). We also
define a parameterized function g : Rd2 → [0, 1]V2 to map hidden states to a distribution over
words from the target language. The computation of the encoder-decoder model can be described
in two steps. First, we use fenc to obtain all the hidden states associated with the subsequences
from (w1, . . . , wk):

ht = fenc(xt,ht−1)

xt = Esohotso(wt), (2.20)

where

• t ∈ {1, . . . , k}.

• Eso ∈ Rd1×V1 is the source language embedding matrix and hotso : Vso → {0, 1}V1 is the
associated one-hot encoding.

• h0 ∈ Rd2 is the zero vector.

We interpret hk as a context vector that encodes the source sentence Tso. At a second moment,
we use hk to define a prediction for every word from Tta:

ŷt = g(h′
t) = softmax(Wh′

t + b)

h′
t = fdec(x

′
t,h

′
t−1)

x′
t = Etahotta(w

′
t), (2.21)

where

16 THEORETICAL BACKGROUND 2.4

• t ∈ {0, . . . ,m}.

• Eta ∈ Rd1×V2 and hotta : Vta → {0, 1}V2 .

• w′0 = [S] and h′
−1 = hk.

• ŷt = P̂θ(W ′t+1 |w1, . . . , wk, w
′
1, . . . , w

′
t) is the estimated conditional distribution over the

words from the target language.

The most relevant modification in this setup is the use of the encoded sentence hk as the initial
hidden state h′

−1. For each word w′t appearing in Tta we can obtain the pointwise loss

lt = CE(hotta(w
′
t), ŷt). (2.22)

The loss associated to the observation (Tso, Tta) is the sum of all partial losses l1, . . . , lm. Both
encoder and decoder are trained jointly, thus the representation for both the source and target
languages are learned in the training phase.

2.4.2 Attention

The encoder-decoder model uses all encoded words from the source sentence to predict the next
target word. However, for some cases only parts of the source sentence are relevant. For example,
it is easier to predict the German word Herren using only the English word Gentleman and the
previous German word Meine. Encoder-decoder with attention is a variant of the model described
in (2.20) and (2.21) such that it “learns” which parts of the encoding sentence are relevant for each
prediction ŷt [Bahdanau et al., 2015].

In order to describe this model, let us continue in the same setup as described in subsection
2.4.1, where h1, . . . ,hk are all hidden states generated by the encoder. The attention model differs
from (2.21) in the way that for each t ∈ {0, . . . ,m}, the prediction ŷt is based on a context vector
ct that selectively “pays attention” to some elements from the sequence (h1, . . . ,hk). This model is
defined by the following equations:

ŷt = softmax(Wh̃t + b)

h̃t = tahn(Wc[ct;h
′
t] + bc)

ct = attend(h1, . . . ,hk,h
′
t)

h′
t = fdec(x

′
t,h

′
t−1)

x′
t = Etahotta(w

′
t), (2.23)

where h′
−1 ∈ Rd2 is the zero vector. The core of this technique is the definition of the context vector

ct given by the attention mechanism attend. There are many variants of the attention mechanism,
here we present the one described by Luong et al. [2015] as global attention. The intuition behind
the attention mechanism is that we assign a score to the hidden vectors h1, . . . ,hk according to
its relevance for h′

t. We normalize these scores using the softmax function and then we define the
context vector ct as the weighted average over all the source hidden states. Formally, we define the
attention mechanism as follows:

attend(h1, . . . ,hk,h
′
t) =

k∑
i=1

αt,ihi,

αt = softmax

score(h

′
t,h1)

...
score(h′

t,hk)

 , (2.24)

2.5 THE TRANSFORMER 17

where score is a parametererized function. Luong et al. [2015] list three possible alternatives to this
function:

score(h′
t,hi) =

h′
t
>hi,

h′
t
>Wahi,

v>a tahn(Wa[h
′
t;hi]),

(2.25)

where both va and Wa are specific parameters for the score function. In this model, the encoder,
decoder and the attention mechanism are learned in the training phase. One of the main advantages
of this method is that it introduces some interpretability to the deep learning model. In the decoding
stage, we can observe the attention weights αt,i ∈ [0, 1] (for i = 1, . . . , k) and check which parts of
the source sentence are relevant for the prediction on the step t (Figure 2.1 shows an output of this
method).

Figure 2.1: Attention matrix α for the English/German translation example. For t = 1, . . . , 8, the row αt

displays the attention weights αt,i relating the target word w′
t and the source words wi (where i ∈ {1, . . . , 7}).

2.5 The Transformer

In the highly influential work by Vaswani et al. [2017], it is proposed a deep learning model
based solely on the idea of attention. They have called such model the transformer. Since this is a
complex model, we first present its main components: self-attention and positional-encoding. Then,
we describe the full model and the associated training routine.

2.5.1 Self-Attention

As the name indicates, self-attention is the process of computing attentions weights by comparing
a sentence with itself. Before explain this process, it is worthwhile to follow Vaswani et al. [2017]
and formulate the attention method in an abstract way. Roughly speaking, the attention function
can be described as a process of taking a query q, computing the compatibility score of q with each
key k1, . . . ,kn; and using such score to construct the weighted sum of the values v1, . . . ,vn.

More formally, for dk, dv ∈ N, let q1, . . . , qn ∈ Rdk be a sequence of queries, k1, . . . ,kn ∈ Rdk
be a sequence of keys, and v1, . . . ,vn ∈ Rdv be a sequence of values. For t = 1, . . . , n, we define the
attention vector zt based on the query qt as follows:

18 THEORETICAL BACKGROUND 2.5

zt =
n∑
i=1

αt,ivi,

αt = softmax

score(qt,k1)

...
score(qt,kn)

score(qt,ki) =
qt
>ki√
dk

. (2.26)

Clearly, (2.26) is just a reformulation of the computations described in (2.24) and (2.25) without
referring to the hidden states of a recurrent model and selecting an specific score function. Using
matrix notation, we can further simplify the attention function. Let Q ∈ Rn×dk ,K ∈ Rn×dk ,V ∈
Rn×dv be the matrices of queries, keys and values, respectively. The matrix of outputs of the
attention process can be computed as:

Attention(Q,K,V) = softmax

(
QK>√
dk

)
V . (2.27)

Instead of defining a single attention weight to connect a query with a key, Vaswani et al. [2017]
define a function that associates multiple attentions weights for different linear projection of these
objects. They have called such function a multi-head attention:

MultiHead(Q,K,V) = [head1; . . . ;headh]W o

headi = Attention(QWi
Q,KWi

K ,VWi
V), (2.28)

where

• i ∈ {1, . . . , h}.

• Wi
Q ∈ Rd1×dk , Wi

K ∈ Rd1×dk , Wi
V ∈ Rd1×dv , and WO ∈ Rhdv×d1 .

• d1, h ∈ N are hyperparameters of the model. Such that d1 is the output size and h is the
number of heads.

By setting dk = dv, the self-attention function (self-attention layer) is the mapping defined as

self-attend(X) = MultiHead(X,X,X), (2.29)

where X ∈ Rn×dk is a sequence of n vectors in matrix format. For example, X can be a matrix
composed of n word embeddings.

Self-attention is one method of capturing relations among a sequence of vectors x1, . . . ,xn. It is
an alternative to the RNN style models. One of the advantages of self-attention is the property of
connecting all positions in a sequence with a constant number of sequentially executed operations
[Vaswani et al., 2017]. One of the side-effects associated to this technique is the production of
interpretable models. After training the model it is expected that the attention weights exhibit a
behavior related to some syntactic and semantic phenomenon. However, as usual in deep learning,
the interpretation is not straightforward (as illustrated in Figure 2.2).

2.5 THE TRANSFORMER 19

Figure 2.2: Self-attention output generated by the visualization tool introduced by Vig [2019]. Using a
trained model based on self-attention (GPT-2 [Radford et al., 2019]), the figure displays the attention weights
related to the attention layer 4 and head 7. The weights are represented as lines connecting the query words
(left) with the value words (right). In the left figure, the weights may indicate that this attention head is
involved in anaphora resolution. However, by changing the pronoun in the sentence, the right figure, we
loose this possible interpretation.

2.5.2 Positional Encoding

Self-attention can only capture relation between words. In order to add word ordering in the
model, Vaswani et al. [2017] have introduced the notion of positional encoding. The core idea of this
method is to use a multidimensional vector to represent a position t in a sequence of n elements.
This is done by defining a vector of sinusoidal functions, a positional vector. Then, such vector is
summed to the regular word embeddings.

For d ∈ N (where d is even), the positional encoding is the mapping PE : N\{0} → Rd such
that for any position t, the positional encoding vector PE(t) is defined as:

PE(t)i =

{
sin
(
ωκ(i)t

)
, if i is odd

cos
(
ωκ(i)t

)
, otherwise,

(2.30)

where

• i ∈ {1, . . . , d}.

• κ : N→ N is the mapping:

κ(i) =

{
i+1

2 , if i is odd
i
2 , otherwise.

• for m ∈ N, ωm is the frequency of the each sinusoidal curve defined as

ωm =
1

10000
2m
d

.

To put it another way, the positional encoding is just a vector containing pairs of sines and
cosines with different frequencies. All sinusoidal functions are applied to t:

20 THEORETICAL BACKGROUND 2.5

PE(t) =

sin (ω1t)
cos (ω1t)
sin (ω2t)
cos (ω2t)

...
sin
(
ω d

2
t
)

cos
(
ω d

2
t
)

For example by setting d = 80, we can visualize how each encoding vector represents one position

in a sequence of length 200 (the positional embeddings are the rows in matrix displayed in Figure
2.3).

Figure 2.3: Positional encoding of dimension 80. Each row t represents the positional vector PE(t).

2.5.3 The Transformer Architecture

Self-attention and positional encoding are the essential ideas behind the transformer model.
Before writing all the equations to define the model it is helpful to establish some auxiliary concepts.
As usual in deep learning, the transformer architecture also uses affine transformations combined
with a rectified linear units (ReLU) function. This computation can be summarized on a single
function called feed-forward network FFN :

FFN(X) = max(0,XW1 + b1)W2 + b2. (2.31)

In order to stabilize the computations of the model, Vaswani et al. [2017] use the layer normal-
ization method described by Ba et al. [2016]. This stabilization process is denoted as LayerNorm.
With all theses notions at hand, we can easily describe the transformer network. This model can be
seen as a variation of the encoder-decoder architecture. The notable difference is the substitution
of the notion of recurrence by self-attention.

We explain the transformer model using the automatic translation task. Hence, we start with the
source and target sentences Tso = (w1, . . . , wk) and Tta = (w′1, . . . , w

′
m) as mentioned previously.

Let X ∈ Rk×d and Y ∈ Rm×d be the rearranging of the source and target word embeddings in
matrix format, respectively. As in the case when using the encoder-decoder model, we first apply
the encoder model to the input:

2.5 THE TRANSFORMER 21

e = Fenc(X
′)

X′ = X +

PE(1)>

...
PE(k)>

 , (2.32)

where Fenc is the transformer encoder (encoder layer) defined by the equations:

Fenc(X
′) = LayerNorm(e3 + e2)

e3 = FFN(e2)

e2 = LayerNorm(X′ + e1)

e1 = self-attend(X′). (2.33)

After the encoded matrix e ∈ Rk×H is computed (H is the output size of the encoder layer), we
use the decoder model to predict the probability of the next target word. We need to perform this
computation for each t ∈ {1, . . . ,m}. Since the decoder model uses the target sentence Y as input,
we need to apply a mask in order to block the attention mechanism to store information on future
words during training.

ŷt = softmax(Wdt + b)

dt = Fdec(O
′
t, e)

O′
t = mask(O, t)

O = Y +

PE(1)>

...
PE(m)>

 , (2.34)

where

• t ∈ {1, . . . ,m}.

• mask(O′, t) is the result of filling with zeros every row j ≥ t of the matrix O′.

• Fdec is the Transformer decoder (decoder layer) defined as follows:

Fdec(O
′
t, e) = LayerNorm(d4t + d5t)

d5t = FFN(d4t)

d4t = LayerNorm(d2t + d3t)

d3t = MultiHead(e, e,d2t)

d2t = LayerNorm(O′
t + d1t)

d1t = self-attend(O′
t). (2.35)

As in the case of neural machine translation, the loss function is defined by using the categorical
cross-entropy loss to compare ŷt with hot(w′t). For presentation purposes, in equations (2.32) and
(2.34) we have defined the Transformer model using only one single pair of encoder and decoder
layers (Figure 2.4 helps us visualize the model architecture using a single diagram). In practice, we
define more complex models by combining multiple instances of the same type of layer. For example,

22 THEORETICAL BACKGROUND 2.6

in the original paper [Vaswani et al., 2017], the architecture used was composed of six encoders and
six decoders layers.

Figure 2.4: Transformer model represented as a diagram (Figure by Vaswani et al. [2017]) The figure
displays a visual representation of equations (2.32), (2.33), (2.34), and (2.35).

2.6 Transformer Based Models

One of the recent breakthroughs in the NLP field is the combined use of the transformer model
and generative pre-training [Howard and Ruder, 2018, Radford et al., 2018]. The main idea is to
first train a transformer network in the language modeling task, then use all learned attention
weights and adapt the parameters for a new text classification task. This technique is known as
transfer learning. In this section, we briefly describe the application of transfer leaning for NLP, we
also explain some models based on this training strategy.

2.6.1 Transfer Learning

Transfer learning is the procedure of training a model in two stages. We first train a model on a
source task, then we take the estimated model and train it again on a target task. These two phases
are refereed to as pre-training and fine-tunning, respectively. Such technique is well established in
the computer vision community [Yosinski et al., 2014]. Often in computer vision, the source task
is an image classification task defined in a large dataset of different images. And the target task
is another image classification task composed of non-overlapping images. It is expected that the
features learned in the source task can be general enough in order to be useful for different target
tasks:

Many visual categories share low-level notions of edges and visual shapes, the effects of
geometric changes, changes in lighting and so on. In general, transfer learning, multi-

2.6 TRANSFORMER BASED MODELS 23

task learning and domain adaptation can be achieved via representation learning when
there exist features that are useful for the different setting or tasks, corresponding to
underlying factors that appear in more than one setting. [Goodfellow et al., 2017, p.
527]

As we have seen in Section 2.2, word embedding is a simplified form of transfer learning where
only one part of the neural network model was first pre-trained and then fine-tuned (the embedding
matrix). A more general approach is proposed by Howard and Ruder [2018]: train a model on the
language model task, then fine-tune some version of the model in a new text classification task.
By choosing language modeling as the source task we can make use of the large unlabeled corpora
public available (e.g., all texts present in the Wikipedia). This is especially beneficial when training
deep learning models in target tasks with low-resources dataset (the NLP community also uses the
term downstream task to refer to a target task). As in the case of computer vision, it is expected that
some general properties of language are captured when we pre-train the model in a large corpus.

2.6.2 BERT

The network named BERT (bidirectional encoder representations from transformers) is a re-
markable achievement due to its simplicity and prediction power. This model is based on the core
idea by Radford et al. [2018]: apply the transfer learning technique from Howard and Ruder [2018]
using the transformer architecture. However, the model by Radford et al. [2018] (called GPT - gen-
erative pre-trained transformer) was based on a transformer decoder. As we have seen in (2.34),
the decoder only uses the past words from the target sentence to generate the prediction; in other
words, it is not a bidirectional model. One of the main ideas by Devlin et al. [2019] is to construct
a model based on a transformer encoder to allow bidirectional predictions.

Using the notation from Devlin et al. [2019], we can describe BERT as a stack of L encoder
layers, the size of the vector output after passing through those layers is H and the number of
self-attention heads in each layer is A. There are two versions of the BERT model:

• BERTBASE: L = 12, H = 768 and A = 12.

• BERTLARGE: L = 24, H = 1024 and A = 16.

Since BERT is designed to be a model adaptable to different tasks (text classification using one
or two text inputs, language modeling and QA), the input text used for this model is arranged to be
as general as possible. There are two new strategies to organize the text input: i) the token [CLS]
is added in the beginning of text input (the associated embedding for this token encodes the class
in a classification task); ii) in order to differentiate two sentences inside the input text, the separate
token [SEP] is introduced between the sentences; on top of that, an especial embedding for each
sentence type is added to each word.

Thus, the text input for this model is of the form [CLS] w1 . . . wk [SEP] w′1 . . . w
′
m [SEP].

In this case, w1 . . . wk denotes the first sentence and w′1 . . . w′m denotes the second sentence. Tasks
like NLI and QA use two sentences as the input. For other tasks that do not require such type of
input, the input text is of the form [CLS] w1 . . . wk [SEP]. All inputs are constrained such that
m+ k ≤ n, where n is the maximum input size. In [Devlin et al., 2019], n is set to 512. Figure 2.5
shows a simple sentence pair organized as the input for this model.

24 THEORETICAL BACKGROUND 2.6

Figure 2.5: Input format for the BERT model (Figure by Devlin et al. [2019]).

As mentioned before, BERT differentiates itself from the model presented by Radford et al.
[2018] by using the encoder layer as the basic building block for its architecture. However, by doing
so, it was observed that the language modeling task should be altered. It is not possible to use the
same training routine with the transformer encoder, because the self-attention mechanism forces
that all words in the input sentence become connected among themselves. In order to circumvent
this problem, Devlin et al. [2019] propose two new language modeling tasks.

Masked language modeling (MLM) is the task of predicting an specific token that was omitted
from a sentence. The omitted word is replaced by the [MASK] token. For example, one possible
input is the phrase this place is [MASK] quiet obtained from the sentence this place
is awful quiet; the goal is to predict the omitted word awful. The dataset for this task is
constructed by taking a large corpus and masking randomly some words from the sentences that
compose the corpus. In the work by Devlin et al. [2019], only 15% of the words in each sequence are
masked. The output of the BERT model is a matrix of size 512×H. Thus, in the MLM task only
the vectors corresponding to the masked token are used to create the prediction. It should be noted
that in the MLM task we do not perform explicit density estimation as in the original language
modeling task. The aim here is to reconstruct the original data from a corrupted input, hence the
MLM task allows the model to use a bidirectional context for reconstruction.

Next sentence prediction (NSP) is the text classification task of deciding whether a tuple of sen-
tences (A,B) follow each other in the original text. To create a dataset for this task, it is used both
real sequence pairs obtained from the corpus and synthetic examples of non-consecutive sentences.
One positive example is the pair (“to be, or not to be?”, “that is the question”);
and one negative example is (“in the beginning God created the heaven and the earth”,
“there was no possibility of taking a walk that day”).

The complete pre-training for BERT is based on both tasks, i.e., the training loss is the sum
of the mean masked language modeling and mean next sentence prediction likelihood. In order to
perform the fine-tuning for text classification we take the pre-trained model and use only the vector
corresponding to the [CLS] embedding (the first output of the BERT model) denoted c ∈ RH .
Hence, the BERT model for classification can be defined as follows:

ŷ = softmax(Wc+ b)

c = BERT ∗(X′)

X′ = X +

 PE(1)>

...
PE(512)>

+

SE(A)>

...
SE(B)>

 , (2.36)

where

• ŷ is the estimated label probabilities.

2.6 TRANSFORMER BASED MODELS 25

• BERT ∗ is the pre-trained version of either BERTBASE or BERTLARGE.

• X is the matrix of word embeddings associated to the input text; PE is the positional encoding
vector and SE in the segment embedding vector.

The model is trained as usual in the text classification task, i.e., all parameters are modified in
order to minimize the cross-entropy error. Figure 2.6 shows a diagram representing the acquisition
of the vector c in a text classification task that uses a pair of sentences as the input.

BERTBASE and BERTLARGE differ in complexity, the former is composed of 110M parameters
and the latter has 340M parameters. Empirically it seems that complex models yield a better
performance. In the work by Devlin et al. [2019], it is reported that the average accuracy for these
models on different text classification tasks are 79.6% and 81.9%, respectively.

Figure 2.6: BERT performing text classification. In this example the input text is composed of two sentences
(Figure by Lin [2020]).

2.6.3 RoBERTa

ROBERTA (robustly optimized BERT approach) [Liu et al., 2019b] is a variation of the BERT
model based on different design decisions when pre-training BERT models. They improve the train-
ing in BERT using four new ideas:

• Dynamic masking. When creating a masked observations for the MLM task, the original train-
ing in BERT was based on defining a single mask for each observation in the pre-processing
stage (static masking). In RoBERTA, it is used a dynamic masking, i.e., a training strategy
where a new mask is generated each time a training observation is fed to the model.

• Full-sentences without NSP. The input for the MLM task is constructed from full sentences
sampled contiguously from one or more documents. An addition separator token is introduced
to separate sentences from different documents. The loss term associated to the NSP task is
removed.

• Large mini-batches. It is possible to improve training when using large mini-batches by taking
an appropriate learning rate. The original BERT model was trained using a batch size of 256
sequences, in RoBERTa it is used batches of 8K sentences.

26 THEORETICAL BACKGROUND 2.7

• Larger byte-level byte-pair encoding. Byte-pair encoding is a type of encoding that uses sub-
words units instead of full words. The construction of the sub-words is based on a statistical
analysis of the training corpus. In order to store the resulting large vocabulary created by
this encoding (the vocabulary size range from 10K-100K subword units), each subword unit
is implemented using bytes instead of Unicode characters.

2.6.4 ALBERT

The model known as ALBERT (a lite BERT) [Lan et al., 2020] is a variation of the BERT
architecture aimed to produce a model with fewer parameters, but maintaining state-of-the-art
performance. Instead of using 100M-330M parameters for the base and large configuration as in
BERT, ALBERT is able to produce models composed of 12M-18M parameters for the base and
large configurations. This makes both training and inference faster without hurting performance.
Three main techniques are used to perform parameter reduction:

• Factorized embedding parameterization. Language modeling usually deal with a large vocab-
ulary V. The vocabulary size affects the embedding matrix used to transform each one-hot
representation to one word embedding. And since the size of the embedding is related to the
hidden size of the model, the size of the vocabulary becomes one limitation in choosing large
hidden size for the model. ALBERT solution is to use a factorization of the embedding matrix,
decomposing them into two smaller matrices.

• Cross-layer parameter sharing. To stabilize the model, one design decision in ALBERT is to
share all parameters across layers.

• Inter-sentence coherence loss. As observed by Liu et al. [2019b], removing the NSP loss im-
proves model performance on different downstream tasks. In ALBERT, the NSP loss is sub-
stituted by the loss of other pre-training task: the sentence-order prediction (SOP). SOP is
similar to the NSP task, the only difference is that the negative examples are two consecutive
sentences but with their order swapped. One negative example in this task is the pair (“that
is the question”, “to be, or not to be?”).

2.6.5 XLNet

For the sake of brevity, we are not going to review in detail the model XLNET. It is the
most complex model among the ones present in this section. Here we will only comment on the
motivations for this architecture.

XLNet is a model based on the transformer-XL model: an architecture that combines both
the transformer network and the autoregressive nature of the RNN model [Dai et al., 2019]. The
authors that proposed the XLNet model [Yang et al., 2019] bring the notion of recurrence back to
the transformer model in order to add dependency in the MLM taks. One problem observed in
this task, as formulated in the original BERT paper, is that the prediction of each masked token
is independent even when there are a clear dependency between words. For example, one possible
masking of the sentence It is taller than the Empire State is It is taller than
the [MASK] [MASK]. Thus, in training the BERT model, it tries to predict the masked token
for each one of the words Empire and State independently.

To solve this issue, the authors of XLNet propose to change the LM task by allowing different
permutations of the sentence’s words in order to model multiple possible dependencies. Yang et al.
[2019] also add an additional attention layer in the model in order to allow the model to use the
position of the masked token (without revealing its content) to perform the prediction.

2.7 HYPOTHESIS TESTING 27

2.7 Hypothesis Testing

Often, we want to investigate whether there is a difference between two procedures. For example,
we want to compare the average effects of the two medical treatments over the population. In the
particular case of this thesis, we desire to compare the predictions of a text classifier in two different
contexts. Null hypothesis significance testing (NHST) offers one theoretical framework to perform
such comparisons.

2.7.1 Basic Formulation

Hypothesis testing is one inference method that help us decide which of two complementary
statements about a population parameter are true. Such statements are often called the null hy-
pothesis (H0) and the alternative hypothesis (H1). This inference method is used in science to help
decide which one of two actions is going to be taken.

For example, we want to decide whether or not to use hydroxychloroquine (HCQ) in patients
with COVID-19. Since this medicine can cause some undesirable side effects, we want to have some
evidence to aid our decision in adopting such drug. One way of obtaining such verification is by
experimentation. We start with an universal statement about the drug not having an effect: “For
every possible scenario, HCQ has no effect in the treatment of patients with COVID-19”. To show
that this statement is false (and so we can conclude that for some scenarios, HCQ does have an
effect) we try to find some empirical data to contradict it. One crucial step in this process is the
translation of the universal statement into a precise statement about probability distributions. For
example, one naive translation is:

“Let A be a binary variable indicating the death of a COVID-19 patient after the 10th
day, and let B be a similar variable associated with a patient treated with HCQ. Then,
A ∼ Bernoulli(p1), B ∼ Bernoulli(p2), and p1 = p2” (I)

The null hypothesis (H0) is just the part “p1 = p2” in (I) (the term “null” is associated with
some treatment not having an effect). After we define such precise statement we collect some data
about the subject and evaluate the likelihood of the claim (I) being true based on the observable
data. If we detect a large discrepancy between (I) and the observable data, we say that we “Reject
H0”, i.e., given the empirical evidence we can say that (I) is false.

There are two interpretation of the falsehood of (I): i) the whole theoretical formulation described
in (I) is false, or (ii) the theoretical formulation is true and only the part “p1 = p2” is false. In i)
we can affirm that there is evidence about the treatment having an effect for some scenarios,
however we have no information about the correct model that governs the data generation process.
In ii) we conclude that (I) becomes true when we substitute “p1 = p2” by its negation “p1 6= p2”
(the alternative hypothesis - H1). The positions i) and ii) represent, respectively, the Fisher and
Neyman-Pearson approaches to testing statistical hypothesis. In i) hypothesis testing is a tool
to draw provisional conclusions about an experiment situation; and in ii) hypothesis testing is
interpreted as a mechanical decision rule [Lehmann, 1993]. The current NHST theory comprehend
both perspectives, because the main difference between the approaches lies on how to interpret a
test result. It is up to the scientific worker to choose the best approach for each situation.

2.7.2 Technical Formulation

We define an statistical model as the triple (Ω,A,P) where:

• Ω is the sample space, i.e., the set of possible outcomes of an experiment.

• A ⊆ P(Ω) is a σ-algebra, i.e., ∅ ∈ A, A is closed under complement, and is closed under
countable unions.

• P is a set of probability distributions defined on A.

28 THEORETICAL BACKGROUND 2.7

We say that a statistical model is a parametric model if P can be written as

P = {Pθ : θ ∈ Θ},

where Θ ⊂ Rd for some d ∈ N.
In hypothesis testing we represent one experiment scenario using a parametric statistical model

(Ω,A,P) whose parameter space is Θ. We assume that underlying the statistical model lies the true
probability model (Ω,A,Pθ), we divide the parameter space into two disjoint sets Θ0 and Θ1 and
decide in which one lies the population parameter θ. The general format of the null and alternative
hypothesis is:

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Both H0 and H1 are claims (hypotheses) about the statistical model (Ω,A,P). We say that a
hypothesis H of the form H : θ = θ0 is a simple hypothesis. Similarly, for |Θ′| > 1, we say that a
hypothesis H of the form H : θ ∈ Θ′ is a composite hypothesis.

LetX be a random variable defined in the probability space (Ω,A,Pθ), andX1, . . . , Xn a sample.
We test the hypothesis H0 by defining a test statistic T (X1, . . . , Xn) and a rejection region R of the
form R = {(x1, . . . , xn) : T (x1, . . . , xn) > c} for c ∈ R. A test is a function defined on the sample
space of the form:

te(x1, . . . , xn) =

{
decision 0, if (x1, . . . , xn) ∈ R,
decision 1, otherwise ,

(2.37)

where “decision 0” and “decision 1” stand for: i) “Reject H0” and “Do not reject H0”, respectively
(the Fisher approach); and ii) “Reject H0 / Accept H1” and “Reject H1 / Accept H0”, respectively
(the Neyman-Pearson approach).

Example 1. Let X1, . . . , Xn ∼ N (µ, σ2) where σ is known. We want to test:

H0 : µ ≤ 0 versus H1 : µ > 0.

In this case, Θ0 = (−∞, 0] and Θ1 = (0,∞). �
It should be noted that, by design, we know that the underlying process follows a normal

distribution, hence it is not problematic to adopt the Neyman-Pearson approach for this example.
Thus, one family of tests suitable for this scenario can be defined using the sample mean as the test
statistic:

tec(x1, . . . , xn) =

{
Reject H0 / Accept H1, if x̄ > c,

Reject H1 / Accept H0, otherwise ,
(2.38)

where x̄ is the sample mean and c ∈ R. Even in this simple scenario, we can define a infinite number
of tests for the same null hypothesis (te0.022, test0.132, etc.). In order to simplify the decision process,
we need to establish some method of test selection.

2.7.3 Power and Size

Consider the same scenario as in Example 1 and a test tec with rejection region Rc =
{(x1, . . . , xn) : x̄ > c}. For each µ ∈ Θ we can calculate the probability of a random sample
falling in the reject region Rc:

Pµ((X1, . . . , Xn) ∈ Rc) = Pµ(X̄ > c)

= Pµ
(
Zn >

√
n(c− µ)

σ

)
, (2.39)

2.7 HYPOTHESIS TESTING 29

where X̄ = n−1
∑n

i=1Xi and Zn =
√
n(X̄ − µ)/σ. By the Central Limit Theorem [Wasserman,

2010, Theorem 5.8], Zn converges to Z in distribution (Zn Z) where Z ∼ N (0, 1).5 Thus, let φ
be the cumulative distribution function for the standard normal, we have

Pµ
(
Zn >

√
n(c− µ)

σ

)
≈ P

(
Z >

√
n(c− µ)

σ

)
= 1− φ

(√
n(c− µ)

σ

)
. (2.40)

With this result we can approximate the probability of a random observation being in the reject
region for any test when we assume that the population parameter is µ ∈ Θ. For example, consider
the test te0.022, and assume n = 100, σ = 1 and µ = 0:

Pµ(X̄ > 0.022) ≈ P

(
Z >

√
100(0.022− 0)

1

)
≈ P (Z > 0.22)

= 1− φ(0.22)

= 1− 0.59

= 0.41. (2.41)

This means that when the true parameter is µ = 0 and we use the test te0.022 to verify the claim
H0 by taking a sample of size 100, the probability of affirming that H0 is false when H0 is indeed
the case is 0.41. This type of mistake is refereed to type I error.

In the general case, we calculate the probability of making this mistake in order to understand
the limitations of each test. Hence, we define the power function of a hypothesis test with reject
region R as the function β : Θ→ [0, 1] such that

β(θ) = Pθ(X ∈ R). (2.42)

With the power function, we can compare different tests from the point of view of the type I
error. Going back to Example 1, in Figure 2.7, we see that for each point in Θ0 the test te0.022

has a larger probability of making the type I error than te0.132. Hence, based only on this type of
error, we say that te0.132 is a better test than te0.022. This informal consideration can be better
understood when we define the notion of size.

5This notion of convergence is defined as follows: let Fn and F denote the cumulative distribution functions of Zn

and Z respectively. By Zn Z we mean that

lim
n→∞

Fn(u) = F (u),

for every u ∈ R for which F is continuous.

30 THEORETICAL BACKGROUND 2.7

Figure 2.7: Power function for the tests te0.022, te0.132, and te0.198. In all cases, n = 100 and σ = 1.

For 0 ≤ α ≤ 1 a test with power function β(θ) is size α if

sup
θ∈Θ0

β(θ) = α. (2.43)

For example, since supµ≤0 β(µ) = β(0), the sizes of the tests te0.022 and te0.132 are 0.41 and
0.09, respectively.

In order to control the type I error, experimenters commonly choose the test based on its size
α (also known as significance level). Common choices are 0.01 and 0.05, however the appropriate
choice for a significance level depend on the application. In Example 1, for α ∈ [0, 1] we can define
the test tec(α) where

c(α) =
σφ−1(1− α)√

n
,

and φ−1(1 − α) is the 1 − α quantile of the standard normal. Hence, the size of the test tec(α) is
given by

β(0) = Pµ(X̄ > c(α))

= Pµ
(
Zn >

√
n(c(α)− µ)

σ

)
= Pµ

(
Zn > φ−1(1− α)

)
≈ P

(
Z > φ−1(1− α)

)
= 1− φ(φ−1(1− α))

= α.

There is another type of test mistake refereed to type II error. This mistake happens when the
test do not reject H0 and H1 is true. For θ ∈ Θ1 the probability of type II error is given by

Pθ(X 6∈ R) = 1− β(θ). (2.44)

In the Neyman-Pearson perspective, we first select one specific level of type I error α; then, we
consider the class of size α tests and select the test that yields the smallest type II error probability.
The Neyman-Pearson Lemma [Casella and Berger, 2002, Theorem 8.3.12] gives the conditions to
find such test. On the other hand, in the Fisher perspective, we only control the probability of the
type I error.

2.7 HYPOTHESIS TESTING 31

One method of reporting the results of a hypothesis test is to report the size α. The size of
the test allow us to judge the importance of the test. If α is small, the decision to reject H0 is
convincing, but if α is large, the decision to reject H0 is not very convincing because the test has
a large probability of incorrectly making that decision. Another way of reporting the results of a
hypothesis test is to report the value of a certain kind of test statistic called the p-value.

2.7.4 p-Value

A p-value p(X1, . . . , Xn) is a test statistic satisfying 0 ≤ p(x1, . . . , xn) ≤ 1 for every sample
point (x1, . . . , xn). We say that a p-value is valid if, for every θ ∈ Θ0 and every 0 ≤ α ≤ 1,

Pθ(p(X1, . . . , Xn) ≤ α) ≤ α. (2.45)

It should be noted that, if p is a valid p-value then the test

te(x1, . . . , xn) =

{
decision 0, if p(x1, . . . , xn) ≤ α,
decision 1, otherwise ,

(2.46)

is a test of size α. Given a test of the form “decision 0 iff T (X1, . . . , Xn) ≥ c”, it is common to
define the p-value as the probability (under H0) of observing a value of the test statistic the same
as or more extreme than what was observed. More formally, for every sample point (x1, . . . , xn) we
define

p(x1, . . . , xn) = sup
θ∈Θ0

Pθ(T (X1, . . . , Xn) ≥ T (x1, . . . , xn)). (2.47)

It can be proved that the definition (2.47) yields a valid p-value [Casella and Berger, 2002,
Theorem 8.3.27]. For example, for the family of tests (2.38) we define the p-value for a sample point
(x1, . . . , xn) as follows:

p(x1, . . . , xn) = sup
µ∈Θ0

Pµ(X̄ > x̄)

= P0(X̄ > x̄)

= P0

(
Zn >

√
n(x̄− 0)

σ

)
≈ P

(
Z >

√
nx̄

σ

)
= 1− φ

(√
nx̄

σ

)
. (2.48)

2.7.5 Paired t-Test

In different occasions, paired data (matched data) appears when conducting an experiment. For
example, we can measure the blood pressure of a person before and after an exercise session. If we
repeat this measurement n times (using n different subjects), we obtain two samples: A1, . . . , An
and B1, . . . , Bn. Although the As are independent among themselves (the same goes for the Bs),
there is a dependency in each pair (Ai, Bi) because both measurements are obtained from the same
person in two distinct moments. Paired test (paired difference test) is a type of hypothesis testing
that take this dependency into account when comparing the A and B samples.

Let A ∼ P1 and B ∼ P2 be two random variables where there is some dependency between
them. We test that the expectation of the distributions P1 and P2 are the same, in other words, we
test:

H0 : δ = 0 versus H1 : δ 6= 0,

32 THEORETICAL BACKGROUND 2.7

where

δ = E[A]− E[B]. (2.49)

For the samples A1, . . . , An and B1, . . . , Bn, let δ̂ be an estimate of δ defined as:

δ̂ =
1

n

n∑
i=1

δ̂i = Ā− B̄, (2.50)

where δ̂i = Ai − Bi and Ā, B̄ are the mean of each sample. The standard deviation estimate of δ̂
(the estimated standard error) is given by:

ŝe(δ̂) =
S√
n
, (2.51)

where

S =

√√√√ 1

n

n∑
i=1

(δ̂i − δ̂)2. (2.52)

The test statistic is |t| where

t =
δ̂ − 0

ŝe(δ̂)
=

√
n(Ā− B̄)

S
. (2.53)

The paired t-test is the family of tests of the form “decision 0 iff |t| > c” for c ∈ R. Given a
significance level α, we can select a size α test in this family using p-values. As stated in (2.47), the
p-value is defined for each observable test statistic |t̂| as follows:

p(t̂) = P0(|t| > |t̂|). (2.54)

It should be noted that despite the dependency between each Ai and Bi, δ̂1, . . . , δ̂n are n
independent and identically distributed (IID) data points from some distribution F . Thus, if we
assume the null hypothesis (H0), we have that

E[δ̂] = E[Ā]− E[B̄]

= E[A]− E[B]

= 0. (2.55)

By a version of the Central Limit Theorem [Wasserman, 2010, Theorem 5.10]:

t =
δ̂ − E[δ̂]

ŝe(δ̂)
 Z, (2.56)

where Z ∼ N (0, 1), in other words, the estimator δ̂ is asymptotically Normal. This means that we
can approximate the p-value (2.54) as follows:

p(t̂) = P0(|t| > |t̂|)
≈ P(|Z| > |t̂|)
= P(−|t̂| < Z) + P(Z > |t̂|)
= 2φ(−|t̂|). (2.57)

Hence, the following decision procedure:

2.7 HYPOTHESIS TESTING 33

te(t̂) =

{
decision 0, if 2φ(−|t̂|) ≤ α,
decision 1, otherwise ,

(2.58)

is a test of size α.

2.7.6 Bootstrap Hypothesis Test

Bootstrap is a technique to calculate measures of uncertainty. The main idea behind this method
is based on creating new simulated data through resampling the data at hand, and using these new
samples (bootstrap samples) to infer about the population characteristics.

In hypothesis testing we can use the bootstrap method to estimate the distribution of a test
statistic under the null hypothesis. We use this technique instead of asymptotic theory (as we have
been doing so far) because in certain scenarios, the presuppositions of this theory are not satisfied
[Fisher and Hall, 1990].

In the case of the paired t-test, we use the available paired data {(Ai, Bi)} to create S ∈ N
bootstrap samples. Each bootstrap sample is created in a way that reflects the null hypothesis. One
strategy for doing so is the following: we draw n observations with replacement from {(Ai, Bi)}
such that each simulated observation is either (Aj , Bj) or (Bj , Aj), with probability 1/2, for some
j ∈ {1, . . . , n} [Konietschke and Pauly, 2014].

Figure 2.8: Schematic of the bootstrap process for the paired t-test. We generate S bootstrap samples
forcing them to satisfy the null hypothesis, then we calculate the test statistic for each sample and obtain the
empirical distribution of this statistic.

At the end of the resampling process, we obtain the new samples {(A∗1,i, B∗1,i)}, . . . , {(A∗S,i, B∗S,i)}
and for each one we compute the bootstrap replication of the test statistic: t̂∗1, . . . , t̂∗S . With these
new values we can estimate the distribution of t under H0 (Figure 2.8). Based on the empirical
distribution of the bootstrap replications, for each observable test statistic t̂ we calculate the prob-
ability of obtaining a test statistic at least as extreme as t̂ (the p-value). If we assume that t is
symmetrically distributed around zero, we define the p-value as the symmetric bootstrap p-value:

34 THEORETICAL BACKGROUND 2.7

p(t̂) =
1

S

S∑
s=1

I(|t∗s| > |t̂|). (2.59)

If we are not willing to make the symmetry assumption, we can instead use the equal-tail
bootstrap p-value:

p(t̂) = 2 min

(
1

S

S∑
s=1

I(t∗s ≤ t̂),
1

S

S∑
s=1

I(t∗s > t̂)

)
. (2.60)

The two possibilities are valid methods of computing bootstrap p-values [MacKinnon, 2009].
Using these new p-values we define the bootstrap test:

te(t̂) =

{
decision 0, if pboot(t̂) ≤ α,
decision 1, otherwise ,

(2.61)

where pboot is either (2.59) or (2.60).

Chapter 3

Structural Inference

At first glance, the NLI task appears to be a simple text classification exercise: we need to
predict a label Y ∈ {entailment, neutral, contradiction} from a pair of text inputs. However, when
we investigate what facts are responsible in determining the value of Y , we see that complex
linguistic phenomena are at play in this task. Some entailment circumstances are the following:

• Hyperonym Relation

a woman won the lottery entails a person won the lottery.

• Common Knowledge

a woman from Kyoto won the lottery entails a woman from Japan won
the lottery.

• Relative Clauses

a woman who became the youngster winner of the lottery has spoken
out against him entails a woman won the lottery.

Our first investigation will be focused on NLI observations that can be gathered under the label
structural inference. By structural inference we refer to any inference phenomenon caused by the
use of logical connectives in natural language. These types of connectives depend only on the form
of the sentences and not on the meaning of the specific verbs, nouns and adjectives being used. For
example, take the sentence pair:

P = Jenny and Sally play with my daughter.

H = Jenny plays with my daughter.

Clearly, P entails H. Moreover, P still entails H if we substitute in both sentences Jenny by
Carl or even substitute the verbs play / plays by sing / sings. However, if we substitute
and by or, the entailment relation is disrupted. What causes the entailment in this example is the
position of the arguments together with the connective and.

This chapter is centered on the notion of structural inference. In Sections 3.1, 3.2 and 3.3 we ex-
plain how one can use formal logic to construct a synthetic NLI dataset based on logical connectives.
In Section 3.4 we offer a new contradiction detection dataset where the contradiction examples do
not depend on the presence of negative words, but they arise by the use of specific connectives.
Together with such dataset, we evaluate two kinds of deep learning models that implicitly exploit
language structure: recurrent models and the transformer network BERT. We also show a successful
case of cross-lingual transfer learning between English and Portuguese. In Section 3.5 we define a
new task based on inference generation and we compare the performance of the machine learning
models in the usual NLI task and in the proposed generation task. In conclusion, in Section 3.6, we
discuss the advantages and disadvantages of synthetic datasets.

35

36 STRUCTURAL INFERENCE 3.1

3.1 Template Language

The template language is a formal language used to generate NLI instances. This language is
composed of two basic sets: Pe, Pl and three binary relations V (x, y) , x > y, and x ≥ y. The
semantic motivation behind this choice is that we are trying to model a simplistic universe. The
sets Pe and Pl stand for a generic set of people and places, respectively. Similarly, the intended
meaning for the binary relations V (x, y) , x > y, x ≥ y are x has visited y, x is taller
than y and x is as tall as y, respectively.

In order to increase the expressivity of this language we add logical connectives to it. Since
the goal is the correspondence between the template language and natural language, we add only
logical operators that correspond to a linguistic expression in most languages. Hence, for each new
connective we indicate a possible translation in English.

Boolean Connectives. The most basic logical operators are the Boolean connectives. Al-
though there is a family of different kinds of connectives in the field of formal logic, they do
not appear in natural language with the same frequency. The logical operators most used in
the English language (and many others) are ¬ (not), ∧ (and) and ∨ (or) [van Wijk, 2006].
These operators allow us to combine the simple propositions based on binary relations in a
variety of ways. For example, the formula V (x1, y1)∧¬V (x2, y2) describe the domain where x1

is V -related to y1 and the same relation does not hold between x2 and y2. By assigning proper
names to the variables, this formula can be translated to English as the sentence Felix has
visited Bolivia and Bruce didn’t visit Ecuador.

Quantifiers. In order to express properties about individuals, we add the quantifiers ∀ and
∃ (every and some, respectively). With this addition we can express either properties that
apply for all entities in the domain or properties that hold only for non-specific entities in
the universe. Sentences of the form ∀x(x > y) (Everyone is taller than John) and
∃x(x ≥ y) (Someone is as tall as Henry). We can also add restricted quantifiers,
i.e., quantifiers that range over an specific sub-domain (the sets Pe and Pl). Hence, ∀x ∈ Pe
should be interpreted as every person, and ∀x ∈ Pl should be read as every place.
A similar interpretation holds for ∃. With this addition, we have formulas of the form (∃x ∈
Pe)(∀y ∈ Pl)V (x, y) (Some person has visited every place).

Equality and Definite Description. By definite description we mean expression of the form
the queen of England, the best soccer player in 2019, the first hedge
fund, etc. These kind of expressions can be seen as a type of quantification. In formal lan-
guages, we add this quantification by including the operator ι to perform description and the
equality relation =. This inclusion allow us to write formulas that create different references
for the same individual. For example, x1 = ιyV (x2, y) (John is the person visited
by Henry).

Counting Operators. The standard quantifiers ∀ and ∃ are just two instances of a broader
family of operators called generalised quantifiers. Inside this family there are set of quantifiers
specialized in expressing properties about a precise realization of the universe. Instead of the
broader notion of existence conveyed by ∃, we can introduce a class of quantifiers that denote
a specific quantity of individuals that have some property. These types of operators are called
counting quantifiers. The counting operators can describe an exact number ∃=nx (there
are exact n x’s), or they can given an lower bound ∃≥nx (there are at least n
x’s). Similar to ∃, we can also restrict these new quantifiers to some sub-domain; for example,
(∃=3y ∈ Pl)V (x1, y) (Philip has visited only three places).

The combination of all logical operators yields a language complex enough to describe a variety
of facts even when the universe (the set Pe ∪ Pl) is a small one. The possible formulas range from
basic concatenation of facts:

3.2 LOGICAL RULES AND TEMPLATES 37

V (x1, x2) ∧ V (x3, x2) ∧ V (x4, x2)

Henry,Felix and Bruce have visited John,

to complex description of the entities in the universe:

x1 = ιx ((∀y ∈ Pe)(¬((∃=2z ∈ Pl)V (y, z)) ∨ x ≥ y))

John is the tallest person that has visited exactly two places.

It should be noted that the template language is a fragment of first-order logic. For this reason,
we have offered only an informal presentation of the formation rules of this language. A rigorous
formulation of those rules can be found in any logic textbook [da Silva et al., 2006, Shoenfield,
1967].

3.2 Logical Rules and Templates

In order to make this language useful for creating NLI datasets, we should stipulate a method
of obtaining examples of entailment, contradiction and neutral pairs. One simple strategy is the
one based on inference rules: principles that describe how to introduce and eliminate a connective
according to the correct reasoning. Since these rules govern the use of the logical operators, we can
even say that they define the meaning of those connectives [Martin-Löf, 1996].

A logical rule is written as a pair: a set of premises an a conclusion. For example, the rules for
the introduction of the connectives ∧ and ∃ can be written as follows:

V (x1, y1) V (x2, y2)

V (x1, y1) ∧ V (x2, y2)
(∧I)

, (3.1)

V (x1, x2)

∃xV (x, x2)
(∃I)

. (3.2)

These rules are the formal expression of very reasonable principles: ∧I states that if both premises
are true, then the concatenation of them by the ∧ operator forms a true formula; ∃I states that if
V (x1, x2) is true for a particular individual x1, then it is the case that exists some individual x in
the domain that has the property V (x, x2). These are only a couple of rules, the complete set of
rules can be found in the work by Troelstra and Schwichtenberg [1996].

Logical rules are truth preserving operations, i.e., the set of premises entails the conclusion.
Hence, we can translate the formulas that occur in a logical rule to English and obtain an example
of entailment in natural language (we take the concatenation of premises as a singe sentence P and
the conclusion as the sentence H). For example, using one specific translation of the variables, the
rule (∧I) generates the pair:

P = Felix has visited Paris, John has visited Paris.

H = Felix and John have visited Paris.

And the rule (∃I) produces:

P = Felix has visited John.

H = Someone has visited John.

It is also possible to use the same set of rules to produce contradiction examples. Since the
premises entail the conclusion, if we negate the conclusion appearing in a logical rule we can produce
contradictions. For example, by using the ∧I rule we get:

38 STRUCTURAL INFERENCE 3.3

P = Felix has visited John, Gerald has visited John.

H = Felix didn’t visit John or Gerald didn’t visit John.

The generation of neutral examples can be done by employing the Interpolation Theorem
[Shoenfield, 1967, p. 80]. Let p,h and q be variables for formulas, and let L(p) be the set of
non-logical symbols occurring in p. This theorem states that if p entails h, then there is some
formula q such that L(q) ⊂ L(p) ∩ L(h), p entails q and q entails h. It is easy to see that for the
particular case where p and h are formulas that the true value depends only on the interpretation1,
if L(p) ∩ L(h) = ∅, then neither p entails h nor h entails p. Thus, if we modify a logical rule
such that there is no variable intersection between premise and conclusion we can produce neutral
sentence pairs (as long as the truth value of the formulas depends only on the interpretation). For
example, by altering the rule (∃I) we can obtain:

P = Felix has visited Gerald.

H = Someone has visited John.

We call a template any pair of formulas that when translated to a natural language form a NLI
observation. Using the example above, the following template is a modification of the rule (∃I) that
can generate neutral pairs (P,H):

P = V (x1, x2)

H = ∃xV (x, x3)

Y = neutral.

In other words, templates are just schemas for constructing different types of NLI observations.
Since each template is associated with a logical rule, we have total control on the grounding for the
logical relationship of each NLI observation created by this process.

3.3 Translation

One additional advantage in using a template language is the possibility of translating it to
different natural languages. The linguistic requirements to perform a translation are few: it is
needed a translation of the binary relations, a name assignment for the elements in Pe ∪ Pl and
an interpretation of the logical connectives. Ideally this translation process should be as subtle
as possible. For example, instead of translating the formula V (x1, x2) ∧ V (x1, x3) as Felix has
visited Gerald and Felix has visited Marty we can use the condensed version Felix
has visited Gerald and Marty.

More formally, we can think about translations as a realisation of the template language, i.e.,
a function r mapping Pe and Pl to nouns such that r(Pe) ∩ r(Pl) = ∅; it also maps the relation
symbols and logic operators to corresponding forms in some natural language. It should be noted
that since the requirements for translating the template language to a natural language is low, we
can construct the same type of dataset in different languages. This is useful to compare model
performance in multiple linguistic scenarios; and, at the same time, this approach can contribute
to dataset creation for low-resource languages. For example, the rule (∃I) can be used to obtain
entailment pairs in Spanish:

P = Felix visitó a Juan.

H = Alguien visitó a Juan.
1Satisfiable formulas that are not valid, to use the technical term.

3.4 ANALYSIS I: CONTRADICTION DETECTION 39

Or in Portuguese:

P = Felix visitou João.

H = Alguém visitou João.

We utilize this translation function to divide a NLI dataset into different portions. After fixing
one target language, say English, we take three different realizations that map the template language
into the target language r1, r2 and r3 such that⋃

i,j∈{1,2,3}
i 6=j

ri(Pe) ∩ rj(Pe) =
⋃

i,j∈{1,2,3}
i 6=j

ri(Pl) ∩ rj(Pl) = ∅. (3.3)

Thus, the image of each realization can be defined as the training, validation and test portions
of the data. This strategy of splitting the dataset is a way to guarantee that the noun assignment
does not affect the performance of a text classifier. In order to highlight this splitting procedure,
we use rtrain, rvalidation and rtest to denote the realizations r1, r2 and r3.

3.4 Analysis I: Contradiction Detection

In this section we describe the analysis published as a paper by Salvatore et al. [2019a]. It is
our first work based on synthetic data.

3.4.1 A Logical-Based Corpus for Cross-Lingual Evaluation

In this analysis, we present a collection of small datasets designed to measure the competence
of detecting contradictions in structural inferences. To perform a cross-lingual comparison, we have
decided to perform the analysis both in English and in Portuguese. The choice to focus on the
contradiction detection (CD) task was done because it is harder for an average crowdsourcing
annotator to create examples of contradictions without excessively relying on the same patterns
[Gururangan et al., 2018]. At the same time, CD has practical importance since it can be used to
improve consistency in real case applications, such as chatbots [Welleck et al., 2019].

We choose to focus on CD based on structural inference because we have detected that the
current datasets are not appropriately addressing this particular problem. In an experiment, we
have verified that structural information is not needed to achieve an accuracy higher than random
guess (50%) on the benchmark datasets. To check this fact we have first transformed the SNLI
and MNLI datasets into a CD task and we have evaluated the new version of this data using a
simple BOW classifier (a type of model that uses only the minimum structural information from
a text input).2 The accuracy was significantly higher than the random classifier, 63.9% and 61.9%
for SNLI and MNLI, respectively3. Even the recent dataset focusing on contradiction, Dialog NLI
[Welleck et al., 2019], presents the same issue. The same BOW model achieves an accuracy of 76.2%
on this dataset.

In this analysis, we propose a CD dataset divided by tasks. What defines the difference from
one task to another is the introduction of logical operators, and the underlining logical rules that
govern those operators. Using this new dataset, we evaluate two kinds of deep learning models
that implicitly exploit language structure: recurrent models and the transformer network BERT
[Devlin et al., 2019].

2Clearly, any NLI dataset can be transformed in a CD task: the transformation is done by converting all instances
of entailment and neutral into non-contradiction, and by balancing the classes in the new dataset.

3For the MNLI it was used the combination of the matched and miss-matched development data.

40 STRUCTURAL INFERENCE 3.4

3.4.2 A Dataset of Contradictions

For the sake of brevity, we give only a brief overview of each task. The detailed list of all
templates used to produce each task is displayed in the Appendix A (and the full dataset in both
languages, together with the code to generate it can be found online, [Salvatore, 2019a]).

Task 1: Simple Negation. The premise P is a collection of facts about some agents visiting
different places. The hypothesis H can be either a negation of one fact stated in P , or a
new fact not related to P . The number of facts occurring on P vary from two to twelve. For
example,

P = Charles has visited Chile, Joe has visited Japan, Henry didn’t
visit France.

H = Charles didn’t visit Japan.

Y = non-contradiction.

It should be noted, that in this task what causes the contradiction is not the occurrence of
the negation (didn’t), it is the role of the agents and places that appear in the premise and
the hypothesis.

Task 2: Boolean Coordination. In this task, the premise P describes a group of agents
traveling to a place (or a single agent traveling to multiple places). The new information H
can state that one of the agents did not travel to a mentioned place. For example,

P = Felix, Ronnie, and Tyler have visited Bolivia.

H = Tyler didn’t visit Bolivia.

Y = contradiction.

A non-contradictory observation in this task is formed by a hypothesis H that contains a new
fact (Bruce didn’t visit Bolivia).

Task 3: Quantification. Here, we construct contradictory examples that explicitly exploit
the difference between the two basic entities, people and places. The premise P states a general
fact about all people, and the hypothesis H can be the negation of one particular instance of
P , or a fact that does not violate P . For example,

P = Everyone has visited every place.

H = Timothy didn’t visit Anthony.

Y = non-contradiction.

Task 4: Definite Description. In this task, we use the premise to describe one agent
using an specific property, and we formulate the hypothesis in a way that it can violate the
description. For example,

P = Carlos is the person that has visited every place, Carlos has
visited John.

H = Carlos didn’t visit Germany.

Y = contradiction.

To formulate an example of non-contradiction, the hypothesis can be a fact that do not
speak about the agent being described in the premise; for example, John did not visit
Germany.

3.4 ANALYSIS I: CONTRADICTION DETECTION 41

Task 5: Comparatives. By adding the comparative relation > in the language, we are inter-
ested in investigating if the model can recognise a basic property related to comparison: tran-
sitivity. The premise P is composed of a collection of simple facts x1 > x2, x2 > x3 (Francis
is taller than Joe, Joe is taller than Ryan). Assuming the transitivity of >,
the hypothesis can be either a consequence of P , x1 > x3 (Francis is taller than
Ryan), or a fact that violates the transitivity property, x3 > x1 (Ryan is taller than
Francis). The number of facts that appear on P varies from four to ten. It should be noted
that the contradictions in this task do not use any negative words.

Task 6: Counting. To analyze the counting competence of models we create contradictions
based only on the counting operators. The premise P is composed of facts that enumerate
an agent visiting an specific number of people and places. The hypothesis H can be either
a fact consistent with the number appearing in the premise or a conjunction of facts that
contradicts P . For example,

P = Philip has visited only three places and only two people.

H = Philip has visited John, Carla, and Bruce.

Y = contradiction.

We have added counting quantifiers corresponding to numbers from one to thirty.

Task 7: Mixed. In order to guarantee variability, we have created a dataset composed of
different samples from the previous tasks.

Basic statistics for the English and Portuguese realisations of all tasks can be found in Table
3.1.

Task Vocabulary
size

Vocabulary
intersection

Mean
input
length

Max
input
length

1 (Eng) 3561 77 230.6 459
2 (Eng) 4117 128 151.4 343
3 (Eng) 3117 70 101.5 329
4 (Eng) 1878 62 100.81 134
5 (Eng) 1311 25 208.8 377
6 (Eng) 3900 150 168.4 468
7 (Eng) 3775 162 160.6 466
1 (Pt) 7762 254 209.4 445
2 (Pt) 9990 393 148.5 388
3 (Pt) 5930 212 102.7 395
4 (Pt) 5540 135 91.8 140
5 (Pt) 5970 114 235.2 462
6 (Pt) 9535 386 87.8 531
7 (Pt) 8880 391 159.9 487

Table 3.1: Task description. Column 1 presents two realizations of the described tasks - one in English
(Eng) and the other in Portuguese (Pt). Column 2 presents the vocabulary size for the task. Column 3
presents the number of words that occurs both in the training and test data. Column 4 presents the average
length in words of the input text (the concatenation of P and H). Column 5 presents the maximum length
of the input text.

Since we are using a large number of facts in the premise, the input text is longer than the ones
presented in average NLI datasets (for comparison sake, the mean input length of the SNLI and
MNLI datasets is 20.3 and 30, respectively).

42 STRUCTURAL INFERENCE 3.4

3.4.3 Models

Baseline The baseline model is a random forest classifier that models the input text, the
concatenation of P and H, using the BOW representation. Since we have constructed the dataset
centered on the notion of structure-based contradictions, we believe that the baseline should perform
slightly better than random. At the same time, by using such baseline, we can certify whether the
proposed tasks are indeed requiring structural knowledge.

Recurrent Models. One popular family of models in the NLP field specialised in modelling
sequential data is the recurrent neural networks and its variations, LSTM and GRU. We consider
both the standard and the bidirectional variants of this family of models. As input for these models,
we use the concatenation of the premise and hypothesis as a single sentence.

Traditional multilayer recurrent models are not the best choice to improve the benchmark on
NLI [Glockner et al., 2018]. However, in recent works, it has been reported that recurrent models
achieve a better performance than Transformer-based models to capture structural patterns for
logical inference [Evans et al., 2018, Tran et al., 2018]. We want to investigate if the same result
can be achieved using our dataset.

Transformer-based Models. A recent non-recurrent family of neural models known as trans-
former networks was introduced by Vaswani et al. [2017]. Different from the recurrent models that
recursively summarizes all previous input into a single representation, the transformer network em-
ployes a self-attention mechanism to directly attend to all previous inputs. Although, by performing
regular training using this architecture alone we do not see surprising results in inference prediction
[Evans et al., 2018, Tran et al., 2018], when we pre-trained a transformer network in the language
modeling task and fine-tuned afterwards on an inference task we see a significant improvement
[Devlin et al., 2019].

Among the different transformer-based models we will focus our analysis on the multilayer bidi-
rectional architecture known as BERT [Devlin et al., 2019]. This bidirectional model, pre-trained
as a masked language model and as a next sentence predictor, has two versions: BERTbase and
BERTlarge. The difference lies in the size of each architecture, the number of layers and self-
attention heads. Since BERTlarge is unstable on small datasets [Devlin et al., 2019] we have used
only the BERTbase model. Thus, throughout this section “BERT” is used to denote “BERTbase”.

The strategy to perform NLI classification using BERT is the same as the one presented in
Section 2.6.2: together with the pair (P,H) we add new special tokens [CLS] (classification token)
and [SEP] (sentence separator). Hence, the textual input is the result of the concatenation: [CLS]
P [SEP] H [SEP]. After we obtain the vector representation of the [CLS] token, we pass it
through a classification layer to obtain the prediction class (contradiction / non-contradiction). We
fine-tune the model for the CD task in a standard way, the original weights are co-trained with the
weights from the new layer.

By comparing BERT with other models we are not only comparing different architectures but
different techniques of training. The baseline model uses no source of additional information. The
recurrent models use only a soft version of transfer learning with fine-tuning of pre-trained embed-
dings (the fine-tuning of one layer only). On the other hand, BERT is pre-trained on a large corpus
as a language model. It is expected that this pre-training step helps the model to capture some
general properties of language [Howard and Ruder, 2018]. Since the tasks that we propose are basic
and cover very specific aspects of reasoning, we can use it to evaluate which properties are being
learned in the pre-training phase.

3.4.4 Evaluation

Model evaluation is performed as usual: for each CD task and model, we estimate the model’s
parameters on the training portion of the data and evaluate the model based on its classification
accuracy on the test section of the dataset.

However, the simplicity of the tasks has motivated us to use transfer-learning in an additional

3.4 ANALYSIS I: CONTRADICTION DETECTION 43

manner: instead of simply using the multilingual version of BERT4 and fine-tune it on the Por-
tuguese version of the tasks, we have decided to perform a supplementary evaluation by checking the
possibility of transferring structural knowledge from high-resource languages (English / Chinese) to
Portuguese.

Hence, we use the Portuguese corpus and the different pre-trained weights of the BERT model
to perform a cross-lingual evaluation. This can be done because for each pre-trained model there
is a tokenizer that transforms the Portuguese input into a collection of tokens that the model
can process. We have decided to use the regular version of BERT trained on an English corpus
(BERTeng), the already mentioned Multilingual BERT (BERTmult), and the version of the BERT
model trained on a Chinese corpus (BERTchi).

We hypothesize that most structural patterns learned by the model in English can be transferred
to Portuguese. By the same reasoning, we believe that BERTchi should perform poorly. Not only the
tokenizer associated to BERTchi will add noise to the input text, but also Portuguese and Chinese
are grammatically different; for example, the latter is overwhelmingly right-branching while the
former is more mixed [Levy and Manning, 2003].

3.4.5 Experimental Settings

Given the above considerations, four research questions arose:

(i) How the different models perform on the proposed tasks?

(ii) How much each model relies on the occurrence of non-logical words?

(iii) Can cross-lingual transfer learning be successfully used for the Portuguese realization of the
tasks?

(iv) Is the dataset biased? Are the models learning some unexpected text pattern?

To answer those questions, we evaluated the models performance in four different ways:

(i) Each model was trained and evaluated on different proportions of the dataset, such that there
is no noun intersection. i.e., rtrain(Pe) ∩ rtest(Pe) = ∅ and rtrain(Pl) ∩ rtest(Pl) = ∅.

(ii) We have trained the models on a version of the dataset where we allow full intersection of the
train and test vocabulary, i.e., rtrain(Pe) = rtest(Pe) and rtrain(Pl) = rtest(Pl).

(iii) For the Portuguese corpus, we have fine-tuned the pre-trained models mentioned previously:
BERTeng, BERTmult, and BERTchi.

(iv) We have trained the best model from (i) on the following modified versions of the dataset:

(a) Noise label - each pair (P , H) is unchanged but we randomly labeled the pair as contra-
diction or non-contradiction.

(b) Premise only - we keep the labels the same and omit the hypothesis H.

(c) Hypothesis only - the premise P is removed, but the labels remain intact.

3.4.6 Implementation

All deep learning architectures were implemented using the Pytorch library [Paszke et al., 2017].
To make use of the pre-trained version of BERT we have based our implementation on the Hug-
gingFace transformer library [Wolf et al., 2019]. All the code for the experiments is public available
[Salvatore, 2019a].

4Multilingual BERT is a model trained on the concatenation of the entire Wikipedia from 100 languages, Por-
tuguese included. https://github.com/google-research/bert/blob/master/multilingual.md

https://github.com/google-research/bert/blob/master/multilingual.md

44 STRUCTURAL INFERENCE 3.4

The different recurrent architectures were optimized with Adam [Kingma and Ba, 2015]. We
have used pre-trained word embedding from Glove [Pennington et al., 2014] and Fasttext [Joulin et al.,
2017], we also used random initialized embeddings. We randomly searched across embedding dimen-
sions in {10, . . . , 500}, hidden layer size of the recurrent model in {10, . . . , 500}, number of recurrent
layer in {1, . . . , 6}, learning rate in [0, 1], dropout in [0, 1] and batch sizes in {32, . . . , 128}.

The hyperparameter search for BERT follows the one presented by Devlin et al. [2019] that
uses Adam with learning rate warmup and linear decay. We randomly searched the learning rate in
[2 · 10−5, 5 · 10−5], batch sizes in {16, . . . , 32} and number of epochs in {3, 4}.

3.4.7 Results

(i) How the different models perform on the proposed tasks?

In most tasks, BERTeng presents a clear advantage when compared to all other models. Tasks 3
and 6 are the only ones where the difference in accuracy between BERTeng and the recurrent models
is small, as can be seen in Table 3.2. Even when we look at BERTeng’s results on the Portuguese
corpus, which are slightly worse when compared to the English results, we still see a similar pattern.

Task Baseline RNN GRU LSTM BERT
1 (Eng) 52.1 50.1 50.6 50.4 99.8
2 (Eng) 50.7 50.2 50.2 50.8 100
3 (Eng) 63.5 50.3 66.1 63.5 90.5
4 (Eng) 51.0 51.7 52.7 51.6 100
5 (Eng) 50.6 50.1 50.2 50.2 100
6 (Eng) 55.5 84.4 82.7 75.1 87.5
7 (Eng) 54.1 50.9 53.7 50.0 94.6
Average (Eng) 53.9 55.4 58.0 56.2 96.1
1 (Pt) 53.9 50.1 50.2 50.0 99.9
2 (Pt) 49.8 50.0 50.0 50.0 99.9
3 (Pt) 61.7 50.0 70.6 50.1 78.7
4 (Pt) 50.9 50.0 50.4 50.0 100
5 (Pt) 49.9 50.1 50.8 50.0 99.8
6 (Pt) 58.9 66.4 79.7 67.2 79.1
7 (Pt) 55.4 51.1 51.6 51.1 82.7
Average (Pt) 54.4 52.6 57.6 52.6 91.4

Table 3.2: Results of the experiment (i). Test accuracy (%) for all models in the English (Eng) and
Portuguese (Pt) corpora.

Figure 3.1 shows that BERTeng is the only model improved by training on more data. All other
models remain close to random independently of the amount of training data.

3.4 ANALYSIS I: CONTRADICTION DETECTION 45

Figure 3.1: Results of the experiment (i). In the x-axis we have different proportions of the training data
used in training. The y-axis displays the average accuracy among all tasks (English corpus).

Accuracy improvement over training size indicates the difference in difficulty of each task. On
the one hand, Tasks 1, 2 and 4 are practically solved by BERT using only 40% examples of the
training data (99.5%, 99.7%, 97.6% of test accuracy, respectively). On the other hand, the results
for Tasks 3 and 6 remain below all tasks average, as seen in Figure 3.2.

Figure 3.2: Results of the experiment (i). In the x-axis we have different proportions of the training data
used in training. The y-axis displays BERTeng’s accuracy on different tasks (English corpus).

(ii) How much each model relies on the occurrence of non-logical words?

With the full intersection of the vocabulary, experiment (ii), we have observed that the average
accuracy improvement differs from model to model: baseline, GRU, BERTeng, LSTM and RNN
present an average improvement of 17.6%, 9.6%, 5.3%, 4.25%, 1.3%, respectively. The baseline is
relying more on noun phrases than the neural models. However, it is hard to form any conclusive
judgment about BERT and the recurrent models, more investigation is required.

(iii) Can cross-lingual transfer learning be successfully used for the Portuguese realization of
the tasks?

46 STRUCTURAL INFERENCE 3.4

Figure 3.3: Results of the experiment (iii). Accuracy distribution on all tasks for different pre-trained
versions of the model BERT (Portuguese corpus).

As expected, when we fine-tuned BERTmulti to the Portuguese version of the dataset we have
observed an overall improvement. And, among the pre-trained models, BERTchi was the weakest
one (Figure 3.3).

The most notable improvements reside in Tasks 6 and 7, where we achieve a new accuracy of
87.4% and 92.3% respectively. Surprisingly, BERTchi is able to solve some simple tasks, namely
Tasks 1, 2 and 4. However, when this pre-trained model was trained on the mixed version of the
dataset, Task 7, it repeatedly presented a random performance.

One of the most important features observed by evaluating the different pre-training models is
that although BERTeng and BERTmult show a similar result on the Portuguese corpus, BERTeng
needs more data to improve its performance, as seen in Figure 3.4.

Figure 3.4: Results of the experiment (iii). In the x-axis we have different proportions of the training data
used in training. The y-axis displays the average accuracy among all tasks (Portuguese corpus).

(iv) Is the dataset biased? Are the models learning some unexpected text pattern?

3.4 ANALYSIS I: CONTRADICTION DETECTION 47

Figure 3.5: Results of the experiment (iv). In the x-axis we have different proportions of the training
data used in training. The y-axis displays the average accuracy among all tasks. All results presented in the
figure are associated with the performance of the model BERTeng’ on different versions of the data (English
corpus).

By taking BERTeng as the best classifier, we have repeated the training using all the listed
data modification techniques. The results, as shown in Figure 3.5, indicate that BERTeng is not
memorizing random textual patterns, neither excessively relying on information that appears only
in the premise P or the hypothesis H. When we applied it on these versions of the data, BERTeng
behaves as a random classifier.

3.4.8 Discussion

The results presented above are similar to the ones reported by Goldberg [2019] : transformer-
based models like BERT can successfully capture syntactic regularities and logical patterns.

These findings do not contradict the results reported by Evans et al. [2018] and Tran et al.
[2018], because in both papers, the transformer models are trained from scratch, while here we have
used models that were pre-trained on large datasets with the language model objective.

The results presented both in Table 3.2 and in Figures 3.3 and 3.4 seem to confirm our initial
hypothesis on the effectiveness of transfer learning in a cross-lingual fashion. What has surprised
us was the excellent results regarding Tasks 1, 2 and 4 when transferring structural knowledge from
Chinese to Portuguese. We offer the following explanation for these results. Take for example this
contradiction pair defined in Task 4:

P = x1 is the person that has visited everybody, x1 has visited x3

H = x1 didn’t visit x4.

Y = contradiction.

By taking one possible Portuguese realization of the pair above and applying the different
tokenizers we have the following strings:

1. Original sentence:

P = Gabrielle é a pessoa que visitou todo mundo, Gabrielle

visitou Luís.

H = Gabrielle não visitou Ianesis.

48 STRUCTURAL INFERENCE 3.5

2. Applying the multilingual tokenizer:

P = gabrielle a pessoa que visito ##u todo mundo gabrielle

visito ##u lu ##s

H = gabrielle no visito ##u ian ##esis

3. Applying the English tokenizer:

P = gabrielle a pe ##sso ##a que visit ##ou tod ##o mundo

gabrielle visit ##ou lu ##s

H = gabrielle no visit ##ou ian ##esis

4. Applying the Chinese tokenizer:

P = ga ##b ##rie ##lle a pe ##ss ##oa q ##ue vi ##sit ##ou
to ##do mu ##nd ##o ga ##b ##rie ##lle vi ##sit ##ou lu ##s

H = ga ##b ##rie ##lle no vi ##sit ##ou ian ##es ##is

Although the Portuguese words are destroyed by the English and Chinese tokenizers, the model
is still able to learn in the fine-tuning phase the simple structural pattern between the tokens.
To find the contradiction in the example above, it is needed to check the occurrence of the same
individual (Gabrielle) in the premise and hypothesis. Both in the multilingual and English version,
this person is denoted by the token (gabrielle), and in the Chinese version the same entity can
be found by observing the presence of four consecutive tokens (ga ##b ##rie ##lle).

This may explain why the counting task (Task 4) presents the highest difficulty for BERT.
There is some structural grounding for finding contradictions in counting expressions, but to detect
contradiction in all cases one must fully grasp the meaning of the multiple counting operators.

3.4.9 Analysis Conclusion

With the possibility of using pre-trained models we can successfully craft small datasets (∼
10K sentences) to perform fine grained analysis on machine learning models. In this analysis, we
have presented a new dataset that is able to isolate a few competence issues regarding structural
inference. It also allows us to bring to the surface some interesting comparisons between recurrent
neural networks and pre-trained transformer-based models. As our results show, compared to the
recurrent models, BERT presents a considerable advantage in learning structural inference. The
same result appears even when fine-tuned one version of the model that was not pre-trained on the
target language.

By the stratified nature of our dataset, we can pinpoint BERT’s inference difficulties: there is
space for improving the model’s counting understanding. Hence, we can either craft a more realistic
NLI dataset centered on the notion of counting or modify BERT’s training to achieve better results
in the counting task.

The results on cross-lingual transfer learning are stimulating. One possible area for future re-
search is to check if the same results can be attainable using simple structural inferences that occur
within complexes sentences. This can be done by carefully selecting sentence pairs in a cross-lingual
NLI corpus (the corpus by Conneau et al. [2018] is a good candidate for this task).

3.5 Analysis II: Inference Generation

This section shows a subsequent analysis published in a paper by Salvatore et al. [2019b]. It
uses the same building blocks as the previous analysis (the template language, inference rules and
translation functions), however in this work we have decided to create an alternative NLI task. As
seen in Section 3.2, the use of a particular logical connective yields the implication relation within

3.5 ANALYSIS II: INFERENCE GENERATION 49

the pair (P,H). Hence, instead of classifying the logical relation of a given pair, we can imagine a
new kind of text classification task where the model should choose the correct connective to appear
in a sentence in order to generate the entailment relation. In this section, we present the proposal
of this new task together with a brief analysis showing the difficulties of the deep-learning models
in solving this new challenge.

3.5.1 A New Type of NLI Task

Since the proposal of the FRACAS project [The Fracas Consortium et al., 1996], we are used to
formulating natural language inference as a classification problem. Given a pair of textual inputs P
and H, we need to determine what is the logical relationship between them. It is fair to say that the
NLI community has overemphasized the inference perception (IP) capability of machine learning
models. Although IP has a lot of central applications on NLP such as automatic summarization and
QA, it fails to connect with an important stream in the tradition of formal logic and proof theory.
These fields do not concentrate on finding a function that can determine the logical relationship
between P and H. Instead, the focus lies on how to generate a conclusion H from a premise P
according to some established rules.

Here, we are proposing to shift the attention of the NLI community from inference perception
to inference generation (IG). Instead of using the machine learning models to classify a pair of
sentences, in this analysis, we propose a new task to evaluate how a neural language model can
generate sentences according to logical rules. Together with this proposal we offer a synthetic
dataset; and we also perform a first evaluation of this task using state-of-the-art models.

3.5.2 From Perception to Generation

It is the right moment to change from IP to IG: the new wave of pre-trained models [Devlin et al.,
2019, Liu et al., 2019b] are challenging the NLI field. The large-scale popular IP datasets are close
to being solved (the state-of-the-art results for SNLI, MNLI, and SciTail are 91.9%, 92.2%/91.9%,
and 94.1%, respectively, as reported by Bowman et al. [2020], Liu et al. [2019b], Wang et al. [2020]).
This may suggest that the inference problem in natural language has become trivial, but when we
change how the current state-of-the-art models perform inference, we see entirely different results.

One example is the recent work from DeepMind by Saxton et al. [2019] where the authors devel-
oped a dataset for solving mathematical problems through symbolical manipulation. For example,
a model receives as input a mathematical formula like (x+ 1)(2x+ 3), and it is asked to generate
the expansion of the polynomial. They have divided the mathematical reasoning task in 56 modules
that involve different formal capacities; they also have trained a transformer and a LSTM model on
those modules. Some mathematical skills, like polynomial expansion, were easy to master; others
like factoring numbers into primes present a substantial difficulty for these models. When the best
model was tested with real math exams for 16-year-old schoolchildren, it got only a score of 14/40
— indicating that there is a lot of space for improvement.

We are proposing a similar set of modules but centered on natural language deduction. Our
focus is on informal logical reasoning: the ability to use basic logical forms in everyday speech. The
different forms are defined by the use of some operators like Boolean coordination, quantifiers,
definite description, and counting operators. We already have seen that using those operators to
construct simple IP tasks and track the logical competence of different neural models is feasible.
Here we want to investigate if the same kind of results can be carried over to the IG task and
explore what kind of new models are necessary to accomplish this task.

3.5.3 Masked Inference

To test the generative capability of a transformer based model like BERT we developed the task
of masked inference (MI) in analogy to the MLM task described by Devlin et al. [2019]. The MI
task is defined as follows: in the training phase, we chose some tokens at random to be replaced

50 STRUCTURAL INFERENCE 3.5

by the [MASK] token; the model is then trained to predict the missing token given the context; in
the test phase, we masked only the word that corresponds to a logical operator ; the model is then
asked to predict the correct operator. For example, in the training phase we have the following
observation:

P = Joshua [MASK] visited Frank, Ricky [MASK] visited Jim.

H = Joshua [MASK] visited Frank and Ricky [MASK] visited Jim.

Y = has.

And in the test phase we have examples like:

P = Lindsey has visited Jamaica, Patricia has visited Serbia.

H = Lindsey has visited Jamaica [MASK] Patricia has visited Serbia.

Y = and.

To generate the different pairs (P,H) we apply some well-known inference rules such that H is
inferred from P . We divided the corpora into three modules: Boolean coordination, Quantifiers
and Counting. it should be noted that by using the same logical rules we can create observations
for both inference tasks: the standard form of NLI classification and the MI task. Hence, for each
module we have two types of datasets.

The process used here to create a standard NLI dataset from logical rules is the same one
described in Section 3.2. Thus, in what follows, we comment only on how to use templates to create
observations from the MI task. For readability sake, we only offer an informal description of each
template. The full description of the dataset in terms of the template language can be found in
Appendix B.

3.5.4 Boolean Coordination

In this module the inference is centered on the connectives and and or (∧ and ∨, respectively)
the model should be able to predict when to use each connective. There are only two types of rules
in this module:

• Introduction of the conjunction

P = Ida didn’t visit Senegal, Ethel has visited Clara.

H = Ida didn’t visit Senegal [MASK] Ethel has visited Clara.

Y = and.

• Introduction of the disjuction

P = Neil has visited Kittery, Adam didn’t visit Vincent.

H = Neil has visited Kittery [MASK] Adam has visited Daryl.

Y = or.

The difference between the two rules lies on the repetition of two facts that can occur both in
P and H. The variability of the examples created by these rules reside not only on the nouns being
used, the number of facts occurring in P can change, and the same facts can appear negated or not.

3.5 ANALYSIS II: INFERENCE GENERATION 51

3.5.5 Quantifier Reasoning

For quantifier reasoning, we want the models to infer everyone and someone (∀ and ∃,
respectively) according to the following rules:

• Introduction of the existential

P = Patricia has visited Uruguay, Natasha didn’t visit Bolivia.

H = [MASK] has visited Uruguay.

Y = someone.

• Negation of the existential

P = Leona has visited Vietnam, everyone has visited Joanne.

H = it’s false that [MASK] didn’t visit Joanne.

Y = someone.

• Negation of the universal

P = Christina has visited Philippines, Dawn didn’t visit Frances.

H = it’s false that [MASK] has visited Frances.

Y = everyone.

3.5.6 Counting

The type of inference related to counting can be defined by the use of counting quantifiers ∃≥n x
— at least n x’s. These quantifiers are related to numerals (one, two, etc). In this module,
we work with the numerals from one to twenty. We use a single rule that can create examples
using different counting quantifiers. In all cases the model should infer the numeral related to the
number of places visited by an specific agent. For variability, we use different numbers of facts in
the premise.

• Introduction of the counting quantifier

P = Billy didn’t visit Socorro,Billy has visited Harlingen,

Brandon has visited Wyandotte, Billy has visited Huntington.

H = Billy has visited at least [MASK] places.

Y = two.

For each module, we provide training and test data with 10K and 1K examples, respectively.
All data is balanced; and, as usual, the model’s accuracy is evaluated on the test data. The full
data and the code for the experiments are available online [Salvatore, 2019b].

3.5.7 Experiments

In order to understand how difficult is the MI task, we have performed a preliminary evaluation
using only the pre-trained model BERTbase [Devlin et al., 2019]. We use the same model in three
different ways:

• BERT-IP. First, we fine-tune BERT on the standard NLI task using the IP version of the
synthetic dataset (remember, by “IP version” we mean the usual text classification task well
established in the NLI field). Then we obtain the text accuracy for each module according to
its IP version.

52 STRUCTURAL INFERENCE 3.5

• BERT-IG-pre-trained-only. We evaluate the pre-trained version of the model BERT in
the MI task without performing the fine-tuning.

• BERT-IG-fine-tuned. We fine-tune BERT for the MI task and check the performance of
the model on each module.

The results for the experiments can be seen in Table 3.3.

Module

Model Boolean Coordination Quantifier Reasoning Counting

BERT-IP 100 90.5 87.5
BERT-IG-pre-trained-only 0 18.5 4.7

BERT-IG-fine-tuned 55.3 100 13.2

Table 3.3: Test accuracy (%) for the two types of inference task (all modules).

The effects of changing from IP to IG is not the same across modules. On the one hand, in the
quantifiers module there is an increase in performance when we change the type of inference task.
On the other hand, there is a significant drop in performance when we move from IP to IG (both
in the Boolean coordination and counting modules). It seems that the basic quantifiers inference is
solvable by pre-trained models like BERT; however Boolean coordination and counting quantifiers
pose a challenge to pre-trained models.

As an attempt to check how much logical deduction is learned in the MLM task that determines
the pre-training stage of BERT, we can compare the performance between BERT-IG-pre-trained-
only and BERT-IG-fine-tuned. Figures 3.6, 3.7 and 3.8 show the performance of these modules
regarding each logical connective on the different modules.

In Figure 3.6, we can observe that the simple skill of Boolean coordination introduction cannot
be learned on the pre-training stage. On the other hand, in Figure 3.7, we see that the model
BERT-IG-pre-trained-only is able to correctly use the quantifiers someone and everyone for
some examples.

Figure 3.6: Test accuracy for each connective inside the Boolean coordination module in the MI task. The
figure shows BERT’s accuracy with and without fine-tuning.

3.5 ANALYSIS II: INFERENCE GENERATION 53

Figure 3.7: Test accuracy for each quantifier inside the quantifier reasoning module in the MI task. The
figure shows BERT’s accuracy with and without fine-tuning.

After a close inspection on the results associated with the masked inference task for the counting
module (Figure 3.8), we observe that the model BERT-IG-pre-trained-only is only able to correctly
predict examples for the numerals two and three (perhaps this is one bias from the pre-training
stage, i.e., maybe there is an over-representation of these two numerals in the MLM task). Regarding
the BERT-IG-fine-tuned model, we see that although this models shows promising results for the
numerals three and seventeen, for the majority of cases the accuracy of the model is zero.
Indicating that even when we fine-tune BERT for this module we are unable to solve deductions
problems based on simple numerals. This outcome is aligned with the one described in Section 3.4:
the competence related to counting is the most demanding for BERT.

Figure 3.8: Test accuracy for each numeral inside the counting module in the MI task. The figure shows
BERT’s accuracy with and without fine-tuning.

54 STRUCTURAL INFERENCE 3.6

3.5.8 Analysis Conclusion

The experiment performed in this analysis were just a first exploration into the MI task. We
have successfully shown that this new tasks offers enough difficulty to the NLI models so that in
future works we can expand on the ideas presented here and create a complete dataset centered on
inference generation.

3.6 Benefits and Limitations of Synthetic Corpora

The use of synthetic data is not a new strategy in NLI. This procedure can be traced back to the
creation of the Fracas dataset [The Fracas Consortium et al., 1996]. Through the years we have seen
the creation of synthetic data to analyze the different competences of neural models [Bowman et al.,
2015b, Evans et al., 2018, Tran et al., 2018, Weston et al., 2016]. The novelty of our approach lies
on the use of logical rules as a source of dataset creation and cross-lingual analysis. This approach
has allowed us to simultaneously create standard NLI datasets in multiple languages and, at the
same time, explore a new type of inference generation task.

In the analyses done in Sections 3.4 and 3.5 we have obtained the following results:

• The counting quantifiers are the most challenging operator for deep learning models (both in
English and Portuguese).

• There is evidence in favor of using cross-lingual transfer learning for NLI.

• By adopting a new type of evaluating procedure (masked inference), we can observe that the
logical competence that on the surface seem solved by the current models is, in fact, a hard
competence to master.

These three results show the main benefit of using an synthetic data in NLI: the creation of a
controlled environment to measure logical competence. Since we have used a collection of datasets
where no other inference factors are present (protecting the resulting datasets from biases that
can be introduced by crowdsource annotators [Gururangan et al., 2018]), we were able to identify
exactly that the current text classification models still struggle to perform inferences based on
logical connectives.

It is worth mentioning that the subsequent paper by Richardson et al. [2020] was influenced by
the analysis presented in Section 3.4. In that work, the authors have created a set of different NLI
tasks that they call semantic fragments: logic fragments (an extension of the tasks presented in
Subsection 3.4.2), and a fragment based on monotonicity reasoning.

Figure 3.9: Accuracy results for BERT on the different logic fragments (Figure by Richardson et al. [2020]).

3.6 BENEFITS AND LIMITATIONS OF SYNTHETIC CORPORA 55

The findings from that work are consistent with ours: it is possible to train the BERT model to
obtain an accuracy close to 100% for all logic tasks (counting is the only exception, as seen in Figure
3.9). Moreover, they have also reported that by training BERT on benchmark datasets and evalu-
ating it on logical fragments we obtain a poor performance. Let BERTSNLI and BERTSNLI+MNLI

denote the versions of the BERT model trained on the SNLI and the combination of the SNLI
and MNLI datasets, respectively. The authors have reported that the average test accuracy for
BERTSNLI and BERTSNLI+MNLI on the logic fragments is 46.1% and 47.3%, respectively. Show-
ing that basic logic inference cannot be learned using the benchmark datasets.

Although there is a confluence in results, Richardson et al. [2020] formulate a fair criticism of
our work:

In nearly all cases, it is possible to train a model to master a fragment (with counting be-
ing the hardest fragment to learn). In other studies on learning fragments [Geiger et al.,
2018, Salvatore et al., 2019a], this is the main result reported, however, we also show
that the resulting models perform below random chance on benchmark tasks, meaning
that these models are not by themselves very useful for general NLI. This even holds
for results on the GLUE diagnosis test [Wang et al., 2018], which was hand-created and
designed to model many of the logical phenomena captured in our fragments.

They have highlighted the main weakness of our synthetic data: the sentences produced by the
template language do not adequately represent the linguistic variety of everyday speech. This problem
can be verified in different ways. The average vocabulary size for a dataset presented in Section 3.4
is approximately 3K (Table 3.1). A number notably lower when compared to the vocabulary size of
the SNLI and MNLI datasets (42K and 100K, respectively). Other way to observe the specificity of
our dataset is by looking at the sentence complexity. For example, if we select from the benchmark
datasets the observations related to counting, we can find a linguistic diversity that our templates
are unable to represent. Take this observation from the SNLI:

P = Two men are on scaffolding as they paint above a storefront while
a man on the sidewalk stands next to them talking on the phone.

H = Three men are outside.

Y = entailment.

Or this example in the MNLI dataset:

P = Five forks guarantee real comfort, but the food will not necessarily
be better than in a two-or three-fork establishment, just more expensive.

H = Five fork restaurants are rated higher because they are more popular
and have celebrity appearances.

Y = neutral.

It is possible to obtain a more general understanding on this issue when we compare the datasets
using a readability metric. For example, the Flesch score is a metric applied to texts for the objective
of measuring reading difficulty [Flesch, 1948]. The scores ranges from (−∞, 122], high scores imply
an easy to read text, and low scores are interpreted as an indication of an extremely difficulty text.5

5This score should be interpreted as a proxy for reading complexity, since it measures only some superficial text
features. The Flesch score of a document is given by:

206.835− 1.015

(
total words

total sentences

)
− 84.6

(
total syllables
total words

)
.

56 STRUCTURAL INFERENCE 3.6

Figure 3.10: Flesch score distribution for the datasets CD data (the dataset presented in Section 3.4.2),
SNLI and MNLI.

Figure 3.10 shows the distribution of the Flesch score for three datasets: the dataset presented in
Section 3.4.2 (all modules), and the benchmark datasets SNLI and MNLI. The score was calculated
using as the input document the concatenation of the premise and the hypothesis. As can be seen
in the figure, the score range for the synthetic data is the smallest one. The CD dataset has no
observation with a score less than zero, this is one indication that we were not able to create high
demanding texts using the template language.

This representation problem does not invalidated the results presented in Sections 3.4 and 3.5,
however, it raises the question of the generalization power of the same results. After considering
the points made by Richardson et al. [2020], we believe that a valid research path lies in defining
better representations, i.e., the project of combining logical rules with the help of crowdsourcing
annotators with the goal of constructing a faithful dataset that is centered on an specific logical
property.

Chapter 4

Equivalences

This chapter marks a shift in direction. Instead of creating new synthetic corpora, we focus on
modifying existing datasets. By doing so, we are not only trying to avoid the generalization issues
mentioned on the previous chapter, but by using dataset altering functions, we can improve how
the field measures the limitations of NLI models. The latter point needs further explanation. As
mentioned in Chapter 1, the recent progress of deep learning techniques based on pre-trained models
has produced models capable of achieving high scores on benchmark NLI datasets [Devlin et al.,
2019, Howard and Ruder, 2018, Liu et al., 2019b, Radford et al., 2019]. In order to understand
how these powerful models generalize to new inference examples, different approaches have used
a similar evaluation method: create a new NLI test set that comprises of sentences with known
logic and semantic properties, train a model on a benchmark NLI dataset, and then evaluate such
model on the new set [Glockner et al., 2018, Richardson et al., 2020, Yanaka et al., 2019]. This
type of evaluation produces an analysis problem, namely, if a model fails to generalize to a new
test set, we cannot be sure whether we are observing a real model limitation or just a consequence
of the properties of the training data. In order to address this problem, we propose an alternative
evaluation method.1

4.1 A New Resampling-Based Method to Evaluate NLI Models

Our goal here is to investigate whether the NLI models perform the same type of inference for
different text inputs with the same intended meaning. For this purpose, we define a class of text
transformations that can change a NLI input without altering the underlying logical relationship.
Based on such transformations and a benchmark dataset, we construct an experimental design
where a percentage of the training data is substituted by its transformed version. We also define
different versions of the test set: the original one obtained from the benchmark dataset, and the
one were all observations are transformed. Then, we propose an adaptation of the paired t-test to
compare the model’s performance on the two versions of the test set. We call the whole procedure
the Invariance under Equivalence (IE) test. This approach provides two direct advantages: we sub-
stitute the expensive endeavour of dataset creation by the simpler task of constructing an adequate
transformation function; and since the proposed hypothesis test is carefully crafted to account for
the variety of ways that a transformation can affect the training of a machine learning model, we
offer an evaluation procedure that is both meaningful and statistically sound.

As a case study, we study the sensibility of different state-of-the art models using benchmark
datasets Stanford Natural Language Inference Corpus (SNLI) [Bowman et al., 2015a] and Multi-
Genre NLI Corpus (MNLI) [Williams et al., 2018] under a small perturbation based on synonym
substitution. We focus on this specific transformation as a way to understand how much lexical
knowledge can be learned when fine-tuning deep learning models. Two main results have been
obtained:

1This chapter is based on a paper, it was submitted to a relevant NLP Journal, and now it is under review.

57

58 EQUIVALENCES 4.2

• Current deep learning models show two different inference outputs for sentences with the same
meaning. After applying the IE test using both datasets and different percentages of transfor-
mation in the training data, we have observed that the deep learning models fail the IE test in
the vast majority of cases. This result indicates that by just adding transformed examples in
the fine-tuning phase we are not able to remove some biases originated from the pre-training
stage.

• Some NLI models are clearly more robust than others. By measuring each model’s performance
on the non-transformed test set when altered examples are present in training, we have ob-
served that BERT [Devlin et al., 2019] and RoBERTa [Liu et al., 2019b] are significantly more
robust than XLNet [Yang et al., 2019] and ALBERT [Lan et al., 2020].

The chapter is organized as follows: in Section 4.2 we show how to define logical preserving
transformations using the notion of equivalence; in Section 4.3 we introduce the IE test; in Sections
4.4 and 4.5 we present one application of the IE test for the case of synonym substitution and
comment on the experimental results; and in Section 4.6 we discuss the related literature.

4.2 Equivalence

The concept of equivalence, which is formally defined in logic, can also be employed in natural
language with some adjustments to take into account its complex semantics. Once we establish an
equivalent relation, we define a function that maps sentences to their equivalent counterpart and
extend this function to any NLI dataset.

4.2.1 Equivalence in Formal and Natural Languages

There are two complementary perspectives on inference in a formal language, namely, the one
focused on the truth value of the formulas and the other centered on the notion of a deductive system.
These two approaches coincide under a complete deductive system, i.e., the theorems proved on
the deductive system are exactly the ones that are true. One property related to completeness is
based on the notion of equivalence. We say that two formulas are equivalent if both have the same
truth value. For example, let p denote a propositional variable, ∧ the conjunction operator, and >
a tautology (i.e., a sentence that is always true, e.g., 0 = 0). The truth value of the formula p ∧ >
depends only on p (in general, any formula of the form p∧>∧ · · · ∧> has the same truth value as
p). Hence, we say that p ∧ > and p are equivalent formulas.

If a deductive system is complete, then any equivalence in the formal language can be proved
inside the system. Hence, using the fact that the inference rules are equivalence preserving operations
[Shoenfield, 1967, p. 34], in a complete system, we can substitute one formula for any of its equivalent
versions without disrupting the deductions from the system. For example, let q be a propositional
variable, → the implication connective and ` the consequence relation in a complete deductive
system. It follows that:

p,p→ q ` q,
p ∧ >,p→ q ` q ∧ >,

...
p ∧ > ∧ · · · ∧ >,p→ q ` q ∧ > ∧ · · · ∧ >.

In other words, under a complete system, if we assume p → q and any formula equivalent to
p we always can deduce a formula equivalent to q. This result offers one simple way to verify that
a system is incomplete: we take an arbitrary pair of equivalent formulas and check whether by
substituting one for the other the system’s deductions diverge.

4.2 EQUIVALENCE 59

We propose to incorporate this verification procedure to the NLI field. This is a feasible approach
because the concept of equivalence can be understood in natural language as meaning identity
[Shieber, 1993]. Thus, we formulate the property associated with a complete deductive system as a
linguistic competence:

If two sentences have the same meaning, it is expected that any consequence based on
them should not be disrupted when we substitute one sentence for the other.

We call this competence the invariance under equivalence (IE) property. Similar to formal logic,
we can investigate the limitations of NLI models by attesting if they fail to satisfy the IE property.

Moving from logical equivalence to meaning identity is not straightforward. Some phenomena
that have some grounding in logic become negligible in the linguistic context. For example, the
relationship mentioned above based on tautology addition hardly corresponds to meaning identity
in natural language. Hence, we need to frame the IE property considering a variety of equivalent
forms that emerge from language use. We list a few examples here.

Synonym Substitution. The basic case of equivalence can be found in sentences composed
by constituents with the same denotation. For example, take the sentences: a man is fishing
, a guy is fishing. This instance shows the case where one sentence can be obtained from the
other by substituting one or more words by their respective synonyms while denoting the same fact.

Voice Transformation. One stylistic transformation that is usually done in writing is the
change in grammatical voice. It is possible to write different sentences both in the active and passive
voice: the crusaders captured the holy city can be modified to the holy city was
captured by the crusaders, and vice-versa.

Constituents Permutation. Since many relations in natural language are symmetric, we can
permute the relations’ constituents without causing meaning disruption. This can be done using
either definite descriptions or relative clauses. In the case of definite descriptions, we can freely
permute the entity being described and the description. For example, Iggy Pop was the lead
singer of the Stooges is equivalent to The lead singer of the Stooges was Iggy
Pop. When using relative clauses, the phrases connected can be rearranged in any order. For ex-
ample, John threw a red ball that is large is interchangeable with John threw a
large ball that is red.

4.2.2 The IE Property for the NLI Task

In order to simplify the analysis, we have decided to formulate all the discussion on linguistic
equivalences in terms of transformation functions. Such functions are designed to transform a sen-
tence into a specific equivalent version of itself. For instance, take the mapping that substitutes
all occurrences of the word man in a sentence by the word guy; this mapping is one particular
representative of the synonym substitution equivalence relation.2

Due to its meaning preserving property, we apply a transformation function to all sentences
in a NLI dataset without affecting the original logical relationship. More formally, given a NLI
data D = {(Pi, Hi, Yi) : i = 1, . . . , n}, where Pi , Hi, Yi are the premise, hypothesis and target,
respectively; and given a transformation ϕ, we define (Pi

ϕ, Hi
ϕ, Yi) as the result of applying ϕ to

both the premise and hypothesis of the i-th observation of this set. We also define Dϕ as the entire
set transformation, i.e., Dϕ = {(Piϕ, Hi

ϕ, Yi) : i = 1, . . . , n}.
Let DT ,DV ,DTe be variables for the training, validation, and test portions of a NLI dataset,

respectively; and let ϕ be a transformation function. It is well know that when we train a machine
learning model in a sample with no transformed observations, such model will likely perform poorly
on a test set only containing transformed sentences. Hence, in order to assert that a NLI model
fails the IE property in a meaningful way, we allow some fraction of the training data to be altered
by ϕ. For this reason, we formulate the IE property for the NLI task as follows:

2Throughout this chapter, we use “transformation” to denote an alteration function associated to an equivalent
relation.

60 EQUIVALENCES 4.3

Given a machine learning model trained on a dataset containing a sufficient amount of
observations transformed by ϕ, it is expected that the model’s performances on the sets
DTe and DϕTe are not significantly different.

4.3 Testing for Invariance

In this section, we propose an experimental design to measure the IE property for the NLI
task: the IE test. Broadly speaking, the IE test is composed of three main steps: i) we resample an
altered version of the training data and obtain a classifier by estimating the model’s parameters on
the transformed sample; ii) we perform a paired t-test to compare the classifier’s performance on
the two versions of the test set; iii) we repeat steps i) and ii) M times and employ the Bonferroni
method to combine the multiple paired t-tests into a single decision procedure. In what follows, we
describe in details steps i), ii) and iii). After establishing all definitions, we present the IE test as
an algorithm and comment on some alternatives.

4.3.1 Training on a Transformed Sample

First, let us define a generation process to model the different effects caused by the presence of a
transformation function on the training stage. Since, we are assuming that any training observation
can be altered, the generation method is constructed as a stochastic process.

Given a transformation ϕ and a transformation probability ρ ∈ [0, 1] we define the (ϕ, ρ) data
generating process, DGPϕ,ρ(DT ,DV), as the process of obtaining a modified version of the train
and validation datasets where the probability of each observation being altered by ϕ is ρ. More
precisely, let D ∈ {DT ,DV }, |D| = n and L1, . . . , Ln ∼ Bernoulli(ρ). An altered version of D is the
set composed of the observations of the form (Pi

new, Hi
new, Yi), where:

(Pi
new, Hi

new, Yi) =

{
(Pi

ϕ, Hi
ϕ, Yi) if Li = 1,

(Pi, Hi, Yi) otherwise
(4.1)

This process is applied independently to DT and DV . Hence, if |DT | = n1 and |DV | = n2, then
there are 2(n1+n2) distinct pairs of transformed sets (DT ′,DV ′) that can be sampled. We write

DT ′,DV ′ ∼ DGPϕ,ρ(DT ,DV), (4.2)

to denote the process of sampling a transformed version of the datasets DT and DV according to ϕ
and ρ.

Second, to represent the whole training procedure we need to define the underlying NLI model
and the hyperparameter space. For d, s ∈ N, let M = {f(x; θ) : θ ∈ Θ ⊆ Rd} be a parametric
model, and let HM ⊆ Rs be the associated hyperparameters space required by the model. By search
we denote any algorithm of hyperparameter selection (e.g., random search [Bergstra and Bengio,
2012]). Thus, given a number of maximum search B, a budget, this algorithm chooses a specific
hyperparameter value h ∈ HM:

h = search(DT ,DV ,M,HM,B). (4.3)

A classifier g is attained by fitting the model M on the training data (DT ′,DV ′) based on a
hyperparameter value h and a stochastic approximation algorithm (train):

g = train(M,DT ′,DV ′, h). (4.4)

The function g is an usual NLI classifier: its input is the pair of sentences (P,H), and its output
is either −1 (contradiction), 0 (neutral), or 1 (entailment).

4.3 TESTING FOR INVARIANCE 61

4.3.2 A Bootstrap Version of the Paired t-Test

The IE test is based on the comparison of the classifier’s accuracies in two paired samples: DTe
and DϕTe. Pairing occurs because each member of a sample is matched with an equivalent member
in the other sample. To account for this dependency, we perform a paired t-test. Since we cannot
guarantee that the presuppositions of asymptotic theory are preserved in this context, we formulate
the paired t-test as a bootstrap hypothesis test [Fisher and Hall, 1990, Konietschke and Pauly,
2014].

Given a classifier g, let A and B be the variables indicating the correct classification of the two
types of random NLI observation:

A = I(g(P,H) = Y), B = I(g(Pϕ, Hϕ) = Y). (4.5)

The true accuracy of g for both version of the text input is given by

E[A] = P(g(P,H) = Y), E[B] = P(g(Pϕ, Hϕ) = Y). (4.6)

We approximate theses quantities by using the estimators Ā and B̄ defined on the test data
DTe = {(Pi, Hi, Yi) : i = 1, . . . , n}:

Ā =
1

n

n∑
i=1

Ai, B̄ =
1

n

n∑
i=1

Bi, (4.7)

where Ai and Bi indicate the classifier’s correct prediction on the original and altered version of
the i-th observation, respectively. Let match be the function that returns the vector of matched
observations related to the performance of g on the datasets DTe and DϕTe:

match(g,DTe,DϕTe) = ((A1, B1), . . . , (An, Bn)). (matched sample) (4.8)

In the matched sample (4.8) we have information about the classifier’s behavior for each ob-
servation of the test data before and after applying the transformation ϕ. Let δ be defined as the
difference between probabilities:

δ = E[A]− E[B]. (4.9)

We test hypothesis H0 that the probabilities are equal against hypothesis H1 that they are
different:

H0 : δ = 0 versus H1 : δ 6= 0. (4.10)

Let δ̂i = Ai −Bi and δ̂ = Ā− B̄. We test H0 by using the paired t-test statistic:

t =
δ̂ − 0

ŝe(δ̂)
=

√
n(Ā− B̄)

S
, (4.11)

such that ŝe(δ̂) = S/
√
n is the estimated standard error of δ̂, where

S =

√√√√ 1

n

n∑
i=1

(δ̂i − δ̂)2. (4.12)

In order to formulate the IE test in a suitable manner, we write X = (X1, . . . , Xn) to denote the
vector of paired variables (4.8), i.e., Xi = (Ai, Bi) for i ∈ {1, . . . , n}. We also use t = fpaired t-test(X)
to refer to the process of obtaining the test statistic (4.11) based on the matched data X. The
observable test statistic is denoted by t̂.

62 EQUIVALENCES 4.3

The test statistic t is a standardized version of the accuracy difference Ā− B̄. A positive value
for t implies that Ā > B̄ (the classifier is performing better on the original data compared to the
transformed data). Similarly, when t takes negative values we have that B̄ > Ā (the performance
on the modified test data surpasses the performance on the original test set). If the null hypothesis
(H0) is true, then it is more likely that the observed value t̂ takes values closer to zero. In order
to formulate probability judgments about t̂, we need to obtain the distribution of the test statistic
that would follow if the null hypothesis were true.

Following the bootstrap method, we estimate the distribution of t under the null hypothesis
through resampling the matched data (4.8). It is worth noting that we need to generate observations
underH0 from the observed sample, even when the observed sample is drawn from a population that
does not satisfy H0. In the case of the paired t-test, we employ the resampling strategy mentioned
by Konietschke and Pauly [2014]: a resample X∗ = (X∗1 , . . . , X

∗
n) is draw from the original sample

with replacement such that each X∗i is a random permutation on the variables Aj and Bj within
the pair (Aj , Bj) for j ∈ {1, . . . , n}. In other words, X∗ is a normal bootstrap sample with the
addition that each simulated variable X∗i is either (Aj , Bj) or (Bj , Aj), with probability 1/2, for
some j ∈ {1, . . . , n}. This is done to force that the average values related to the first and second
components are the same, following the null hypothesis (in this case, E[A] = E[B]).

We use the simulated sampleX∗ to calculate the bootstrap replication of t, t∗ = fpaired t-test(X
∗).

By repeating this process S times, we obtain a collection of bootstrap replications t∗1, . . . , t∗S . Let
F̂ ∗ be the empirical distribution of t∗s. We compute the equal-tail bootstrap p-value as follows:

p-value = 2 min(F̂ ∗(t̂), 1− F̂ ∗(t̂))

= 2 min

(
1

S

S∑
s=1

I(t∗s ≤ t̂),
1

S

S∑
s=1

I(t∗s > t̂)

)
. (4.13)

In (4.13), we are simultaneously performing a left-tailed and a right tailed test. The p-value is
the probability of observing a bootstrap replication, in absolute value |t∗|, larger than the actual
observed statistic, in absolute value |t̂|, under the null hypothesis.3

4.3.3 Multiple Testing

We make use of the (ϕ, ρ) data generating process to produce different effects caused by the
presence of ϕ in the training stage. This process results in a variety of classifiers influenced by ϕ in
some capacity. Using the paired t-test, we compare the performance of all these classifiers on the
sets DTe and DϕTe (as illustrated in Figure 4.1).

To assert that a model fails to satisfy the IE property we check whether at least one classifier
based on this model presents a significantly different performance on the two versions of the test set.
There is a methodological caveat here. By repeating the same test multiple times the likelihood of
incorrectly rejecting the null hypothesis (i.e., the type I error) increases. One widely used correction
for this problem is the Bonferroni method [Wasserman, 2010, p. 166]. The method’s application is
simple: given a significance level α, after testing M times and acquiring the p-values p1, . . . , pM , we
reject the null hypothesis if pm < α/M for at least one m ∈ {1, . . . ,M}.

4.3.4 Invariance Under Equivalence Test

We call invariance under equivalence test the whole evaluation procedure of resampling multiple
versions of the training data, acquiring different p-values associated with the classifiers’ performance,

3Since we do not assume that t is symmetrically distributed around zero,we use this equation to calculate the
p-value instead of the symmetric bootstrap p-value: 1

S
∑S

s=1 I(|t
∗
s | > |t̂|).

4.3 TESTING FOR INVARIANCE 63

Figure 4.1: The bootstrap version of the paired t-test applied multiple times. For m = 1, . . . ,M , gm is
a classifier trained on the transformed sample (Dm

T ,Dm
V). The p-value pm is obtained by comparing the

observable test statistic associated with gm, t̂m, with the bootstrap distribution of t under the null hypothesis.

and, based on these p-values, deciding on the significance of difference between accuracies. The
complete description of the test can be found in Algorithm 1.

Many variations of the proposed method are possible. We comment on some options:
Alternative 1 As an alternative to the paired t-test, one can employ the McNemar’s test

(a simplified version of the Cochran’s Q test) [Cochram, 1950, McNemar, 1947]. The McNemar
statistic measures the symmetry between the changes in samples. The null hypothesis for this test
states that the expected number of observations changed from Ai = 1 to Bi = 0 is the same as
the ones changed from Ai = 0 to Bi = 1. Thus, the described strategy to resample the matched
data (4.8) can also be used in this case. The only difference is in the calculation of the p-value, the
McNemar’s test is an one-tailed test.

Alternative 2. By the stochastic nature of the training algorithm used in the neural network
field, there can be performance variation caused only by this algorithm. This is particularly true
for deep learning models used in text classification [Dodge et al., 2020]. The training variation can
be accommodated in our method by estimating multiple classifiers using the same transformed
sample and hyperparameter value. After training all those classifiers, one can take the majority
vote classifier as the single model gm.

Alternative 3. Since we have defined the hyperparameter selection stage before the resampling
process, one single hyperparameter value can influence the training on difference M samples. An-
other option is to restrict a hyperparameter value to a single sample. Thus, one can first obtain a
modified sample and then perform the hyperparameter search.

All alternatives are valid versions to the method we are proposing. However, it should be noted

64 EQUIVALENCES 4.4

Algorithm 1 Invariance under equivalence test (IE test)

1. Select all basic variables: DT ,DV ,DTe,M,HM,B, ϕ, ρ,M,S and α.

2. Obtain a hyperparameter value

h = search(DT ,DV ,M,HM,B).

3. For m = 1, . . . ,M :

(a) Generate a transformed training and validation sets

DmT ,DmV ∼ DGPϕ,ρ(DT ,DV).

(b) Train a classifier on the new pair of sets using the selected hyperparameters

gm = train(M,DmT ,DmV , h).

(c) Evaluate gm on the two versions of the test data to obtain the matched sample Xm

Xm = match(gm,DTe,DϕTe).

(d) Obtain the observable value for the test statistic

t̂m = fpaired t-test(Xm).

(e) For s = 1, . . . ,S obtain the bootstrap sample generated under the null hypothesis X∗sm ,
and compute the bootstrap replication of t, t∗m,s = fpaired t-test(X

∗s
m).

(f) Using the empirical distribution of the simulated test statistics t∗m,s and the observable
value t̂m, compute the bootstrap p-value pm as described in (4.13).

4. Reject the null hypothesis if pm < α/M for at least one m ∈ {1, . . . ,M}.

that the combination of alternatives 2 and 3 with large deep learning models, as the ones used to
obtain state-of-the art results in NLI, yields a high computational cost.

4.4 Case Study: Verifying Invariance under Synonym Substitution

As a starting point to understand the effects of equivalent modifications on a NLI task, we have
decided to concentrate our focus on transformations based on synonym substitution, i.e., any text
manipulation function that substitutes an occurrence of a word by one of its synonyms.

4.4.1 Defining a Transformation Function

Among the myriad of synonym substitution functions, we have decide to work only with the ones
based on the WordNet database [Fellbaum, 1998]. One of the principles behind our analysis is that
an equivalent alteration should yield the smallest perturbation possible, hence we have constructed
a transformation procedure based on the word frequency of each corpus. We proceed as follows: we
utilize the spaCy library [Explosion, 2020] to select all nouns in the corpus, then for all nouns we
use the WordNet database to list all synonyms and choose the one with the highest frequency. If
no synonym appears in the corpus we take the one with the lower edit distance. Figure 4.2 shows
a simple transformation example.

4.4 CASE STUDY: VERIFYING INVARIANCE UNDER SYNONYM SUBSTITUTION 65

Figure 4.2: Example of sentence transformation. In this case, there are two synonyms associated with
the only noun appearing in the source sentence (dog). Since both synonyms have the same frequency in the
corpus (zero), the selected synonym is the one with the lower edit distance (domestic dog).

We expand this function to a NLI dataset applying the transformation to both the premise and
the hypothesis. In all cases, the target Y remains unchanged.

4.4.2 Datasets

We have used the benchmark datasets Stanford Natural Language Inference Corpus (SNLI)
[Bowman et al., 2015a] and MultiGenre NLI Corpus (MNLI) [Williams et al., 2018] in our analy-
sis. The SNLI and MNLI datasets are composed of 570K and 433K sentence pairs, respectively.
Since the transformation process described above is automatic (allowing us to modify such large
datasets), it inevitably causes some odd transformations. Although, we have carefully reviewed the
transformation routine, we have found some altered sentence pairs that are either ungrammatical
or just unusual. For example, take this observation from the SNLI dataset (the relevant words are
underlined):

P = An old man in a baseball hat and an old woman in a jean jacket are
standing outside but are covered mostly in shadow.

H = An old woman has a light jean jacket.

Using our procedure, it is transformed in the following pair:

Pϕ = An old adult male in a baseball game hat and an old adult female
in a denim jacket are standing outside but are covered mostly in shadow.

Hϕ = An old adult female has a visible light denim jacket.

As one can see, the transformation is far from perfect. It does not differentiate the word light
from adjective and noun roles. However, unusual expressions as visible light denim jacket
form a small part in the altered dataset and the majority of them are sound. To minimize the
occurrence of any defective substitutions we have created a black list, i.e., a list of words that
remain unchanged after the transformation. To grasp how much distortion we have added in the
process, we estimate the sound percentage for each NLI dataset (Table 4.1). This quantity is defined
as the number of sound transformations in a sample divide by the sample size. In Appendix A, we
display some examples of what we call sound and unsound transformations for each dataset.

66 EQUIVALENCES 4.5

95% Confidence Interval

Dataset Lower Bound Upper Bound Observable Value

SNLI 75.4% 89% 82.2%
MNLI 77.4% 91% 84.2%

Table 4.1: Sound percentages for the transformation function based on the WordNet database. The values
were estimated using a random sample of 400 sentence pairs.

4.4.3 Methodology

The parameter ρ is a key factor in the IE test because it determines what is a “sufficient amount”
of transformation in the training phase. Our initial intuition is that any machine learning model
will not satisfy the IE property when we select extreme values of ρ. We believe that the samples
generated by those values are biased samples: by choosing low values for ρ we do not offer enough
examples of transformed sentences for the machine learning model in training; similarly when we
use high values for ρ there is an over-representation of the modified data in the training phase.
Hence, in order to find meaningful values for the transformation probability, we utilize a baseline
model to select values for ρ where it is harder to refute the null hypothesis. As the baseline, we
employ the gradient boosting classifier together with the bag-of-words representation.

The main experiment consists in applying the IE test to the recent deep learning models used
in NLI: BERT [Devlin et al., 2019], XLNet [Yang et al., 2019], RoBERTa [Liu et al., 2019b], and
ALBERT [Lan et al., 2020]. In order to repeat the test for different transformation probabilities
and altered samples in a feasible time, we utilize only the pre-trained weights associated with the
base version of these models. The only exception is for the model RoBERTa. Since this model has
a large version fine-tuned on the MNLI dataset, we consider that it is relevant for our investigation
to include a version of this model specialized in the NLI task. We use “RoBERTaLARGE” to denote
this specific version of the RoBERTa model. For the same reason, we work with a smaller version
of each training dataset. Hence, for both SNLI and MNLI datasets we use a random sample of
50K observations for training (this means we are using only 8.78% and 11.54% of the training data
of the SNLI and MNLI, respectively). Although this reduction is done to perform the testing, the
transformation function is always defined using the whole corpus of each dataset. It should be noted
that since the MNLI dataset has no labeled test set publicly available, we use the concatenation of
the matched and mismatched development sets as the test portion for this dataset.

Because the change in transformation probabilities does not affect the hyperparameter selection
stage, we perform a single search for each model and dataset with a budget to train 10 models (B =
10). In Appendix B, we detail the hyperparameter spaces and the selected hyperparameter values
for each model. For each value of ρ, we obtain 5 p-values and perform 1K bootstrap simulations
(M = 5,S = 103). We set the significance level to 5% (α = 0.05); hence, the adjusted significant
level is 1% (α/M = 0.01). All the deep learning models were implemented using the HuggingFace
transformer library [Wolf et al., 2019]. The code and data used for the experiments can be found
online [Salvatore, 2020].

4.5 Results

In this section, we present the results and findings of the experiments with the synonym substi-
tution function on SNLI and MNLI datasets. First, we describe how changing the transformation
probability ρ affects the test for the baseline model. Second, we apply the IE test for the deep learn-
ing models using the most interesting choices for ρ. We comment on the test results and observe
how to utilize the experiment outcome to measure the robustness of the NLI models.

4.5 RESULTS 67

4.5.1 Baseline Exploration

To mitigate the cost of training deep learning models, we have used the baseline to find the
intervals between 0 and 1 where rejecting the null hypothesis is not a trivial exercise. Figure 4.3
shows the test results associated with the baseline for each dataset using 101 different choices of ρ
(values selected from the set {0, 0.01, 0.02, . . . , 0.98, 0.99, 1}).

Figure 4.3: Baseline results. In the x-axis we have different choices of transformation probabilities used
in training. The y-axis displays the minimum value for the p-values acquired in five paired t-tests. We reject
the null hypothesis if the minimum p-value is smaller than 1%.

The results for the SNLI data are in agreement with our initial intuition: on the one hand,
choosing extremes values for ρ (values from the intervals [0, 0.2] and [0.8, 1.0]) yields p-values con-
centrated closer to zero, and so rejecting the null hypothesis at 5% significance level. On the other
hand, when choosing a transformation probability in the interval [0.4, 0.6], we are adding enough
transformed examples for training, and so we were not able the reject the null hypothesis. The
same phenomenon cannot be replicated in the MNLI dataset. It seems that for this dataset the
introduction of transformed examples does not change the baseline performance - independently of
the choice of ρ. Although we are able to obtain p-values smaller than 1% in five scenarios (namely
for ρ ∈ {0.01, 0.6, 0.74, 0.85, 0.87}), the SNLI pattern does not repeat in the MNLI dataset.

4.5.2 Testing Deep Learning Models

The baseline has helped us to identify the interval of transformation probabilities where the
performances on the two versions of the test set might be similar: the interval [0.4, 0.6]. Based on that
information, we have chosen three values from this interval for the new tests, namely, 0.4, 0.5, 0.6.
To obtain a broader representation, we have also selected two values for ρ in both extremes. Hence,
we have tested the deep learning models using seven values for ρ: 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.

68 EQUIVALENCES 4.5

Figure 4.4: SNLI results. In the x-axis we have different choices of transformation probabilities in training.
The y-axis displays the accuracy. Each point represents the average accuracy in five runs. The vertical lines
display the associated standard deviation. The black and grey lines represent the values for the original and
transformed test sets, respectively.

According to the test accuracies (Figures 4.4 and 4.5), we observe that ROBERTALARGE is the
best model. This is an expected result. ROBERTALARGE is the larger version of the ROBERTA
model with an architecture composed of more layers and attention heads. Not only ROBERTALARGE
outperforms ROBERTABASE in different language understanding tasks [Liu et al., 2019b], but also
the specific version of the ROBERTALARGE model used in our experiments was fine-tuned on the
MNLI dataset.

Each model is affected differently by the change in ρ. On the SNLI dataset (Figure 4.4), all
models, except for ALBERT, continue to show a high accuracy even when we use a fully trans-
formed training dataset. We have a similar picture on the MNLI dataset, (Figure 4.5). However,
in this case, we notice a higher dispersion in the accuracies for the models ALBERT, XLNet, and
ROBERTABASE .

In the majority of cases, we also observe that the performance on the original test set is superior
compared to the transformed version. As seen in the Figures 4.4 and 4.5, in almost all choices of ρ
and for all deep learning models, the black line (the accuracy on the original test set) dominates the

4.5 RESULTS 69

grey line (the accuracy on the transformed version of the test set). This difference becomes more
evident for the test statistic (Figure 4.6). For almost every choice of ρ, all deep learning models have
generated test statistics with extremely positive values. When we compare these statistics with the
empirical distribution generated under the null hypothesis we obtain p-values smaller than 10−4 for
the majority of cases. The exceptions are related to the models ALBERT and BERT on the SNLI
dataset using ρ = 1. In these cases, the minimal p-values are 0.008 and 0.156, respectively. Hence,
for all IE tests associated with the deep learning models, we reject the null hypothesis in 69 tests
out of 70.

Figure 4.5: MNLI results. In the x-axis we have different choices of transformation probabilities in training.
The y-axis displays the accuracy. Each point represents the average accuracy in five runs. The vertical lines
display the associated standard deviation. The black and grey lines represent the values for the original and
transformed test sets, respectively.

The empirical evidence shows that the deep learning models are not invariant under equivalence.
This indicates that although these models present an impressive inference capability, they still lack
the skill of producing the same deduction based on different sentences with the same meaning. After
rejecting the null hypothesis when using different transformation probabilities, we are convinced
that this is not a simple data acquisition problem. Since we are seeing the same pattern for almost

70 EQUIVALENCES 4.5

Figure 4.6: Test statistics from the IE test for all models. In the x-axis we have different choices of
transformation probabilities used in training. The y-axis displays the values for the test statistic. Each point
represents the average test statistics in five paired t-tests. The vertical lines display the associated standard
deviation.

all models in both datasets, it seems that the absence of the invariance under equivalence propriety
is a feature in the transformer based models.

4.5.3 Experimental Finding: Model Robustness

Figure 4.7: Models’ accuracy on the original test set. In the x-axis we have different choices of transfor-
mation probabilities used in training. The y-axis displays the accuracy. Each point represents the average
accuracy in five runs. The vertical lines display the associated standard deviation.

One possible interpretation of the transformation function is that this alteration is a noise that
can be added to the training data. Although this type of noise is imperceptible for humans, it
can force the machine learning model to make false predictions. By this interpretation, the trans-
formation function is an “attack”, a “challenge”, or an “adversary” to the model [Dasgupta et al.,
2018, Liu et al., 2019a, McCoy et al., 2019, Naik et al., 2018, Nie et al., 2018, Richardson et al.,

4.5 RESULTS 71

2020, Yanaka et al., 2019, Zhu et al., 2018]. Along these lines, a robust model is one that consis-
tently produces high test accuracy even when we add different proportions of noised observations in
training; in other words, a robust model should combine higher prediction power and low accuracy
variation. Given a model M and a dataset, we train the model using the (ϕ, ρ) data generation
process for different values of ρ and obtain a sample of test accuracies (accuracies associated with
the original test set). Here, we use the signal-to-noise ratio (SNR) as a measure of robustness. Let
µ̂M and σ̂M be the sample mean and standard deviation, respectively, we define:

SNRM =
µ̂M
σ̂M

. (4.14)

This statistical measure has an intuitive interpretation: the numerator represents the model’s
overall performance when noise is added; and the denominator indicates how much the model’s
predictive power changes when different levels of noise are present. Since this score can be given for
each model and dataset, we rank the models by their robustness under a transformation function
by averaging the model’s SNR on different datasets (Table 4.2).

Signal-to-Noise Ratio

Model SNLI MNLI Average

RoBERTaLARGE 393.1 569.3 481.2
BERT 151.1 151 151.1

RoBERTaBASE 222.6 16.5 119.5
baseline 24.8 212.6 118.7
XLNet 16.7 12.8 14.8

ALBERT 10.8 10.7 10.8

Table 4.2: Ranked models according to the SNR metric. In this case, the noise is the synonym substitution
transformation.

From the perspective of robustness - based only on the SNR metric - the networks XLNet and
ALBERT are worse than the baseline. Although both deep learning models present, on average,
a higher accuracy compared to the baseline; they are not able to maintain high accuracy when
different quantities of altered sentences are included in the training data. In contrast, the baseline
produces a low yet consistent test accuracy (Figure 4.7). Among all models, BERT and ROBERTA
appear to be the most robust ones. As seen in Table 4.2, BERT shows consistent performance in
both datasets; and ROBERTABASE shows an almost unchanged behavior on the SNLI dataset.
Clearly, ROBERTALARGE stands out when compared to the rest. This model was not only able to
obtain a higher accuracy on both datasets but also it had maintained a high performance regardless
of the choice of ρ.

It has been reported that increasing model size leads to large improvement in different natural
language processing tasks [Devlin et al., 2019, Radford et al., 2019]. We conduct a similar investi-
gation regarding robustness by checking whether SNR improves as the model size increases. Since
our experiments were not initially designed to measure robustness, the output of our tests can only
provide a glimpse of the relationship between model size and robustness. As seen in Figure 4.8, there
is a positive tendency between these factors. However, this tendency is just a speculative result. Due
to the fact that the sample size is too small (only six models are analyzed), the tendency heavily
depends on some individual points. For example, the correlation between SNR and model size is
0.88 when all points are present. When we remove the point associated with the ROBERTALARGE
model, the correlation drops to 0.20. To reach a decisive conclusion regarding this tendency more
investigation is needed. We should either add the larger version of each deep learning model or add
models composed of 150-300M parameters.

72 EQUIVALENCES 4.6

Figure 4.8: Robustness as a function of model size. Robustness is measured as the average SNR on the
datasets SNLI and MNLI. Although we observe a linear relationship between SNR and model size, this
relationship is heavily influenced by the results related to the model ROBERTALARGE.

4.5.4 Discussion and Limitations

The result of the IE tests applied to the deep learning models shows that these models can
have different deductions for sentences with the same meaning. What is surprising about the deep
learning models is that they perform very differently in the test sets DTe and DϕTe even when
sufficient amount of transformed observations are added in training. We offer a possible explanation
for this phenomenon. All transformer based models are trained in two stages: they are pre-trained
using unlabeled text and fine-tuned for the NLI task. The (ϕ, ρ) data generation process only affects
the fine-tuning phase. Hence, we believe that it is possible to reduce the accuracy difference between
the two versions of the test data by allowing the addition of transformed sentences in the pre-training
stage. However, since pre-training these large models is a computationally expensive endeavor, the
results presented here are relevant. It seems that we cannot correct how these models perform
inference by just adding examples in the fine-tuning phase.

There is a limitation in the present analysis. As stated in the methodological considerations
(Subsection 4.4.3), we have used a small random sample of the training data (small compared to
the original size of the SNLI and MNLI dataset). Hence, one can argue that the results associated
with the deep learning models are restricted to small NLI datasets. Further research is needed
to verify this claim. We can take bigger samples (samples with more than 50K observations) and
apply the IE test to verify if there is a minimum training size needed to correct the biases of the
deep learning models in the fine-tuning phase. Even if such minimum size exists, our results expose
some limitations of the current NLI models. A more intensive investigation is needed in order to
understand the full picture of those limits.

4.6 Related Work

There is a growing literature highlighting the inadequacy of models trained on the benchmark
NLI datasets. In this line, Glockner et al. [2018] have shown that the models trained on SNLI and
MNLI perform poorly on a test set composed of observations that rely only on lexical knowledge.
In a similar fashion, Yanaka et al. [2019] have shown that models trained on SNLI and MNLI
perform poorly on a test set composed of specific examples based on monotonic reasoning. And
Richardson et al. [2020] have exposed that models trained on the benchmark datasets are weak
in solving some simple logical tasks. The clear limitation of this type of analysis is that when we
observe a poor performance in a new test set, we cannot be sure if this is a limitation of the model

4.6 RELATED WORK 73

or just a sampling problem. Geiger et al. [2019] have highlighted this methodological problem by
means of the notion of fairness. They argued that a generalization evaluation method is not fair
if the model was not trained on a sample that does not support the required generalization. The
IE test is an alternative tool to approach the fairness problem. Instead of defining “fair datasets”
as done by Geiger et al. [2019], we define the (ϕ, ρ) data generation process and leave to each
researcher to choose a fair value for ρ.

One work that presents an analysis similar to ours is the one presented by Liu et al. [2019a]. In
that paper, the authors have proposed an analysis of the limitation of datasets and models from the
NLI literature by defining a collection of transformation functions (“challenges to benchmarks”) and
a training procedure that includes transformed observations (“inoculation by fine-tuning”). The IE
test can be seen as a generalization of this type of analysis. In the process of inoculation, the authors
fix a “small number” of transformed examples for training and compare model performance on two
test sets ignoring any statistical significance test. By contrast, our method allows any portion of the
training data to be altered and it also measures the performance difference in a statistically sound
manner.

74 EQUIVALENCES 4.6

Chapter 5

Conclusions

In this thesis, we have explored different logic based properties that the NLI models should have.
This exploration was done by employing different methods: first, the novel contradiction detection
dataset based on logical operators (Chapter 3), then the new task of inference generation called
masked inference (Chapter 3); and finally, the invariance under equivalent test (Chapter 4). After
the introduction of such methods what have we learned about the properties and limitations of the
NLI models? What are the promising research tracks for this field? We address these question in
this final chapter.

5.1 Synthetic Data: Lessons Learned and New Paths

In Chapter 3 we have described a general method for using a formal language to generate NLI
observations. This approach allowed us to create datasets for the NLI task and the related sub
tasks. One of the main advantages of this method is the possibility of using the same template to
create datasets in different natural languages, and, at the same time, being able to control what
causes the logical relation between sentences.

We have observed that, regarding the standard NLI task, almost all types of inference based on
logical connectives are solved by a machine learning model (counting is the only exception). On the
other hand, when we move to the proposed inference generation task, the same type of deduction
becomes harder to master. As stated in Section 3.6, in order to strengthen the results obtained from
a synthetic data, we should, in some capacity, associate the synthetic sentences with examples from
everyday speech.

One interesting idea in this direction was recently suggested by Joshi et al. [2020]. Influenced by
our work, the authors of that paper have created a taxonomy of the various reasoning tasks covered
by NLI datasets. They have used some logical tasks displayed on Section 3.4.2 as the base for the
following taxonomic categories: “negation” (simple negation), “Boolean” (Boolean coordination),
“quantifier” and “comparative”. With this new taxonomy, they have hired crowdsource annotators
to label 10K random observations from the MNLI dataset. For example, the following observation
was marked as quantifier :

P = Some travelers add Molokai and Lanai to their itineraries.

H = No one decides to go to Molokai and Lanai.

This is one way to use the inference rules as an inspirational source of evaluation. In this case,
Joshi et al. [2020] offer a procedure of labeling the observations from a benchmark dataset that
most resembles the synthetic examples. The main disadvantage of this approach is the cost of
reproducing the labelling process for a new dataset. For each new data, we need to pay a new group
of crowdsource annotators, check the quality of the labels, check the labelling agreement between
annotators, etc.

75

76 CONCLUSIONS 5.2

An alternative research path is the formulation of some type of everyday speech inference rules.
In order to reflect more truthfully some deductions that appear in natural language, we can define
a NLI counterpart of the rules displayed in Section 3.2. For example, we can modify the inference
rule (3.1) as follows:

P |=g H1 P |=g H2

P |=g H1 and H2
(∧∗I), (5.1)

where |=g is the entailment relation derived from a classifier g (1.1), and P,H1, H2 are natural
language sentences. Given a test set DTe, we can score a classifier based on its adequacy to each
inference rule. For example, for the rule (5.1) we define the following score function

s(∧∗I , g,DTe) =
1

|S|
∑

(P,H1,H2)∈S

I(P |=g H1 and H2)

S = {(P,H1, H2) ∈ DpTe ×D
h
Te ×DhTe : P |=g H1, P |=g H2}, (5.2)

where DpTe and DhTe are the sets of premises and hypothesis from DTe, respectively.
More generally, by selecting n inference rules r1, . . . , rn and defining a score function for each

one, it is possible to construct a structural inference score:

score(g,DTe) = β0 âcc(g) + β1 s(r1, g,DTe) + · · ·+ βn s(rn, g,DTe), (5.3)

where β0, β1, . . . βn ∈ [0, 1] sum up to one. With such score function, we can create an experi-
mental setting to answer some relevant questions like:

• Which inference rules are mastered by the current deep learning models? The same ones as
those described here? It is easier to obtain a high score on the rules solved in the synthetic
dataset?

• Can we define a sequence of inference rules that yields a low score for undesirable classifiers
(e.g., the classifier that relies only on the premise, the classifier that returns the same output
for every sentence pair, etc.)?

• How the properties of the training dataset affects the structural inference score (number of
observations, input length, vocabulary size)?

• Does a classifier have a consistent score across different NLI datasets?

• There is a positive correlation between model complexity and structural inference score?

Although the main difficulty of this research path lies in the selection of the rules and the
construction of the score function for each rule, we believe that this evaluation technique constitutes
a reasonable alternative to what Joshi et al. [2020] are proposing. It can be applied to multiple NLI
datasets without the cost of crowdsourcing labor and it is a natural continuation of the work
presented in this thesis.

5.2 Invariance under Equivalence and Bias

In Chapter 4, we have presented the most important contribution of the thesis: the invariance
under Equivalence (IE) test, a method to evaluate whether an NLI model can make the same type
of inference for equivalent text inputs. By using an equivalent transformation function based on
synonym substitution we have tested the state-of-the-art models and observed that these models

INVARIANCE UNDER EQUIVALENCE AND BIAS 77

show two different inferences for two sentences with the same meaning. We have also ranked these
models by their performance robustness when transformed data is introduced.

The results presented in that chapter show only a partial picture of the limitations of the
current NLI models. Our results can be improved using the IE test in a broader study to investigate
whether the IE property is violated for the other equivalent relations mentioned in Section 4.2.
The data generation process presented in Section 4.3.1 can be used to further analyze how model
complexity affects robustness, and, using the IE test, we can investigate whether by changing the
size of the training data, we are able to correct any biases present in pre-trained models. Another
future venue of investigation consists of exploring whether the recently proposed hybrid NLI model
[Kalouli et al., 2020] violates the IE property. Regarding the synonym substitution transformation,
we expect a better performance from the hybrid model. This new model has an inference engine
with access to the WordNet; hence, at least in theory, it should have an advantage over the deep
learning models.

From the theoretical side, there is still space for improvement. The IE test is based on resampling
an altered version of the dataset multiple times. When we combine this strategy with models that
can have hundreds of millions of parameters we can easily encounter hardware and time limitations.
Thus, a natural continuation of this research path is to combine the resampling method with the
reduction techniques that can increase training and inference speed.

One of the main advantages of the IE test is that it can be formulated for other reading com-
prehension tasks that fall under the name NLU. Since equivalence in natural language is based on
the general phenomenon of meaning identity, it is reasonable to extend the IE test for any text
classification task. This extension should be carefully established because the definition of an ade-
quate transformation function is task-dependent. After selecting a transformation, the IE test can
be used to find a discrepancy in model performance. For example, the IE test can be used to check
for any biases in the pre-training of the transformer based models. In this way, we hope that the
methods developed here can contribute to the general discussion on the limitations of the deep
learning models used in NLP.

78 CONCLUSIONS

Appendix A

Templates for the Dataset Presented in
Section 3.4

A.1 Simple Negation

Contradiction Templates

P = V (x1, y1), . . . , V (xn, yn)

H = ¬V (xi, yi), (A.1)

where i ∈ {1, . . . , n}.

Non-Contradiction Templates

P = V (x1, y1), . . . , V (xn, yn)

H = ¬V (xi, y
∗), (A.2)

where i ∈ {1, . . . , n} and y∗ is new.

P = V (x1, y1), . . . , V (xn, yn)

H = ¬V (x∗, yi), (A.3)

where i ∈ {1, . . . , n} and x∗ is new.

A.2 Boolean Coordination

Contradiction Templates

P = V (x1, y) ∧ V (x2, y) ∧ · · · ∧ V (xn, y)

H = ¬V (xi, y), (A.4)

where i ∈ {1, . . . , n}.

79

80 APPENDIX A

P = V (x, y1) ∧ V (x, y2) ∧ · · · ∧ V (x, yn)

H = ¬V (x, yi), (A.5)

where i ∈ {1, . . . , n}.

Non-Contradiction Templates

P = V (x1, y) ∧ V (x2, y) ∧ · · · ∧ V (xn, y)

H = ¬V (x∗, y∗), (A.6)

where either x∗ ∈ {x1, . . . , xn} and y∗ is new, or x∗ is new and y∗ = y.

P = V (x, y1) ∧ V (x, y2) ∧ · · · ∧ V (x, yn)

H = ¬V (x∗, y∗), (A.7)

where either x∗ is new and y∗ ∈ {y1, . . . , yn}, or x∗ = x and y∗ is new.

A.3 Quantification

Contradiction Templates

P = (∀x ∈ Pe) (V (x, y1) ∧ · · · ∧ V (x, yn))

H = ¬V (x1, yi), (A.8)

where x1 ∈ Pe and yi ∈ {y1, . . . , yn}.

P = (∀x ∈ Pe)(∀y ∈ Pl) V (x, y)

H = ¬V (x1, y1), (A.9)

where x1 ∈ Pe and y1 ∈ Pl.

P = (∀x ∈ Pe)(∀y ∈ Pe) V (x, y)

H = ¬V (x1, y1), (A.10)

where x1, y1 ∈ Pe.

P = (∀x ∈ Pe)(∀y ∈ Pe)(∀z ∈ Pl) (V (x, y) ∧ V (x, z))

H = ¬V (x1, y1), (A.11)

where x1, y1 ∈ Pe.

DEFINITE DESCRIPTION 81

P = (∀x ∈ Pe)(∀y ∈ Pe)(∀z ∈ Pl) (V (x, y) ∧ V (x, z))

H = ¬V (x1, z1), (A.12)

where x1 ∈ Pe and z1 ∈ Pl.

Non-Contradiction Templates

P = (∀x ∈ Pe) V (x, y1) ∧ · · · ∧ V (x, yn)

H = ¬V (x1, y
∗), (A.13)

where x1 ∈ Pe and y∗ is new.

P = (∀x ∈ Pe)(∀y ∈ Pl) V (x, y)

H = ¬V (x1, z1), (A.14)

where x1, z1 ∈ Pe.

P = (∀x ∈ Pe)(∀y ∈ Pe) V (x, y)

H = ¬V (x1, z1), (A.15)

where x1 ∈ Pe and z1 ∈ Pl.

P = (∃x ∈ Pe)(∀y ∈ Pe)(∀z ∈ Pl) (V (x, y) ∧ V (x, z))

H = ¬V (x1, y1), (A.16)

where x1, y1 ∈ Pe.

P = (∃x ∈ Pe)(∀y ∈ Pe)(∀z ∈ Pl) (V (x, y) ∧ V (x, z))

H = ¬V (x1, z1), (A.17)

where x1 ∈ Pe and z1 ∈ Pl.

A.4 Definite Description

In order to distinct between the equality relation in the template and meta language, we use ≈
to denote the equality symbol in the template language.

Contradiction Templates

P = x ≈ ιy(∀z ∈ Pl) V (y, z)

H = ¬V (x, z1), (A.18)

82 APPENDIX A

where z1 ∈ Pl.

P = x ≈ ιy(∀z ∈ Pe) V (y, z)

H = ¬V (x, z1), (A.19)

where z1 ∈ Pe.

Non-Contradiction Templates

P = x ≈ ιy(∀z ∈ Pl) V (y, z)

H = ¬V (x∗, z1), (A.20)

where x∗ is new and z1 ∈ Pl.

P = x ≈ ιy(∀z ∈ Pe) V (y, z)

H = ¬V (x∗, z1), (A.21)

where x∗ is new and z1 ∈ Pe.

A.5 Comparatives

For a set {x1, . . . , xn} and a binary relation R, we use chain({x1, . . . , xn}, R) to denote the facts
x1Rx2, x2Rx3, . . . , xn−1Rxn. We also use yR{x1, . . . , xn} to denote yRx1, yRx2, . . . , yRxn.

Contradiction Templates

P = chain({x1, . . . , xn}, >)

H = xj > xi, (A.22)

where 1 ≤ i < j ≤ n.

P = chain({x1, . . . , xn},≥), xn > y

H = y > xi, (A.23)

where xi ∈ {x1, . . . xn}.

P = xR{x1, . . . , xn}, y ≥ x
H = xi > y, (A.24)

where xi ∈ {x1, . . . xn}.

COUNTING 83

Non-Contradiction Templates

P = chain({x1, . . . , xn}, >)

H = xj > xi, (A.25)

where 1 ≤ j < i ≤ n.

P = chain({x1, . . . , xn},≥), xn > y

H = xi > y, (A.26)

where xi ∈ {x1, . . . xn}.

P = xR{x1, . . . , xn}, y ≥ x
H = y > xi, (A.27)

where xi ∈ {x1, . . . xn}.

A.6 Counting

Contradiction Templates

P = (∃=ny ∈ Pe) V (x, y)

H = V (x, y1) ∧ · · · ∧ V (x, yn+1), (A.28)

where y1, . . . , yn+1 ∈ Pe.

P = (∃=ny ∈ Pl) V (x, y)

H = V (x, y1) ∧ · · · ∧ V (x, yn+1), (A.29)

where y1, . . . , yn+1 ∈ Pl.

P = (∃=nz ∈ Pl)(∃=my ∈ Pe) (V (x, z) ∧ V (x, y))

H = V (x, z1) ∧ · · · ∧ V (x, zn+1), (A.30)

where z1, . . . , zn+1 ∈ Pl.

P = (∃=nz ∈ Pl)(∃=my ∈ Pe) (V (x, z) ∧ V (x, y))

H = V (x, y1) ∧ · · · ∧ V (x, ym+1), (A.31)

where y1, . . . , ym+1 ∈ Pe.

84 APPENDIX A

Non-Contradiction Templates

P = (∃=ny ∈ Pe) V (x, y)

H = V (x, y1) ∧ · · · ∧ V (x, yk), (A.32)

where k < n and y1, . . . , yk ∈ Pe.

P = (∃=ny ∈ Pl) V (x, y)

H = V (x, y1) ∧ · · · ∧ V (x, yk), (A.33)

where k < n and y1, . . . , yk ∈ Pl.

P = (∃=nz ∈ Pl)(∃=my ∈ Pe) (V (x, z) ∧ V (x, y))

H = V (x, z1) ∧ · · · ∧ V (x, zk), (A.34)

where k < n and z1, . . . , zk ∈ Pl.

P = (∃=nz ∈ Pl)(∃=my ∈ Pe) (V (x, z) ∧ V (x, y))

H = V (x, y1) ∧ · · · ∧ V (x, yk), (A.35)

where k < m and y1, . . . , yk ∈ Pe.

Appendix B

Templates for the Dataset Presented in
Section 3.5

Notation

First, some notation: we use ± to denote the occurrence or not of the negation symbol ¬ ; we
also use li to indicate the same occurrence (or absence) of the negation symbol in a formula; and
Qi is used to denote a quantifier (∃ or ∀).

B.1 Boolean Coordination

Introduction of the Conjunction

P = l1 V (x1, y1), . . . , ln V (xn, yn)

H = li V (xi, yi) [MASK] lj V (xj , yj)

Y = ∧, (B.1)

where i, j ∈ {1, . . . , n}.

Introduction of the Disjunction

P = l1 V (x1, y1), . . . , ln V (xn, yn)

H = li V (xi, yi) [MASK] ± V (x∗, y∗)

Y = ∨, (B.2)

where i ∈ {1, . . . , n}, and both x∗ and y∗ are new.

B.2 Quantifier Reasoning

Introduction of the Existential

P = l1 V (x1, y1), . . . , ln V (xn, yn)

H = [MASK] x li V (x, yi)

Y = ∃, (B.3)

85

86 APPENDIX B

where i ∈ {1, . . . , n}.

Negation of the Existential

P = Q1x V (x, y1), . . . ,∀x V (x, yi), . . . , Qnx V (x, yn)

H = ¬ [MASK] x ¬ V (x, yi)

Y = ∃, (B.4)

where i ∈ {1, . . . , n}.

Negation of the Universal

P = Q1x V (x, y1), . . . ,¬V (xi, yi), . . . , Qnx V (x, yn)

H = ¬ [MASK] x V (x, yi)

Y = ∀, (B.5)

where i ∈ {1, . . . , n}.

B.3 Counting

Introduction of the Counting Quantifier

P = l1 V (x1, y1), . . . , ln V (xm, ym), V (x, z1), . . . , V (x, zn)

H = ∃[MASK] z V (x, z)

Y = n, (B.6)

where z1, . . . , zn ∈ Pl, and x /∈ {x1, . . . , xm}.

Appendix C

Synonym Substitution Examples

The distinction between sound and unsound transformations is based on subjective judgments.
What has guided us to determine an alteration as sound is how the transformation affects the
associated label. Hence, we have allowed modifications that produce minor grammatical errors (e.g.
“a adult male”). When we observe that either the overall logical relationship is disturbed or the
sentence is unusual we classify the transformation result as unsound.

Original Pair Transformed Pair

A man and his son riding bikes down
the sidewalk.

A adult male and his boy riding bikes
down the pavement.

The man and the boy were in town. The adult male and the male child were
in town.

A male and female are asleep on a couch
with a large black dog as four people sit
at a table behind them.

A male and female are asleep on a sofa
with a large black domestic dog as four
people sit at a table behind them.

The male and female that are asleep on
the couch are in a relationship.

The male and female that are asleep on
the sofa are in a human relationship.

A woman in a blue winter jacket is
pushing a shopping cart through snow.

A adult female in a blue wintertime
jacket is pushing a shopping cart
through snowfall.

A homeless woman is eating a
hamburger.

A homeless person adult female is eat-
ing a burger.

Dark image of two people inside a fish
market.

Dark mental image of two people inside
a fish marketplace.

There are fish. There are fish.

Table C.1: Sound transformations for SNLI.

87

88 APPENDIX C

Original Pair Transformed Pair

A woman and child are on a boat and
the woman is looking out into the ocean
through a scope.

A adult female and kid are on a boat
and the adult female is looking out into
the ocean through a range.

A lady and a child are on a boat and
the lady is looking out into the ocean
through a scope.

A lady and a kid are on a boat and
the lady is looking out into the ocean
through a range.

A man in a white shirt holds a
microphone.

A adult male in a white shirt holds a
mike.

A band is playing on a stage. A band is playing on a phase.

A cattle dog nips the leg of an animal. A cows domestic dog shot the leg of an
creature.

A dog nips a cow. A domestic dog shot a moo-cow.

A band of people playing brass instru-
ments is performing outside.

A band of people playing brass instru-
ments is performing outside.

A jazz funeral is taking place. A wind funeral is taking place.

Table C.2: Unsound transformations for SNLI.

SYNONYM SUBSTITUTION EXAMPLES 89

Original Pair Transformed Pair

Another majestic view of the city is from a
charming park Miradouro de Santa Luzia just
down the hill from the castle.

Another olympian view of the metropolis
is from a charming parkland Miradouro de
Santa Luzia just down the hill from the
palace.

The castle is on the highest hill in the city. The palace is on the highest hill in the
metropolis.

The agency cites the clean air act 42 usc. The office cites the clean air enactment 42
usc.

The agency discusses the clean air act in
chapter 3 of the book.

The office discusses the clean air enactment
in chapter 3 of the book.

Renovated in 2000 this full-service resort
fronts a tremendous swimming and snorkel-
ing beach with dozens of turtles.

Renovated in 2000 this full-service
resort hotel fronts a tremendous swim-
ming and snorkeling beach with lots of
turtles.

The resort was renovated in 2000. The resort hotel was renovated in 2000.

Bolstered by a new influx of immigrants to
meet the rubber and tin booms of the 1920s,
non-malays now slightly outnumbered the in-
digenous population.

Bolstered by a new inflow of immigrants to
meet the india rubber and tin booms of the
twenties, non-malays now slightly outnum-
bered the indigenous population.

The population of malays to non-malays was
equal and all the work was shared.

The population of malays to non-malays was
equal and all the work was shared.

Table C.3: Sound transformations for MNLI.

90 APPENDIX C

Original Pair Transformed Pair

They might as well steal it then they don’t
have to pay taxes on it.

They power as well steal it then they don’t
have to salary taxes on it.

Taxes are entirely irrelevant. Taxes are entirely irrelevant.

You know you writers are coming you know
you’re having a hard time here.

You know you author are coming you know
you’re having a difficult time here.

The writers are having a hard time keeping
the show interesting.

The author are having a difficult time keeping
the show interesting.

Pigs are sociable loving and a hell of a lot
brighter than dalmatians.

Pigs are sociable loving and a inferno of a lot
brighter than dalmatians.

Pigs are very smart. Pigs are very smart.

2 billion in benefits to over 13 million recipi-
ents.

Deuce billion in benefits to over 13 million
recipients.

A couple of billion in benefits for the public
to do whatever they want with.

A duo of billion in benefits for the public to
do whatever they want with.

Table C.4: Unsound transformations for MNLI.

Appendix D

Hyperparameter Search

Regarding the experiments form Chapter 4, here we present all the hyperparameters used in
training, the associated search space, and the selected value for each dataset. The hyperparameter
values were selected using the random search algorithm.

Gradient Boosting

Hyperparameter Search Space Selected Value for SNLI Selected Value for MNLI

number of estimators {10, . . . , 30} 26 29

max depth {2, . . . , 20} 15 8

reg alpha [0.05, 1.0] 0.65 0.75

reg gamma [0.05, 1.0] 0.15 0.7

learning rate [0.05, 1.0] 0.55 0.4

subsample [0.05, 1.0] 1.0 1.0

colsample bytree [0.05, 1.0] 0.95 0.9

Table D.1: Best hyperparameter assignments for the gradient boosting classifier.

ALBERT

Hyperparameter Search Space Selected Value for SNLI Selected Value for MNLI

number of epochs {1, 2, 3} 2 2

max input length {50, 60, . . . , 200} 90 130

learning rate [5× 10−5, 1× 10−4] 6.7× 10−5 6.7× 10−5

weight decay [0, 0.01] 1.1× 10−3 6.6× 10−3

adam epsilon [1× 10−8, 1× 10−7] 3× 10−8 2× 10−8

max grad norm [0.9, 1.0] 0.91 0.97

Table D.2: Best hyperparameter assignments for ALBERT.

91

92 APPENDIX D

BERT

Hyperparameter Search Space Selected Value for SNLI Selected Value for MNLI

number of epochs {1, 2, 3} 3 2

max input length {50, 60, . . . , 200} 130 90

learning rate [5× 10−5, 1× 10−4] 7.7× 10−5 7.2× 10−5

weight decay [0, 0.01] 2.2× 10−3 3.3× 10−3

adam epsilon [1× 10−8, 1× 10−7] 1× 10−7 3× 10−8

max grad norm [0.9, 1.0] 0.94 1.0

Table D.3: Best hyperparameter assignments for BERT.

XLNet

Hyperparameter Search Space Selected Value for SNLI Selected Value for MNLI

number of epochs {1, 2, 3} 1 2

max input length {50, 60, . . . , 200} 100 100

learning rate [5× 10−5, 1× 10−4] 6.7× 10−5 6.1× 10−5

weight decay [0, 0.01] 0.01 4.4× 10−3

adam epsilon [1× 10−8, 1× 10−7] 4× 10−8 1× 10−7

max grad norm [0.9, 1.0] 1.0 0.9

Table D.4: Best hyperparameter assignments for XLNet.

RoBERTaBASE

Hyperparameter Search Space Selected Value for SNLI Selected Value for MNLI

number of epochs {1, 2, 3} 3 1

max input length {50, 60, . . . , 200} 140 150

learning rate [5× 10−5, 1× 10−4] 3.2× 10−5 6.1× 10−5

weight decay [0, 0.01] 8.8× 10−3 3.3× 10−3

adam epsilon [1× 10−8, 1× 10−7] 2× 10−8 1× 10−7

max grad norm [0.9, 1.0] 0.9 0.93

Table D.5: Best hyperparameter assignments for RoBERTaBASE.

HYPERPARAMETER SEARCH 93

RoBERTaLARGE

Hyperparameter Search Space Selected Value for SNLI Selected Value for MNLI

number of epochs {1, 2, 3} 1 2

max input length {50, 60, . . . , 200} 140 150

learning rate [5× 10−5, 1× 10−4] 5× 10−5 5× 10−5

weight decay [0, 0.01] 8.8× 10−3 8.8× 10−3

adam epsilon [1× 10−8, 1× 10−7] 4× 10−8 5× 10−7

max grad norm [0.9, 1.0] 0.93 0.9

Table D.6: Best hyperparameter assignments for RoBERTaLARGE.

94 APPENDIX D

Bibliography

Ba, L. J., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. CoRR, abs/1607.06450. 20

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning
to align and translate. In Bengio, Y. and LeCun, Y., editors, 3rd International Conference on
Learning Representations, ICLR 2015, Conference Track Proceedings. 16

Bar-Haim, R., Dagan, I., and Szpektor, I. (2014). Benchmarking applied semantic inference: The
PASCAL recognising textual entailment challenges. In Language, Culture, Computation. Com-
puting - Theory and Technology - Essays Dedicated to Yaacov Choueka on the Occasion of His
75th Birthday, Part I, pages 409–424. 1

Bender, E. M. and Koller, A. (2020). Climbing towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 5185–5198. Association for Computational Linguistics. 4

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828.
9

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic language
model. Journal of Machine Learning Research, 3:1137–1155. 10

Bentivogli, L., Clark, P., Dagan, I., and Giampiccolo, D. (2009). The sixth PASCAL recognizing
textual entailment challenge. Theory and Applications of Categories. 1

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305. 60

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015a). A large annotated corpus for
learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Association for Computational Linguistics. 1, 3, 57,
65

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2020). SNLI site. https://nlp.stanford.
edu/projects/snli. xv, 2, 49

Bowman, S. R., Manning, C. D., and Potts, C. (2015b). Tree-structured composition in neural
networks without tree-structured architectures. In Proceedings of the 2015th International Con-
ference on Cognitive Computation: Integrating Neural and Symbolic Approaches, volume 1583 of
COCO’15, pages 37–42. 54

Casella, G. and Berger, R. (2002). Statistical Inference. Duxbury Resource Center, Pacific Grove.
30, 31

Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for language
modeling. Computer Speech & Language, 13(4):359–394. 10

95

https://nlp.stanford.edu/projects/snli
https://nlp.stanford.edu/projects/snli

96 BIBLIOGRAPHY

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning. 13

Cochram, W. G. (1950). The comparison of percentages in matched samples. Biometrika,
37(3/4):256–266. 63

Conneau, A., Rinott, R., Lample, G., Williams, A., Bowman, S. R., Schwenk, H., and Stoyanov,
V. (2018). XNLI: Evaluating cross-lingual sentence representations. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 2475–2485. Association
for Computational Linguistics. 48

da Silva, F. S. C., Finger, M., and de Melo, A. C. V. (2006). Lógica para computação. Cengage
Learning, São Paulo, SP. 37

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q. V., and Salakhutdinov, R. (2019). Transformer-
XL: Attentive language models beyond a fixed-length context. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 2978–2988. Association for Com-
putational Linguistics. 26

Dasgupta, I., Guo, D., Stuhlmüller, A., Gershman, S. J., and Goodman, N. D. (2018). Evaluating
compositionality in sentence embeddings. CoRR, abs/1802.04302. 4, 5, 70

de Marneffe, M., Rafferty, A. N., and Manning, C. D. (2008). Finding contradictions in text. In
Proceedings of ACL-08:HLT, pages 1039–1047. Association for Computational Linguistics. 1

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186. xv, 2, 23, 24, 25, 39, 42, 44,
49, 51, 57, 58, 66, 71

Dodge, J., Ilharco, G., Schwartz, R., Farhadi, A., Hajishirzi, H., and Smith, N. (2020). Fine-
tuning pretrained language models: weight initializations, data orders, and early stopping. CoRR,
abs/2002.06305. 63

Eight, F. (2016). First GOP Debate Twitter Sentiment. https://www.kaggle.com/crowdflower/
first-gop-debate-twitter-sentiment#Sentiment.csv. 8

Eisenstein, J. (2019). Introduction to Natural Language Processing. MIT Press, Cambridge, MA. 7

Evans, R., Saxton, D., Amos, D., Kohli, P., and Grefenstette, E. (2018). Can neural networks
understand logical entailment? In 6th International Conference on Learning Representations,
ICLR 2018, Conference Track Proceedings. 4, 42, 47, 54

Explosion (2020). spaCy: Industrial-strength NLP. https://github.com/explosion/spaCy. 64

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA. 64

Fisher, N. I. and Hall, P. (1990). On bootstrap hypothesis testing. Australian Journal of Statistics,
32(2):177–190. 33, 61

Flesch, R. (1948). A new readability yardstick. Journal of Applied Psychology, 32(3):221–233. 55

Geiger, A., Cases, I., Karttunen, L., and Potts, C. (2018). Stress-testing neural models of natural
language inference with multiply-quantified sentences. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 2340–2353. Association for Computational Lin-
guistics. 55

https://www.kaggle.com/crowdflower/first-gop-debate-twitter-sentiment##Sentiment.csv
https://www.kaggle.com/crowdflower/first-gop-debate-twitter-sentiment##Sentiment.csv
https://github.com/explosion/spaCy

BIBLIOGRAPHY 97

Geiger, A., Cases, I., Karttunen, L., and Potts, C. (2019). Posing fair generalization tasks for
natural language inference. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Association for Computational Linguistics. 73

Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, B. (2007). The third PASCAL recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL@ACL 2007 Workshop on
Textual Entailment and Paraphrasing, pages 1–9. 3

Glockner, M., Shwartz, V., and Goldberg, Y. (2018). Breaking NLI systems with sentences that
require simple lexical inferences. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). xv, 2, 3, 4, 42, 57, 72

Goldberg, Y. (2016). Neural Network Methods in Natural Language Processing. Morgan & Claypool
Publishers, San Rafael, California. 7, 12, 13

Goldberg, Y. (2019). Assessing BERT’s syntactic abilities. CoRR, abs/1901.05287. 47

Goodfellow, I., Bengio, Y., and Courville, A. (2017). Deep Learning. MIT Press. 23

Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R., Bowman, S. R., and Smith, N. A. (2018).
Annotation artifacts in natural language inference data. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages 107–112. Association for Computational
Linguistics. 3, 39, 54

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8):1735–1780. 14

Howard, J. and Ruder, S. (2018). Universal language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 328–339. 22, 23, 42, 57

Joshi, P., Aditya, S., Sathe, A., and Choudhury, M. (2020). TaxiNLI: Taking a ride up the NLU
hill. CoRR, abs/2009.14505. 75, 76

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2017). Bag of tricks for efficient text
classification. In Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers, volume abs/1607.01759, pages 427–431.
Association for Computational Linguistics. 12, 44

Kalouli, A.-L., Crouch, R., and de Paiva, V. (2020). Hy-NLI: a hybrid system for natural language
inference. In Proceedings of the 28th International Conference on Computational Linguistics,
pages 5235–5249, Barcelona, Spain (Online). International Committee on Computational Lin-
guistics. 77

Kalouli, A.-L., Crouch, R., de Paiva, V., and Real, L. (2018). Graph knowledge representations for
sick. EasyChair Preprint no. 217. 2

Kalouli, A.-L., Real, L., and de Paiva, V. (2017). Textual inference: getting logic from humans. In
IWCS 2017 — 12th International Conference on Computational Semantics — Short papers. 7

Khot, T., Sabharwal, A., and Clark, P. (2018). Scitail: A textual entailment dataset from science
question answering. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intel-
ligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), pages
5189–5197. 1

98 BIBLIOGRAPHY

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, Conference Track Proceedings. 44

Konietschke, F. and Pauly, M. (2014). Bootstrapping and permuting paired t-test type statistics.
Statistics and Computing, 24:283–296. 33, 61, 62

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2020). Albert: A lite
BERT for self-supervised learning of language representations. In International Conference on
Learning Representations. 26, 58, 66

Lehmann, E. L. (1993). The Fisher, Neyman-Pearson theories of testing hypotheses: One theory or
two? Journal of the American Statistical Association, 88(424):1242–1249. 27

Levy, R. and Manning, C. (2003). Is it harder to parse Chinese, or the Chinese treebank? In
Proceedings of the 41st Annual Meeting on Association for Computational Linguistics - Volume
1, ACL ’03, pages 439–446. Association for Computational Linguistics. 43

Lin, J. (2020). BERT diagrams. https://twitter.com/lintool/status/1285599163024125959. xv, 25

Liu, N. F., Schwartz, R., and Smith, N. A. (2019a). Inoculation by fine-tuning: A method for ana-
lyzing challenge datasets. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Volume 1 (Long and Short Papers). Association for Computational Linguistics. 70, 73

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L.,
and Stoyanov, V. (2019b). Roberta: A robustly optimized BERT pretraining approach. CoRR,
abs/1907.11692. 25, 26, 49, 57, 58, 66, 68

Luong, M., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421. Association for Computational Linguistics. 16, 17

MacCartney, B. and Manning, C. D. (2009). An extended model of natural logic. In Proceedings
of the Eight International Conference on Computational Semantics, pages 140–156, Tilburg, The
Netherlands. Association for Computational Linguistics. 2

MacKinnon, J. G. (2009). Bootstrap Hypothesis Testing, chapter 6, pages 183–213. John Wiley
Sons, Ltd. 34

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge, MA. 7

Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., and Zamparelli, R. (2014). A
SICK cure for the evaluation of compositional distributional semantic models. In Proceedings
of the Ninth International Conference on Language Resources and Evaluation (LREC’14), pages
216–223. European Language Resources Association (ELRA). 1

Martin-Löf, P. (1996). On the meanings of the logical constants and the justifications of the logical
laws. Nordic Journal of Philosophical Logic, 1(1):11–60. 37

McCoy, T., Pavlick, E., and Linzen, T. (2019). Right for the wrong reasons: Diagnosing syn-
tactic heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 3428–3448, Florence, Italy. Association for
Computational Linguistics. 4, 70

McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions
or percentages. Psychometrika, 12(2):153–157. 63

https://twitter.com/lintool/status/1285599163024125959

BIBLIOGRAPHY 99

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representa-
tions in vector space. In 1st International Conference on Learning Representations, ICLR 2013,
Workshop Track Proceedings. 12

Naik, A., Ravichander, A., Sadeh, N., Rose, C., and Neubig, G. (2018). Stress test evaluation for
natural language inference. In Proceedings of the 27th International Conference on Computa-
tional Linguistics, pages 2340–2353, Santa Fe, New Mexico, USA. Association for Computational
Linguistics. 4, 70

Nie, Y., Wang, Y., and Bansal, M. (2018). Analyzing compositionality-sensitivity of NLI models.
CoRR, abs/1811.07033. 3, 4, 70

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga,
L., and Lerer, A. (2017). Automatic differentiation in PyTorch. 43

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representa-
tion. In In EMNLP, pages 1532–1543. Association for Computational Linguistics. 12, 44

Perrault, R., Shoham, Y., Brynjolfsson, E., Clark, J., Etchemendy, J., Grosz, B., Lyons, T., Manyika,
J., Mishra, S., and Niebles, J. C. (2019). The AI Index 2019 Annual Report. Stanford University,
Stanford, CA. 3

Piotrowski, B., Urban, J., Brown, C. E., and Kaliszyk, C. (2019). Can neural networks learn
symbolic rewriting? CoRR, abs/1911.04873. 4

Poliak, A., Naradowsky, J., Haldar, A., Rudinger, R., and Durme, B. V. (2018). Hypothesis only
baselines in natural language inference. In Proceedings of the Seventh Joint Conference on Lexical
and Computational Semantics, pages 180–191. Association for Computational Linguistics. 3

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language under-
standing by generative pre-training. In OpenAI Blog. 2, 22, 23, 24

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models
are unsupervised multitask learners. In OpenAI Blog. xv, 19, 57, 71

Rawal, A. and Miikkulainen, R. (2018). From nodes to networks: Evolving recurrent neural net-
works. CoRR, abs/1803.04439. 14

Richardson, K., Hu, H., Moss, L. S., and Sabharwal, A. (2020). Probing natural language infer-
ence models through semantic fragments. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020. AAAI Press. xvi, 54, 55, 56, 57, 70, 72

Salvatore, F. (2019a). ContraBERT. https://github.com/felipessalvatore/ContraBERT. 40, 43

Salvatore, F. (2019b). InferenceLanguageModels. https://github.com/felipessalvatore/
InferenceLanguageModels. 51

Salvatore, F. (2020). Looking-for-Equivalences. https://github.com/felipessalvatore/
looking-for-equivalences. 66

Salvatore, F., Finger, M., and Hirata Jr, R. (2019a). A logical-based corpus for cross-lingual evalu-
ation. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP
(DeepLo 2019), pages 22–30. Association for Computational Linguistics. 6, 39, 55

Salvatore, F., Preto, S., Finger, M., and Hirata Jr, R. (2019b). Using neural models to perform
inference. In Proceedings of the 2019 International Workshop on Neural-Symbolic Learning and
Reasoning (Nesy 2019), volume 1, pages 85–87. 6, 48

https://github.com/felipessalvatore/ContraBERT
https://github.com/felipessalvatore/InferenceLanguageModels
https://github.com/felipessalvatore/InferenceLanguageModels
https://github.com/felipessalvatore/looking-for-equivalences
https://github.com/felipessalvatore/looking-for-equivalences

100 BIBLIOGRAPHY

Saxton, D., Grefenstette, E., Hill, F., and Kohli, P. (2019). Analysing mathematical reasoning
abilities of neural models. In 7th International Conference on Learning Representations, ICLR
2019. 49

Schrimpf, M., Merity, S., Bradbury, J., and Socher, R. (2018). A flexible approach to automated
RNN architecture generation. In 6th International Conference on Learning Representations,
ICLR 2018, Workshop Track Proceedings. 14

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3:417–424. 4

Shieber, S. M. (1993). The problem of logical-form equivalence. Computational Linguistics,
19(1):179–190. 59

Shoenfield, J. R. (1967). Mathematical Logic. Addison-Wesley, Boston, MA. 37, 38, 58

Sustskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural net-
works. In Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’14, pages 3104–3112. 15

The Fracas Consortium, Cooper, R., Crouch, D., Eijck, J. V., Fox, C., Genabith, J. V., Jaspars, J.,
Kamp, H., Milward, D., Pinkal, M., Poesio, M., Pulman, S., Briscoe, T., Maier, H., and Konrad,
K. (1996). Using the framework. 1, 49, 54

Tran, K. M., Bisazza, A., and Monz, C. (2018). The importance of being recurrent for modeling
hierarchical structure. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 4731–4736. Association for Computational Linguistics. 42, 47, 54

Troelstra, A. S. and Schwichtenberg, H. (1996). Basic Proof Theory. Cambridge University Press,
New York, NY. 37

Turing, A. (1950). Computing machinery and inteligence. Mind, pages 433–460. 4

van Wijk, M. (2006). Logical connectives in natural language: a cultural-evolutionary approach. PhD
Thesis, Universiteit Leiden. 36

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polo-
sukhin, I. (2017). Attention is all you need. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, page 6000–6010. Curran Associates Inc. xv,
2, 17, 18, 19, 20, 22, 42

Vig, J. (2019). A multiscale visualization of attention in the transformer model. CoRR,
abs/1906.05714. xv, 19

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman,
S. R. (2019). SuperGLUE: A stickier benchmark for general-purpose language understanding
systems. CoRR, abs/1905.00537. 2, 3

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. (2018). GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages
353–355. Association for Computational Linguistics. 2, 3, 55

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2020). GLUE benchmark.
https://gluebenchmark.com/leaderboard. xv, 2, 3, 49

Wasserman, L. (2010). All of Statistics: A Concise Course in Statistical Inference. Springer Pub-
lishing Company, Incorporated, New York, NY. 29, 32, 62

https://gluebenchmark.com/leaderboard

BIBLIOGRAPHY 101

Welleck, S., Weston, J., Szlam, A., and Cho, K. (2019). Dialogue natural language inference. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
3731–3741. Association for Computational Linguistics. 39

Weston, J., Bordes, A., Chopra, S., and Mikolov, T. (2016). Towards AI-complete question answer-
ing: A set of prerequisite toy tasks. In 4th International Conference on Learning Representations,
ICLR 2016,Conference Track Proceedings. 54

Williams, A., Nangia, N., and Bowman, S. R. (2018). A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics. 1, 3, 57, 65

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., and Brew, J. (2019). Huggingface’s transformers: State-of-the-art natural
language processing. CoRR, abs/1910.03771. 43, 66

Yanaka, H., Mineshima, K., Bekki, D., Inui, K., Sekine, S., Abzianidze, L., and Bos, J. (2019). Can
neural networks understand monotonicity reasoning? In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, volume abs/1906.06448,
pages 31–40. Association for Computational Linguistics. 4, 5, 57, 71, 72

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019). XLNet:
Generalized autoregressive pretraining for language understanding. In Advances in Neural Infor-
mation Processing Systems 32, pages 5753–5763. Curran Associates, Inc. 26, 58, 66

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep
neural networks? In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, page 3320–3328. MIT Press. 22

Zhu, X., Li, T., and de Melo, G. (2018). Exploring semantic properties of sentence embeddings. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 632–637, Melbourne, Australia. Association for Computational Linguis-
tics. 71

	List of Abbreviations
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Natural Language Inference
	Motivation
	Current State of the Art 1: The Success of the Machine Learning Models
	Current State of the Art 2: The Failure of the Machine Learning Models
	A Rigorous Point of View

	Objectives
	Contributions
	Organization

	Theoretical Background
	Text Classification
	Basic Formulation
	Technical Formulation
	Bag-of-Words
	Heuristics Based Representations
	Classifiers and Performance Metrics

	Word Embeddings
	Probabilistic Language Modeling
	Neural Language Models
	Continuous Bag-of-Words Representation

	Sequence Modeling
	Recurrent Models
	Gated Recurrent Unit
	Long Short-Term Memory

	Combining Recurrent Models
	Neural Machine Translation
	Attention

	The Transformer
	Self-Attention
	Positional Encoding
	The Transformer Architecture

	Transformer Based Models
	Transfer Learning
	BERT
	RoBERTa
	ALBERT
	XLNet

	Hypothesis Testing
	Basic Formulation
	Technical Formulation
	Power and Size
	p-Value
	Paired t-Test
	Bootstrap Hypothesis Test

	Structural Inference
	Template Language
	Logical Rules and Templates
	Translation
	Analysis I: Contradiction Detection
	A Logical-Based Corpus for Cross-Lingual Evaluation
	A Dataset of Contradictions
	Models
	Evaluation
	Experimental Settings
	Implementation
	Results
	Discussion
	Analysis Conclusion

	Analysis II: Inference Generation
	A New Type of NLI Task
	From Perception to Generation
	Masked Inference
	Boolean Coordination
	Quantifier Reasoning
	Counting
	Experiments
	Analysis Conclusion

	Benefits and Limitations of Synthetic Corpora

	Equivalences
	A New Resampling-Based Method to Evaluate NLI Models
	Equivalence
	Equivalence in Formal and Natural Languages
	The IE Property for the NLI Task

	Testing for Invariance
	Training on a Transformed Sample
	A Bootstrap Version of the Paired t-Test
	Multiple Testing
	Invariance Under Equivalence Test

	Case Study: Verifying Invariance under Synonym Substitution
	Defining a Transformation Function
	Datasets
	Methodology

	Results
	Baseline Exploration
	Testing Deep Learning Models
	Experimental Finding: Model Robustness
	Discussion and Limitations

	Related Work

	Conclusions
	Synthetic Data: Lessons Learned and New Paths
	Invariance under Equivalence and Bias

	Templates for the Dataset Presented in Section 3.4
	Simple Negation
	Boolean Coordination
	Quantification
	Definite Description
	Comparatives
	Counting

	Templates for the Dataset Presented in Section 3.5
	Boolean Coordination
	Quantifier Reasoning
	Counting

	Synonym Substitution Examples
	Hyperparameter Search
	Bibliography

