• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2007.tde-04062007-105947
Documento
Autor
Nombre completo
Renato Pinheiro Freme Lopes Lucindo
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2007
Director
Tribunal
Wakabayashi, Yoshiko (Presidente)
Ferreira, Carlos Eduardo
Salgado, Liliane Rose Benning
Título en portugués
Partição de grafos em subgrafos conexos balanceados
Palabras clave en portugués
Algoritmo de aproximação
grafos
heurísticas
otimização combinatória
partição conexa balanceada
Resumen en portugués
Nesta dissertação estudamos --- do ponto de vista algorítmico --- o seguinte problema, conhecido como problema da partição conexa balanceada. Dado um grafo conexo G com pesos atribuídos a seus vértices, e um inteiro q >= 2, encontrar uma partição dos vértices de G em q classes, de forma que cada classe da partição induza um grafo conexo e que, ao considerar as somas dos pesos dos vértices de cada classe, a menor das somas seja o maior possível. Em outras palavras, o objetivo é encontrar q classes cujos pesos sejam tão balanceados quanto possível. Sabe-se que este problema é NP-difícil. Mencionamos alguns resultados sobre complexidade computacional e algoritmos que são conhecidos para este problema. Apresentamos algumas heurísticas que desenvolvemos, todas elas baseadas no uso do algoritmo polinomial para árvores, devido a Perl e Schach, que apresentamos com detalhe. Implementamos quatro heurísticas e um algoritmo de 3/4-aproximação conhecido para o caso q=2. Exibimos os resultados obtidos com os vários testes computacionais conduzidos com instâncias aleatórias, com grafos de diferentes pesos e densidades. Os resultados computacionais indicam que o desempenho dessas heurísticas --- todas elas polinomiais --- é bem satisfatório. No caso especial em que q=2, observamos que a heurística mais onerosa sistematicamente produziu soluções melhores ou iguais às do algoritmo de aproximação
Título en inglés
Algorithms for Balanced Connected Partitions of Graphs
Palabras clave en inglés
Approximation algorithm
balanced connected partition
combinatorial optimization
graphs
heuristics
Resumen en inglés
In this dissertation we study algorithmic aspects of the following problem, known as the balanced connected partition. Given a connected graph G with weights defined on its vertices, and an integer q >= 2, find a partition of the vertices of G into q classes such that each class induces a connected graph, and furthermore, when we consider the sum of the weights of the vertices in each class, the smallest sum is as large as possible. In other words, the q classes must have weights that are as balanced as possible. This problem is known to be NP-hard. We mention some computational complexity and algorithmic results that are known for this problem. We present some heuristics that we designed, all of them based on the use of the polynomial algorithm for trees, due to Perl and Schach, which we show in detail. We implemented four heuristics and a 3/4-approximation algorithm that is known for q=2. We run tests on many random instances, of graphs with different weights and densities. The computational results indicate that the performance of these heuristics --- all of polynomial time complexity --- are very satisfactory. For q=2, we observed that the most expensive heuristic produced solutions with values which are systematically better or equal to those produced by the approximation algorithm.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2007-10-15
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2023. Todos los derechos reservados.