
Programming with Monoidal Profunctors and Semiarrows

Alexandre Garcia de Oliveira

Thesis presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
in partial fulfillment
of the requirements

for the degree of
Doctor of Science

Program: Computer Science
Advisor: Prof a Dra Ana Cristina Vieira de Melo

Co-advisor: Prof Dr Mauro Javier Jaskelioff

São Paulo, September 2023

Programming with Monoidal Profunctors and Semiarrows

This version of the thesis includes the corrections and modications suggested
by the Examining Committee during the defense of the original version of the

work, which took place on September 13, 2023.

A copy of the original version is available
at the Institute of Mathematics and

Statistics of the University of São Paulo.

Examining Committee:

• Prof. Dr. Mauro Javier Jaskelioff (co-advisor) - UNR

• Prof. Dr. Alberto Raúl Pardo Garcia - UDELAR

• Prof. Dr. Nicolas Wu - IMPERIAL BS

• Prof. Dr. Tarmo Uustalu - RU

• Prof. Dr. Hugo Luiz Mariano - IME-USP

i

The happiness of your life depends upon
the quality of your thoughts.

Marcus Aurelius

ii

Resumo

OLIVEIRA, A. G. Programando com Profuntores Monoidais e Semiarrows. 2023. 106
f. Tese (Doutorado) - Instituto de Matemática e Estatástica, Universidade de São Paulo, São
Paulo, 2023.

Este trabalho investiga os profuntores monoidais e suas extensões, como profuntores monoidais
com efeitos colaterais e semiarrow, como ferramentas para raciocinar e estruturar programas
funcionais puros a partir de uma perspectiva categórica e dentro de uma implementação em
Haskell. Abordamos-os como monoides dentro de uma categoria monoidal específica de profun-
tores e como semiarrows em uma categoria de semiarrow. Examinamos as propriedades dessa
categoria monoidal e construímos e implementamos o profunctor monoidal livre. Além disso,
detalhamos as propriedades e leis de um semiarrow, derivando exemplos de seu uso e destacando
seu potencial para gerenciar efetivamente atrasos em programação síncrona. As máquinas de
Moore servem como um exemplo ilustrativo. Aplicações adicionais incluem óptica de profuntores
e conexões que preservam a estrutura de um profunctor monoidal entre máquinas de Moore,
dobragens com acumulação à esquerda (scan) e dobragens simples à esquerda (fold).

Palavras-chave: Profuntores monoidais, Profunctores monoidais com efeitos colaterais, Semi-
arrows, Programação funcional, Programação síncrona, Máquinas de Moore.

iii

iv

Abstract

OLIVEIRA, A. G. Programming with Monoidal Profunctors and Semiarrows. 2023.
106 p. Thesis (Doctorate) - Instituto de Matemática e Estatástica, Universidade de São Paulo,
São Paulo, 2023.

This work investigates monoidal profunctors and their extensions, such as effectful monoidal
profunctors and semiarrows, as tools for reasoning and structuring pure functional programs
from a categorical perspective and within a Haskell implementation. We approach them as
monoids within a specific monoidal category of profunctors and as semiarrows in a semiarrow
category. We examine the properties of this monoidal category and construct and implement
the free monoidal profunctor. Furthermore, we detail the properties and laws of a semiarrow,
deriving examples of its usage and highlighting its potential for effectively managing delays in
synchronous programs. Moore machines serve as an illustrative example. Additional applica-
tions include optics and a monoidal profunctor structure-preserving connection between Moore
machines, left scans, and left folds.

Keywords: Monoidal profunctors, Effectful monoidal profunctors, Semiarrows, Functional pro-
gramming, Synchronous programming, Moore machines.

v

vi

Contents

1 Introduction 1
1.1 Research Questions . 3
1.2 Research and Thesis Organization . 4
1.3 Claimed Contributions . 6
1.4 Presentations and Publications . 6

2 Background 9
2.1 Haskell Basics . 9

2.1.1 Syntax . 9
2.1.2 Algebraic Data Types . 9
2.1.3 Parametric Polymorphism . 10
2.1.4 High-order Functions . 11
2.1.5 Typeclasses . 12

2.2 Category Theory . 13
2.2.1 Categories . 13
2.2.2 Functors . 14
2.2.3 Natural Transformation . 16
2.2.4 Monads . 20
2.2.5 Comonads . 26
2.2.6 Applicative Functors . 28
2.2.7 Alternative functors . 29

2.3 Monoidal Categories . 30
2.3.1 Ends and Coends . 30
2.3.2 Definition of a Monoidal Category . 31
2.3.3 Profunctors . 33
2.3.4 Day Convolution . 34

2.4 Summary . 36

3 Monoidal Profunctors 39
3.1 Definition . 39

3.1.1 A monoid in monoidal profunctors . 39
3.2 Implementation in Haskell . 41

3.2.1 Profunctor typeclass . 41
3.2.2 The Day convolution type . 42

vii

viii CONTENTS

3.2.3 MonoPro typeclass . 42
3.3 Free monoidal profunctor . 44

3.3.1 Representation Theorem . 45
3.4 Free monoidal profunctors in Haskell . 47
3.5 Effectful Monoidal Profunctors . 48

4 Semiarrows 53
4.1 A review on arrows . 53
4.2 Semiarrow categories . 55

4.2.1 A semiarrow in a semiarrow category 56
4.3 Day convolution and profunctor composition . 58
4.4 Semiarrow typeclass . 62
4.5 Moore Machines . 63

5 Applications 67
5.1 Applications of Monoidal Profunctors . 67

5.1.1 Type-safe lists . 67
5.1.2 Monoidal Profunctor Optics . 70
5.1.3 Process calculi using the Free Monoidal Profunctor 72

5.2 Applications of Semiarrows . 73
5.2.1 Synchronous data-flow programming and delays 73
5.2.2 Moore machines, folds and scans . 77

6 Conclusion 83
6.1 Related Work . 83
6.2 Future Work . 84

List of Figures

2.1 Diagram for a covariant functor . 14
2.2 Diagram for a contravariant functor . 16
2.3 A natural transformation diagram . 17
2.4 Commutative diagram for the naturality condition (2.2) 17
2.5 Vertical composition diagram . 18
2.6 Left whiskering . 18
2.7 Commutative diagram for the naturality condition for ηF 18
2.8 Right whiskering . 18
2.9 Commutative diagram for the naturality condition for Kη 19
2.10 Horizontal composition . 19
2.11 Commutative diagram for the naturality condition η operator 20
2.12 Commutative diagram for the naturality condition µ operator 20
2.13 Commutative diagram for the identity condition of the counit ε operator 26
2.14 Commutative diagram for the naturality condition δ operator 27

5.1 The semiarrow interface . 74
5.2 delay . 74
5.3 The GSemiArrow interface . 75
5.4 Graphical example . 77

ix

x LIST OF FIGURES

List of Tables

1.1 Authors compilation . 3
1.2 Structure relations . 4

5.1 Behavior of the analyzed expression over time . 76

xi

xii LIST OF TABLES

Chapter 1

Introduction

A common approach to solving problems in various fields is to decompose them into smaller
pieces so that the solution can be obtained by composing the individual solutions. In program-
ming, this approach is no different; one can decompose a problem into smaller programs, execute
each one, and then combine the results to resolve the issue. Pure functional programming, in
particular, views programs as pure mathematical functions, i.e., functions without computa-
tional side-effects. Compositionality can lead to clean, efficient, and easy-to-reason code. Pure
functional programming treats programs as pure mathematical functions without computational
side-effects, leading to clean, efficient, and easy-to-reason code. Compositionality is a powerful
tool for structuring such programs [Obr98].

Functional languages are naturally compositional because functions serve as partial solutions
that can be composed to provide a complete solution. They can support this compositional
approach in various computer-based systems. Preserving computational behavior under this
approach demands a solid mathematical foundation to model the composition of computer
programs.

Category Theory is a mathematical field that abstracts various mathematical concepts and
their composition. Samuel Eilenberg and Saunders Mac Lane introduced Category Theory in the
1940s. Today, this theory has extensive literature and is widely applied in numerous scientific
and engineering disciplines. Structuring pure functional programs using categorical constructs
is a well-known topic that has attracted the interest of many researchers in theoretical computer
science.

Composing programs with side-effects is a challenging yet well-studied subject in computer
science. It is well-known that pure functions cannot produce side-effects. Monads [Mog91] enable
composition by distinguishing between values and computations. This distinction streamlines
the combination of operations ensuring a consistent handling of side effects. Applicative func-
tors [MP08], although similar to monads, provide compositionality at the cost of being limited
to static computations.

In the chain of abstractions of unary type constructors, applicative functors lie between func-
tors (the weakest of the three) and monads (the strongest). On a related note, arrows [Hug05]
concentrate on compositional processes that resemble machine-like constructions, specifically
for binary type constructors.

Profunctors [PGW17] and their related classes, such as Strong, Grates, Traversal, and
Closed [Kmec,PGW17,CEG+20], are well-studied categorical concepts for binary type construc-
tors in functional programming. Their popularity has increased recently due to the development
of profunctorial optics.

Another well-known structure in the functional programming community is arrows. Intro-
duced by Hughes [Hug05], arrows were designed to model general processes exhibiting machine-
like behaviors. Similar to monads, arrows have their own sugarized syntax, the proc nota-
tion [Pat01]. This notation simplifies the usage of arrows and assists imperative programmers in

1

2 INTRODUCTION 1.0

reasoning about processes encoded by arrows. Arrows have been employed in various domains
within Haskell, showcasing their versatility and usefulness. Some examples of these domains
include parsing, stream processing, functional reactive programming, and graphical user inter-
faces.

Hughes [Hug05] demonstrated several arrow examples, including Kleisli arrows. Kleisli ar-
rows are functions that output a value wrapped in a monad, which is used to model effects.

Parsers can also have an arrow interface, as pointed out by [Hug05], which refers to the
work of [SD96] that uses a non-Monadic parser. In this context, the typeclasses ArrowZero
and ArrowPlus are introduced, which serve as alternative functor analogs for arrows. Arrows
with recursion schemes, such as Haskell’s ArrowLoop typeclass, give rise to a notion of traced
monoidal categories, studied by Hasegawa [Has09].

Arrows also model context-dependent programming [UV06], stemming to its coKleisli na-
ture, which involves functions that input values wrapped in a comonad. This paper also demon-
strates that biKlesli arrows, which have a comonad structure on function input and monad
structure on output together with a distributive law of a monad over a comonad, have an arrow
instance. This allows the formalization of partial-stream functions (such as clocked dataflow
programs).

Generalized Arrows, an approach for metaprogramming presented in the work of [Meg10],
extend the notion of Arrows. A Generalized Arrow is a typeclass without Arrow’s arr function,
and with six more functions based on Monoidal Categories’ associative and unity rules. In
this work, various forms of arrow-like combinators give rise to Multi-Level terms and Types.
Another interesting example from this work is the way Generalized Arrows combinators can
produce ways to program in a Simply Typed Kappa Calculus context.

In parallel programming, the work of [BLT18] involves creating a parallel arrow combina-
tor and several typeclasses, such as PArrow , which extends the Arrow formalism to parallel
computations. This approach generalizes algorithms across three different parallel frameworks.
The authors note that Arrow parallelism has lower performance overhead compared to other
approaches.

The Yampa package, studied in the work of [LCH09], is employed in various signal processing
applications, including animation, robotics, and sound synthesis. In this work, Liu introduces
the concept of causal commutative arrows, which are arrows that satisfy specific axioms. The
notion of commutative arrows, as observed in [LCH09], captures the properties of concurrent
computations. The work also proposes an extension of the simple type lambda calculus and
derives a normal form called Causal Commutative Normal Form.

Functors, applicative functors [MP08], monads [Mog91,Wad92,Spi90], profunctors, and ar-
rows [Hug05,JHH09] are by now part of the vocabulary of the programmer who writes mathe-
matically structured programs. In order to understand and develop these structures both the cat-
egorical view and the programming view have been helpful. For example, Lindley et al. [LWY11]
compare these structures from the point of view of (typed) programming languages, and Rivas
and Jaskelioff [RJ17] compare them from the point of view of monoidal categories.

In this last work, both monads and applicative functors are seen as monoids in a monoidal
category of endofunctors. Monads use functor composition as tensor, whereas applicative func-
tors use the Day convolution as tensor. Likewise, arrows can be seen as monoids in a monoidal
category of (strong) profunctors.

Several works that model computer science problems with categorical theoretical constructs,
like monoidal profunctors, can be considered related. Table 1.1 compiles the most influential
authors and their works related to this research, organized by structure and practical applica-
tions.

1.1 RESEARCH QUESTIONS 3

Table 1.1: Authors compilation

Work Structure Applications

[MP08] Applicative functors Parsers, Evaluation of ex-
pressions

[Obr98] Monads Interpreters, Nondetermin-
ism

[Meg10] (Generalized) Arrows Muli-level languages

[BLT18] Arrows
Parallel and concurrent pro-
gramming

[HM98] Monads Recursive descent parsers

[CK14] Applicative functors Options parser

[UV06] Monads, Comonads and Ar-
rows

Dataflow programming

[LCH09] (Causal Commutative) Ar-
rows

General signal processing al-
gorithms

[Wad95] Monads
Effectful computations in
general

[Spi90] Monads

List comprehensions, Maybe
data type for exceptions,
and initial insights into
monadic behavior

[PGW17] Profunctors
Modular data accessors (Op-
tics)

[Hug05] Arrows
Point-free programming, In-
terpreters, Parser combina-
tors, CGI programming

[RJ17] Monoids in monoidal cate-
gories Optimization

It is worth to note that each of the listed work, in Table 1.1, has a significant impact on
Haskell’s library, Hutton’s work [HM98] on monadic parser combinators on Haskell gives the
foundations for parsec package for example. Many other packages have a plethora of excellent
and practical instances for monads, applicative, arrows and profunctors.

1.1 Research Questions
The primary objective of this research is to explore the existence of other categorical constructs
that lie between arrows and profunctors and to determine whether these new constructs yield
valuable applications that can be utilized by the functional programming community. To ac-
complish this goal, we extensively study two structures, present their categorical semantics, and
provide illustrative examples for better understanding and reasoning.

Question 1 - Can monoidal profunctors be employed to structure and reason about pure
functional programs in the same manner as applicative functors? Is it possible to fill the gap in
Table 1.2 with monoidal profunctors?

Monoidal profunctors offer an intriguing structure for modeling parallel computations. Their
free construction effectively represents process calculi, and they give rise to an optic. By utilizing

4 INTRODUCTION 1.2

functor applicative monad
profunctor ???? arrow

Table 1.2: Structure relations

the effectful version, it becomes possible to allow effects when splitting and merging data. We
discovered that monoidal profunctors can fit in this table, and their generalization appears
promising.

Question 2 - Can the extension of a monoidal profunctor to a semiarrow also be utilized to
structure and reason about pure functional programs in a manner similar to arrows?

Through examining the semiarrow interface, we determined that it is suitable for composing
Moore machines and offers a method for composing stateful components in a structured man-
ner. The SemiArrow interface defines combinators that enable sequential and parallel composi-
tion of components while preserving the semantics of state and delay, providing an interesting
framework for reasoning about synchronous programs. Additionally, we uncovered intriguing
connections between Moore machines and folds.

1.2 Research and Thesis Organization
This work provides another instance of employing monoids in a monoidal category to model
computations, following the same approach as in the work of Rivas and Jaskelioff [RJ17]. Fur-
thermore, we present and discuss the semiarrow in a semiarrow category, using a similar line of
reasoning. This process involves three primary steps:

• Categorical view: We identify an appropriate categorical environment to derive algebraic
structures, prove related results and coherence laws, characterize its tensors, and discuss
their implications.

• Algebraic structures: We extract the targeted algebraic structures, prove results per-
taining to them, establish associated laws, and investigate their properties using Haskell.

• Exploration: We investigate the derived structure, offering insights and basic examples,
we also demonstrate its adherence to the derived laws.

• Applications and Impact: We discuss the applications of these structures and ponder
their impact on computer science-related problems. Furthermore, we draw comparisons
between the utilization of the derived structures and other well-established structures.

As mentioned in the previous section, this research mainly focuses on two such structures:
monoidal profunctors and semiarrows.

Monoidal profunctors are a categorical structure with two key components: an identity
computation and a generic parallel composition. As a profunctor, they have the ability to lift
pure computations into their structure. This structure is derived from a monoidal category of
profunctors, where the Day convolution serves as its tensor. It is important to note that the Day
convolution can also act as a tensor for profunctors. The free construction on top of a monoidal
profunctor is also possible [Mil]. Following the research steps described earlier, we characterize
a monoidal profunctor as a monoid in the monoidal category of profunctors. Additionally, we
propose an idea to consider the monoidal profunctor to accommodate effects when splitting and
merging. This can be achieved by utilizing the Day convolution with other categories, such as
the Kleisli category, as a model.

1.2 RESEARCH AND THESIS ORGANIZATION 5

We extend the aforementioned categorical structure with another tensor in the profunctor
category, the profunctor composition tensor, giving us a semiarrow category. We do not require
that this tensor has an identity. This construction will have a law that correlates both tensors
and also possess coherence laws. A semiarrow category possesses an additional associative tensor
without an identity law. This tensor provides a notion of sequential composition. The two tensors
are related via the interchange law, which enables the commuting of effects.

The semiarrow in a semiarrow category pattern emerges by following the same specialization
to a single object approach. Semiarrows extend monoidal profunctors by adding an associative
computation without an identity, and the interchange law links them. In Haskell, the semiar-
row exhibits a comparatively weaker structure than arrows, as it does not include functions such
as arr , first , and second . This weaker structure is due to the absence of an identity element of
the sequential composition.

Monoidal profunctors are present in the Haskell ecosystem within the packages product −
profunctors [Ellb] and opaleye [Ella], as well as in the profunctor optics literature [PGW17],
and other community-wide texts about free monoidal profunctors [Mil]. Possible applications for
monoidal profunctors alone are in parallel programming, as a tool for reasoning about contexts,
and even optics [CEG+20].

A semiarrow is suitable for composing Moore machines and provides a way to compose state-
ful components in a structured manner, which is essential in applications such as synchronous
data-flow programming. This interface defines combinators that preserves the semantics of state
and delay.

Data-flow frameworks built on Moore machines exemplify this programming style [HCRP91].
They facilitate the composition of stateful components, managing delays and states in a struc-
tured way while maintaining predictable and deterministic behavior. Composable Moore ma-
chines provide suitable semantics for this programming paradigm, which can be challenging to
reason about using causal commutative arrows [LCH11].

This study further establishes a connection between Moore machines and folds, demonstrat-
ing that known laws can be derived from this categorical relationship. Moore machines and folds
are connected by a natural transformation that preserves the monoidal profunctor operations.

This work is organized as follows. In Chapter 2.1, we focus on providing the background
knowledge necessary to understand the ideas contained in this work. This chapter covers three
major topics. The first contains the basics of Haskell, which serves as the foundation for un-
derstanding the programming concepts used throughout this work. The section aims to famil-
iarize the reader with essential Haskell concepts, such as types, typeclasses, and other language
constructs, which are used in the development and illustration of monoidal profunctors and
semiarrows.

In Section 2.2 of the same chapter, we provide definitions and some proofs related to category
theory. We also illustrate these concepts with Haskell examples to facilitate understanding and
show the connection between the theory and practical applications.

In Section 2.3 of the same chapter, we present the theory of monoidal categories, and more
advanced concepts such as profunctors and coend calculus. These topics form the basis for un-
derstanding the subsequent chapters, which goes deeper into the relationship between monoidal
profunctors, semiarrows, and their applications in both theoretical and practical contexts.

Chapter 3 presents the notion of a monoidal category and its laws, describes profunctors,
and defines the Day convolution. it also introduces monoidal profunctors along with the concept
of a monoid built on top of them. This chapter also shows some basic instances of the monoidal
profunctor typeclass, as well explores the idea of a free monoidal profunctor and presents the
representation theorem for profunctors needed for optics. We also present the concept of an
effectful monoidal profunctor and provide examples of its use with Kleisli arrows to construct
a quicksort algorithm that collects effects when splitting and merging. We introduce the cat-
egorical tools needed to construct a semiarrow in a semiarrow category and discuss its laws

6 INTRODUCTION 1.4

in Chapter 4. In addition, it presents how to handle delays using the semiarrow interface and
Moore machines, providing insights for building a robust framework for synchronous data-flow
programming.

In Chapter 5, we present a technique present in the opaleye package to create type-safe lists,
the discussion about the monoidal profunctor semantics of an optic called Monocle that handles
every coordinate of a tuple simultaneously, an application of the free monoidal profunctor,
and also explore the connections between Moore machines and folds. Chapter 6 presents the
conclusion of this research.

1.3 Claimed Contributions
The novel contributions of this reasearch are the following:

• Gathering information about monoidal profunctors: Monoidal profunctors are rel-
atively unexplored in functional programming literature. This research surveys the topic,
presenting definitions, results, and insights from specialized literature and from Haskell’s
folklore.

• Semantics for the Monocle optic. The optic, referred to as Monocle in this research,
has been previously defined in the literature and is also widely recognized in the Haskell
folklore [PGW17,O’Ca]. While its definition here has slight variations, the essence remains
the same. In this research, we provide the semantics for a monoidal profunctor using the
binary representation theorem and a coend over monoidal profunctors.

• Examples for the Free Monoidal Profunctor. This is a minor contribution, in which
we constructed an Abstract Syntax Tree (AST) that serves as an insightful example for a
process calculus language.

• Effectful Monoidal Profunctor. We introduce a way to extend a monoidal profunctor
to allow effects when splitting and merging data. For example, we can use Kleisli arrows to
generate any encoded effect within its monad when splitting/merging data. In this work,
we presented a quicksort algorithm that utilizes logging effects when splitting and merging
lists.

• Semiarrows. This structure was inspired by a commutative causal arrow, but it is sig-
nificantly different. The semiarrow emerged when the author was attempting to compose
Moore machines for a different purpose and wondered why this type wasn’t considered an
arrow. In this work, we provide examples, categorical semantics, and laws for semiarrows.

• Semantics for Delays. The discussion of extending a semiarrow to a GSemiArrow also
appears to be new. We propose a simple graphical language for studying delays and provide
examples. The idea of further extending this concept to exhibit operadic behavior is also
present in this research.

• Connections between left Fold, left Scan, and Moore machines. We also discover
an unexpected connection between Folds, Scans, and Moore machines, and found that they
are interconnected by natural transformations. A Moore machine preserves the monoidal
profunctor structure, but not the semiarrow one, due to delays.

1.4 Presentations and Publications
This research was presented at four functional programming and category theory events, in-
cluding IFL2020, MGS2021, MSFP2022, and II Encontro Brasileiro em Teoria das Categorias.

1.4 PRESENTATIONS AND PUBLICATIONS 7

• Paper 1. Alexandre Garcia de Oliveira, Mauro Javier Jaskelioff, and Ana Cristina Vieira
de Melo (2022). "On Structuring Pure Functional Programs Using Monoidal Profunctors".
In: Proceedings of the Workshop on Mathematically Structured Functional Programming.
Munich, Germany. This work presents the findings related to monoidal profunctors, ef-
fectful monoidal profunctors, and their applications, such as free monoidal profunctors,
the monocle optic, and its semantics based on them. The first half of this work was sum-
marized in a paper, while the content about semiarrows was not included. The paper can
be downloaded at https://arxiv.org/abs/2207.00852.

• Paper 2. Alexandre Garcia de Oliveira, Mauro Javier Jaskelioff, and Ana Cristina Vieira
de Melo (2023). "Programming with Monoidal Profunctors and Semiarrows". In: Science
of Computer Programming. Submitted for publication. This work is an extension of the
first paper that includes the whole semiarrow background, its definitions, laws, examples,
and applications.

The author also co-organized the II Encontro Brasileiro em Teoria das Categorias event.
The second paper was presented at the II Encontro Brasileiro em Teoria das Categorias under
the title "Programming with Semiarrows" and an abstract will be published in its proceedings.

Prerequisites
This thesis focuses on functional programming and how to reason about its programs using
category theory. This work is as self-contained as possible, but for a better reading experience,
the reader should have some basic knowledge of functional programming and computer science
basic concepts.

In Chapter 2.1, we provide the Haskell basics needed to follow every program listed through-
out the text. We do not expect the reader to be an expert in Haskell, but some understanding
of functional programming is recommended.

This work is also heavily grounded in mathematics. Chapters 2.2 and 2.3 define and discuss
the tools needed from category theory. The proof techniques used in this research include dia-
gram chasing proofs, equational reasoning, induction, and structural induction. A reader with
a background in discrete mathematics and some knowledge of basic proof techniques will have
a better experience reading this text. We also expect the reader to have little to no previous
background in category theory.

https://arxiv.org/abs/2207.00852

8 INTRODUCTION 1.4

Chapter 2

Background

2.1 Haskell Basics
This chapter introduces the essential features of the Haskell programming language required to
understand the rest of this work. Installation, compiler handling, and execution details are not
discussed.

For a more detailed exploration of these concepts, consult the work of Lipovaca [Lip11].

2.1.1 Syntax

Haskell functions have the following form:

f :: t1 → t2 → ...→ tn → tr
f v1 v2 ... vn = expression (v1 , v2 , ..., vn)

One can read this as a function f with input names v1 of type t1 (written as v1 :: t1), v2
of type t2 , and so on, returning an expression of type tr which can depend on any of those
bindings. The type signature of the function can be omitted, although this is not considered
good programming practice, as it leaves the expression type to be inferred by the compiler.

Example 1 - A function f :: tr with no inputs is called a constant function.

Example 2 - Let vi :: ti be values of type ti for all i > 1, and f :: t1 → ...→ tr be a function.
The expression f v1 v2 ... vn, which represents the application of f , has type tr . If one applies
f with fewer arguments, such as f v1 , f v1 v2 , f v1 v2 , ..., f v1 v2 ... vn1 , the resulting types
will be t2 → t3 → ...tn → tr , t3 → ... → tn → tr , ..., tn → tr , respectively. A function that
can be applied in this manner is referred to as a curried function.

Functions can also have a scoped list of declarations using the let clause:

f :: t → r
f t = let y = subexp (t) in expression (y , t)

In this example, you can use sub-expressions and bind them to a name, in this case y , to
use it later in the return expression.

A function can also be represented as a lambda (as in lambda calculus) [BL80] in the form
λv1 v2 ... vn → expression, which serves as a function literal.

2.1.2 Algebraic Data Types

Algebraic Data Types (ADTs) can be used to create custom types that can be variants of
products (tuples), sums (disjoint unions), or a combination of both. The keywords newtype

9

10 BACKGROUND 2.1

and data denote single constructor types with strict semantics, while data can have multiple
constructors with lazy semantics.

Example 3 - The type Day is a sum type declared as:

data Day = Sun | Mon | Tue |Wed | Thu | Fri | Sat

It has seven constructors, each with no records.

Example 4 - A type for currency is a product type declared as:

data Currency = Currency String Double

It has one constructor (with the same name as the type, which is allowed by the compiler)
and two fields. The same type can be written in another form:

data Currency = Currency {
name :: String ,
value ::Double
}

In this case, name and value are projection functions of type Currency → String and Currency →
Double respectively.

Example 5 - An integer list is a recursive type and also can be written as an ADT.

data ListInt = Null | Cons Int ListInt

A ListInt has two constructors, Null has no fields and Cons has an integer carrier field and a
recursive field to keep the structure going. For example the value Cons 7 (Cons 5 (Cons 3 Null))
has type ListInt .

Example 6 - The type declaration newtype Foo = Foo Int has only one constructor and by
strictness is treated by the compiler as an integer.

One useful feature of an ADT is that it can be destructed at any function input, this concept
called pattern matching .

increaseTen :: Currency → Currency
increaseTen (Currency n v) = Currency n (v + 10)

The function increaseTen has a destructed Currency by pattern matching exposing the
name and value fields binding it to the names n and v .

2.1.3 Parametric Polymorphism

The concept of parametric polymorphism allows functions to have a generic behavior and does
not depend on a specific type, implying that such a function cannot access any value of its inputs.
A function with concrete types is called monomorphic. For example, a function that concatenates
two lists is polymorphic because there is no need to inspect the list values. However, a function
that negates a boolean value is monomorphic.

Types can also be polymorphic by having one (or more) type parameter(s) in its declaration.

data List a = Null | Cons a (List a)

The type List is a polymorphic type with a type parameter a, while the type List Int is
monomorphic and equivalent to [Int].

2.1 HASKELL BASICS 11

A function can also be polymorphic, this allow its input/output for every type avoiding
having a boilerplate code with the same function with the same behavior being coded for every
type.

id :: a → a
id x = x

The identity function id serves as an excellent example of parametric polymorphism. It
accepts an input of any type a and returns the same value without alteration, irrespective of
the input type. This eliminates the necessity for separate functions like idString :: String →
String , idInt :: Int → Int , and others that would only serve to fill the codebase with redundant
implementations.

2.1.4 High-order Functions

One key concept present in functional languages like Haskell is the concept of a high-order
function. High-order functions are functions that can accept other functions as input argu-
ments or return functions as output. This concept helps promote compositionality in functional
programming.

High-order functions enable the creation of new functions based on existing ones, allowing
for greater code reusability and modularity.

In Haskell, high-order functions are ubiquitous and are widely used to express a variety of
common patterns, on lists, for example, mapping, filtering, and folding are daily ingredients of
a function programmer. For example, the map function applies a given function to each element
of a list, the filter function selects elements from a list based on a predicate function, and the
foldl function combines elements of a list using a binary function.

map :: (a → b)→ [a]→ [b]
map [] = []
map f (a : as) = (f a) :map f as

filter :: (a → Bool)→ [a]→ [a]
filter [] = []
filter f (a : as)
| f a = a : filter f as
| otherwise = filter f as

The functions above are high-order functions as one can observe its inputs. The function
foldl will be defined and discussed further later on this present work.

Other high-order functions exist to handle common patterns in functions, such as flip that
swaps arguments in a function with two inputs, ($) that is the operator to apply a function to a
value reducing the usage of parentheses, and (◦) that composes two functions to create another
one having the output type of the first function and the input type of the second function.

flip :: (a → b → c)→ (b → a → c)
flip f b a = f a b

($) :: (a → b)→ a → b
($) f a = f a

(◦) :: (b → c)→ (a → b)→ a → c
(◦) f g a = f (g a)

12 BACKGROUND 2.2

2.1.5 Typeclasses

A typeclass is an implementation of ad-hoc polymorphism in Haskell and provides bounds to
polymorphic types. Wadler and Blott [WB89] defines ad-hoc polymorphism as functions that
behave differently depending on a particular type. For example, the multiplication behavior
when dealing with integers and another for floating-point numbers.

A typeclass is a type constraint that contains definitions to be specialized for each concrete
type.

Example 7 - The class Show deals with values that can be converted to a string and is defined
as

class Show a where
show :: a → String

and can have, as a concrete instantiation, the following instance

instance Show Day where
show Sun = "Sunday"
show Mon = "Monday"
show Tue = "Tuesday"
...
show Sat = "Saturday"

and specifies how to convert a Day into a string. The function show has the type show ::Show a ⇒
a → String indicating that the class Show is indeed restricting the type parameter a. Classes
also have a kind, in this case, ∗ → Constraint .

Example 8 - Let us recall the definition of a monoid used in algebra.

Definition 2.1 - A monoid is a triple (M,⊗, u) where M is a set, ⊗ is a binary operation
and u is an element of M such that satisfies the axioms:

• (Neutral element) ∃u ∈M such that ∀a ∈M a⊗ u = a and u⊗ a = a;

• (Associativity) ∀a, b, c ∈M (a⊗ (b⊗ c)) = ((a⊗ b)⊗ c).

In Haskell, the class Monoid represents a monoid and is given by the class

class Monoid m where
mempty ::m
(⊗) ::m → m → m

where mempty plays the role of the neutral element and (⊗) of the binary operation. The
compiler will not enforce the axioms; this is the responsibility of the programmer. A natural
instance of the monoid type class are Strings where its neutral is the empty list, and the binary
operation is the concatenation of lists.

instance Monoid String where
mempty = []
(⊗) = (++)

2.2 CATEGORY THEORY 13

2.2 Category Theory
In this chapter categories and their related concepts are presented. The basics of category theory
such as categories, functors, natural transformations, monads and other relevant concepts will
be presented. These concepts are the main tools for studying other categorical concepts such as
adjoints, algebras, co-algebras, bifunctors, profunctors to name a few. The definitions are based
on the work of Saunders [Mac71] and Awodey [Awo10]. Every category-theoretic definition will
be accompanied with a Haskell piece of code to show how category theory is used to reason
about pure functional programs.

2.2.1 Categories

Definition 2.2 - A category [Mac71] C consists of:

• A collection of objects denoted by ob(C);

• For all objects A and B, a set of morphisms denoted by HomC(A,B) or C(A,B) of inputs
A and outputs B. We also use Hom(A,B) when the category context is clear. A morphism
can be also called an arrow;

• Notion of composition for morphisms represented by the binary operator ◦ : Hom(B,C)×
Hom(A,B)→ Hom(A,C). If g : B → C and f : A→ B then g ◦ f : A→ C,

satisfying the following axioms:

• (Existence of Identities) For all objects X of ob(C) there exists a identity morphism idX :
X → X;

• (Neutral) The identity morphism acts as a ”neutral element”. If f : A→ B then uniqueness
of identity follows f ◦ idA = f = idB ◦ f

• (Associativity) The composition above is associative, if h : A → B, g : B → C and
f : C → D, then (f ◦ g) ◦ h = f ◦ (g ◦ h) for every object A,B,C and D of ob(C).

Categories can be viewed also as a directed graph where objects are nodes and the edges
represents a morphism connecting such nodes. It is valid to observe that categories has a similar
structure as monoids. If ob(C) and Hom(A,B) are sets then the category is labelled as a small
category, if only Hom(A,B) are sets, it will be called hom-set, then the category is said to be
locally small. To illustrate the definition above, some examples of categories in mathematics
and also in computer science are given as follows.

Example 9 - The category Set of Sets, consists of sets being its objects and set functions as
its morphisms [Mac71].

Example 10 - The category Vectk of Vector Spaces, consists of vector spaces with a base
field k being its objects and linear transformations as its morphisms [Awo10].

Example 11 - The category Lambda representing the lambda calculus, it has types as its
objects and functions as morphisms [Awo10].

Example 12 - The category Mon of Monoids, consists of monoids being its objects and
monoid homomorphism as its morphisms [Mac71].

Example 13 - The category Cat of Categories, consists of small categories being its objects
and Functors, see the next section, as its morphisms [Mac71].

Example 14 - The category Cop of some category C has the same objects of C but reversed
morphisms, i.e, if f : A→ B in C then f : B → A in Cop [Mac71].

14 BACKGROUND 2.2

A B

F (A) F (B)

f

F F

F (f)

Figure 2.1: Diagram for a covariant functor

In Haskell, there is a type class called Category (package Control.Category) which models
the definition given above.

class Category cat where
id :: cat a a
(◦) :: cat b c → cat a b → cat a c

The type (→) is a natural instance for the Category type class. This class restricts the
objects of the category cat to be types.

instance Category (→) where
id = GHC .Base.id
(◦) = (GHC .Base.◦)

The base functions id and (.) are the obvious implementation’s of the methods from the
type class Category. It is always good to remember, the compiler will not check the category
axioms.

2.2.2 Functors

A covariant functor is a structure preserving map between categories in a way that objects go
to objects and morphism go to morphisms. This kind of functor is also called covariant [Mac71].

Definition 2.3 - Let C and D be categories, F : C → D is said to be a covariant functor
if it sends an object A, in ob(C), to F (A) in ob(D) and sends a morphism f : A → B to
F (f) : F (A)→ F (B), satisfying:

• F (idX) = idF (X) for all objects X of C;

• F (f ◦ g) = F (f) ◦ F (g) for all composable morphisms f and g of C;

Example 15 - The functor U :Mon→ Set is called the forgetful functor, this functor forgets
the additional structure of monoids and downcast them to a simple set [Mac71].

Example 16 - The functor (−)∗ : Set → Mon is called the free functor, this functor creates
an artificial monoid structure for a particular unstructured set. This functor is useful to model
lists in a programming language context [Awo10].

Example 17 - The functor ∆X : C → D is called the constant functor, this functor sends all
objects of ob(C) to an fixed object X of ob(D) and every morphism of C to idX in D [Mac71].

Example 18 - The functor Hom(X,−) : C → Set where C is a locally small category, is
called the hom-functor. This functor sends an object A of ob(C) to the hom-set Hom(X,A) of
all morphisms from X to A and sends a morphism f : A → B to Hom(X, f) : Hom(X,A) →
Hom(X,B), where g 7→ f ◦ g. A functor with the same input and output category is called an
endofunctor.

2.2 CATEGORY THEORY 15

The type class Functor (kind (∗ → ∗) → Constraint) is inspired on the definition given
above in Haskell. This class has only one method to be implemented in its instances called fmap.

class Functor f where
fmap :: (a → b)→ f a → f b

The function fmap takes a high-order function, call it g for simplicity, of type a → b and a
value of type f a and transforms into a value of type f b, this process can be thought as f a
being some sort of container of a’s, then g will transform the a’s (inside of f) into b’s, leaving
a container of b’s represented by the type f b. The Examples 16 and 18 can be represented, in
Haskell, by the list [] and ((→ x) instances of the Functor class, where fmap is just the map
function for the former and the composition (◦) of functions for the latter.

Let F : C → D and G : D → E two functors, it is possible to compose them G ◦ F : C → E ,
for any object X from C, G ◦ F (X) is an object of E , note that this order of the composition
matter like a normal function, and any morphism f : A→ B of C, thus

(G ◦ F)(f) : (G ◦ F)(A)→ (G ◦ F)(B) (2.1)

is a morphism in the category E , this composition is clearly associative and G ◦ F give us
the composite functor of G with F . This construction is useful for the category Cat of small
categories.

There is, in Haskell, a datatype that represents a functor composition located in the Data.Functor
package called Compose and has the kind (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗.

newtype Compose f g a = Compose {getCompose :: f (g a)}
instance (Functor f ,Functor g)⇒ Functor (Compose f g) where
fmap f (Compose x) = Compose (fmap (fmap f) x)

The datatype mentioned is polymorphic in the variables f , g and a, to make this an instance
of the Functor type class f and g must be also instances of Functor as noted after the instance
keyword. The functor composition plays a significant role in the construction of monads.

Our comprehension of functors can be extended by generalizing the concept to operate on
the product category, resulting in what is known as a bifunctor [Mac71]. Bifunctors adhere to
the customary functor laws, but in the context of the product category.

Definition 2.4 - Let C, D, and E be categories. A bifunctor F : C × D → E is defined as a
functor that maps each pair of objects (A,B) of the product category C×D to an object F (A,B)
of the category E . Furthermore, it maps each pair of morphisms (f, g) : (A,B)→ (C,D) in C×D
to a morphism F (f, g) : F (A,B)→ F (C,D) in E , satisfying:

1. F (idA, idB) = idF (A,B) for all objects A of C and B of D.

2. F (f2, g2) ◦ F (f1, g1) = F (f2 ◦ f1, g2 ◦ g1) for all morphisms f1 : A1 → A2, f2 : A2 → A3

and g1 : B1 → B2, g2 : B2 → B3.

In Haskell, a bifunctor, that has the kind (∗ → ∗ → ∗)→ Constraint , is represented by the
typeclass below.

class Bifunctor p where
bimap :: (a → b)→ (c → d)→ p a c → p b d

The bimap function in Haskell originates from the Bifunctor typeclass and is defined to
handle data structures parameterized by two types. A common instance of a bifunctor in Haskell
is the tuple type.

16 BACKGROUND 2.2

instance Bifunctor (,) where
bimap f g (x , y) = (f x , g y)

The Bifunctor instance for the tuple type applies the first function to the first coordinate
and the second function to the second coordinate.

We can also explore functors that operate in the dual category, which are referred to as
contravariant functors.

Definition 2.5 - Let C and D be categories, F : C → D is said to be a contravariant
functor if it sends an object A, in ob(C), to F (A) in ob(D) and sends a morphism f : A→ B to
F (f) : F (B)→ F (A), satisfying:

• F (idX) = idF (X) for all objects X of C;

• F (f ◦ g) = F (g) ◦ F (f) for all composable morphisms f and g of C;

A B

F (A) F (B)

F F

Figure 2.2: Diagram for a contravariant functor

Example 19 - The functor Hom(−, X) : C → Set where C is a locally small category, is
called the contravariant hom-functor. This functor sends an object A of ob(C) to the hom-set
Hom(A,X) of all morphisms from A to X and sends a morphism f : A → B to Hom(f,X) :
Hom(B,X)→ Hom(A,X), where g 7→ g ◦ f .

A contravariant functor, having the kind (∗ → ∗) → Constraint , can be represented as the
type class Contravariant (it is not in base), and the only method of this class is contramap.

class Contravariant f where
contramap :: (a → b)→ f b → f a

The behavior of contramap is the same of fmap but the arrows of the output are reversed.
The contravariant hom-functor, see example 19, can be an instance of Contravariant .

data Op x a = Op (a → x)

instance Contravariant (Op x) where
fmap f (ContraHom g) = ContraHom (g ◦ f)

Whilst Op has kind (∗ → ∗ → ∗), (Op x) has kind (∗ → ∗) and can be made into a instance
of the class above.

2.2.3 Natural Transformation

A natural transformation can be viewed as a structure-preserving map between functors, i.e,
we can transform a functor into another one. This concept plays a fundamental role in category
theory and is the key concept to study monads and adjoints in the later sections of this chapter.
A natural transformation is a collection of morphisms between functors and will be denoted ad
Nat(F,G) for any two functors F,G : C → D.

2.2 CATEGORY THEORY 17

Definition 2.6 - Let F,G : C → D be Functors, a natural transformation [Mac71] η : F ⇒ G
is a family of morphisms between those functors, with components ηX : F (X) → G(X) for
every X in ob(C). This definition must satisfy the following nautrality condition that is: for all
f : A→ B

G(f) ◦ ηA = ηB ◦ F (f). (2.2)

C D

F

G

η

Figure 2.3: A natural transformation diagram

The Figure 2.3 represents a natural transformation in a diagram form which is very impor-
tant to study mathematical concepts like composition of natural transformations.

F (A) F (B)

G(A) G(B)

F (f)

ηA ηB

G(f)

Figure 2.4: Commutative diagram for the naturality condition (2.2)

The condition in equation 2.2 can be represented by the commutative diagram contained in
the Figure 2.4, is possible to observe the functorial action of F and G on the morphism f and
the action of the components ηA and ηB of the natural transformation η.

Example 20 - In the category V ectk, the linear transformation V → V ∗∗, where V ∗∗ is the
double dual of V is natural.

Naturality can be represented by parametricity in a functional programming environment,
in Haskell, a natural transformation can be represented as a type.

type () f g = ∀x .f x → g x

The polymorphic () type has kind (∗ → ∗)→ (∗ → ∗)→ ∗, the forall clause hides the inner
type of the containers f and g simulating the component behavior of a natural transformation.
This datatype only compiles with the Rank2Types and TypeOperators pragmas enabled.

Composition

Functors can compose in a straightforward manner, as observed in equation 2.1. Natural trans-
formations can also be composed horizontally, vertically, and in a mixed form with functors.
Specifically, composing functors followed by natural transformations is called left whiskering,
while composing natural transformations followed by functors is known as right whiskering.

Definition 2.7 - (Vertical composition [Mac71]) Let F,G,H : C → D be functors and ζ :
F ⇒ G, ξ : G⇒ H be natural transformations, the vertical composition is ξ • ζ : F ⇒ H with
components (ξ • ζ)A : F (A)→ H(A) having (ξ • ζ)A = ηA ◦ ζA.

18 BACKGROUND 2.2

C D

F

H

G ζ

ξ

Figure 2.5: Vertical composition diagram

Definition 2.8 - (Left whiskering [Mac71]) Let F : C → D be a functor and G,H : D → E
also functors and η : G ⇒ H be a natural transformation, the left whiskering composition is
defined as ηF : GF ⇒ HF , with components ηFA : GF (A)→ HF (A), with ηFA = ηFA.

C D E
F

G

H

η

Figure 2.6: Left whiskering

The naturality conditions for η gives that the same conditions holds for ηF , hence ηF is a
natural transformation as one can observe in the follow commutative diagram

GF (A) GF (B)

HF (A) HF (B)

ηFA

GF (f) ηFB

HF (f)

Figure 2.7: Commutative diagram for the naturality condition for ηF

Definition 2.9 - (Right whiskering [Mac71]) Let K : D → E be a functor and G,H : C → D
also functors and η : G ⇒ H be a natural transformation, the right whiskering composition is
defined as ηK : KG⇒ KH, with components KηA : KG(A)→ KH(A), with KηA = K(ηA).

C D E

F

G

K
η

Figure 2.8: Right whiskering

The naturality conditions for η gives us also that the same conditions hold for Kη, hence
Kη is a natural transformation as is possible to observe in the following commutative diagram

Definition 2.10 - (Horizontal composition [Mac71]) Let F,G : C → D and H,K : D → E
be functors, let ζ : F ⇒ G, η : H ⇒ K be two natural transformations, then the horizontal

2.2 CATEGORY THEORY 19

KG(A) KG(B)

KH(A) KH(B)

KηA

KH(f) KηB

KH(f)

Figure 2.9: Commutative diagram for the naturality condition for Kη

composition ζ followed by η is
η ◦ ζ : H ◦ F ⇒ K ◦G, (2.3)

and defined by
η ◦ ζ = (ηG) • (Hζ)

or by,
η ◦ ζ = (Kζ) • (ηF)

with the corresponding diagram contained in Figure 2.10.

C D E

F

G

H

K

ζ η

Figure 2.10: Horizontal composition

Having the notion of whiskering defined, we define the notion of an adjunction [Mac71]
between two covariant functors. This concept will be used later when we discuss the unary
representation theorem.

Definition 2.11 - Given two categories C and D, functors F : C → D and G : D → C, F
is said to be left adjoint to G and G right adjoint to F , denoted F a G, if there are natural
transformations:

η : idC → G ◦ F

(called the unit) and
ε : F ◦G→ idD

(called the counit), such that the following diagrams commute:

F ◦G ◦ F

F F

εFFη

idF

(2.4)

G ◦ F ◦G

G G

GεηG

idG

(2.5)

The above diagrams express the unit and counit laws, ensuring that the adjunction is co-
herent.

20 BACKGROUND 2.2

2.2.4 Monads

A monad is another categorical concept that is very important to this work, it is a functor
and two natural transformations satisfying axioms based on naturality conditions represented
by equation 2.2. Monads play a significant role in computer science by modeling a notion of
computation [Mog91]. It provides a way to have side effects in pure functional programming. A
monad can be described in a monoidal category context as is possible to see in later parts of
this work.

Definition 2.12 - A monad [Mac71] on a category C is a triple (T, η, µ), such that T is an
endofunctor, η : I → T and µ : T 2 → T are both natural transformations (where T 2 = T ◦ T
and I is the identity functor which fixes objects and morphism of a given category), satisfying

µ ◦ ηT = idM = µ ◦ Tη (2.6)

T T 2

T 2 T

ηT

Tη µ

µ

Figure 2.11: Commutative diagram for the naturality condition η operator

µ ◦ µ = µ ◦ Tµ (2.7)

T 3 T 2

T 2 T

µ

Tµ µ

µ

Figure 2.12: Commutative diagram for the naturality condition µ operator

In Haskell, monads can be conceptualized as a type class with the kind signature (∗ → ∗)→
Constraint .

newtype Identity a = Identity a deriving Functor

class Functor m ⇒ Monad m where
η :: Identity a → m a
µ :: (Compose m m) a → m a

The Identity datatype is an instance of Functor because of the deriving Functor which can
be enabled by using the language pragma DeriveFunctor . In this setting, the variable m, which
is a Functor , plays the role of the functor T and Compose m m is T ◦T = T 2. This presentation
of a monad can be reduced.

class Functor m ⇒ Monad m where
return :: a → m a
join ::m (m a)→ m a

2.2 CATEGORY THEORY 21

It is clear that η = return, µ = join, Identity a = a and (Compose m m) a = m (m a),
but the Haskell community does not use this setup for a monad, they use another one based on
Kleisli arrows [Hug00].

class Applicative m ⇒ Monad m where
return :: a → m a
(�=) ::m a → (a → m b)→ m b

With return and (�=) operator (bind), the monad laws in equations 2.6 and 2.7 are rewrit-
ten as

return a �= f = f a, (2.8)

m �= return = m, (2.9)

and,
(m �= f) �= g = m �= (λx → f x �= g). (2.10)

The equations 2.8 and 2.9 are in correspondence with 2.6, albeit equation 2.10 is in correspon-
dence with equation 2.7. If a given computation has an uninteresting return in a computation,
m () for example, the operator (>>) ::m a → m b → m b which ignores the return of the first
computation

m >> n = m �= _→ n

where m and n are arbitrary monadic computations. The bind operator has a flipped version
(=�) :: (a → m b) → m a → m b. An interesting pattern is possible to observe, if we set
m = Identity, the identity monad which fixes objects and morphisms, we can observe that
return is the id function, bind is flip ($) :: a → (a → b)→ b.

Join and bind are related if one uses join gets bind for free and vice-versa, join can be written
in terms of bind as

join = (�= id) (2.11)

and bind in terms of join as
m �= f = join (fmap f m) (2.12)

In equation 2.11, join :: m (m b) → m b and (�=) :: m a → (a → m b) → m b, id is
bound to the second parameter of bind, then a = m b because this is the only possible setup
for id :: m b → m b in this case, thus join and (�= id) has the same desired types. For 2.12,
m has type m a, fmap lifts f of type a → m b to m a → m (m b), hence fmap f m has type
m (m b) and join finishes the job giving the m b which is the same type of m �= f as required.

Given a monad, one can form a category on top of it, this contruct is called a Kleisli
category [Mac71].

Definition 2.13 - Let (T, µ, η) be a monad over a category C. The Kleisli category, denoted
by CT , is constructed using the same objects as C. The morphisms are given by HomCT (A,B) =
HomC(A, TB). In Haskell, this construction is represented by the following datatype:

data Kleisli t a b = Kleisli {runKleisli :: a → t b}

Given this datatype, one can derive the Category typeclass instance as follows:

instance Monad m ⇒ Category (Kleisli m) where
id = Kleisli return
Kleisli f ◦Kleisli g = Kleisli (λx → f x �= g)

22 BACKGROUND 2.2

It is important to note that Kleisli is also an instance of the ‘Arrow‘ typeclass in Haskell.
This will play a significant role in Chapter 3 when we explore an example of an effectful monoidal
profunctor.

To demonstrate how monads model computations in Haskell, we will present examples of
monad instances, ranging from basic to more sophisticated ones. The applicative instances for
each monad will be omitted, and some of them will be discussed later in Section 2.2.6.

Maybe monad

This monad instance is used to model errors in some computations, Maybe is a kind ∗ → ∗
datatype with two value constructors Nothing , which indicates an erroneous computation, and
Just for computations without errors.

data Maybe a = Nothing | Just a
instance Monad Maybe where
return = Just
Nothing �= f = Nothing
(Just x) �= f = f x

In this case, return is the constructor Just , the pattern matching observed in bind is due
a computation that may fail, represented by Nothing , hence no computation should be done,
whilst for Just x the monadic function f will be applied on x . Ultimately, if in some part of a
chain of computations fails, Nothing will be the result.

List monad

A list monad is useful to model non-determinism, this instance provides a way to map a monadic
function on every element of the list and collect the results in a flattened manner.

instance Monad [] where
xs �= f = [y | x ← xs, y ← f x]

The use of list monad gives another way to write list comprehensions, for example

func = [x + y | x ← [1 . . 5], y ← [1 . . 5]]

has the same denotation as the expression below.

func :: [Int]
func = do
x ← [1 . . 5]
y ← [1 . . 5]
return (x + y)

One can observe that all filters of a list comprehension can be modelled by the guard function
(see alternative functors, section 2.2.7).

IO monad

Probably the most useful monad is IO, this instance provides a way of chaining effectful com-
putations maintaining the purity. The IO monad with the do notation can provide a similar
syntax to an imperative language. With this monad, we can perform database operations, deal
with user’s inputs, handle external files, compile programs in Haskell, interact with networks
and build an industrial level software. IO monad is well documented and one can find plenty of
tutorials, videos, and others useful resources about it.

2.2 CATEGORY THEORY 23

A code that serves us as an example for the IO monad involves reading a file. In this example,
the program prompts the user for a filename via keyboard input and then displays the entire
content of the file.

main :: IO ()
main = do
putStrLn "Please enter the filename: "
filename ← getLine
content ← readFile filename
putStrLn content

The function getLine :: IO String retrieves a String from the standard input. The function
readFile :: FilePath → IO String , where FilePath is merely a type synonym for String , takes
the filename as input and loads the file’s content into memory. Finally, the function putStrLn ::
String → IO () is used to display the content.

Writer monad

Writers maintain a pure code while they do logging operations. The logging is obtained by a
datatype which is an instance of the Monoid type class, of kind ∗ → Constraint , such as String .
This monad does the computations while concatenates the monoid part resulting in a logged
chain of logged computations.

data Writer w a = Writer (a,w)

instance Monoid w ⇒ Monad (Writer w) where
return x = Writer (x ,mempty)
Writer (x ,w) �= f =

let
Writer (y ,w ′) = f x

in
Writer (y ,w ⊗ w ′)

Note that datatype w must be an instance of monoid. Return provides a way to start a log
with no entries, bind takes a monadic value Writer (x ,w) and apply the monadic function f in
the x variable producing a new logged computation (y ,w ′), the final result is the value y with
the monoidal multiplication (⊗) of w and w ′ (the multiplication of strings is concatenation)
providing the desired logging of computations.

inc :: Int →Writer [String] Int
inc x = Writer (x + 1, ["Increment 1"])

dec :: Int →Writer [String] Int
dec x = Writer (x − 1, ["Decrement 1"])

doNothing ::Writer [String] Int
doNothing = Writer (0, ["Do nothing"])

cter :: Int →Writer [String] Int
cter c = do
x ← inc c
y ← inc x
a ← dec y
w ← inc z
z ← doNothing
return w

24 BACKGROUND 2.2

A simple counter logging is displayed in the above piece of code, the functions inc and dec
perform increments and decrements on the parameter while logging its activity, in the cter
function each increment and decrement are bound to the variables x , y , z and w which they
carry only the int value. At the end of cter returns the int w into a writer computation which
has all logged operations (note that last logging is only mempty , which don’t make any extra
logs). Writers can be used to simulate a debug for pure code which they can help in describing
in details every operation in a chain of complicated computations.

Reader monad

The reader monad provides a way to compute functions insider a context, i.e, an input value
can travel through all function in this chain in a similar behavior as a let block with a bunch of
functions applying on this value and each return bound to a different variable name.

instance Monad ((→) r) where
return x = _→ x
f �= g = λx → g (f x) x

This monad is based on functor Hom(R,−), in Haskell ((→) r) which has a functor (also
applicative) instance, return provides us a constant function giving the input as the answer
moreover �= has f :: r → a and g :: a→ r → b as parameters and returns a lambda with input
x of type r returning the expression g(f x)x of type b as required (note that the output of bind
is m b and in this context m = (→)r, thus the returning type should be r → b).

funcReader :: String → String
funcReader = do
x ← tail
y ← head
z ← take 2
return (x ++ [y] ++ z)

In the example above, the reader monad is used to bind the results of computations by the
functions tail , head , and take 2 to x , y , and z , respectively, for the same given string. The last
line applies return to the concatenation of these three values, resulting in a constant function
that returns the value of this expression.

Without the use of the reader monad, the piece of code can be rewritten as

funcReader ′ :: String → String
funcReader ′ w =
let

x = tail w
y = head w
z = take 2 w

in
x ++ [y] ++ z

giving the same results as before.

State monad

The state monad provides us with a way of keeping a mutable state inside pure code, e.g, it is
possible to make a Stack datatype peeking and modifying its state without losing purity.

data State s a = State {runstate :: s → (a, s)}

2.2 CATEGORY THEORY 25

instance Functor (State s) where
fmap f (State sas) = State (λs → let (a, s ′) = sas s in (f a, s ′))

instance Monad (State s) where
return x = State (λs → (s, x))
(State sas)>> f = State (λs →

let
(a, s ′) = sas s
State sbs = f a

in
sbs s ′)

A straightforward expression is given for its functor instance, the function fmap just makes
a new state of with context of type b by applying f on a after the computation of the state.
Return function provides a way to put a value in a state context without changing it while bind
makes a new stateful computation based on an older one. This process starts with applying
the function sas on s parameter of the lambda giving a tuple (a, s ′), a new state, obtained by
evaluating f a, carrying a function of type s → (b, s) is obtained. Applying sbs on s ′ terminates
the process.

type App = (Int , Int)

readFst :: State App Int
readFst = State (λ(x , y)→ (x , (x , y))

readSnd :: State App Int
readSnd = State (λ(x , y)→ (y , (x , y)))

writeFst :: Int → State App ()
writeFst v = State (λ(, y)→ ((), (v , y)))

writeSnd :: Int → State App ()
writeSnd v = State (λ(x ,)→ ((), (x , v)))

calc :: (Int → Int → Int)→ State App String
calc op = State (λ(x , y)→ (show (x ‘op‘ y), (0, 0)))

progSt :: State App String
progSt = do
writeFst 5
a ← readFst
writeSnd (5 + a)
b ← readSnd
writeSnd (5 + b)
calc (∗)

A tiny calculator with a memory of two integers only can be simulated with state monad,
App is a type to model the calculator memory, the functions readFst and readSnd doesn’t change
the state however they retrieve the value stored in each position of the memory. The functions
writeFst and writeSnd provides a way of writing in the memory, i.e, changing its state but they
don’t produce any value giving to us the type State App (), calc do the calculations converts
to a printable string and resets the memory. Ultimately, the function progSt simulates a user
operating the calculator and the final result (after running the expression runState progSt (0, 0),
where (0, 0) represents the initial state of the calculator) is 75.

Using the state monad is very useful and gives the ability to read and write program states
in a immutable context which is essential for making testable software.

26 BACKGROUND 2.2

Continuation monad

This monad model the computational passing style (CPS) keeps a value to be evaluated by
a new function on future, to help the construction of a chain of various continuations, the
continuation monad is needed. To define the monadic bind, in each step a new function, say f ,
will be expected then an older continuation will receive a lambda expression with the evaluation
of f .

data Cont r a = Cont {runCC :: (a → r)→ r }
instance Functor (Cont r) where
fmap f (Cont artr) = Cont (λbr → artr (λx → br (f x)))

instance Monad (Cont r) where
return x = Cont (λf → f x)
m �= f = Cont (λbr →

m ‘runCC ‘ (λa → (f a) ‘runCC ‘ (λb → br b)))

It is provided the functor instance for this monad, which is not straightforward like the
previous ones, the pattern matching de-constructs Cont giving the function artr :: (a → r)→ r ,
a lambda λx → br (f x) is passed to artr , note that x has type a thus (f x) evaluates to type
b, this value is then evaluated into br ::b → r , giving the desired value of type r . For the monad
instance, the function m ::(a → r)→ r will be extracted from de datatype Cont by the projection
function runCC , another continuation is provided with (λa → (f a) ‘runCC ‘ (λb → br b)),
applying f on a with get a new continuation of type Cont r b, the lambda given is (λb → br b)
which evaluates to a value of type r .

2.2.5 Comonads

As observed in the last section, monads are useful in category theory and can encode many
concepts in functional programming, if one reverses the arrows of η and µ then we end up with
their dual counterpart, comonads. Comonads can encode programming concepts and are a very
useful tool, in conjunction with monads, to study adjunctions.

Definition 2.14 - A comonad on a category C, can be viewed as a monad on Cop, is a triple
(W, ε, δ), such that W is an endofunctor, ε :: W → I and δ :: W → W 2 are both natural
transformations, satisfying

δ ◦ εW = idW 2 = δ ◦Wε (2.13)

W 2 W

W W 2

Wε

εW δ

δ

Figure 2.13: Commutative diagram for the identity condition of the counit ε operator

δ ◦ δ =Wδ ◦ δ (2.14)

In Haskell, comonads can be modelled as a kind (∗ \− > ∗)→ Constraint called Comonad,
the operator ε is called coreturn or counit while δ is called cojoin, duplicate or comultiplication.

2.2 CATEGORY THEORY 27

W W 2

W 2 W 3

δ

δ Wδ

δ

Figure 2.14: Commutative diagram for the naturality condition δ operator

class Functor w ⇒ Comonad w where
coreturn :: w a → a
cojoin :: w a → w (w a)

As we observed in monads, in Haskell comonads can be used in the same manner, instead
of using cojoin it is used extend which is the dual of bind. The natural transformation cojoin is
often called extract.

class Functor w ⇒ Comonad w where
extract :: w a → a
extend :: w a → (w a → b)→ w b

As discussed in monads section, cojoin and extend are related, this relation can be written
as

cojoin = (extend id) (2.15)

and bind in terms of join as

extend w f = fmap f (cojoin w). (2.16)

In the equations 2.15 and 2.16, the same reasoning is applied to understand both equations.

Stream comonad

A stream is a recursive type with a shape of an infinite list, i.e, they do not have a value to
indicate the end of it’s recursive iteration (in case of lists, the value []). With streams, the head
and tail are total implying that those functions never causes exceptions (remember that head []
and tail [] causes exceptions because they’re both partial functions). This fact gives that lists
cannot be made into a comonadic interface for free and a stream can be fit into one.

data Stream a = Cons a (Stream a)

instance Comonad Stream where
extract (Cons a) = a
cojoin (Cons a as) = Cons (Cons a as) (cojoin as)

The extract function is just taking the head of a stream while extract create a stream of
streams, name it ss for simplicity, it’s value is the whole stream a and the tail as and the tail of
ss is recursively called on as from the argument. This process makes shifting windows of data
with a different focus.

Store comonad

The store comonad (costate comonad) can be seen as a dual of the state monad (this can be
obtained as an adjunction, see next chapter). Store acts like a mapping of keys s and values a
and a another reference to s acting like a current position.

28 BACKGROUND 2.2

data Store s a = Store (s → a) s

instance Comonad (Store s) where
extract (Store f x) = f x
cojoin (Store f s) = Store (Store f) s

A value can be extracted from this map by the extract function, given a function f :: s → a
and a value x of type s, f x has type s and is the desired extracted value. In the function
cojoin a store of stores with a new index of type s are created, i.e, the value Store f has
type s → Store s a, and the whole cojoin expression has type Store (Store s a) a creating
the duplication desired. Store plays a fundamental role to abstract and understand categorical
lenses.

2.2.6 Applicative Functors

Like monads, an applicative functor can model computations as well because of ∗ operator
which gives a way to combine an effectful function of type a → b with a computation of type a
producing a sequence of effectful computations.

class Functor f ⇒ Applicative f where
pure :: a → f a
∗ ::f (a → b)→ f a → f b

While monads can use previous computations to make new ones, applicatives cannot and
they only sequence computations in a linear manner. Pure, like return, make a new trivial
computation by inserting a value of type a in the computational context f . All monads are
applicative functors (the converse is not true) implying that in Haskell all monads instances are
instances of the type class applicative, to elucidate this consider the function

newApp ::Monad m ⇒ m (a → b)→ m a → m b
newApp mfunc m = do
f ← mfunc
a ← m
return (f a)

we see that newApp is just (∗) thus every monad is an applicative as required.

Example 21 - Maybe instance
For maybes, pure is the value constructor Just , the ∗ operator applies f on x on the right

pattern matching, when Nothing is present the same is returned.

instance Applicative Maybe where
pure = Just
Nothing ∗ = Nothing
∗Nothing = Nothing

Just f ∗ Just x = Just (f x)

Example 22 - List instance In the list case, an argument with a list of functions fs are applied
to the list of values x inside a list comprehension.

instance Applicative [] where
pure x = [x]
fs ∗ xs = [f x | f ← fs, x ← xs]

2.3 CATEGORY THEORY 29

Example 23 - State instance
The state instance is a little bit harder to grasp than the last two presented, the functions

sabs is applied on s giving a function f , which is the target for the application, and a new state
s′ which is an argument to sas, in the next line, then when get a value of type a and other new
state s′′, thus the return is (f a, s′′) which has the desired type f b. This process is analogous
as their monad counterpart.

instance Applicative (State s) where
pure x = State $ λs → (x , s)
(State sabs) ∗ (State sas) = State $ λs →

let
(f , s ′) = sabs s
(a, s ′′) = sas s ′

in
(f a, s ′′)

2.2.7 Alternative functors

An alternative functor is defined as a monoid on the monoidal category of applicative endo-
functors (see chapter 3), those functors are inspired in computations that may fail, one example
that can be a excellent fit for alternatives is selective backtracking in grammar, i.e, when we try
a match against a pattern and succeeds then some success routines are called, if it fails another
match is tried. This choice-like operation is possible in a lazy language.

class Applicative f ⇒ Alternative f where
empty :: f a
⊕ ::f a → f a → f a

Alternative type class has two functions, empty that represents a neutral element and the
other function represents a choice of computations, to be an alternative, a functor must be an
instance of applicative. This type class should satisfy the unit and associativity laws.

Example 24 - Maybe instance The alternative instance are mad by a Nothing as empty and
the choice operator works like the description above, is the first argument is a just then the
second one is ignored (even if it is an undefined value), if the first one is a Nothing the second
one is returned. If the two computations gives Nothing as an answer then the return is also
Nothing .

instance Alternative Maybe where
empty = Nothing
Just x ⊕ = Just x
Nothing ⊕ x = x

Example 25 - List instance
For lists, the alternative instance is the same as a monoid, the choice operator is just the

concatenation because of the non-deterministic nature of list functor.

instance Alternative [] where
empty = []
⊕ = (++)

30 BACKGROUND 2.3

2.3 Monoidal Categories
This section provides the foundation for defining monoidal categories, profunctors, and end/-
coends [Lor21,CW01]. These concepts are essential in deriving various results throughout this
work. Profunctors play a significant role in understanding the key ideas of this research, and
the monoidal categories represent the categorification of a monoid.

2.3.1 Ends and Coends

Firstly, a brief review of limits (colimits by duality) is needed to grasp the notion of an end
(coend) of a functor. Limits generalize universal constructions such as products, pullbacks,
equalizers, and so on. The end of a functor gives an extra notational power to describe concepts
such as natural transformations or stating the always useful Yoneda lemma (see Lemmas 1 and
2). Let F : J → C be a functor from a small category of shapes (index) J and an arbitrary
category C.

Definition 2.15 - A cone to F, is an object N of C equipped with a family of morphisms
ψX : N → F (X), with X varying as an index in J such that for any morphism f in HomJ (X,Y),
the condition F (f) ◦ ψX = ψY is satisfied.

Definition 2.16 - The limit of F is a cone L with a family of morphism ψX : L → F (X)
such that, for every other cone N with morphisms φX : N → F (X) for all X of J , there exists
a unique arrow u : N → L such that satisfies the condition ψX ◦ u = φX .

An example is when one has J = 2, the discrete category of two elements, and ψX = ∆X ,
the diagonal functor, yielding the universal construction of a binary cartesian product.

In contexts where functors of a product category have one contravariant and one covariant
argument, we’re naturally led to use ends and coends. These tools allow us to aggregate effects
across all objects in a category. However, to handle these behaviors effectively, we introduce the
notion of dinatural transformations, ensuring a coherent interplay between contravariant and
covariant components.

Definition 2.17 - A dinatural transformation between functors F,G : Cop × C → D, written
α : F → G, is a family of diagonal morphisms αX : F (X,X) → G(X,X) such that for every
morphism f : X → X ′ the following diagram commutes.

F (X,X)
αX // G(X,X)

G(id,f)

''
F (X ′, X)

F (f,id)
77

F (id,f) ''

G(X,X ′)

F (X ′, X ′) αX′
// G(X ′, X ′)

G(f,id)

77

The notion of an end and coend, which are based on wedges and cowedges respectively,
facilitates calculations that prove to be essential in subsequent chapters of this work.

Definition 2.18 - A wedge to F : Cop × C → D, is an object W of D, i.e., a dinatural
transformation from the constant functor ∆W to F , equipped with a family of morphisms
αX : W → F (X,X), with X varying in C such that for any morphism f in Hom C(X,X ′), the
condition F (f, id) ◦ αX ′ = F (id, f) ◦ αX is satisfied.

Definition 2.19 - The end of a functor F : Cop × C → D is a wedge E of D with a family
of morphism αX : E → F (X,X) such that, for every other wedge W of D with morphisms

2.3 MONOIDAL CATEGORIES 31

βX : W → F (X,X) there exists, for all X of C, a unique arrow γ : W → E such that satisfies
the condition αX ◦ γ = βX .

The object W defined in (2.19) is denoted by
∫
X F (X,X), the end of F giving a notation

for describing, for example, natural transformations between functors G and H as Nat(G,H) =∫
X GX → HX. It is important to note that the functor F (−) = G(−) → H(−) is employed

to derive the natural transformation. The notation can also help to state the following Yoneda
lemma which the proof can be found in the work of Mac Lane [Mac71].

Lemma 1 - (Covariant Yoneda lemma) Let C be a locally small category, and F : C → Set a
covariant functor, then there is an isomorphism∫

X
Set(HomC(A,X), FX) ∼= FA (2.17)

natural in X ∈ ob(C).

The above lemma also has a contravariant form.

Lemma 2 - (Contravariant Yoneda lemma) Let C be a locally small category, and F : Cop → Set
a contravariant functor, then there is an isomorphism∫

X
Set(HomC(X,A), FX) ∼= FA (2.18)

natural in X ∈ ob(C).

The duality principle gives us the coend of a functor, which is the universal cowedge and
is denoted by

∫ X
F (X,X). Coends generalize constructions such as pushouts, coproducts, and

coequalizers, to name a few.
A commuting property of ends and coends gives us another tool for doing calculations; the

next lemma states this and its proof is provided in the work of Loregian [Lor15].

Lemma 3 - Let F be a functor F : Cop × C → D, then for every D object of D the following
holds.

HomD(

∫ C∈C
F (C,C), D) ∼=

∫
C∈C

HomD(F (C,C), D) (2.19)

HomD(D,

∫ C∈C
F (C,C)) ∼=

∫
C∈C

HomD(D,F (C,C)) (2.20)

2.3.2 Definition of a Monoidal Category

The definition of a monoidal category [RJ17] gives us a minimal framework for defining the
categorical notion of a monoid.

Definition 2.20 - A monoidal category is a sextuple (C, ⊗, I, α, ρ, λ) where

• C is a category;

• ⊗ : C × C → C is a bifunctor;

• I is an object called unit;

• ρA : A ⊗ I → A, λA : I ⊗ A → A and αABC : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C) are three

32 BACKGROUND 2.3

natural isomorphisms such that the diagrams below commute.

A⊗ (B ⊗ (C ⊗D)) (A⊗B)⊗ (C ⊗D)α
oo ((A⊗B)⊗ C)⊗Dα

oo

A⊗ ((B ⊗ C)⊗D)

id⊗α

OO

(A⊗ (B ⊗ C))⊗D

α⊗id

OO

αoo

A⊗ (I ⊗B)
α //

id⊗λ ''

(A⊗ I)⊗B

ρ⊗idww
A⊗B.

If the isomorphisms ρ, λ and α are equalities then the monoidal category is called strict, if
there is a natural isomorphism γAB : A⊗B → B⊗A the monoidal category is called symmetric.

A monoidal category is closed if there is an additional functor, called the internal hom,
⇒: Cop × C → C such that C(A ⊗ B,C) ∼= C(A,B ⇒ C), natural in A, B and C, objects of
C. The witnesses of this isomorphism are called currying and uncurrying. In Set, with ⊗ = ×,
A⇒ B is just the hom-set A→ B.

Definition 2.21 - A monoid in a monoidal category C is the tuple (M, e,m) where M is
an object of C, e : I → M is the unit morphism and m : M ⊗M → M is the multiplication
morphism, satisfying

1. Right unit: m ◦ (id⊗ e) = ρMMM

2. Left unit: m ◦ (e⊗ id) = λMMM

3. Associativity: m ◦ (m⊗ id) = m ◦ (id⊗m) ◦ αMMM

The following commuting diagrams represent those laws.

M ⊗ I id⊗e //

ρ
&&

M ⊗M
m
��
M

I ⊗M e⊗id //

λ &&

M ⊗M
m
��
M

M ⊗ (M ⊗M)
id⊗m //M ⊗M

m

##
M

(M ⊗M)⊗M m⊗id //

α

OO

M ⊗M

m

;;

Example 26 - Let C be a category. In the category of endofunctors of C, with the composition
of endofunctors denoted by ◦ serving as the tensor, and the identity functor acting as the unit, we
obtain a monad. This monad can be viewed as the monoid arising from this configuration [RJ17].

Sometimes the preservation of the identity element and the monoidal multiplication are
desired properties to have, and later in Chapter 4, one concrete example of such an idea is
provided.

Definition 2.22 - Given two monoids (M1,m1, e1) and (M2,m2, e2) in a monoidal category C,
a monoid homomorphism between them is an arrow f :M1 →M2 in C such that the following

2.3 MONOIDAL CATEGORIES 33

diagram commutes:
M1 ⊗M1 M1

M2 ⊗M2 M2

m1

f⊗f f

m2

I M1

M2

e1

e2◦f
f

Monoids in a monoidal category C, together with monoid homomorphisms, form the category
Mon(C) [RJ17].

2.3.3 Profunctors

Definition 2.23 - Given two categories C and D, a profunctor [Lei03] from C to D is a functor
P : Cop ×D → Set. Explicitly, it consists of:

• for each a object of C and b object of D, a set P (a, b);

• for each a object of C and b, d objects of D, a function (left action) D(d, b) × P (a, d) →
P (a, b);

• for all a, c objects of C and b object ofD, a function (right action) P (a, b)×C(c, a)→ P (c, b).

This notion is also known as a Bimodule or a (C,D)-module, and also as a distributor.
Since a profunctor is a functor from the product category Cop × D to Set, it must satisfy

the functor laws.

P (1C , 1D) = 1P (C,D)

P (f ◦ g, h ◦ i) = P (g, h) ◦ P (f, i)

An example of a profunctor is the hom-functor Hom : Cop × C → Set, written as A → B
when C = Set, and its actions are just pre-composition and post-composition of set functions.

Definition 2.24 - Let C and D small categories, Prof(C,D) is the profunctor category consist-
ing of profunctors as objects, natural transformations as morphisms, and vertical composition
to compose them.

The profunctor category inherits some structure from the functor category SetC such as
binary products given by (P × Q)(S, T) = P (S, T) × Q(S, T) and binary coproducts given by
(P +Q)(S, T) = P (S, T) +Q(S, T), where ×,+ are the respective universal constructions from
Set. There is also terminal and initial profunctors given by 1p(S, T) = {∗} and 0p(S, T) = ∅,
i.e., constant profunctors on initial and terminal objects in Set. If the target of a profunctor
that is not Set, but some other category, say E , with binary products and coproducts, initial
and terminal objects, the profunctor category based on top of E will also have these constructs.

This is because the profunctor category is a functor category, just like SetC , and the construc-
tions used in the profunctor category are just the universal constructions used in the functor
category. The only difference is that the domain and codomain of the functors are flipped. In
addition, the requirement for the target category to have binary products, coproducts, initial
and terminal objects ensure that the profunctor category also has these constructs.

A important tool for doing calculations with profunctors is the Fubini’s theorem that al-
lows us to commute the integration sign. This theorem will be useful when working with Day
convolution.

Theorem 4. (Fubini’s Theorem for profunctors and coends) Given a profunctor P : Cop×D →
Set, the following isomorphism holds:∫ X∈Cop (∫ Y ∈D

P (X,Y)

)
∼=

∫ (X,Y)∈Cop×D
P (X,Y) ∼=

∫ Y ∈D (∫ X∈Cop

P (X,Y)

)

34 BACKGROUND 2.3

Proof. The proof of this a little bit technical and can be found in specialized literature on
coends [Lor21,CW01].

2.3.4 Day Convolution

The Day convolution is a tensor in a monoidal category of endofunctors that results in the
notion of a monoidal (applicative) functor [RJ17]. In this work, the profunctor version of this
tensor plays a key role in defining a monoidal profunctor and a semiarrow. This section presents
the results that demonstrate the profunctor category, endowed with the Day convolution for
profunctors as its tensor, forms a monoidal category.

Definition 2.25 - Let D be a small monoidal category and F,G : D → Set, the Day convo-
lution [Day70] of F and G is another functor (in T) given by

(F ? G)T =

∫ X,Y ∈Ob(D)

FX ×GY ×D(X ⊗ Y, T). (2.21)

The coend (or an end when present) in this definition can have a notational reduction to∫ XY

FX ×GY ×D(X ⊗ Y, T)

whenever the context is clear.
The same reasoning is now applied to the category Prof of profunctors letting D = Cop × C,

where × describes the product category. This definition uses categorical calculations using
properties of ends and co-ends for any object (S, T) in this category.

(P?Q)(S, T)

=

∫ ABCD

P (A,B)×Q(C,D)× [Cop × C]((A,B)⊗ (C,D), (S, T))

∼=
∫ ABCD

P (A,B)×Q(C,D)× [Cop × C]((A⊗ C,B ⊗D), (S, T))

∼=
∫ ABCD

P (A,B)×Q(C,D)× Cop(A⊗ C,S)× C(B ⊗D,T)

∼=
∫ ABCD

P (A,B)×Q(C,D)× C(S,A⊗ C)× C(B ⊗D,T)

It is important to note that the profunctor J(S, T) = (Cop×C)((I, I), (A,B)) ∼= C(S, I)×C(I, T)
is a unit for ?. In the category Set, when I is a singleton set, we have J(A,B) ∼= C(I,B) ∼= B.

Proposition 5. Let C be a monoidal category, the profunctor J(A,B) = C(A, I) × C(I,B) is
the right and left unit of ?.

Proof. The calculation is standard coend calculus [Lor21] using Yoneda’s lemma. This is a proof

2.3 MONOIDAL CATEGORIES 35

for J being a right unit, for the left one is analogous.

(P ? J)(S, T) =

∫ ABCD

P (A,B)× J(C,D)× C(S,A⊗ C)× C(B ⊗D,T)

∼=
∫ ABCD

P (A,B)× C(C, I)× C(I,D)× C(S,A⊗ C)× C(B ⊗D,T)

∼=
∫ ABD

P (A,B)× C(I,D)× C(S,A⊗ I)× C(B ⊗D,T)

∼=
∫ AB

P (A,B)× C(S,A⊗ I)× C(B ⊗ I, T)

∼=
∫ AB

P (A,B)× C(S,A)× C(B, T)

∼= P (S, T)

The associativity of the ? is required to define a monoidal profunctor category.

Proposition 6. Let (C,⊗,I) be a monoidal category and S, T two objects of C, the Day convo-
lution for profunctors is an associative tensor product (P ? Q) ? R ∼= P ? (Q ? R)

Proof.

((P ? Q) ? R)(S, T)

=

∫ ABCD

(P ? Q)(A,B)×R(C,D)× C(S,A⊗ C)× C(B ⊗D,T)

∼=
∫ ABCD (∫ EFGH

(P (E,F)×Q(G,H)× C(A,E ⊗G)× C(F ⊗H,B))

)
×R(C,D)× C(S,A⊗ C)× C(B ⊗D,T)

∼=
∫ ABCDEFGH

P (E,F)×Q(G,H)× C(A,E ⊗G)× C(F ⊗H,B)

×R(C,D)× C(S,A⊗ C)× C(B ⊗D,T)

∼=
∫ CDEFGH

P (E,F)×Q(G,H)×R(C,D)× C(S, (E ⊗G)⊗ C)

× C((F ⊗H)⊗D,T)

∼=
∫ EFGHCD

P (E,F)×Q(G,H)×R(C,D)× C(S,E ⊗ (G⊗ C))

× C(F ⊗ (H ⊗D), T)

∼=
∫ EFIJGHCDAB

P (E,F)×Q(G,H)×R(C,D)× C(A,G⊗ C)

× C(F ⊗H,B)× C(S,E ⊗A)× C(F ⊗B, T)

∼=
∫ EFAB

P (E,F)× (Q ? R)(A,B)× C(S,E ⊗A)× C(F ⊗B, T)

∼= (P ? (Q ? R))(S, T)

In order to be able to define monoids in a monoidal profunctor category, one needs to check
that when C and D are monoidal categories then (Prof(C,D)), ?, J) is a monoidal category.

36 BACKGROUND 2.4

Theorem 7. Let C and D are monoidal small categories. Then (Prof(C,D)), ?, J) is a monoidal
category.

Proof. Since C and D are monoidal categories, ? is a bifunctor by construction, and by Propo-
sition 5 and 6 gives the desired morphisms, it follows that (Prof(C,D)), ?, J) is a monoidal
category.

Having obtained a monoidal category of profunctors, it is now possible to define a monoid
in this category. In order to do that, we will use the following proposition (as in the work of
Rivas and Jaskelioff [RJ17]).

Proposition 8. Let D = Cop ⊗ C, there is a one-to-one correspondence defining morphisms
going out of a Day convolution for profunctors∫

XY
(P ? Q)(X,Y)→ R(X,Y) ∼=

∫
ABCD

P (A,B)×Q(C,D)→ R(A⊗ C,B ⊗D)

which is natural in P , Q and R.

Proof. This proof uses the same coend calculus pattern with the help of Yoneda lemma and
the fact that the hom functor commutes with ends and coends [Lor21].∫

XY
(P ? Q)(X,Y)→ R(X,Y)

∼=
∫
XY

(

∫ ABCD

(P (A,B)×Q(C,D))× C(X,A⊗ C)× C(B ⊗D,Y))→ R(X,Y)

∼=
∫
XY ABCD

(P (A,B)×Q(C,D))× C(X,A⊗ C)× C(B ⊗D,Y)→ R(X,Y)

∼=
∫
XY ABCD

(P (A,B)×Q(C,D))→ C(X,A⊗ C)→ C(B ⊗D,Y)→ R(X,Y)

∼=
∫
Y ABCD

(P (A,B)×Q(C,D))→ C(B ⊗D,Y)→ R(A⊗ C, Y)

∼=
∫
ABCD

P (A,B)×Q(C,D)→ R(A⊗ C,B ⊗D)

In the equation of Proposition 8, when P = Q = R, we obtain the following isomorphism,
which is useful for defining a monoid in the profunctor category Prof with Day convolution as
its tensor:∫

XY
(P ? P)(X,Y)→ P (X,Y) ∼=

∫
ABCD

P (A,B)× P (C,D)→ P (A⊗ C,B ⊗D)

One final remark is that the next chapter considers the fictitious category Hask [DHJG06]
as a small monoidal category and Prof(Hask,Hask) as the small category of profunctors, which
facilitates reasoning about the Haskell code necessary to comprehend the principal categorical
tools employed in this work.

This section provided the tools necessary for defining a monoid in the profunctor category
with the Day convolution as its tensor. This monoid is referred to as a monoidal profunctor .

2.4 Summary
In this chapter, we have covered the necessary background on Haskell and Category Theory,
providing an overview of important concepts such as syntax, algebraic data types, parametric

2.4 SUMMARY 37

polymorphism, higher-order functions, typeclasses, arrows, categories, functors, natural trans-
formations, monads, comonads, applicative functors, alternative functors, and monoidal cate-
gories. We have also examined ends, coends, profunctors, and the Day Convolution, which are
essential to understanding the more advanced topics that follow.

We now are able to investigate if Table 1.2 can be completed using monoidal profunctors
and its effectful version in the subsequent chapter. The concepts presented here serve as a basis
for understanding the relationships between monoidal profunctors and their applications. As we
move forward, readers will gain a deeper understanding of the interplay between Haskell and
Category Theory, which will facilitate the ability to work with these mathematical constructs.

The next chapter will build upon the concepts presented here, focusing on the definition
and properties of monoidal profunctors, their connection to other categorical concepts, and
their relevance to functional programming.

38 BACKGROUND 2.4

Chapter 3

Monoidal Profunctors

This chapter introduces monoidal profunctors in category theory, along with their definitions,
laws, and the results needed to derive these concepts. It presents another notion of monoids
in monoidal categories, as seen in the works of Rivas and Jaskelioff [RJ17]. Additionally, the
computational model is presented in Haskell, including some basic instances, useful insights,
and examples. We finish the chapter presenting the newly defined effectful monoidal profunctor,
that introduces effects when splitting and merging a plain type in a tuple of types. Although
some results and definitions related to monoidal profunctors and semiarrows can be found in
the existing Haskell literature [PGW17] and folklore [Mil], these concepts are not thoroughly
explored. In this work, we organize the available information and discuss it further through the
lens of a monoid in a monoidal category methodology.

3.1 Definition
We define monoidal profunctors as monoids in the monoidal category of profunctors of theo-
rem 7. This section aims to provide the essential categorical tool to derive a Haskell represen-
tation for a monoid on a monoidal category of profunctors. This section also discusses the free
monoidal profunctor construction and a representation theorem for profunctors.

3.1.1 A monoid in monoidal profunctors

The unit and the multiplication of this monoid are a direct consequence of Yoneda’s lemma and
Proposition 8.

Proposition 9. Let (C,⊗,I) be a small monoidal category, P : Cop × C → Set be a profunctor,
and S, T two objects of C. Then

∫
S,T Set(J(S, T), P (S, T))

∼= P (I, I).

Proof. ∫
S,T

Set(J(S, T), P (S, T)) ∼=
∫
S,T

Set(S, I)× Set(I, T)→ P (S, T)

∼=
∫
S,T

Set(S, I)→ P (I, T)→ P (S, T)

∼=
∫
S
Set(S, I)→ Set(S, I)

∼= P (I, I)

With all categorical tools in hand, the central notion of this works emerges from the category
of monoidal profunctors.

39

40 MONOIDAL PROFUNCTORS 3.1

Definition 3.1 - Let (C,⊗, I) be a small monoidal category. A monoid in the profunctor
category with the monoidal structure inherited by the Day convolution is a profunctor P , a unit
given by the natural transformation between the profunctors J and P , e : J → P , equivalent
to e : P (I, I) by Proposition 9, and the multiplication is m : P ? P → P which is isomorphic to
the family of morphisms V (m)ABCD = P (A,B)×P (C,D)→ P (A⊗C,B⊗D). Such a monoid
is called a monoidal profunctor.

The unit of a monoidal profunctor is a natural transformation e : J → P , which by proposi-
tion 9 is isomorphic to e : P (I, I). The multiplication is a natural transformation m : P ?P → P ,
which by proposition 8 is equivalent to the family above.

As an example, consider (Set,⊗, I), where I is a singleton set, and the Hom profunctor
P (A,B) = A→ B, trivially gives us a monoidal profunctor.

Proposition 10. Let (C,⊗, I) be a small monoidal category, and P,Q profunctors, then

(P ⇒ Q)(X,Y) =

∫
CD

P (C,D)→ Q(X ⊗ C, Y ⊗D)

defines an internal hom on the profunctor category.

Proof. Firstly, a calculation of the P ⇒ Q profunctor is derived.

(P ⇒ Q)(X,Y) ∼= Nat([Cop × C]((X,Y),−), (P ⇒ Q)−)
∼= Nat([Cop × C]((X,Y),−) ? P,Q)

∼=
∫
VW

([Cop × C]((X,Y),−) ? P)(V,W)→ Q(V,W)

∼=
∫
VW

(∫ ABCD

[Cop × C]((X,Y), (A,B))× P (C,D)× C(V,A⊗ C)× C(B ⊗D,W)

)
→ Q(V,W)

∼=
∫
VW

(∫ ABCD

Cop(A,X)× C(Y,B)× P (C,D)× C(V,A⊗ C)× C(B ⊗D,W)

)
→ Q(V,W)

∼=
∫
VW

(∫ BCD

C(Y,B)× P (C,D)× C(V,X ⊗ C)× C(B ⊗D,W)

)
→ Q(V,W)

∼=
∫
VW

(∫ CD

P (C,D)× C(V,X ⊗ C)× C(Y ⊗D,W)

)
→ Q(V,W)

∼=
∫
VWCD

(P (C,D)× C(V,X ⊗ C)× C(Y ⊗D,W))→ Q(V,W)

∼=
∫
WCD

P (C,D)× C(Y ⊗D,W)→
(∫

V
C(V,X ⊗ C)→ Q(V,W)

)
∼=

∫
WCD

(P (C,D)× C(Y ⊗D,W))→ Q(X ⊗ C,W)

∼=
∫
CD

P (C,D)→
(∫

W
C(Y ⊗D,W)→ Q(X ⊗ C,W)

)
∼=

∫
CD

P (C,D)→ Q(X ⊗ C, Y ⊗D)

To show that⇒ defines an exponential, one needs to check that Prof(P⊗Q,R) ∼= Prof(P,Q⇒
R) is a natural isomorphism of profunctors. Using the above exponential expansion, choosing a

3.2 IMPLEMENTATION IN HASKELL 41

projection and Proposition 8,

((P ⊗Q)⇒ R)(X,Y) ∼=
∫
UV

(P ⊗Q)(U, V)→ R(X ⊗ U, Y ⊗ V)

∼=
∫
ABCD

P (A,B)→ Q(C,D)→ R(X ⊗ (A⊗ C), Y ⊗ (B ⊗D))

and,

(P ⇒(Q⇒ R))(X,Y) ∼=
∫
ST
P (S, T)→ (Q⇒ R)(X ⊗ S, Y ⊗ T)

∼=
∫
STV Z

P (S, T)→ Q(V, Z)→ R((X ⊗ S)⊗ V, (Y ⊗ T)⊗ Z).

To exhibit the morphisms currying and uncurrying, a combination of two end projections, two
applications of the eval : (A⇒ B)×A→ B, since both expressions live in Set, and two liftings
for the profunctor R, R(α, α−1) for the former and R(α−1, α) for the latter, suffices. They are
inverses of each other trivially.

This proposition states that the monoidal category of profunctors Prof is closed.

3.2 Implementation in Haskell
In this section, we implement in Haskell the concepts of profunctors, Day convolution, and
monoidal profunctors defined before.

3.2.1 Profunctor typeclass

A profunctor is an instance of the following class

class Profunctor p where
dimap :: (a → b)→ (c → d)→ p b c → p a d

A profunctor is a functor, thus dimap needs to satisfy the functor laws below.

dimap id id = id

dimap (f ◦ g) (h ◦ i) = dimap g h ◦ dimap f i

Note that dimap encompasses the definitions of left and right actions of a profunctor. In
the profunctors library [Kmec], there are two functions named lmap and rmap corresponding
to these actions.

The profunctor interface lifts pure functions into both type arguments, the first in a con-
travariant manner, and the second in a covariant way. A morphism in the Prof category can
be represented, in Haskell, as the type below.

type () p q = ∀x y .p x y → q x y

The function type (→), is the most basic example of a profunctor.

instance Profunctor (→) where
dimap ab cd bc = cd ◦ bc ◦ ab

One notion captured by Profunctor is that of a structured input and structured output of a
function SISO . This type generalizes Kleisli arrows which allow a pure input and a structured
output.

42 MONOIDAL PROFUNCTORS 3.2

data SISO f g a b = SISO {unSISO :: f a → g b}
instance (Functor f ,Functor g)⇒ Profunctor (SISO f g) where
dimap ab cd (SISO bc) = SISO (fmap cd ◦ bc ◦ fmap ab)

3.2.2 The Day convolution type

The Day convolution is represented by the existential type

data Day p q s t =
∀a b c d .Day (p a b) (q c d) (s → (a, c)) (b → d → t)

Since C(A, I) is isomorphic to a singleton set (unit of the cartesian product ×), and C(I,B) ∼=
B, one can write, in Haskell, the type

data I a b = I {unI :: b}

as the unit of the Day convolution. The following functions are representations of the right and
left units.

ρ :: Profunctor p ⇒ Day p I p
ρ (Day pab (I d) sac bdt) = dimap (fst ◦ sac) (λb → bdt b d) pab
λ :: Profunctor q ⇒ Day I q q
λ (Day (I b) qcd sac bdt) = dimap (snd ◦ sac) (λd → bdt b d) qcd

The associativity of the Day convolution and its symmetric map also can be represented in
Haskell as the functions below.

α⊗ :: (Profunctor p,Profunctor q ,Profunctor r)
⇒ Day (Day p q) r
 Day p (Day q r)

α⊗ (Day (Day p q s1 f) r s2 g) = Day p (Day q r f1 f2) f3 f4
where

f1 = first ′ (snd ◦ s1) ◦ s2
f2 d1 d2 = (d2, λx → f x d1)
f3 = first ′ (fst ◦ s1 ◦ (fst ◦ s2)) ◦ diag
f4 b1 (d2, h) = g (h b1) d2

γ :: (Profunctor p,Profunctor q)⇒ Day p q Day q p
γ (Day p q sac bdt) = Day q p (swap ◦ sac) (flip bdt)
where swap (x , y) = (y , x)

Functions ρ, λ, and α⊗ are natural isomorphisms. We leave the definition of the inverses as
an exercise for the reader.

3.2.3 MonoPro typeclass

We define a typeclass called MonoPro for implementing monoidal profunctors. The type p () () is
a representation in Haskell of the unit P (I, I). The multiplication is obtained from Proposition 8,
which gives the multiplication a type

∫
ABCD P (A,B) × P (C,D) → P (A ⊗ C,B ⊗D) allowing

to write the following class in Haskell.

class Profunctor p ⇒ MonoPro p where
mpempty :: p () ()
(?) :: p a b → p c d → p (a, c) (b, d)

satisfying the monoid laws

3.2 IMPLEMENTATION IN HASKELL 43

• Left identity: dimap diagr snd (mpempty ? f) = f

• Right identity: dimap diagl fst (f ?mpempty) = f

• Associativity: dimap α−1
⊗ α⊗ (f ? (g ? h)) = (f ? g) ? h

where the helper functions diagr :: x → ((), x), diagl :: x → (x , ()), α−1
⊗ :: ((x , y), z)→ (x , (y , z)),

and α⊗ :: (x , (y , z))→ ((x , y), z) are the obvious ones.
Another way to understand MonoPro is that it lifts pure functions with many inputs to a

binary constructor type, while a profunctor only lifts functions with one type as input parameter.

lmap2 ::MonoPro p ⇒ (s → (a, c))→ p a b → p c d → p s (b, d)
lmap2 f pa pc = dimap f id (pa ? pc)
rmap2 ::MonoPro p ⇒ ((b, d)→ t)→ p a b → p c d → p (a, c) t
rmap2 f pa pc = dimap id f (pa ? pc)

which can work together as one function

rlmap ::MonoPro p
⇒ ((b, d)→ t)
→ (s → (a, c))
→ p a b
→ p c d
→ p s t

rlmap f g pa pc = dimap f g (pa ? pc)

which is the same behavior as the Day convolution of p with itself. Such convolution is the
raison d’être of a monoidal profunctor. A parallel composition is followed by a covariant and
a contravariant lifting of two pure functions matching the inner structure, which in our case is
the product type (,).

When selecting an appropriate monoidal profunctor, it naturally exhibits applicative functor
behavior.

appToMonoPro ::MonoPro p ⇒ p s (a → b)→ p s a → p s b
appToMonoPro pab pa = dimap diag (uncurry ($)) (pab ? pa)

The MonoPro typeclass has a straightforward instance for the Hom profunctor (→) which
satisfies the monoidal profunctor laws trivially. A practical use for this instance is writing
expressions in a pointfree manner. One can write an unzip′ :: Functor f ⇒ f (a, b)→ (f a, f b)
function, for example, for any functor that has as as input a pair type. A SISO is another
example of a monoidal profunctor.

instance (Functor f ,Applicative g)⇒ MonoPro (SISO f g) where
mpempty = SISO (λ → pure ())
SISO f ? SISO g = SISO (zip′ ◦ (f ? g) ◦ unzip′)

where zip′ :: Applicative f ⇒ (f a, f b)→ f (a, b) is the applicative functor multiplication. The
most basic notion of a monoidal profunctor is represented by this instance. It tells us that the
input needs to be a functor instance because of unzip′, the functions f and g are composed in
a parallel manner using the monoidal profunctor instance for (→) and then regrouped together
using the applicative (monoidal) behavior of zip′.

One example of a monoidal profunctor is when one has a direct product between a divisible
(oplax monoidal) functor f and an applicative functor g . The divisible functor type class is
found on the package contravariant.

44 MONOIDAL PROFUNCTORS 3.3

class Contravariant f ⇒ Divisible (f :: ∗ → ∗) where
conquer :: (a → ())→ f a
divide :: (a → (b, c))→ f b → f c → f a

It is important to notice that divide id has the type f b → f c → f (b, c) which is similar
to a monoidal functor but in the opposite category.

A type for the product between a contravariant functor and a covariant one is just the
following type.

data Divapp f g a b = Divapp {unContra :: (f a), unCov :: (g b)}

When f is a contravariant functor and g is a functor, then Divapp is a profunctor.

instance (Contravariant f ,Functor g)⇒ Profunctor (Divapp f g) where
dimap f g (Divapp fa gb) =

Divapp (contramap f fa) (fmap g gb)

Finally, an instance of MonoPro is derived by assuming f being a divisible functor, and g
an applicative functor.

instance (Divisible f ,Applicative g)⇒ MonoPro (Divapp f g) where
mpempty = Divapp (conquer (_→ ())) (pure ())
(Divapp fa gb) ? (Divapp fc gd) =

Divapp (divide id fa fc) (pure (,) ∗ gb ∗ gd)

3.3 Free monoidal profunctor
The notion of a fixpoint of an initial algebra enables a definition of the free structure for a
monoidal profunctor.

Definition 3.2 - Let C be a category, given an endofunctor F : C → C, a F -algebra consists
of an object A of C, the carrier of the algebra, and an arrow α : F (A) → A. A morphism
h : (A,α)→ (B, β) of F -algebras is an arrow h : A→ B in C such that h ◦ α = β ◦ F (h).

F (A)
F (h) //

α

��

F (B)

β
��

A
h // B

The category of F -algebras and its morphisms on a category C is called F -Alg(C).

The existence of a free monoidal profunctor is guaranteed by the following proposition.

Proposition 11. Let (C,⊗, I) be a monoidal category with exponentials. If C has binary co-
products, and for each A ∈ ob(C) the initial algebra for the endofunctor I + A ⊗ exists, then
for each A the free monoid A∗ exists and its carrier is the carrier of the initial algebra.

Proof. See Proposition 2.6, page 6, in [RJ17] (extended version).

Prof(C, C), when C is a small monoidal category, is monoidal with the Day convolution ?
and the profunctor I as its unit, and also have binary products and exponentials. The least fixed
point of the endofunctor Q(X) = J +P ?X in Prof(Cop, C) gives the free monoidal profunctor.

3.3 FREE MONOIDAL PROFUNCTOR 45

3.3.1 Representation Theorem

In the work of O’Connor and Jaskelioff [JO14], it was derived a representation theorem for
second order functionals that helps to derive optics. In this work, the unary version of the
mentioned theorem is needed.

Theorem 12. (Unary representation) Consider an adjunction (−∗) ` U : E → F , where F
is small and E is a full subcategory of [Set, Set] such that the family of functors RA,B(X) =
A× (B → X) is in E . Then, we have the following isomorphism natural in A,B, and X.∫

F
(A→ U(F)(B))→ U(F)(X) ∼= U(R∗

A,B)(X)

Proof. See Theorem 3.1, page 8, in [JO14].

This isomorphism ranges over any structure upon small functors F , such as pointed functors
and applicatives, and is used to change representations from ends involving functors to simpler
ones. It is possible to obtain the same unary representation for profunctors [O’Cb].

Theorem 13. (Unary representation for profunctors) Consider an adjunction between pro-
functors (−∗) ` U : E → F , where F is small and E is a full subcategory of Prof(Set, Set),
the family of profunctors IsoA,B(S, T) = (S → A)× (B → T) gives the following isomorphism
natural in A,B, and dinatural in S, T .∫

P
UP (A,B)→ UP (S, T) ∼= Iso∗A,B(S, T)

where Iso∗ is the a free profunctor generated by Iso.

Proof. See [O’Cb].

Since the free monoidal profunctor exists and is in the form

P ∗(S, T) = (J + P ? P ∗)(S, T),

this theorem helps us to find the unary representation for monoidal functors.

Proposition 14. The unary representation for monoidal profunctors is given by the isomor-
phism: ∫

P
P (A,B)→ P (S, T) ∼=

∑
n∈N

(S → An)× (Bn → T)

where P ranges over all monoidal profunctors.

Sketch. It is needed to show that

U(Iso∗A,B)(S, T)
∼=

∑
n∈N

(S → An)× (Bn → T)

and then apply the Theorem 13 to get the desired result. The sum represents the disjoint union
since this is in Set, which depends on an index n ∈ N allowing to use induction on it. In Set
(any cartesian category), A0 = {∗}, and An = A×A× ...×A n times. The monoidal structure
on profunctors with Day convolution as tensor product permits the expansion

46 MONOIDAL PROFUNCTORS 3.3

Iso∗A,B(S, T) = (J + IsoA,B ? Iso
∗
A,B)(S, T) (3.1)

∼= (J + IsoA,B + IsoA,B ? IsoA,B + IsoA,B ? Iso
∗
A,B)(S, T)

∼= ...
∼= (J + IsoA,B + IsoA,B ? IsoA,B + IsoA,B ? IsoA,B ? IsoA,B+

...+ IsoA,B ? ... ? IsoA,B ? Iso
∗
A,B)(S, T).

by a repeated substitution of Iso∗A,B, on the righ-hand side, by J + IsoA,B ? Iso
∗
A,B (recursion

step). The recursion ends whenever a J is chosen to replace the Iso∗A,B term. Let’s denote
the free functor expansion up to the k-th element as IsokA,B. It is obvious that the one term
expansion is Iso0A,B = J(S, T), giving

J(S, T) ∼= (S → A0)× (B0 → T) ∼= (S → {∗})× ({∗} → T).

If one expands the free functor expression until the second term is given by Iso1A,B = (J +
IsoA,B ? J)(S, T) which is equivalent the disjoint union of J and

(IsoA,B ? J)(S, T) ∼= (S → A)× (B → T) ∼= IsoA,B(S, T).

Expanding the expression up to three terms

Iso2A,B(S, T)
∼= (J + IsoA,B ? (J + IsoA,B))(S, T) ∼= (J + IsoA,B + IsoA,B ? IsoA,B)(S, T)

and calculating the Day convolution,

(IsoA,B ? IsoA,B)(S, T) (3.2)

∼=
∫ XY ZW

(X → A)× (B → Y)× (Z → A)× (B →W)

× (S → (X × Z))× ((Y,W)→ T) (3.3)

∼=
∫ XY ZW

((X,Z)→ (A,A))× ((B,B)→ (Y,W))

× (S → (X × Z))× ((Y,W)→ T) (3.4)
∼= (S → A2)× (B2 → T)

gives the desired result for n = 2. This last calculation means that

Iso2A,B(S, T)
∼=

2∑
k=0

(S → Ak)× (Bk → T).

Proof. The proof follows by induction on n. The base case is the one stated in the sketch. Let
n be a natural number and suppose

IsonA,B(S, T)
∼=

n∑
k=0

(S → Ak)× (Bk → T)

Expanding Fn+1(S, T) as in (3.1) with F = IsoA,B (the associators will be omitted for simplicity
reasons),

Fn+1(S, T) ∼= (J + F + F ? F + F 2 ? F + ...+ Fn ? F)(S, T)

3.4 FREE MONOIDAL PROFUNCTORS IN HASKELL 47

which gives

Ison+1
A,B (S, T)

∼=
n∑

k=0

(S → Ak)× (Bk → T) + (Fn ? F)(S, T).

Using the same calculations as in Equation 3.2 with Fn ? F ,

Ison+1
A,B (S, T)

∼=
n+1∑
k=0

(S → Ak)× (Bk → T)

as required. The forgetful functor can now be ignored and the desired isomorphism is obtained.

3.4 Free monoidal profunctors in Haskell
Following the definition above we arrive at the following implementation of the free monoidal
profunctor (see also [Mil]).

data FreeMP p s t where
MPempty :: t → FreeMP p s t
FreeMP :: (s → (x , z))
→ ((y ,w)→ t)
→ p x y
→ FreeMP p z w
→ FreeMP p s t

where MPempty corresponds to mpempty , and FreeMP is the multiplication. The multiplication
will be apparent if one expands the definition of Day convolution for P and P ∗. This interface
stacks profunctors, and in each layer, it provides pure functions to simulate the parallel com-
position nature of a monoidal profunctor.

The following functions provide the necessary functions to build the free construction on
monoidal profunctors, toFreeMP insert a single profunctor into the free structure, and foldFreeMP
provides a way of evaluating the structure, collapsing it into a single monoidal profunctor.

toFreeMP :: Profunctor p ⇒ p s t → FreeMP p s t
toFreeMP p = FreeMP diag fst p (MPempty ())

foldFreeMP :: (Profunctor p,MonoPro q)
⇒ (p q)
→ FreeMP p s t
→ q s t

foldFreeMP (MPempty t) = dimap (_→ ()) (λ()→ t) mpempty
foldFreeMP h (FreeMP f g p mp) =
dimap f g ((h p) ? foldFreeMP h mp)

A free construction behaves like a list and, of course, MonoPro should provide a way to
embed a plain profunctor into the free context.

consMP :: Profunctor p
⇒ p a b
→ FreeMP p s t
→ FreeMP p (a, s) (b, t)

consMP pab (MPempty t) = FreeMP id id pab (MPempty t)

48 MONOIDAL PROFUNCTORS 3.5

consMP pab (FreeMP f g p fp) =
FreeMP (id ? f) (id ? g) pab (consMP p fp)

and with it, an instance of MonoPro for the free structure can be defined as

instance Profunctor p ⇒ MonoPro (FreeMP p) where
mpempty = MPempty ()
MPempty t ? q = dimap snd (λx → (t , x)) q
q ?MPempty t = dimap fst (λx → (x , t)) q
(FreeMP f g p fp) ? fq =

dimap (α⊗ ◦ (f ? id))
((g ? id) ◦ α−1

⊗)
(consMP p (fp ? fq))

where α⊗ :: ((x , z), c)→ (z , (x , c)) and α−1
⊗ :: (y , (w , d))→ ((w , y), d).

When p is an arrow, then FreeMP p is an arrow. In order to define this instance one needs
to collapse all parallel profunctors in order to make the sequential composition.

instance (MonoPro p,Arrow p)⇒ Category (FreeMP p) where
id = FreeMP (λx → (x , ())) fst (arr id) (MPempty ())
mp ◦mq = toFreeMP (foldFreeMP id mp ◦ foldFreeMP id mq)

instance (MonoPro p,Arrow p)⇒ Arrow (FreeMP p) where
arr f = FreeMP (λx → (x , ())) fst (arr f) (MPempty ())
(×) = (?)

3.5 Effectful Monoidal Profunctors
The typeclass for monoidal profunctors MonoPro is defined in terms of a profunctor p over
the (fictitious) base category of Haskell types and functions usually known as Hask. However,
the Day convolution allows us to use morphisms from other categories, instead of using Hask
everywhere. This section presents a generalization of the class MonoPro which allows to use
morphisms from other categories. We illustrate its use by applying it to morphisms from a
Kleisli category, hence allowing effects to be lifted into the structure. The profunctor class will
also have a modified form to lift two abstract morphisms instead of pure functions.

class Category k ⇒ CatProfunctor k p where
catdimap :: k a b → k c d → p b c → p a d

A CatProfunctor represents a profunctor working with morphisms on an well-suited abstract
category C, and provides an interface to lift two of those abstract morphisms defined by the
binary type constructor k . This new class needs to be a multi-parameter type class because of
the added constraint Category .

class (Category k ,CatProfunctor k p)⇒
CatMonoPro k p | p → k where
cmpunit :: k s ()→ k () t → p s t
convolute :: k s (a, c)
→ k (b, d) t
→ p a b
→ p c d
→ p s t

3.5 EFFECTFUL MONOIDAL PROFUNCTORS 49

It is good to notice that in the CatMonoPro class, the type of cmpunit is isomorphic to
p () (), and the type of convolute is isomorphic to p (a, c) (b, d) when k is (→). The functional
dependency p → k allows to write the unit cmpempty having the same role as mpempty , and
?? also having the same role as MonoPro’s ? satisfying the same laws as seen before.

cmpempty :: p () ()
cmpempty = cmpunit id id

(??) :: CatMonoPro k p ⇒ p a b
→ p c d
→ p (a, c) (b, d)

p ? ?q = convolute id id p q

As an example, one can work with CatProfunctor and CatMonoPro alongside a Kleisli
arrow. That is, objects are types but morphisms are Kleisli arrows. The CatProfunctor instance
in this example will permit computations to be lifted covariantly and contravariantly. The
CatMonoPro gives a convolutional effect for computations and not just pure functions (as in
MonoPro’s rlmap).

The Kleisli arrow is just a wrapped type

newtype Kleisli m a b = Kleisli {runKleisli :: a → m b}

having a lawful Category instance as follows.

instance Monad m ⇒ Category (Kleisli m) where
id = Kleisli return
(Kleisli bmc) ◦ (Kleisli amb) =

Kleisli (λa → (amb a) �= bmc)

A datatype called Lift is a CatProfunctor with respect to the Kleisli arrow.

newtype Lift t m a b = Lift {runLift ::m a → t m b}

This polymorphic type represents a general version of the function lift used to lift monadic
computations into a monad transformer [Gil]. A monad transformer is a way to stack two or more
monads together in order to enable more than one effectful computation together [JD93,LHJ95].
By packing lift into a profunctor concerning the Kleisli arrow, one gets ways to precompose and
post-compose computations with a monad transformer’s inner monad. It is possible to use
catdimap to compose effectful computations in m having its results in the monad transformer.

class MonadT t where
lift :: (Monad m)⇒ m a → t m a

instance (MonadT t ,Monad m,Monad (t m))⇒
CatProfunctor (Kleisli m) (Lift t m) where

catdimap (Kleisli f) (Kleisli g) (Lift h) = Lift $
λma → let
k = h (ma �= f)
l = lift ◦ g

in
k �= l

As an important note, Lift is a SISO with f = m, and g = t m. For a plain profunctor, m
works only with a Functor, t need not be a monad transformer, and t m needs only to be an
applicative functor. Hence this instance is substantially different from the mentioned one.

50 MONOIDAL PROFUNCTORS 3.5

To work with a CatMonoPro instance with respect the Kleisli arrow, a notion of reordering
effects (commutativity) is needed.

instance (CommT t
,Traversable m
,Monad m
,Monad (t m))⇒
CatMonoPro (Kleisli m) (Lift t m) where

cmpunit (Kleisli f) (Kleisli g) =
Lift (λm → lift (m �= f >> g ()))

convolute (Kleisli f) (Kleisli g) (Lift h) (Lift l) =
Lift $ λms →
let
(ma,mc) = unzip′ (ms �= f)

in
comm (fmap g (zip′ ((h ma), (l mc))))

After the fmap of function g , the remaining expression will have the type t m (m a). The
functions unzip′ :: Functor f ⇒ f (a, b) → (f a, f b) and zip′ :: Applicative g ⇒ (g a, g b) →
g (a, b) are helper functions as seen before. This can be fixed by building a class giving a
function comm :: (Monad m,Traversable m) ⇒ t m (m a) → t m a to reorder those effects. A
traversable instance is used here to provide that swap but other commutativity notion [JD93]
can also be used.

class MonadT t ⇒ CommT t where
comm :: (Monad m,Traversable m)
⇒ t m (m a)
→ t m a

This setup provides a use of the maybe monad transformer MaybeT with a monad like Writer
which is traversable (all necessary type class instances can be found on mtl package [Gil]).

data MaybeT m a =
MaybeT {runMaybeT ::m (Maybe a)}

data Writer w a = Writer {runWriter :: (a,w)}
instance CommT MaybeT where
comm (MaybeT mna) =

MaybeT (mna �= sequence)

The CommT instance for MaybeT pattern matches on the monad transformer MaybeT,
hence exposing the value mna ::m (Maybe (m a)). The bind operator grants access to the inner
monadic value of type Maybe (m a). The sequence (Traversable t ,Monad m) ⇒ t (m a) →
m (t a) function is then used to swap the positions of Maybe and m.

Using the effectful monoidal profunctor Lift t m with respect to Kleisli m helps us deal with
lots of monads together, keeping us able to deal with product types’ computations. Consider
the effectful function lsplit , in writer monad, that splits in two a list of String (or any Ord
instance) by its order (in this case, lexicographical). One list for elements less or equal to the
head, and the other has bigger elements than the head. The effect is logging, telling what the
function is doing for debugging purposes.

lsplit :: [String]→Writer [String] ([String], [String])
lsplit (z : zs) = do
xs ← return (filter (<z) zs)

3.5 EFFECTFUL MONOIDAL PROFUNCTORS 51

ys ← return (filter (> z) zs)
tell ["Splitting: " ++ show zs

++ " into " ++ show xs
++ ", " ++ show ys]

return (xs, ys)

The function rsplit below just concats two lists and logs this action.

rsplit :: String
→ ([String], [String])
→Writer [String] [String]

rsplit l (xs, ys) = do
tell ["Merging: " ++ show xs

++ ", " ++ l
++ ", and " ++ show ys]

return (xs ++ [l] ++ ys)

The quicksort function allows for logging, enabling it to stop when encountering an invalid
value while preserving a record of the algorithm’s actions. It is important to notice that the
instance of CatMonoPro facilitates the splitting and merging of sorted outcomes within the
combined MaybeT/Writer context.

qsort :: [String]→ MaybeT (Writer [String]) [String]
qsort [] = return []
qsort xs = do
guard (head xs 6≡ "")
(ls, rs)←

runLift
(lconvolute (Kleisli lsplit) lift ′ lift ′)
(return xs)

(ls ′, rs ′)←
runKleisli
((Kleisli qsort) ? (Kleisli qsort))
(ls, rs)

ss ←
runLift
(rconvolute (Kleisli (rsplit (head xs))) lift ′ lift ′)
(return (ls ′, rs ′))

return ss

The functions lconvolute and rconvolute have id (from type class Category) function in
the left and right similar as lmap2 and rmap2. For example, lconvolute f = convolute f id
and the right convolution is similar changing the id order. It is also possible to observe the
use of a plain monoidal profunctor by using its multiplication since qsort is a Kleisli arrow
which has a trivial MonoPro instance (it is isomorphic to a SISO with f = Identity and g =
MaybeT (Writer [String])). Finally, the expression lift ′ = Lift lift that is just the monad
transformer’s lift in the monoidal profunctor setting.

52 MONOIDAL PROFUNCTORS 3.5

Chapter 4

Semiarrows

In the previous chapter, we conducted an extensive study of monoidal profunctors. With Table
1.2 in mind, we notice that we can get closer to an arrow by extending the monoidal profunctor
with a structure called a semiarrow. Monoidal profunctors only possess parallel composition,
which may be insufficient for certain types of problems that demand more expressive structures.
The semiarrow is designed to address these limitations while preserving the essence of monoidal
profunctors.

It is important to note that a semiarrow is weaker than an arrow, as it lacks the arr
and id structures. However, this absence of structure is not necessarily a disadvantage, as it
can sometimes be desirable to model more complex computational problems, such as Moore
machines.

This chapter adheres to the pattern of discussing semiarrow in a semiarrow category, which
extends the well-known concepts of monoid in a monoidal category and semigroup in a semigroup
category.

In this chapter, we begin by discussing and defining the concept of an arrow. Although a
complete mathematical model of arrows is beyond the scope of this work and can be found in
the work of Bob Atkey [Atk11], we define arrows in terms of their known laws and the corre-
sponding Haskell typeclass. This introduction provides the necessary context for understanding
the relationship between arrows and semiarrows, as well as their role in functional programming.

Next, we proceed to the study of semiarrows, including their definition, exemplification,
and comparison with arrows. By examining the properties and structure of semiarrows, we
aim to clarify how they extend and differ from arrows, while maintaining some of their core
characteristics.

4.1 A review on arrows
An arrow is typeclass for binary type constructors [Hug05], it encodes a process with an input
a and an output b that could be stateful and behave like machines.

class Category a ⇒ Arrow a where
arr :: (b → c)→ a b c
first :: a b c → a (b, d) (c, d)

There are two methods in this class, arr , which transforms a plain Haskell function into
a trivial process, and first , which gives a notion of strength to the arrow, i.e., it transforms
a process into another one that has a flow of information on the first coordinate of the tuple.
Note that there is a function second :: a b c → a (d , b) (d , c) that does the same for the second
coordinate.

The Category constraint endows an Arrow with a well-behaved sequential composition pro-
viding notions of composition as in a Category.

53

54 SEMIARROWS 4.1

When using this class as a constraint, one should enforce that (◦) must be an associative
operation, and id should be an identity element of the composition operator. In the Arrow
world, one often uses the operator (�) :: k a b → k b c → k a c, which is the same as flip (◦).

Additionally, arrows support parallel composition as follows.

(×) :: a b c → a d e → a (b, d) (c, e)
(×) f g = first f � second g

This operator, (×), allows for the simultaneous execution of two arrow processes, combining
their inputs and outputs as pairs. An arrow has to follow the following laws [LCH11].

• Left Identity: arr id � f = f

• Right Identity: f � arr id = f

• Associativity: (f � g)� h = f � (g � h)

• Composition: arr (g ◦ f) = arr f � arr g

• Extension: first (arr f) = arr (f × id)

• Functor: first (f � g) = first f � first g

• Exchange: first f � arr (id × g) = arr (id × g)� first f

• Unit: first f � arr fst = arr fst � f

• Association: first (first f)� arr α⊗ = arr α⊗ � first f

where α⊗ ((a, b), c) = (a, (b, c)).
A simple example of an Arrow is the function type (→), which has a straightforward Category

instance.

instance Arrow (→) where
arr = id
first f = λ(a, d)→ (f a, d)

In this instance, the arr function is defined trivially as the identity function id . The first
function takes a function f and returns a new function that processes the first element of a tuple
with f and leaves the second element unchanged. Another interesting example of an arrow is
the Mealy machine [Kmeb] (sometimes called stream functions).

data Mealy a b = Mealy (a → (b,Mealy a b))

instance Category Mealy where
id = Mealy $ λa → (a, id)
(Mealy f) ◦ (Mealy g) = Mealy $ λa →

let (b, g ′) = g a
(c, f ′) = f b

in (c, f ′ ◦ g ′)
instance Arrow Mealy where
arr f = Mealy $ λa → (f a, arr f)
first (Mealy f) = Mealy $ (a, d)→

let (b, f ′) = f a
in ((b, d),first f ′)

4.2 SEMIARROW CATEGORIES 55

The Mealy type captures the notion of a machine where the output depends on its input.
In contrast, the Moore type (extensively discussed in this work) does not share this feature.

Several extension to an Arrow are extensively discussed and proposed such as ArrowChoice,
ArrowSum, and ArrowApply [Hug05]. But we will focus here on the extension that inspires
the work of a semiarrow, such as ArrowInit and ArrowLoop. Those classes are discussed as a
commutative causal arrow [LCH11] that gives a notion of commutativity to an arrow, the major
example studied of a CCA is the type Mealy .

class Arrow a ⇒ ArrowLoop a where
loop :: a (b, d) (c, d)→ a b c

class ArrowLoop a ⇒ ArrowInit a where
init :: b → a b b

The class ArrowLoop gives a notion of a feedback loop on d , giving recursion to an arrow.
The class ArrowInit will be discussed later on the context of a semiarrow gives a notion of a
delay to an arrow, giving stateful possibilities to computations using arrows.

instance ArrowLoop Mealy where
loop (Mealy f) = Mealy $ λb → let ((c, d), f ′) = f (b, d) in (c, loop f ′)

instance ArrowInit Mealy where
init b = Mealy (_→ (b, arr id))

The function loop for the Mealy type takes advantage of Haskell’s laziness to obtain the param-
eter d during its execution. This technique, known as circular programming [Bir84], enables the
creation of feedback loops in the computation.

In the case of ArrowInit , the delay is introduced by ignoring the input parameter. Since
we have an identity function id for Mealy , we can simply lift it to continue the process. This
approach allows the introduction of stateful computations in the Mealy machine by providing
an initial state and allowing for the computation to evolve based on the input and current
state [LCH11].

4.2 Semiarrow categories
Due to its Day convolution tensor, we know that the profunctor category, Prof , is a monoidal
category. Rivas and Jaskelioff’s work in [RJ17] demonstrates the existence of another monoidal
category atop Prof , which employs profunctor composition as its tensor. In this context, a
monoid is referred to as a "PreArrow". We may only consider the tensor and its associator and
exclude the identities, thus forming a semigroup. Consequently, we define a semigroup category,
and in a similar manner, we also establish a semiarrow category.

Definition 4.1 - A semigroup category is a triple (C, ⊕, α) where

• C is a category;

• ⊕ : C × C → C is a bifunctor;

• αABC : (A ⊕ B) ⊕ C → A ⊕ (B ⊕ C) is a natural isomorphism such that the diagrams
below commute.

A⊕ (B ⊕ (C ⊕D))
α //

id⊕α
��

(A⊕B)⊕ (C ⊕D)
α // ((A⊕B)⊕ C)⊕D

A⊕ ((B ⊕ C)⊕D) α
// (A⊕ (B ⊕ C))⊕D

α⊕id

OO

56 SEMIARROWS 4.2

In the above definition, we observe the absence of the identity object in a monoidal category.
we may now define an abstract notion of semigroup.

Definition 4.2 - A semigroup in a semigroup category C is the tuple (M,m) where M is an
object of C, and m :M ⊕M →M is the multiplication morphism, satisfying

1. Associativity: m ◦ (m⊕ id) = m ◦ (id⊕m) ◦ αMMM

The following commuting diagram represents this law.

M ⊕ (M ⊕M)
id⊕m //

α

��

M ⊕M
m

**
M

(M ⊕M)⊕M
m⊕id

//M ⊕M
m

44

4.2.1 A semiarrow in a semiarrow category

Now, we define an interaction between a monoidal category and a semigroup category using a
profunctor natural transformation. A similar structure is the nearsemiring category [RJS18]
that was defined as two monoidal categories that possess a distributive law and a cancellation
law. This semiarrow structure represents a variation from a nearsemiring because, in our case,
we only have a semigroup structure for one of the tensors, which is subject to different laws and
coherence morphisms. A duoidal category [BM11] is a structure similar to a semiarrow. However,
while a duoidal category necessitates two monoidal categories, a semiarrow only requires one
monoidal category paired with a semigroup category. As an illustration of this derivation, one
can refer to the WeakArrow unit discussed in [RJ17]. This deliberate omission enables the
modeling of computations that resemble arrows but don’t fully align with the traditional Haskell
arrow structure.

Definition 4.3 - A semiarrow category is a symmetric monoidal category (C, ⊗, I, α⊗, ρ, λ,
γ) alongside a semigroup category (C, ⊕, α⊕) with two natural transformations, respectively:

• ζ : I → I ⊕ I

• ιPQRS : (P ⊕Q)⊗ (R⊕ S)→ (P ⊗R)⊕ (Q⊗ S)

where ζ is the idempotence morphism and ιPQRS the interchange morphism satisfying the
coherence laws below.

(P ⊕R)⊗ I
ρP⊕R //

id⊗ζ

��

(P ⊕R)

(P ⊕R)⊗ (I ⊕ I) ιPRII

// (P ⊗ I)⊕ (R⊗ I)

ρP⊕ρR

OO

4.3 SEMIARROW CATEGORIES 57

((P ⊕Q)⊕ T)⊗ ((R⊕ S)⊕ U)
α⊕
PQT

⊗α⊕
RSU

ss

ι(P⊕Q)T (R⊕S)U

++
(P ⊕ (Q⊕ T))⊗ (R⊕ (S ⊕ U))

ιP (Q⊕T)R(S⊕U)

��

((P ⊕Q)⊗ (R⊕ S))⊕ (T ⊗ U)

ιPQRS⊕id

��
(P ⊗R)⊕ ((Q⊕ T)⊗ (S ⊕ U))

id⊕ιSUQT ++

((P ⊗R)⊕ (Q⊗ S))⊕ (T ⊗ U)

α⊕
(P⊗R)(Q⊗S)(T⊗U)ss

(P ⊗R)⊕ ((Q⊗ S)⊕ (T ⊗ U))

Both diagrams indicate that the square paths and the diamond paths should commute,
leading to the following equations:

ρP⊕R = (ρP ⊕ ρR) ◦ ιPRII ◦ (id⊗ ζ) (4.1)

(id⊕ ιQTSU) ◦ ιP (Q⊕T)R(S⊕U) ◦ (α⊕
PQT ⊗ α

⊕
RSU) = (4.2)

α⊕
(P⊗R)(Q⊗S)(T⊗U) ◦ (ιPQRS ⊕ id) ◦ ι(P⊕Q)T (R⊕S)U

Your text is already fairly well-structured, but I’ve made some minor grammar and style
improvements:

It’s worth noting that the Eckmann-Hilton argument demonstrates that when you have
two operations which are both unital (i.e., they possess identity elements) and they mutually
distribute over one another, then these two operations are not only equal but also commutative
and associative [RJ18]. This is not applicable in our context, as we do not mandate that ⊕
possesses an identity.

Drawing parallels with monoidal profunctors, we introduce a semiarrow within a semiarrow
category. Note that we emphasize that neither ζ nor ι are mandated to be isomorphisms.

Definition 4.4 - A semiarrow in a semiarrow category C is a tuple (P, e,m⊗,m⊕) where
(P, e,m⊗) is a monoid in C and (P,m⊕) is a semigroup in C. The morphism e : I → P is the
unit morphism, m⊗ : P⊗P → P is the monoidal multiplication morphism, and m⊕ : P⊕P → P
is the semigroup multiplication, satisfying the laws below.

1. (Idempotence) m⊕ ◦ (e⊕ e) ◦ ζ = e

I ⊕ I e⊕e // P ⊕ P
m⊕
��

I e
//

ζ

OO

P

2. (Interchange law) m⊗ ◦ (m⊕ ⊗m⊕) = m⊕ ◦ (m⊗ ⊕m⊗) ◦ ιPPPP .

(P ⊕ P)⊗ (P ⊕ P) ιPPPP //

m⊕⊗m⊕
��

(P ⊗ P)⊕ (P ⊗ P)
m⊗⊕m⊗
��

P ⊗ P

m⊗
''

P ⊕ P

m⊕
ww

P

58 SEMIARROWS 4.3

4.3 Day convolution and profunctor composition
In this section, we demonstrate that the category of set profunctors, denoted as Prof(C,D),
forms a semiarrow category when both C and D are small categories. We achieve this by
considering ? as the Day convolution and Bénabou composition · as profunctor composition.

Definition 4.5 - Given P and Q profunctors, the profunctor composition(Bénabou) is given
by the following coend expression.

(P ·Q)(A,B) =

∫ Z

P (A,Z)×Q(Z,B)

Ih Haskell, the profunctor composition is represented by a GADT as follows.

data Comp p q a b where
Comp :: p a z → q z b → Comp p q a b

The type Comp is commonly referred to as Procompose in the Haskell’s profunctors package.
Although its implementation uses a reversed order, the semantics remains the same.

It is important to note that this construction is a profunctor, and it respects the associative
natural isomorphism [RJ17].

Proposition 15. The profunctor composition forms an associative tensor product (P ·Q) ·R ∼=
P · (Q ·R). For any profunctors P,Q, and R.

The Haskell implementation of the associator for profunctor composition can be written as:

α⊕ :: Comp (Comp p q) r Comp p (Comp q r)
α⊕ (Comp (Comp p q) r) = Comp p (Comp q r)

Here, α⊕ is a function that takes a composition of three type constructors (p, q , and r) and
reassociates them such that p is composed with the composition of q and r .

Having the tensor setup, we can define a specific instance of a semiarrow in a semiar-
row category by establishing a lawful combination of the Day convolution and the profunctor
composition. We define the binary tensors ⊗ and ⊕ to represent the Day convolution (?) and
the Bénabou composition (·), respectively. This allows us to explore the interactions between
these two tensor products and analyze the properties and applications of the resulting semiar-
row categories.

Theorem 16. Let C be a small category such that (C,⊗, I) is a monoidal category. Consider the
monoidal category of profunctors (Prof(C, C), ?, I), and the semigroup category (Prof(C, C), ·).
Then, we can construct an idempotence morphism ζ : I → I · I and an interchange morphism
ιPQRS : (P · Q) ? (R · S) → (P ? R) · (Q ? S) such that they satisfy the coherence laws of a
semirarrow category.

Proof. Let P,Q,R, S be profunctors, and let X,Y be objects of C. The morphism ιPQRS is

4.3 DAY CONVOLUTION AND PROFUNCTOR COMPOSITION 59

constructed as follows:

((P ·Q) ? (R · S))(X,Y)

=

∫ ABCD

(P ·Q)(A,B)× (R · S)(C,D)× C(X,A⊗ C)× C(B ⊗D,Y)

=

∫ ABCD

(

∫ Z

P (A,Z)×Q(Z,B))× (

∫ W

R(C,W)× S(W,D))×

C(X,A⊗ C)× C(B ⊗D,Y)

∼=
∫ ABCDZW

P (A,Z)×Q(Z,B)×R(C,W)× S(W,D)×

C(X,A⊗ C)× C(B ⊗D,Y)

∼=
∫ ZWABCD

P (A,Z)×Q(Z,B)×R(C,W)× S(W,D)×

C(X,A⊗ C)× C(B ⊗D,Y)

→
∫ ZWABCD

P (A,Z)×Q(Z,B)×R(C,W)× S(W,D)×

C(X,A⊗ C)× C(B ⊗D,Y)× idZ⊗W × idZ⊗W

∼=
∫ ZWABCD

P (A,Z)×R(C,W)× C(X,A⊗ C)× idZ⊗W×

Q(Z,B)× S(W,D)× C(B ⊗D,Y)× idZ⊗W

∼=
∫ ZW

(P ? R)(X,Z ⊗W)× (Q ? S)(Z ⊗W,Y)

→
∫ U

(P ? R)(X,U)× (Q ? S)(U, Y)

= ((P ? R) · (Q ? S))(X,Y)

Since ?, and · are profunctors and every morphism is well defined. The coherence laws can be
established using Lemmas 17, 18, and 19. The ζ morphism defined as ζ : X →

∫ Z
Z×X, which

is obtained using the definitions of J and ·. It is clear that ζ is a natural transformation that
respect the coherence conditions.

In Haskell, one can implement the interchange morphism in a very simple manner.

ι :: (Profunctor p,Profunctor q ,Profunctor r ,Profunctor s)
⇒ Day (Comp p q) (Comp r s) Comp (Day p r) (Day q s)

ι (Day (Comp p q) (Comp r s) f g) =
Comp (Day p r f (,)) (Day q s id g)

The profunctor instances for Day and Comp can also be implemented, allowing us to reason
about the naturality of ι.

instance Profunctor (Day p q) where
dimap f g (Day p q bxz ywc) =

Day p q (bxz ◦ f) (curry (g ◦ uncurry ywc))

instance (Profunctor p,Profunctor q)⇒ Profunctor (Comp p q) where
dimap f g (Comp p q) = Comp (lmap f p) (rmap g q)

By implementing these instances, one can utilize the properties of profunctors to show that
ι is indeed a natural transformation.

60 SEMIARROWS 4.3

Lemma 17 - The ι function satifies the naturality condition.

ι ◦ dimap f g = dimap f g ◦ ι

Proof.

(ι ◦ dimap f g) (Day (Comp p q) (Comp r s) h k)

= { applying composition and dimap for Day }
ι (Day (Comp p q) (Comp r s) (h ◦ f) (curry (g ◦ uncurry k)))

= { applying ι }
Comp (Day p r (h ◦ f) (,)) (Day q s id (curry (g ◦ uncurry k)))

= { replacing h ◦ f by lmap f }
Comp (lmap f (Day p r h (,))) (rmap g (Day q s id (curry (uncurry k))))

= { replacing curry (g ◦ uncurry k) by rmap g }
Comp (lmap f (Day p r h (,))) (rmap g (Day q s id k))

= { applying dimap for Comp }
dimap f g (Comp (Day p r h (,)) (Day q s id k))

= { applying dimap for ι }
dimap f g (ι (Day (Comp p q) (Comp r s) h k))

= { applying composition }
(dimap f g ◦ ι) (Day (Comp p q) (Comp r s) h k)

We should note that both the Day and Comp types, which represent tensors, are bifunctors
and have been implemented in Haskell as shown below:

bimap⊗ :: (p r)→ (q s)→ (Day p q Day r s)
bimap⊗ pr qs (Day p q f h) = Day (pr p) (qs q) f h

bimap⊕ :: (p r)→ (q s)→ (Comp p q Comp r s)
bimap⊕ pr qs (Comp p q) = Comp (pr p) (qs q)

These functions provide us with a way to reason equationally about the coherence conditions
that the morphisms ζ and ι satisfies, aligning it with the definition of a semiarrow category.

Lemma 18 - The ζ morphism satifies the coherence conditions of a semiarrow category.

4.3 DAY CONVOLUTION AND PROFUNCTOR COMPOSITION 61

Proof.

(bimap ρ ρ ◦ ι ◦ bimap id ζ) (Day (Comp p r) (I b) f g)

= { applying composition and bimap for Day }
(bimap ρ ρ ◦ ι) (Day (Comp p r) (Comp (I b) (I b)) f g)

= { applying ι }
bimap ρ ρ (Comp (Day p (I b) f (,)) (Day r (I b) id g))

= { applying bimap to Comp }
Comp (ρ (Day p (I b) f (,))) (ρ (Day r (I b) id g))

= { using dimap to express ρ }
Comp (dimap (fst ◦ f) (λd → (d , b)) p) (dimap fst (λd → g d b) r)

= { expressing dimap using lmap and rmap for Comp }
Comp (lmap (fst ◦ f) (rmap (λd → (d , b) p))) (rmap (λd → g d b) (lmap fst r))

= { dimap defining for Comp }
dimap (fst ◦ f) (λd → g d b) (Comp (rmap (λd → (d , b) p)) (lmap fst r))

= { rmap and lmap are doing nothing }
dimap (fst ◦ f) (λd → g d b) (Comp p r)

= { definition of the right associator }
ρ (Day (Comp p r) (I b) f g)

Lemma 19 - The ι morphism satifies the coherence conditions of a semiarrow category.

Proof. We refer to Equation 4.2 to establish that the diamond-shaped diagram commutes. Given
functions f, g and profunctors p, q, r, s, t, u, we derive the following for the right-hand side:

(α⊕ ◦ bimap⊕ ι id ◦ ι) (Day (Comp (Comp p q) t) (Comp (Comp r s) u) f g)

= { applying ι }

α⊕ ◦ bimap⊕ ι id) (Comp (Day (Comp p q) (Comp r s) f (,)) (Day t u id g))

= { applying α⊕ }
Comp (Day p r f (,)) (Comp (Day q s id (,)) (Day t u id g))

For the left-hand side:

(bimap⊕ id ι ◦ ι ◦ bimap⊗ α⊕ α⊕) (Day (Comp (Comp p q) t) (Comp (Comp r s) u) f g)

= { applying and lifting the associators to the Day type }

(bimap⊕ id ι ◦ ι) (Day (Comp p (Comp q t)) (Comp r (Comp s u)) f g)

= { applying bimap⊕ id ι }
Comp (Day p r f (,)) (Comp (Day q s id (,)) (Day t u id g))

Considering that both sides are equals, we can conclude that the diamond-shaped diagram
indeed commutes.

Finally, one can observe that ? and · do fit into the definition of semiarrow and state the
following proposition.

62 SEMIARROWS 4.4

Corollary 1 - In the category Prof(C,D), where C and D are small categories, the monoidal
category structure given by the Day convolution ? and the semigroup category structure given
by · together form a semiarrow category.

4.4 Semiarrow typeclass
We define a type class called Semiarrow for implementing the semiarrow notion in semiarrow
category following the same pattern as we did for the Day convolution.

class MonoPro p ⇒ Semiarrow p where
(·) :: p b c → p a b → p b c

this class requires the associativity law and the interchange law to hold for any four values
p1 :: Semiarrow p ⇒ p a b, p2 :: Semiarrow p ⇒ p c d , p3 :: Semiarrow p ⇒ p e a, and
p4 :: Semiarrow p ⇒ p f c.

(p1 ? p2) · (p3 ? p4) = (p1 · p3) ? (p2 · p4)

This law states that when two processes are composed in parallel and then composed with
another two processes also composed in parallel, it’s equivalent to first compose each process
with the other two processes and then compose the results in parallel.

We also have the idempotence law, which states that if we sequentially compose mpempty
with mempty , we get a mpempty back.

mpempty ·mpempty = mpempty

We have defined an extension to the monoidal profunctor type class that allows a restricted
notion of sequential composition, since the identity element is not defined for every type. This
sequential notion will give us more power than plain monoidal profunctors, but it is still weaker
than the arrow interface. Interestingly, our structure still lacks a feature equivalent to the arr
function, which lifts any pure function into an arrow. This absence can sometimes be beneficial.
The arr function, due to its lifting capability, embeds the entire function space into the arrow
structure. This can be overly inclusive when constructing a Domain-Specific Language (DSL),
especially when the goal is to maintain precise control over the language’s scope and specificity.

The Hom monoidal profunctor and SISO f m when m is a monad can both have this notion
of sequential composition. A more interesting example of Semiarrow is a variation of the data
structure Costate (sometimes called Store). In functional programming, the Costate comonad
is often defined as a pair of a state and a function that takes the state and returns a value, also
a well-known comonad.

data Costate s a b = Costate (a → s) b

instance Profunctor (Costate s) where
dimap f g (Costate bs c) = Costate (bs ◦ f) (g c)

instance Monoid s ⇒ MonoPro (Costate s) where
mpempty = Costate (const mempty) ()
(Costate f b) ? (Costate g c) = Costate (λ(x , y)→ f x ⊗ g y) (b, c)

instance Monoid s ⇒ Semiarrow (Costate s) where
(Costate bs c) · (Costate as b) = Costate (λa → as a ⊗ bs b) c

This variation has an extra type variable s to represent some form of state, a represents
a kind of input, and b is an output. The operator ⊗ is the monoidal multiplication of s. We
can recover the original Costate having a = b and having a comonad in s. This example will
faithfully respect the interchange law precisely when m is a commutative semigroup.

4.5 MOORE MACHINES 63

Lemma 20 - Let (s,⊗) be a commutative monoid, the Costate s type satisfies the interchange
law.

Proof. Let

p :: Costate s a b
q :: Costate s c d
r :: Costate s e a
s :: Costate s f c

we need to show that
(p ? q) · (r ? s) = (p · r) ? (q · s)

for these four arbitrary values of the Costate type.

((Costate as b) ? (Costate cs d)) · ((Costate es a) ? (Costate fs c))

= { applying definitions of ? and · }
Costate (λ(a ′, c′)→ as a ′ ⊗ cs c′) (b, d) · Costate (λ(e ′, f ′)→ es e ′ ⊗ fs f ′) (a, c)

= { applying definition of · }
Costate (λ(e, f)→ (λ(e ′, f ′)→ es e ′ ⊗ fs f ′) (e, f)⊗ (λ(a ′, c′)→ as a ′ ⊗ cs c′) (a, c)) (b, d)

= { simplifying the function inside Costate }
Costate (λ(e, f)→ es e ⊗ fs f ⊗ as a ⊗ cs c) (b, d)

= { reordering ⊗ and grouping terms }
Costate (λ(e, f)→ (es e ⊗ as a)⊗ (fs f ⊗ cs c)) (b, d)

= { applying definition of ? }
(Costate (λe → es e ⊗ as a) b) ? (Costate (λf → fs f ⊗ cs c) d)

= { applying definition of · backwards }
(Costate as b) · (Costate es a) ? (Costate cs d) · (Costate fs c)

= { applying definitions of p, q, r, and s backwards }
(p · r) ? (q · s)

4.5 Moore Machines
The Moore machine is a fundamental structure in automata theory and can be defined as a
tuple (S, I,O, s0, δ, λ), where S is the set of states, I is the input alphabet, O is the output
alphabet, s0 is the initial state, δ : S × I → S is the transition function, and λ : S → O is the
output function. The behavior of a Moore machine is determined by the input sequences and
the corresponding output sequences produced by the output function.

Moore machines are known for their simplicity and ease of implementation, making them a
popular choice in the design of finite-state machines.

An essential characteristic of Moore machines is that the current state entirely determines
the output function, which means that the output is not affected by the input sequence. This
is in contrast to Mealy machines, where the output depends on both the current state and the
input.

This difference is apparent in the Haskell ecosystem [Kmeb]. A Mealy machine is known
to be an Arrow , but Moore machines are not because is not possible to define arr for them.
Nevertheless, a Moore machine is a monoidal profunctor and has an associative sequential

64 SEMIARROWS 4.5

composition without having an identity and with a valid interchange law making it a significant
example of a Semiarrow.

data Moore a b = Moore b (a → Moore a b)

The type constructor above has as arguments an output b and a function to transition the
machine from its current state to a new state, depending on the input it receives.

It is easy to see that Moore type is a profunctor, and a MonoPro by just parallel composing
the transitions and collecting the outputs from both machines.

instance Profunctor Moore where
dimap f g (Moore c bm) = Moore (g c) (dimap f g ◦ bm ◦ f)

instance MonoPro Moore where
mpempty = Moore () (_→ mpempty)
(Moore b am) ? (Moore d cm) = Moore (b, d) (λ(a, c)→ am a ? cm c)

For the SemiArrow instance, we just collect the output of the rightmost machine and com-
pose the transitions nicely.

instance SemiArrow Moore where
(Moore c bm) · (Moore b am) = Moore c (λa → bm b · am a)

Lemma 21 - The semiarrow instance for the type Moore satisfies the interchange law.

Proof. Let

p = Moore b am,
q = Moore d cm,
r = Moore a em,
s = Moore c fm

we need to show that
(p ? q) · (r ? s) = (p · r) ? (q · s)

for these four arbitrary values of the Moore type.

((Moore b am) ? (Moore d cm)) · ((Moore a em) ? (Moore c fm))

= { applying definitions of ? and · }
Moore (b, d) (λ(a, c)→ am a · cm c) ·Moore (a, c) (λ(e, f)→ em e · fm f)

= { applying definition of · }
Moore (b, d) ((e, f)→ (am a · cm c) (a, c) · (em e · fm f) (e, f))

= { simplifying the function inside Moore }
Moore (b, d) ((e, f)→ (am a ? cm c) · (em e ? fm f))

= { reordering · and grouping terms }
Moore (b, d) (λ(e, f)→ (am a · em e) ? (cm c · fm f))

= { applying definition of ? }
Moore b (λe → am a · em e) ?Moore d (λf → cm c · fm f)

= { applying definition of · backwards }
(Moore b am) · (Moore a em) ? (Moore d cm) · (Moore c fm)

= { applying definitions of p, q, r, and s backwards }
(p · r) ? (q · s)

4.5 MOORE MACHINES 65

A Moore machine can be constructed using the following type, representing a coalgebra.

data MooreCoalg s a b = MooreCoalg (s → b) (s → a → s)

where the first argument is the function λ, and the second one δ, with type variables a and b
representing the input and output alphabets. This is an extension of the type Costate defined
in the previous section.

buildMoore ::Applicative m ⇒ MooreCoalg s a b → s → Moore a b
buildMoore mc@(MooreCoalg out next) s =
Moore (out s) (fmap (buildMoore mc) ◦ next s)

To construct a Moore datatype, we use the above function buildMoore that takes a MooreCoalg
argument and extracts its state to get the output, and makes a recursive call to obtain the ma-
chine transitions. One can easily build a Moore machine this way by simply defining which
function determines the machine output, and which function determines the transition.

countMoore ::Moore Int a Int
countMoore = buildMoore (MooreCoalg id (λs → s + 1)) 0

The above machine ignores every input and returns an updated state by summing 1 to
the previous state, its initial state is 0. Note that the output is the identity function meaning
that every state will be the output of the machine providing a Moore machine that is a simple
counter.

Such Moore machines may be run by transforming them in functions of type [a] → [b].
This can be achieved by reading every input and executing the transitions at every step. After
a new state is obtained, we append to the returning list as follows.

runMoore ::Moore a b → [a]→ [b]
runMoore (Moore b f) [] = [b]
runMoore (Moore b f) (a : as) = b : runMoore (f a) as

Now we can consume the countMoore machine and obtain the desired accumulated outputs.
The SemiArrow interface allows the creation of composable Moore machines, something

which cannot be done with the Arrow type class. However, this fact comes with a price: each
time a sequential composition is used with a Moore machine adds an extra delay due to the
necessity for an explicit initial output. In the next section, we discuss the SemiArrow interface
of Moore machines and how they relate to synchronous data-flow programming.

66 SEMIARROWS 4.5

Chapter 5

Applications

In this chapter, we list some applications that is derived using a monoidal profunctor and a
semiarrow to reason about functional programmining code. The applications are type-safe lists,
monoidal profunctor optics, an tiny interpreter for a process calculus, and connections of Moore
machines with left folds and scans.

5.1 Applications of Monoidal Profunctors

5.1.1 Type-safe lists

The first application for the monoidal profunctor is to handle tuples instead of lists which
give type-safety concerning its size. This techinique is found in the packages opaleye [Ella] and
product−profunctors [Ellb]. This technique is not new and it is heavily used in opaleye package.
However it shows the power behind the monoidal profunctor interface. The technique consists
in applying the Default typeclass to generate such lists.

class Default p a b where
def :: p a b

The Default typeclass picks a distinguished computation of the form p a b representing a
lifted function based on the structure of p.

Given two default computations, p a b and p c d , it is possible to overload def with the
help of the GHC extension MultiParamTypeClasses to derive an instance for
p (a, c) (b, d).

instance (MonoPro p,Default p a b,Default p c d)⇒
Default p (a, c) (b, d) where

def = def ? def

If one has more than two computations, they can be handled by overloading with the
monoidal profunctor product. Flattening functions, like flat3i , flat3l , flat4i , flat4l , and so on,
can address tuple reparenthesizations. The number in the function name indicates the number
of coordinates in the tuple. Those boilerplate codes can also be derived with the help of generics,
template Haskell and quasi-quotations.

instance (MonoPro p,
Default p a b,
Default p c d ,
Default p e f)⇒
Default p (a, c, e) (b, d , f) where

def = dimap flat3i flat3l (def ? def ? def)

67

68 APPLICATIONS 5.1

instance (MonoPro p,
Default p a b,
Default p c d ,
Default p e f ,
Default p j k)⇒
Default p (a, c, e, j) (b, d , f , k) where

def = dimap flat4i flat4l (def ? def ? def ? def)

For example, using this technique, the functions replicate [Ellb], iterate, and zipWith can
have type-safe versions.

A Replicator is a type that enables the type-safe version of replicate.

newtype Replicator r f a b = Replicator (r → f b)

A profunctor instance for Replicator r f , noting that a is a phantom type argument since
this, amounts to a functor applied to a type b. The phantom type argument a is needed to
match the desired kind.

instance Functor f ⇒ Profunctor (Replicator r f) where
dimap h (Replicator f) =

Replicator ((fmap ◦ fmap) h f)

Whenever r∼f b, one can choose Replicator id as its default value.

instance Applicative f ⇒
Default (Replicator (f b) f) b b where

def = Replicator id

A Replicator is a MonoPro when f is applicative; its monoidal profunctor product is just
zip.

The function replicateT does the trick. It uses def ′, which is deconstructed to Replicator f ,
to overload the monoidal product basing on a type given in runtime.

replicateT ::Default (Replicator r f) b b ⇒ r → f b
replicateT = f
where Replicator f = def ′

def ′ ::Default p a a ⇒ p a a
def ′ = def

For example, we may get three integers from the command line by

replicateT (readLn :: IO Int) :: IO (Int , Int , Int)

The number of integers varies with the type. In the case of iterators, it is important to note
that this implementation differs slightly from the original iterate from Data.List , since the first
element here is ignored.

data It a z b = It ((a → a)→ a → (a, b))

An It a is a profunctor on b and has a trivial instance omitted here. A monoidal profunctor
instance for It a works with the return type a, the first component of the tuple, acting as a
state.

instance MonoPro (It a) where
mpempty = It (λh x → (h x , ()))

5.1 APPLICATIONS OF MONOIDAL PROFUNCTORS 69

It f ? It g = It $ λh x →
let (y , b) = f h x

(z , c) = g h y
in (z , (b, c))

A default computation for It is one step iteration, and this will keep the iteration happening
when computed the monoidal product.

instance Default (It a) z a where
def = It (λf a → (f a, f a))

Using the overloaded def again and deconstructing its type with the help of itExplicit , the
function iterT is the type-safe version of iterate.

iterT ::Default (It a) b b ⇒
(a → a)→ a → b

iterT = itExplicit def
where

itExplicit :: It a b b → (a → a)→ a → b
itExplicit (It h) f a = snd (h f a)

Evaluating

iterT (2∗) 3 :: (Integer , Integer , Integer , Integer),

gives (6, 12, 24, 48) which is exactly four iterations.
It is also possible to construct a type-safe version of the function zipWith relying on the

type Grate. This example shows a connection with this technique and optics (more details in
the next section).

data Grate a b s t = Grate (((s → a)→ b)→ t)

The datatype Grate a b is a profunctor on s and t and relies on a continuation-like style.

instance Profunctor (Grate x y) where
dimap f g (Grate h) =

Grate (λk → g (h (λt → k (t ◦ f))))

Its monoidal profunctor product instance unzips the input function and passes it to the
monoidal product of f and g .

instance MonoPro (Grate x y) where
mpempty = Grate $ λ → ()
Grate f ?Grate g =

Grate (λh → (f ? g) (k (unzip′ (Aux h))))
where
k = unAux ? unAux

The type Aux is just a helper type that makes the definition of ? easier.

data Aux x y a = Aux {unAux :: (a → x)→ y }

Applying id to an input function is the default computation for a Grate whenever s∼a and
t∼b.

70 APPLICATIONS 5.1

instance Default (Grate a b) a b where
def = Grate (λf → f id)

The same pattern of Replicator and It also occurs with Grate.

grateT ::Default (Grate a b) s t ⇒ (((s → a)→ b)→ t)
grateT = grateExplicit def
where

grateExplicit ::Grate a b s t → (((s → a)→ b)→ t)
grateExplicit (Grate g) = λf → g f

A type-safe zipWith, called zipWithT , can be constructed using the grateT .

zipWithT :: (Int → Int → Int)
→ (Int , Int , Int)
→ (Int , Int , Int)
→ (Int , Int , Int)

zipWithT op s1 s2 = grateT (λf → op (f s1) (f s2))

This connection with optics has an obvious limitation that it can only generate functions
with explicit types like zipWithT to avoid ambiguous types. It is interesting to note that the
same construction can be used to create type-safe traversals (which is also an optic). One needs
to consider the above type Traverse, and Traverse ($) as default computation.

data Traverse f r s a b = Traverse ((r → f s)→ a → f b)

5.1.2 Monoidal Profunctor Optics

Data accessors are an essential part of functional programming. They allow reading and writing
a whole data structure or parts of it [PGW17]. In Haskell, one needs to deal with Algebraic
Data Types (ADTs) such as products (fields), sums, containers, function types, to name a few.
For each of these structures, the action of handling can be a hard task and not compositional
at all. To circumvent this problem, the notion of modular (composable) data acessors [PGW17]
helps to tackle this problem with the help of some tools category-theoretic constructions such
as profunctors.

An optic is a general denotation to locate parts (or even the whole) of a data structure
in which some action needs to be performed. Each optic deals with a different ADT, for ex-
ample, the well-known lenses deal with product types, prisms with sum types, traversals with
traversable containers, grates with function types, isos deals with any type but cannot change
its shape, and so on.

The idea of an optic is to have an in-depth look into get/set operations, for example, if one
has a "big" data structure s, it is possible to extract a piece of it, say a, which can be written as
a function get :: s → a. Whereas, if one focus in a "big" structure s providing a value of b (part
of f) it can turn in another "big" structure "t" (this may not change, and the data can still be
s), a good manner to represent that is via the function set :: s → b → t .

These functions can be combined using a binary type constructor p and a restriction r ,
resulting in the type Optic r s t a b = ∀p.r p ⇒ p a b → p s t . For instance, if r is Strong , then
Strong p ⇒ p a b → p s t is a lens. If one substitutes p with the contravariant hom-functor
(which is Strong , and also known as the type constructor Forget :: (a → r) → Forget r a b
in Haskell), and uses first ′ :: p a b → p (a, x) (b, x) as a lens, it becomes apparent that this
provides the projection of the first component from a product type, producing then the function
get :: (a, x)→ a in this context.

5.1 APPLICATIONS OF MONOIDAL PROFUNCTORS 71

Lenses help to give the intuition behind this profunctorial optics machinery, but this work
will solely focus on the mixed optic derived from a monoidal profunctor with ⊗ = ×, which
combines grates and traversals. It will be called a monocle.

Those two optics have the following types.

type Iso s t a b = ∀p.Profunctor p ⇒ p a b → p s t

type Monocle s t a b = ∀p.MonoPro p ⇒ p a b → p s t

Every Monocle is an Iso. The latter provides us the necessary tool for handling isomorphisms
between types.

swap :: Profunctor p ⇒ p (b, a) (c, d)→ p (a, b) (d , c)
swap = dimap sw sw

associate :: Profunctor p ⇒
p ((w , y), d) ((x , z), c)→ p (y , (w , d)) (z , (x , c))

associate = dimap associnv α⊗

The swap iso represents the isomorphism A×B ∼= B×A. It takes a profunctor and reverses
the order of all product types involved, and associate iso represents an associative rule of
product types. The units () can be treated as well but will be omitted.

A monocle locates every position from a product (tuple) type (which can be generalized to
a finite vector [JO14]).

each2 ::MonoPro p ⇒ p a b → p (a, a) (b, b)
each2 p = p ? p

each3 ::MonoPro p ⇒ p a b → p (a, a, a) (b, b, b)
each3 p = dimap flat3i flat3l (p ? p ? p)

each4 ::MonoPro p ⇒ p a b → p (a, a, a, a) (b, b, b, b)
each4 p = dimap flat4i flat4l (p ? p ? p ? p)

As one can observe, each2 deals with parallel composition with the argument p with itself
using the monoPro interface. The focus is on tuples of size 2. The monocles each3 and each4
deal with tuples of size 3 and 4 and depends on the flattening functions defined earlier.

Actions can be performed on a mono, given the desired location; one can read/write any
product (tuple) type.

foldOf ::Monoid a ⇒ Monocle s t a b → s → a
foldOf monocle = runForget (mono (Forget id))

This action tells that given a Monocle (location) one can monoidally collect many parts a
from the big structure s (in this case, tuples). It is nice to remember that Forget is just the
contravariant hom-functor, an instance of a SISO, when f = Id , and g = Const r the constant
applicative functor, whenever r (the covariant part of the SISO) is a monoid. For example,

foldOf each3 ::Monoid a ⇒ (a, a, a)→ a

behaves in the same way as the function fold do with lists, its evaluation on the value
("AA","BB","CC") gives "AABBCC" as expected. A Monocle called foldMapOf can also behave
like its list counterpart foldMap,

foldMapOf ::Monoid r ⇒ Monocle s t a b → (a → r)→ s → r
foldMapOf lens f = runForget (lens (Forget f))

locating all elements of a 3-element tuple gives

72 APPLICATIONS 5.1

foldMapOf each3 ::Monoid r ⇒ (a → r)→ (a, a, a)→ r

as mentioned.
Every profunctorial optic has a so-called van Laarhoven [O’Cb] functorial representation.

For a monocle, this representation can be obtained by the following function.

convolute :: (Applicative g ,Functor f)⇒ Monocle s t a b
→ (f a → g b)
→ f s → g t

convolute monocle f = unSISO (monocle (SISO f))

following the same pattern as in foldMapOf changing the Forget by a SISO.
If we specialize convolute using the identity functor f = Id , one gets the definition of a

Traversal , which is a defined in the lens package [Kmea].

traverseOf ::Applicative g
⇒ Monocle s t a b
→ (Id a → g b)
→ (Id s → g t)

traverseOf monocle = convolute monocle

One can specialize convolute using the applicative functor g = Id , to get the van Laarhoven
representation for grates (which depends on a Closed type class of Profunctors) [O’Ca].

class Profunctor p ⇒ Closed p where
closed :: p a b → p (x → a) (x → b)

zipFWithOf :: Functor f
⇒ Monocle s t a b
→ (f a → Id b)
→ (f s → Id t)

zipFWithOf monocle = convolute monocle

Monoidal profunctors with ⊗ = × capture the essence of a grate and a traversal. Grates
have a structured contravariant part (input) while traversals, the covariant one (output), while
a monocle has both structures.

5.1.3 Process calculi using the Free Monoidal Profunctor

We now will build a simple interpreter example for a process calculi that is a variant of pi-
calculus. This example shows a good example of how a free monoidal profunctor works. First, we
will build a syntax tree that contains syntax for sending a message through a channel, receiving
a message, and creating a new channel. Then the parallel composition will be achieved using
the free structure because the syntax tree type we present is not a monoidal profunctor but
only a plain profunctor.

data Process x a b where
Send :: String → (a → x)→ Process x a b → Process x a b
Recv

:: String
→ (x → Process x a b)
→ Process x a b

New :: String → Process x a b → Process x a b
Output :: String → (x → b)→ Process x a b

5.2 APPLICATIONS OF SEMIARROWS 73

The type Process presents four primary constructors, three mentioned before, and an extra
one called output to represent an output for the process. The communication needs to be
invariant, i.e., sending and receiving should share the same type x. It is important to note
that the type variables a and b represent inputs that can be consumed and encoded to be sent
and output to be decoded, producing a value of a desired type, respectively. To send a value,
one needs to provide a way to decode the input a into the communication type x, and then
behave as a continuation given by its third field. The receiving will bind what it gets from the
channel in the input of the function provided by the type (x -> Process x a b) and then
continue normally. The output constructor needs a way to decode the communication type x
into the output b. Finally, it is important to note that the New construct is straightforward.
Each constructor has a String field to keep a channel name.

instance Profunctor (Process x) where
dimap f g (Send channel h π) = Send channel (h ◦ f) (dimap f g π)
dimap f g (Recv channel k) = Recv channel (dimap f g ◦ k)
dimap f g (New channel π) = New channel (dimap f g π)
dimap f g (Output s h) = Output s (g ◦ h)

Interestingly, Process x is not a monoidal profunctor if we do not make assumptions about
x (x being a monoid, for example). We want to keep the communication type x as general as
possible to allow a broader communication range. Note that a data constructor

Parallel :: Process x a b -> Process x a b -> Process x a b

could be used, but it will only help a little and provide two processes with different input and
output types. Any other variant of this sort can invalidate the Profunctor instance. Without
the monoidal profunctor interface, one cannot use parallelism, but by using it freely, we can
recover it. The strategy is to interpret the syntax into a valid monoidal profunctor that allows us
to model a notion of parallelism and use foldFreeMP to consume the free monoidal profunctor
structure. The free monoidal profunctor will carefully pack the process syntax (the consMP
function will pack them) and provide a valid monoidal profunctor structure.

5.2 Applications of Semiarrows

5.2.1 Synchronous data-flow programming and delays

In synchronous data-flow programming [HCRP91], components are composed to create a larger
system, with data flowing through components in a well-defined manner. The SemiArrow inter-
face, along with the Moore machine model, provides the necessary interface to create, manage,
and compose stateful components in this context. The main advantage of using a semiarrow
instead of a causal commutative arrow [LCH11] is that in a CCA, one needs to introduce de-
lays manually, making complex synchronous programs difficult to reason about. In contrast,
in a semiarrow (that fails to be an arrow, like Moore machines), the delay is accounted for
automatically when the sequential composition is used.

Let’s use Moore machines to explain the semiarrow (that is not an arrow) behavior. When
we compose two Moore machines, say m = Moore c bm, n = Moore b am, using the sequential
composition operator ·, we create a new Moore machine Moore c (λa → bm b · am a) that first
applies the first machine’s transition am a followed by the second machine’s transition bm b.
However, the output of the first machine is based on its current state before transitioning. The
composed Moore machines on a list of inputs, the output of the first machine will be delayed
by one step compared to the output of the second machine.

In the runMoore function (last section), it is possible to observe the delay effect. The tran-
sition function f applied to the input a produces the output b before transitioning to the next

74 APPLICATIONS 5.2

state. As a result, the output of the first Moore machine in the composition lags by one step com-
pared to the second machine. This delay is a natural consequence of the composition of stateful
components, as the first machine’s output depends sequentially on its state before transition
occurs.

Parallel composition, encoded in the monoidal profunctor interface, does not introduce any
delay, thus simulating the correct behavior when two stateful programs are composed in this
manner. Similarly, when using the profunctor’s dimap, which lifts pure computations, no delay is
introduced as well. In this work, both interfaces will be referred to as 0-delay operations (in the
literature combinatorial), while sequential composition will be called a 1-delay operation. These
terminologies account for the number of delays introduced automatically without requiring any
manual intervention, as in the case of CCAs [LCH11].

p q

(a) p · q

p

q

(b) p ? q

pf g

(c) dimap f g p

Figure 5.1: The semiarrow interface

In Figure 5.1, the discussion above is captured in a graphical representation. The sequential
composition is illustrated with a small hollow circle, indicating a delay, as shown in Figure
5.1a. The profunctor interface, as well as the monoidal profunctor interface, can be endowed
with effects using effectful monoidal profunctors, as discussed in Section 3.5. This allows for
handling effects, such as errors or logging, when splitting occurs during parallel composition or
when merging is necessary. Using an effectful monoidal profunctor maintains the same 0-delay
behavior as before, making it a viable alternative to the Profunctor or MonoPro interfaces.

It is indeed possible to automatically add delays in any process using the following typeclass
Delay. This can be seen as a renaming of the ArrowInit class [LCH11] without the ArrowLoop
restriction to maintain the semiarrowname semantics.

class Delay p where
delay :: b → p b b

instance Delay Moore where
delay b = Moore b delay

In the code above, a new initial value is added to the process flow, which delays the entire
machine process by one unit of time.

delay

Figure 5.2: delay

5.2 APPLICATIONS OF SEMIARROWS 75

The Figure 5.2 illustrates the delay process, with the filled circle representing a manually
introduced delay. This graphical representation highlights the delay’s role in the process flow
and helps convey its importance in managing the reasoning about a synchronous process.

However, delays introduced by using the delay process can be challenging to reason about,
especially when dealing with complex systems. For instance, if one has two stateful binary
processes, i.e., a process with a tuple in its input and a single type in its output, and one of
them needs to wait for the execution of the other, it is possible to use delay in conjunction
with the 0-delay operation dimap to achieve the desired behavior. However, the composition of
structures can be generalized to accommodate such delays more effectively.

class SemiArrow p ⇒ GSemiArrow p where
(◦1) :: p (c, d) e → p (a, b) c → p ((a, b), d) e
(◦2) :: p (c, d) e → p (a, b) d → p (c, (a, b)) e

instance GSemiArrow Moore where
Moore e cdx ◦1 Moore c abx =

Moore e (λ((a, b), d)→ cdx (c, d) ◦1 abx (a, b))
Moore e cdx ◦2 Moore d abx =

Moore e (λ(c, (a, b))→ cdx (c, d) ◦2 abx (a, b))

The GSemiArrow typeclass is an extension of the SemiArrow typeclass, introducing two new
composition operators, (◦1) and (◦2). These operators allow for more complex compositions of
processes with an intrisic notion of additional delays. The primary purpose of the GSemiArrow
typeclass is to handle effectively the composition with worrying about delays.

In the provided instance for the Moore type, both (◦1) and (◦2) operators are defined,
showcasing the ability to compose Moore machines with additional delay handling.

The (◦1) operator is used for sequential composition of two machines or processes, where
the first process takes a tuple (c, d) as input and produces an output of type e, and the second
process takes a tuple (a, b) as input and produces an output of type c. The resulting composition
takes a tuple ((a, b), d) as input and produces an output of type e. This operator effectively
captures the delays between the first and second binary processes. In essence, (◦1)computes a
binary process, takes its result, and composes it with the first coordinate of the second binary
process, while handling the respective delay.

On the other hand, (◦2) deals with a similar behavior but focuses on the second coordinate
of the tuple in the second process. This approach rules out the necessity of automatic delays and
allows for greater flexibility and scalability when handling more complex systems with multiple
delays.

p

q

(a) p ◦1 q

p

q

(b) p ◦2 q

Figure 5.3: The GSemiArrow interface

The first figure represents the composition p ◦1 q . In this figure, two parallel input arrows
are connected to the p block representing its input. The boxes are marked with a dotted outline
to indicate that they correspond to a GSemiArrow . The output arrow of p is connected to the
q block through a hollow circle, indicating a delay. The process q also has an additional parallel
input arrow coming from the left corner of the dotted box representing its second input. The

76 APPLICATIONS 5.2

output of q also has a delay, the second one, as one can observe hollow circle. It is interesting to
note that one should not expect associativity in these compositions, i.e., both figures can give
different results due to the different connections and the delays present.

As an example, consider the expression runMoore m [1, 2, 3, 4, 5, 6, 7, 8] where m = (plusM ◦1
plusM) · (sumM ? sumM ? sumM) · splitter3 . The three involved process in this expression are
given as follows.

splitter3 ::MooreI a (([a], [a]), [a])
splitter3 =
createMachine (MooreCA fst

(λ(((s, s ′), s ′′), cter) a →
case cter ‘mod ‘ 3 of
0→ (((a : s, s ′), s ′′), cter + 1)
1→ (((s, a : s ′), s ′′), cter + 1)
2→ (((s, s ′), a : s ′′), cter + 1))) ((([], []), []), 0)

sumM ::MooreI [Int] Int
sumM = createMachine (MooreCA id (λs as → s + sum as)) 0

plusM ::MooreI (Int , Int) Int
plusM = createMachine (MooreCA id (λs (x , y)→ s + x + y)) 0

The composed machine m provides us with an ideal scenario for analyzing the GSemiArrow
interface and its handling of two delays. First, the machine splits, with a delay having its inital
input as (([], []), []), the input into three lists based on the state’s counter cter . The first list
contains inputs received when the counter is a multiple of 3, while the second and third lists
correspond to inputs with remainders of 1 and 2 modulo 3, respectively.

Next, we sequentially compose the machine with three parallel sum accumulators, generating
a delay due to the initial value of ((0, 0), 0). Finally, we sequentially compose the machine again
with two plusM accumulators using the GSemiArrow interface, resulting in two delays with an
initial value of 0. The plusM accumulators sum the results of the first two sumM machines and
store their state. This result, with a delay, is then fed back into the plusM accumulators to be
added to the output of the third sumM machine. In the entire machine m, there are a total of
four delays.

Table 5.1: Behavior of the analyzed expression over time

t t0 t1 t2 t3 t4 t5 t6 t7 t9
input 1 2 3 4 5 6 7 8 9

splitter3 [][][] [1][][] [1][2][] [1][2][3] [4, 1][2][3] [4, 1][5, 2][3] [4, 1][5, 2][6, 3] [7, 4, 1][5, 2][6, 3] [7, 4, 1][8, 5, 2][6, 3]

sumM1 0 0 1 2 3 8 13 18 30
sumM2 0 0 0 2 4 6 13 20 27
sumM3 0 0 0 0 3 6 9 18 27
plusM1 0 0 0 1 5 12 26 52 90
plusM2 0 0 0 0 1 9 27 62 132

Table 5.1 presents the computations occurring over time, starting at t0. For the sake of
aesthetics and clarity, we have removed the tuples from the third row and replicated both
sumM and plusM rows. It is important to note that the final plusM takes four time delays
before it begins processing, effectively capturing the desired behavior. This table provides a
clear visualization of the computations’ evolution and highlights the inherent delays in the
system, emphasizing the importance of understanding how the components of this expression
interact with each other over time. The last line gives the exact answer of the whole process.
The subscripts used with sumM and plusM specify the distinct instances of function usage,
enhancing the clarity of the table’s interpretation.

5.2 APPLICATIONS OF SEMIARROWS 77

An equivalent expression without using GSemiArrow is

runMoore n [1, 2, 3, 4, 5, 6, 7, 8]

where n = plusM · ((delay 0 · plusM) ? delay 0) · (sumM ? sumM ? sumM) · splitter3 . The
machine n captures the same behavior as the GSemiArrow composition, but it is harder to
reason about and introduces an extra delay (5 delays instead of 4 when using GSemiArrow).
Using the GSemiArrow extension to a semiarrow can be crucial in systems where timing and
performance are essential. It is worth noting that n = delay 0 ·m.

splitter3 sumM2

sumM1

sumM3

plusM1 plusM2

(a) m = (plusM ◦1 plusM) · (sumM ? sumM ?
sumM) · splitter3

splitter3 sumM2

sumM1

sumM3

plusM1 delay

delay

plusM2

(b) n = plusM · ((delay 0 · plusM) ? delay 0) ·
(sumM ? sumM ? sumM) · splitter3

Figure 5.4: Graphical example

The Figure 5.4 illustrates both discussed machines, with the first one utilizing GSemiArrow
and the second one relying solely on manual delays. To accurately count the delays, we consider
parallel delay circles as one unit. As a result, the first figure has four delays, while the second
one has five. This figure also demonstrates that using GSemiArrow offers a more convenient
way to manage delays.

5.2.2 Moore machines, folds and scans

We start this subsection by analyzing the following simple example of using a Moore machine by
counting how many elements we read from the input. It’s worth noting that the proofs included
in this section are formally presented in a separate Agda file, which can be downloaded from
the following GitHub repository: https://github.com/romefeller/monopro-agda-formal.

> runMoore countMoore [(), (), (), (), ()]
> [0, 1, 2, 3, 4, 5]

78 APPLICATIONS 5.2

By running the countMoore machine with five unit inputs (can be anything, it will be
ignored), the return is a list from 0 to 6, meaning that we obtain the initial state 0, and the
next five steps that increases the counter by 1.

One can observe that the same can be obtained by using the function scanl from Data.List .

runMoore ◦ buildMoore (MooreCoalg id (λs → s + 1))
= scanl (λs → s + 1)

That can be generalized as the following rule.

runMoore ◦ buildMoore (MooreCoalg id f) = scanl f

If one take a peek on the scanl one can notice that this function builds and runs a Moore
machine at the same time. If the single parameter b was a function, the first two parameters
types would match MooreCoalg , and the return would be the same as runMoore.

scanl :: (b → a → b)→ b → [a]→ [b]

Using a Moore abstraction allows us to construct more complex ways to do accumulated
folds that is not possible using scanl only.

In this section we explore the connection between Moore machines, left scans and left folds.
First, let us take a look on foldl , and runMooref .

foldl :: (s → a → s)→ s → [a]→ s
foldl s [] = s
foldl f s (a : as) = foldl f (f s a) as

runMooref ::Moore a b → [a]→ b
runMooref (Moore b f) [] = b
runMooref (Moore b f) (a : as) = runMooref (f a) as

One can observe that foldl resembles runMooref , to explain this, we observe that type of
this function can be modified to allow an output type b.

ofoldl :: (s → a → s)→ s → (s → b)→ [a]→ b
ofoldl f s sb as = sb (foldl f s as)

Analyzing the parameters of ofoldl , we have an initial state s, a transition s → a → s, and
an output function s → b. If this output function is the identity function id , then we recover
foldl . This is setup is suitable for building Moore machines using MooreCoalg type, and the
buildMoore function. Furthermore, the return type [a]→ b, is the same as

type Fold a b = SISO [] Identity a b

We now can rewrite the above function as follows.

mfoldl ::Moore a b → Fold a b
mfoldl m = SISO $ λas → Identity (runMooref m as)

It is nice to remember that the inital state is already encoded inside the Moore machine,
the use of buildMoore makes that fact clear.

Now, we have a function between two monoidal profunctors: Moore and Fold . This way of
writing a fold gives us some reasoning benefits.

Lemma 22 - The function mfoldl is a natural transformation between the profunctors Moore
and Fold .

5.2 APPLICATIONS OF SEMIARROWS 79

Proof. We need to prove that the following diagram commutes.

Moore b c
mfoldl

��

f //Moore a d
mfoldl
��

Fold b c g
// Fold a d

Since Moore and Fold are profunctors f , and g are both of the form f = dimapMoore h i, and
g = dimapFold h i, for arbitrary h : a→ b, and i : c→ d. The commuting diagram tells that
we need to prove the following rule.

dimapFold h i ◦mfoldl = mfoldl ◦ dimapMoore h i

The result can be obtained by employing structural induction on the Moore type, as for-
malized in Agda.

Lemma 22 gives us the corresponding fusion law for foldl.

foldl op e ◦map f = foldl (λs a → op s (f a)) e

but, using the lemma above we can write both sides using mfoldl. The left-hand side of the
above law is the term foldl op b ◦ map f , which states that we map a function f to the input
list and then fold it, this is precisely what happens with a Fold , this same behavior is achived
by the term dimap f id ◦ mfoldl . Conversely, the term foldl (λs a → op s (f a)) e, which
gives us the same behavior as acting on the input of a Moore machine, s the analogous term is
mfoldl ◦ dimap f id . Hence, the fusion law is a corollary of Lemma 22.

dimap f id ◦mfoldl = mfoldl ◦ dimap f id

The exact same reasoning can be done to treat scanls as a natural transformation between
two profunctors. In this case, we have this transformation between Moore and Scan a b =
SISO ZipList ZipList a b.

scanl :: (b → a → b)→ b → [a]→ [b]
scanl f b [] = [b]
scanl f b (x : xs) = b : scanl f (f b x) xs

mscanl ::Moore a b → Scan a b
mscanl m = SISO $ λ(ZipList as)→ ZipList (runMoore m as)

Lemma 23 - The function mscanl is a natural transformation between the profunctors Moore
and Scan.

Proof. The proof procceds with the same reasoning as Lemma 22, thus one needs to show that
the following diagram commutes.

Moore b c
mscanl

��

f //Moore a d
mscanl
��

Scan b c g
// Scan a d

80 APPLICATIONS 5.2

This lemma gives us that for any h : a→ b, and i : c→ d we have dimap h i ◦mscanl =
mscanl ◦ dimap h i .

The mfoldl function in our structure respects the unit mpempty and the monoidal mul-
tiplication inherent to a monoidal profunctor. However, it does not preserve the sequential
composition property that a semiarrow would. This is because, in Moore machines, a delay is
introduced when the compositions are sequenced. In other words, an output from one function
is not immediately used as input for the next, due to the presence of an intermediate state. In
contrast, the Fold function does not introduce such delays, as it immediately passes the result
of one function as input to the next. This behavior is also observed with the mscanl function.

Lemma 24 - The functions mfoldl , and mscanl preserves mpempty .

mfoldl mpempty = mpempty

mscanl mpempty = mpempty

Proof. Firstly, we notice that mfoldl mpempty = runMooref (Moore () (_ → mpempty)), the
RHS is the mpempty of a function type, that is const (). The left-hand side clearly produces
only (), and the constant function with () as argument will also do so. Thus, the equation holds
for mfoldl . Since the only production is (), the equation will also hold for mscanl .

Lemma 25 - The functions mfoldl , and mscanl preserves ?.

mfoldl (m ? n) = mfoldl m ?mfoldl n

mscanl (m ? n) = mscanl m ?mscanl n

Proof. First we prove the identity for mfoldl . Given m = Moore b am :: Moore a b, and
n = Moore d cm :: Moore c d , we know that m ? n = Moore (b, d) (λ(a, c) → am a ? cm c).
Hence,

mfoldl (m ? n) = λls → runMooref (Moore (b, d) (λ(a, c)→ am a ? cm c) ls,

and

mfold m ?mfoldl n

= { definition of mfold }
λls → zip′ ((λas → Identity (runMooref m (fst as))?

(λcs → Identity (runMooref n (snd as)))

(unzip ls)))

= { definition of zip′ and ? }
λls → (runMooref (fst (unzip ls)), runMooref (snd (unzip ls))

We need to prove now that for any ls :: [(a, c)], we get the following.

runMooref (Moore (b, d) (λ(a, c)→ am a ? cm c) ls =
runMooref (fst (unzip ls)), runMooref (snd (unzip ls)

For ls = [], we clearly have that both sides of the equation have the same state, giving us the
base case. Assume the equation holds for a list ls = zs, and we want to show that the equation
holds for the prepended input pairs ls = (x , y) : zs which both having types x :: a and y :: c
respectively. We first apply the transition functions am and bm of Moore machines m and n to
the first components x and y of the input, respectively. Then, we use the induction hypothesis
on the rest of the input list zs to prove that the equation holds for the entire input list x : zs. By

5.2 APPLICATIONS OF SEMIARROWS 81

function extensionality, we get the desired result for. Thus, mfoldl (m?n) = mfoldl m?mfoldl n.
The Agda formalization faithfully follows the proof described above.

Since mscanl is simply a variation of mfoldl that accumulates the outputs instead of only
returning the final output, we can observe that we will have the same results for every list input,
so the result also holds for mscanl .

Lemma 25 indicates that folding over a list of pairs using a combined folding function is
equivalent to folding over two separate lists using individual folding functions and combining
the results using the expressiveness of the MonoPro interface. Translating to plain fold, we get
the following law.

foldl (dblSwap (uncurry f ? uncurry g)) (e, u) (zip as bs)
= (foldl f e as, foldl g u bs)
where dblSwap = curry (lmap (λ((a, b), (c, d))→ ((a, c), (b, d)))

One can observe that the left-hand side is sometimes called a bifold. A bifold is a function that
combines two separate folds into a single operation. This idea can be used to simplify the law,
making it easier to state and understand.

bifold f g (e, u) as bs = (foldl f e as, foldl g u bs)

Lemma 26 - The functions mfoldl and mscanl are monoidal profunctor homomorphisms, i.e.,
they preserve mpempty and ?.

Proof. This follows directly from Lemma 24 and Lemma 25.

The above result allows us to reason about left folds as a categorical construct such as a
monoidal profunctor, however it is worth noting that mfoldl and mscanl do not preserve the
semiarrow operation ·. This fact occurs because we cannot compose the Fold arrows in an evident
way. For mscanl , we observe that · introduces a delay as discussed earlier in this section, while
Scan does not introduce any delay. Thus, both functions are not semiarrow homomorphisms.

82 APPLICATIONS 5.2

Chapter 6

Conclusion

This thesis explored the concept of monoidal profunctors in the context of monoidal categories
of profunctors. We demonstrated that such a category possesses symmetric closure and derived
the free construction of monoidal profunctors. Our study shows the implementation of monoidal
profunctors in Haskell, particularly highlighting their relevance in optics and parallel program-
ming. For scenarios requiring the capability to manage effects during split and merge operations
in parallel computations, we introduced an extended version of the monoidal profunctor, called
effectful monoidal profunctor. Additionally, the semiarrow in a semiarrow category, which
presents another variant of the monoidal profunctor, reveals an interesting mathematical struc-
ture. This structure is adept at modeling sequential compositions that do not require identities,
making it suitable for representing Moore machines and synchronous data-flow programming. In
this study, we also derived a categorical bridge between Moore machines and folds. This connec-
tion is characterized through a specialized monoidal profunctor termed SISO , an acronym for
’structured input, structured output.’ The relationship is explored by a corresponding monoidal
profunctor homomorphism.

6.1 Related Work
The work of Rivas and Jaskelioff [RJ17] elucidates how to structure computations using monoids
in specific monoidal categories and offers free constructions for each. In the work of Pickering,
Gibbons, and Wu [PGW17] defined the concept of monoidal profunctors in Haskell in their
work on optics. Within the Haskell community, the product-profunctors package provides def-
initions and examples of monoidal profunctors [Ellb] and is extensively utilized by the opaleye
package [Ella]. Bartosz Milewski [Mil] further explored the free construction of a monoidal
profunctor, introducing initial examples in Haskell.

In "Profunctor Optics: A Categorical Update" [CEG+20], the authors generalize profunctor
optics using enriched categories, doubles and Tambara modules. The Monocle optic in this work
employs a methodology reminiscent of Jaskelioff and O’Connor’s approach [JO14] that derives
lenses using a representation theorem.

Regarding semiarrows, observations in [LCH09] on causal commutative arrows illuminate the
properties of concurrent computations. This research introduces an extension to the simple type
lambda calculus, leading to the derivation of the Causal Commutative Normal Form (CCNF).
Another notable work, "Multi-Level Languages are Generalized Arrows" [Meg10], proposes a
novel generalization excluding the arr function, targeting metaprogramming. Both pieces serve
as foundational inspirations for the conceptualization of semiarrows.

Conclusively, Uustalu and Verne’s work on data-flow programming [UV06] has significantly
influenced the exploration of applications for semiarrows, especially concerning its delay algebra.

83

84 CONCLUSION 6.2

6.2 Future Work
This research is a step forward on using the monoidal profunctor and semiarrowinterfaces in
functional programming, we provided a deep understanding on both ways of structure pure
functional programs. However, some challenges must be tackled in future work as follows:

• A sugarized syntax for the semiarrow interface. As in arrows, a sugarized syntax
for monoidal profunctor and semiarrowis a good idea. It could give a synchronous program
syntax style and make the life easier for a programmer with such a background. This kind
of effort, called mproc syntax, was started by the author but stopped due to the lack of
time. The author used the GHC parser and internals to accommodate those changes in a
separate GHC branch. One can check it out and contribute in https://github.com/rome-
feller/ghc/tree/ago%40mproc-syntax.

• Study more examples of semiarrows. Another semiarrow example worth investigat-
ing is an effectful Moore machine, given by the type data Moore m a b = Moore b (a →
m (Moore m a b)). When the inner monad m, representing an effectful state transition,
is a commutative monad, the semiarrowlaws are satisfied. This situation can help model
hidden Markov chains in a composable manner.

• Notions of grading using semiarrows. The semiarrow structure can also model graded
computations due to the absence of an identity for the sequential composition. The semi-
arrow can be extended to a graded semiarrow with an extra parameter t . The idea is to
have the following multi-param typeclasses:

class (GradedProfunctor t p) where
gdimap :: (a → b)→ (c → d)→ p t b c → p t a d

class (GradedMonoPro t p) where
gmpempty :: p t () ()
gpar :: p t a b → p t c d → p t (a, c) (b, d)

class (GradedSemiArrow t p) where
gseq :: p t b c → p t ′ a b → p (Sum t t ′) a c

where Sum is a dependent typeclass. This additional parameter t can be viewed as time
or also as cost (or gas) as in the cryptocurrencies field.

• Improve the graphical language for delays. Constructing a synchronous program
using this kind of tool is valuable, and further development in this area is needed. Another
path to be taken is to derive optimizations and normal forms for it, similar to the case of
causal commutative arrows [LCH11].

• Investigate more deeply the operadic semantics for synchronous programs.
The typeclass GSemiArrow used in this work only provides 2-delay computations. One
should explore n-delay operations and how to implement them efficiently. For example, for
3-delay operations, a typeclass like the one below needs to be investigated. Additionally,
laws and the non-associative behavior should be studied carefully.

class G3SemiArrow p where
c1 :: p (d , e, f) g → p (a, b, c) d → p ((a, b, c), e, f) g
c2 :: p (e, d , f) g → p (a, b, c) d → p (e, (a, b, c), f) g
c3 :: p (e, f , d) g → p (a, b, c) d → p (e, f , (a, b, c)) g

https://github.com/romefeller/ghc/tree/ago%40mproc-syntax
https://github.com/romefeller/ghc/tree/ago%40mproc-syntax

FUTURE WORK 85

• Lookup on other connections between monoidal profunctors that could gives
us useful laws. Examining other connections between monoidal profunctors, as well as
semiarrows, could yield new laws for known results about data structures like lists, for
example.

86 CONCLUSION

Bibliography

[Atk11] Robert Atkey. What is a categorical model of arrows? Electronic Notes in Theoretical
Computer Science, 229(5):19–37, 2011. Proceedings of the Second Workshop on
Mathematically Structured Functional Programming (MSFP 2008).

[Awo10] Steve Awodey. Category Theory. Oxford University Press, Inc., New York, NY,
USA, 2nd edição, 2010.

[Bir84] R. S. Bird. Using circular programs to eliminate multiple traversals of data. Acta
Inf., 21(3):239250, oct 1984.

[BL80] H. Barendregt and G. Longo. Equality of λ-terms in the model tω. Em To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic
Press, 1980.

[BLT18] Martin Braun, Oleg Lobachev and Phil Trinder. Arrows for parallel computation.
CoRR, abs/1801.02216, 2018.

[BM11] M. Batanin and M. Markl. Centers and homotopy centers in enriched monoidal
categories, 2011.

[CEG+20] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn, Bartosz Milewski,
Emily Pillmore and Mario Román. Profunctor optics, a categorical update. ArXiv,
abs/2001.07488, 2020.

[CK14] Paolo Capriotti and Ambrus Kaposi. Free applicative functors. Electronic Proceed-
ings in Theoretical Computer Science, 153:230, Jun 2014.

[CW01] Mario Cáccamo and Glynn Winskel. A higher-order calculus for categories. Em
Proceedings of the 14th International Conference on Theorem Proving in Higher
Order Logics, TPHOLs ’01, página 136153, Berlin, Heidelberg, 2001. Springer-Verlag.

[Day70] Brian Day. On closed categories of functors. Em S. MacLane, H. Applegate, M. Barr,
B. Day, E. Dubuc, Phreilambud, A. Pultr, R. Street, M. Tierney and S. Swier-
czkowski, editors, Reports of the Midwest Category Seminar IV, páginas 1–38, Berlin,
Heidelberg, 1970. Springer Berlin Heidelberg.

[DHJG06] Nils A. Danielsson, John Hughes, Patrik Jansson and Jeremy Gibbons. Fast
and Loose Reasoning is Morally Correct. Em Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, vol-
ume 41 of POPL ’06, páginas 206–217, New York, NY, USA, Janeiro 2006. ACM.

[Ella] Tom Ellis. opaleye: An sql-generating dsl targeting postgresql. https://hack-
age.haskell.org/package/opaleye. Accessed: 2019-05-28.

[Ellb] Tom Ellis. Product-profunctors. https://hackage.haskell.org/package/product-
profunctors. Accessed: 2019-05-20.

87

88 BIBLIOGRAPHY

[Gil] Andy Gill. mtl: Monad classes, using functional dependencies. https://hack-
age.haskell.org/package/mtl. Accessed: 2019-05-28.

[Has09] Masahito Hasegawa. On traced monoidal closed categories. Mathematical. Structures
in Comp. Sci., 19(2):217–244, Abril 2009.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud. The synchronous data flow
programming language lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

[HM98] Graham Hutton and Erik Meijer. Monadic parsing in haskell. J. Funct. Program.,
8(4):437–444, Julho 1998.

[Hug00] John Hughes. Generalising monads to arrows. Sci. Comput. Program., 37(13):67111,
may 2000.

[Hug05] John Hughes. Programming with arrows. Em Proceedings of the 5th International
Conference on Advanced Functional Programming, AFP’04, páginas 73–129, Berlin,
Heidelberg, 2005. Springer-Verlag.

[JD93] Mark P. Jones and Luc Duponcheel. Composing monads. Relatório técnico, 1993.

[JHH09] Bart Jacobs, Chris Heunen and Ichiro Hasuo. Categorical semantics for arrows.
Journal of Functional Programming, 19(3-4):403438, 2009.

[JO14] Mauro Jaskelioff and Russell O’Connor. A representation theorem for second-order
functionals. ArXiv, abs/1402.1699, 2014.

[Kmea] Edward Kmett. lens: Lenses, folds and traversals. https://hackage.haskell.org/pack-
age/lens. Accessed: 2019-05-28.

[Kmeb] Edward Kmett. Machines. https://hackage.haskell.org/package/machines. Ac-
cessed: 2022-03-27.

[Kmec] Edward Kmett. Profunctors. https://hackage.haskell.org/package/profunctors. Ac-
cessed: 2019-03-16.

[LCH09] Hai Liu, Eric Cheng and Paul Hudak. Causal commutative arrows and their opti-
mization. SIGPLAN Not., 44(9):35–46, Agosto 2009.

[LCH11] Hai Liu, Eric Cheng and Paul Hudak. Causal commutative arrows. J. Funct. Pro-
gram., 21(4-5):467–496, 2011.

[Lei03] Tom Leinster. Higher operads, higher categories, 2003.

[LHJ95] Sheng Liang, Paul Hudak and Mark Jones. Monad transformers and modular in-
terpreters. Em Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’95, página 333343, New York, NY,
USA, 1995. Association for Computing Machinery.

[Lip11] Miran Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide. No
Starch Press, San Francisco, CA, USA, 1st edição, 2011.

[Lor15] Fosco Loregian. This is the (co)end, my only (co)friend, 2015.

[Lor21] Fosco Loregian. (Co)end Calculus. London Mathematical Society Lecture Note
Series. Cambridge University Press, 2021.

BIBLIOGRAPHY 89

[LWY11] Sam Lindley, Philip Wadler and Jeremy Yallop. Idioms are oblivious, arrows are
meticulous, monads are promiscuous. Electronic Notes in Theoretical Computer Sci-
ence, 229(5):97 – 117, 2011. Proceedings of the Second Workshop on Mathematically
Structured Functional Programming (MSFP 2008).

[Mac71] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag,
New York, 1971. Graduate Texts in Mathematics, Vol. 5.

[Meg10] Adam Megacz. Multi-level languages are generalized arrows, 2010.

[Mil] Bartosz Milewski. Free monoidal profunctors. https://bar-
toszmilewski.com/2018/02/20/free-monoidal-profunctors. Accessed: 2019-10-20.

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92,
Julho 1991.

[MP08] Conor Mcbride and Ross Paterson. Applicative programming with effects. J. Funct.
Program., 18(1):1–13, Janeiro 2008.

[Obr98] Davor Obradovic. Structuring functional programs by using monads, 1998.

[O’Ca] RusselL O’Connor. Grate: A new kind of optic. https://r6research.livejour-
nal.com/28050.html. Accessed: 2019-02-02.

[O’Cb] Russell O’Connor. A representation theorem for second-order pro-functionals.
https://r6research.livejournal.com/27858.html. Accessed: 2019-02-01.

[Pat01] Ross Paterson. A new notation for arrows. SIGPLAN Not., 36(10):229–240, Outubro
2001.

[PGW17] Matthew Pickering, Jeremy Gibbons and Nicolas Wu. Profunctor optics: Modular
data accessors. The Art, Science, and Engineering of Programming, 1(2), Apr 2017.

[RJ17] Exequiel Rivas and Mauro Jaskelioff. Notions of computation as monoids. Journal
of Functional Programming, 27:e21, 2017.

[RJ18] Exequiel Rivas and Mauro Jaskelioff. Monads with merging. Technical report, 2018.

[RJS18] Exequiel Rivas, Mauro Jaskelioff and Tom Schrijvers. A unified view of monadic and
applicative non-determinism. Science of Computer Programming, 152:70–98, 2018.

[SD96] S. Doaitse Swierstra and Luc Duponcheel. Deterministic, error-correcting combinator
parsers. Em John Launchbury, Erik Meijer and Tim Sheard, editors, Advanced
Functional Programming, páginas 184–207, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

[Spi90] Mike Spivey. A functional theory of exceptions. Science of Computer Programming,
14(1):25–42, 1990.

[UV06] Tarmo Uustalu and Varmo Vene. The essence of dataflow programming. Em Zoltán
Horváth, editor, Central European Functional Programming School, páginas 135–167,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[Wad92] Philip Wadler. Comprehending monads. Math. Struct. Comput. Sci., 2(4):461–493,
1992.

[Wad95] Philip Wadler. Monads for functional programming. Em Advanced Functional Pro-
gramming, First International Spring School on Advanced Functional Programming
Techniques-Tutorial Text, páginas 24–52, Berlin, Heidelberg, 1995. Springer-Verlag.

90 BIBLIOGRAPHY

[WB89] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. Em Proceed-
ings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, páginas 60–76, New York, NY, USA, 1989. ACM.

Index

ad-hoc polymorphism, 12
adjunctions, 26
Algebraic Data Types, 9
alternative, 29
applicative functor, 28, 49

binary operation, 12
binary type constructor, 48, 70

category, 13, 41, 48
coend, 30, 31, 34
coequalizers, 31
coherence, 56, 60, 61
colimits, 30
comonads, 26
cone, 30
constant function, 9
continuation monad, 26
contravariant functor, 16, 31, 44
contravariant functors, 16
costate comonad, 27
covariant functor, 14
cowedge, 31
currying, 32, 41

Data accessors, 70
data-flow programming, 73
Day convolution, 33, 34, 36, 42, 43, 45–48
delay, 55
diagram, 17
dinatural transformation, 30
divisible functor, 43

effectful monoidal profunctor, 39, 50
end, 30, 34
endofunctor, 14

fixpoint, 44
forgetful functor, 14, 47
free construction, 47
free functor, 14, 46
free monoidal profunctor, 39, 44, 47
Fubini’s theorem, 33
functor, 14, 33, 41

high-order function, 11, 15

horizontal composition, 19

identity element, 32
induction, 45, 46
initial algebra, 44
isomorphism, 31

Kleisli arrow, 49, 50

lambda, 9
lambda calculus, 9, 13
Lenses, 71
limit, 30
limits, 30
list monad, 22
locally small category, 31

Mealy machine, 54
monad, 20, 22
monad transformer, 49, 50
monocle, 71, 72
monoid, 12, 31, 36, 40
monoid homomorphism, 13
monoidal, 44
monoidal category, 31, 32, 34, 44
monoidal functor, 44
monoidal multiplication, 32
monoidal profunctor, 4–6, 35, 36, 40, 43, 67,

71, 84
monoidal profunctor category, 35
monoidal profunctor optics, 67
Moore machines, 65
morphism, 13

natural isomorphism, 32
natural transformation, 16–18, 27, 40
naturality conditions, 18

opposite category, 44

parallel composition, 47, 71
product category, 33
profunctor, 33, 41, 43, 49
profunctor category, 33
profunctor composition, 58
pushouts, 31

91

92 INDEX

quicksort, 51

reader monad, 24

semiarrow, 4–7, 55–58, 60–62, 67, 74, 77, 83,
84

semiarrow category, 57, 60
semigroup category, 56
small category, 30, 36
state monad, 24
store, 27
stream functions, 54

tensor, 36
tensor product, 45
traversable, 50, 70
type-safe lists, 67
typeclass, 12, 53, 67

unary representation, 45
uncurrying, 32, 41

vertical composition, 17

wedge, 30

Yoneda lemma, 30, 31

	Introduction
	Research Questions
	Research and Thesis Organization
	Claimed Contributions
	Presentations and Publications

	Background
	Haskell Basics
	Syntax
	Algebraic Data Types
	Parametric Polymorphism
	High-order Functions
	Typeclasses

	Category Theory
	Categories
	Functors
	Natural Transformation
	Monads
	Comonads
	Applicative Functors
	Alternative functors

	Monoidal Categories
	Ends and Coends
	Definition of a Monoidal Category
	Profunctors
	Day Convolution

	Summary

	Monoidal Profunctors
	Definition
	A monoid in monoidal profunctors

	Implementation in Haskell
	Profunctor typeclass
	The Day convolution type
	MonoPro typeclass

	Free monoidal profunctor
	Representation Theorem

	Free monoidal profunctors in Haskell
	Effectful Monoidal Profunctors

	Semiarrows
	A review on arrows
	Semiarrow categories
	A semiarrow in a semiarrow category

	Day convolution and profunctor composition
	Semiarrow typeclass
	Moore Machines

	Applications
	Applications of Monoidal Profunctors
	Type-safe lists
	Monoidal Profunctor Optics
	Process calculi using the Free Monoidal Profunctor

	Applications of Semiarrows
	Synchronous data-flow programming and delays
	Moore machines, folds and scans

	Conclusion
	Related Work
	Future Work

