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Abstract

Jared León Malpartida. A generalization of the block decomposition for k-
connected graphs. Thesis (Master’s). Institute of Mathematics and Statistics,
University of São Paulo, São Paulo, 2022.

The decomposition of a connected graph by the set of its cut-vertices, sometimes called the “block
decomposition” or “block tree” of a graph, is a well known and basic concept in graph theory. This
decomposition, however, does not provide meaningful information when applied to a k-connected
graph for k ⩾ 2. There has been a number of attempts to generalize the construction of the block
decomposition of a graph for the case of k-connected graphs. Notably, Tutte constructed a tree that
describes the mutual arrangement of 2-cutsets in a 2-connected graph. This decomposition has some
similarities to the block decomposition of a connected graph. In other works, a block of a k-connected
graph was defined as a maximal (k + 1)-connected subgraph. Karpov described the decomposition of
a k-connected graph by the set of k-cutsets that are not separated by any other k-cutset of the graph.
Karpov also described some special properties of his decomposition for the case of a 2-connected
graph. The decompositions defined by Karpov and Tutte for the case of a 2-connected graph share
some similarities. In this work, we present a self-contained description of Karpov’s decomposition. We
also present some applications to the study of planarity, the chromatic number, critically 2-connected
graphs, and the partition of certain 2-connected graphs into three connected subgraphs.

Keywords: block decomposition. block tree. k-connectivity.





Resumo

Jared León Malpartida. Uma generalização da decomposição por blocos
para grafos k-conexos. Dissertação (Mestrado). Instituto de Matemática e
Estatística, Universidade de São Paulo, São Paulo, 2022.

A decomposição de um grafo conexo pelo conjunto de seus vértices de corte, às vezes chamada de
“decomposição por blocos” ou “árvore de blocos” de um grafo, é um conceito bem conhecido e básico
na teoria dos grafos. Essa decomposição, no entanto, não fornece informações significativas quando
é aplicada a um grafo k-conexo para k ⩾ 2. Tem havido uma série de tentativas de generalizar a
construção da decomposição em blocos para grafos k-conexos. Notavelmente, Tutte construiu uma
árvore que descreve o arranjo mútuo dos 2-cutsets em um grafo 2-conexo. Esta decomposição tem
algumas semelhanças com a decomposição por blocos de um grafo conexo. Em outros trabalhos,
um bloco de um grafo k-conexo é definido como um subgrafo (k + 1)-conexo maximal. Karpov
descreveu a decomposição de um grafo k-conexo pelo conjunto dos seus k-cutsets que não são
separados por nenhum outro k-cutset do grafo. Karpov também descreveu algumas propriedades
de sua decomposição para o caso de um grafo 2-conexo. As decomposições definidas por Karpov
e Tutte para o caso de grafos 2-conexos compartilham algumas semelhanças. Neste trabalho, nós
apresentamos uma descrição autocontida da decomposição de Karpov. Nós também apresentamos
algumas aplicações para o estudo de planaridade, número cromático, grafos criticamente 2-conexos,
e a partição de certos grafos 2-conexos em três subgrafos conexos.

Palavras-chave: decomposição por blocos. árvore de blocos. k-conexidade.
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Introduction

The block decomposition (also known as block tree) of a connected graph gives
a partition of the set of vertices of the graph into (not necessarily disjoint) parts
that induce maximal subgraphs that are 2-connected or copies of K2 (also known as
“non-separated subgraphs”), the blocks of the graph. These blocks are arranged in
a tree-like structure. This decomposition is a well known and fundamental concept
in graph theory. However, the usefulness of the block decomposition vanishes when
applied to a 2-connected graph since the graph has no cut-vertices and hence, the only
block of the graph is its set of vertices. There has been some attempts to generalize
the classic block decomposition of a connected graph for k-connected graphs. One
such attempt was made by Tutte, when he constructed a tree that describes the
mutual arrangement of the 2-cutsets of a 2-connected graph (Tutte, 1966). Note that,
although the set of 2-connected graphs is the set of k-connected graphs for k ⩾ 2, the
graphs that are 3-connected do not contain 2-cutsets. Hence, Tutte’s tree only provides
meaningful information for graphs that are 2-connected but not 3-connected. Tutte’s
decomposition has some properties in common with the classic block decomposition of
a connected graph. Two other paths have appeared in the search for a generalization.
One has to do with defining blocks in terms of increased connectivity, and the other
with defining blocks in terms of separability. For the former case, one approach that
was taken was to define a block of a k-connected graph as a maximal (k+1)-connected
subgraph (Matula, 1978; Harary and Kodama, 1964). This simple approach
gives rise to properties that are rather different from the properties of the block
decomposition of a connected graph, e.g., some vertices may not belong to some block,
or the set of blocks may be empty in a non-empty graph. For the case of separability,
one common idea is to consider a cutset S of a k-connected graph G and then define
a block of the decomposition of G by the cutset S as the union of the set S and
the vertex-set of a component of the graph G− S (Hohberg, 1992; Karpov and
Pastor, 2000). Where, in order to preserve the k-connectivity of the graphs induced
by the blocks, one transforms the set S into a clique in all such graphs. In a more
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general case, one considers a sequence of k-cutsets S1, S2, . . . , Sm and proceed in the
following way. We first define the blocks of G1 = G by S1 as the union of the set S1

and the vertex-sets of the components of G1 − S1. If the next cutset S2 is contained
in one such blocks, let G2 be the graph induced by this block. We repeat the process
with G2 and S2, and continue this way with the remaining cutsets of the sequence.
The sets that result of this process can be defined as the blocks of the decomposition
of G by the sequence of k-cutsets S1, . . . , Sm. Notice that when this sequence is the
sequence of cut-vertices of G in any order, the decomposition corresponds to the
classic block decomposition of G. A problem with this approach for k ⩾ 2 is that
the order of the sequence matters, i.e., different orderings may produce difference
decompositions if, for example, some cutsets of the sequence separate other cutsets
in G. In this case, some of the cutsets are no longer contained in some block at the
time of considering them. This approach is the base of a generalization proposed by
Karpov, in which he described the decomposition of a k-connected graph by the set of
cutsets that are not separated by any other cutset of the graph (Karpov, 2013). In
his work, he also described some special properties for the case of a 2-connected graph,
which share some similarities with Tutte’s decomposition. In this work, we present
a self-contained description of Karpov’s decomposition using only concepts from
elementary graph theory. We also present some applications of this decomposition to
the study of planarity, the chromatic number, and critically 2-connected graphs.
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Chapter 1

Preliminaries

In this chapter we define some concepts of separability of subsets of vertices. We
also define the decomposition of a k-connected graph by an arbitrary set of its k-cutsets,
which is a generalization of the block decomposition that we intend to study.

For a graph G, we denote by v(G) the number of its vertices.

Let G = (V,E) be a connected graph. A set R ⊂ V is called a cutset if the
graph G− R is disconnected. If the cardinality of R is k, we also call R a k-cutset.
If k = 1, we call the vertex contained in R a cut-vertex. In what follows when we deal
with a singleton, say X = v, we may not distinguish the element v from the set X

itself.

For an integer k ⩾ 1, the graph G is said to be k-connected if |V | > k and G

has no cutsets with fewer than k vertices. Note that there exists an integer ℓ ⩾ 1

such that every connected graph except for the trivial graph, K1, is k-connected for
each 1 ⩽ k ⩽ ℓ.

A set R ⊂ V separates a set X ⊂ V in G if there are two vertices of X \R that
belong to different components in the graph G−R. If the graph G is clear from the
context, we simply say that R separates X. Observe that the graph G[X] might not
be connected (see Figure 1.1). Thus, if the graph G[X \R] is connected, then R does
not separate X in G, but the converse is not necessarily true. Also, in order for R to
separate X it is necessary that |X| ⩾ 2.

Let R ⊂ V , and let X, Y ⊂ V . Then set R separates X and Y in G if no component
of the graph G−R contains vertices of both X and Y . Note that when X ⊂ R or Y ⊂ R,
the set R separates X and Y in G. This definition is equivalent to the definition
adopted by classic graph theory textbooks such as (Diestel, 2018).
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Figure 1.1: The graph G[X] is not connected, but the set R does not separate X.

1.1 Decomposition of a k-connected graph by a set

of cutsets

We now define the decomposition of a k-connected graph by an arbitrary set
of k-cutsets of the graph.

Let k ⩾ 1 be fixed. Let G be a k-connected graph. Note that G has at least two
vertices. Let Cut(G) and Cutk(G) be the set of all cutsets and r-vertex cutsets of G
respectively. Note that the set Cutk(G) may possibly empty, e.g., when G is isomorphic
to the graph Kk+1. Let S ⊂ Cutk(G) be an arbitrary set of k-vertex cutsets of G.
The decomposition of G by the set S is defined as follows.

A set of vertices A ⊂ V (G) is an S-nonseparable set of G if no cutset of S

separates A in G. Observe that the empty set is also a S-nonseparable set of G.
Let Ns(G;S) be the set of all non-empty S-nonseparable sets of G.

A set of vertices A ⊂ V is an S-block of G if A is an inclusion-maximal element
of Ns(G;S). When the set S, is clear from the context, we call those elements blocks
of G, or simply blocks. Clearly, no block is empty since every member of Ns(G;S) is
non-empty. The set of all S-blocks of G is denoted by Block(G;S).

This is the more general version of the decomposition that we intend to study. We
will now prove some properties of the blocks of the graph G.

Observe first the following.

Remark 1. (a) Given that v(G) ⩾ 2 and that a set that contains only one vertex is
an S-nonseparable set of G, the set Ns(G;S) is non-empty. Thus, the set Block(G;S)

is non-empty as well.

(b) For every S-nonseparable set of G, A ∈ Ns(G;S) there is a block A′ ∈
Block(G;S) such that A ⊂ A′. This implies that every vertex in G is contained in a
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member of Block(G;S).

Let A be a member of Block(G;S). A vertex of A is said to be internal if no
element of S contains such vertex. Otherwise, the vertex is called a boundary vertex.
Let Int(A) be the set of all internal vertices of A, which we call the interior of A. The
boundary of A is the set Bound(A) = A \ Int(A).

Proposition 2. Let A,B be two different blocks of Block(G;S) with nonempty
intersection. Then there is at least one cutset S ∈ S that separates A ∪B. For every
such cutset, the set A ∩B is contained in S.

Proof. Given that A and B are different, the set A ∪ B contains both A and B

properly, and so it cannot be an S-nonseparable set of G, so this implies the existence
of a cutset S ∈ S that separates A ∪B. Note that S also separates A from B since
otherwise, S separates either A or B, which is not possible given that both sets are
blocks of G (see Figure 1.2). Then there exist vertices a ∈ A \ S and b ∈ B \ S such
that a and b belong to different components in the graph G− S. Suppose that there
is a vertex v ∈ (A ∩B) \ S.

Figure 1.2: The set S do not separate A and B individually.

Then vertices a and v are in the same component in the graph G− S since S does
not separate set A. We also have that vertices v and b are in the same component in the
graph G−S, which implies that a and b are in the same component in the graph G−S,
a contradiction. We conclude that (A ∩ B) \ S = ∅, and given that A ∩ B ̸= ∅, it
follows that A ∩B ⊂ S.

Corollary 3. A consequence of Proposition 2 is that for any pair of different
blocks A,B ∈ Block(G;S), the sets Int(A) and Int(B) are disjoint. Indeed, if a
vertex belongs to both Int(A) and Int(B), then by Proposition 2 it belongs to some
member of S, making it a boundary vertex of A and B.

Corollary 3 implies that any vertex of G is either an internal vertex of a single
block, or a boundary vertex of at least one block. When the set of k-vertex cutsets of G
is clear from the context, we denote by Int(G) the set of vertices that belong to the
interior of some block of G, and we denote by Bound(G) the set V (G) \ Int(G).
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Proposition 4. Let S ∈ S, and let v ∈ S. Then v is adjacent to a vertex in every
component of the graph G− S.

Proof. Suppose by contradiction that there is a component A of G− S such that v is
not adjacent to any vertex of A. We conclude that k ⩾ 2. Also, there is a path in G

from v to a vertex of A given that G is connected. Then every such a path in G must
contain vertices of S \ {v}. Therefore S \ {v} separates v from A in G, contradicting
the k-connectivity of G.

Remark 5. Let A ∈ Block(G; {S}) be an {S}-block of G. It is easy to see that A is
the union of S and the vertices of a component of G− S. Indeed, such union is not
separated by S in G, but adding one extra vertex of V (G) \ A to A makes the set A
separable by S in G (see Figure 1.3).

Figure 1.3: The decomposition of G by {S}.

The next result characterizes the boundary and interior of a block of G.

Proposition 6. Let A be a block of Block(G;S). Then the set Bound(A) consists of
all vertices of A that are adjacent to a vertex in V (G) \ A.

Proof. Let v ∈ A and assume that v is adjacent to a vertex u ∈ V (G) \ A. The
set A ∪ {u} is not a member of Block(G;S) given the maximality of A. Then there
is a cutset S ∈ S such that S separates A ∪ {u}. Given that S does not separate A,
vertex u lies in a component different from the one containing A\S in the graph G−S

(see Figure 1.4). It follows that v ̸∈ A \S, otherwise u and A \S would be in the same
component of G− S, because u and v are adjacent. Thus v ∈ A ∩ S ⊂ S, i.e., v is a
boundary vertex of A.

Let v ∈ Bound(A) be a boundary vertex of A, and let T ∈ S be a cutset such
that v ∈ S. Given that T does not separate A, all the vertices of A \T are in the same
component in the graph G− T . By Proposition 4, v is adjacent to a vertex in every
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Figure 1.4: Characterization of the boundary of a block.

component in the graph G− T , at least one of which is different from the component
that contains the vertices of A \ T . Then v is adjacent to a vertex of V (G) \ A.

Corollary 7. Let S ̸= ∅, and let A ∈ Block(G;S) be a block of G. Then

(a) Bound(A) separates Int(A) and V (G) \ A

(b) If Int(A) ̸= ∅, then |Bound(A)| ⩾ k and |A| ⩾ k + 1.

Proof. (a) Every path from a vertex of Int(A) to a vertex of V (G) \ A contains
an edge uv such that u ∈ A, v ∈ V (G) \ A. Then u ∈ Bound(A) and Bound(A)
separates Int(A) from V (G) \ A.

(b) Part (a) implies that Bound(A) ∈ Cut(G). Every member of Cut(G) has size
at least k given that G is k-connected. The set Int(A) contains at least one vertex.

It is easy to see that every block has size at least 2 given that the graph has no
isolated vertices, and the endpoints of every edge cannot be separated. Observe that,
when the interior of a block is empty, the sizes of the blocks need not be bounded below
as in part (b) of Corollary 7. For instance, the complete bipartite graph G = Kk,k

is k-connected, and the set Cutk(G) contains two elements: the parts of the bipartition
of V (G). Each block of the decomposition of G by the set Cutk(G) contains only two
vertices: the endpoints of an edge of the graph. If any extra vertex of G is added to
such a block, then two vertices of the new set are necessarily separated by one of the
two cutsets of Cutk(G).

Remark 8. If S ̸= ∅, then Bound(A) ̸= ∅ for every A ∈ Block(G;S).

The statements and proofs of Chapters 2 and 3 are reformulations of the original
results by Karpov. We also present results that were not previously published.
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Chapter 2

The decomposition tree

We now describe some properties of the above decomposition by a set of k-cutsets
whose elements do not separate each other. First, we present the general form of the
decomposition for k-connected graphs and then we show some special properties of
this decomposition for 2-connected graphs and a specific set of pairwise independent
2-cutsets.

2.1 For a k-connected graph

Let an integer k ⩾ 1 be fixed. Let G be a k-connected graph. Two cutsets of Cut(G)

are said to be independent if none of them separates the other in G. Otherwise, the
cutsets are said to be dependent (see Figure 2.1). Clearly if all the cutsets are
cut-vertices, then all of them are pairwise-independent.

Figure 2.1: The pairs S1, S2 S2, S3 are independent. The cutsets S1 and S3 are dependent.

Proposition 9. Let S, T ∈ Cut(G) be a pair of cutsets. Then either S and T are
independent, or each of them separates the other in G.
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Proof. Assume that S does not separate T . We will prove that T does not separate S.
Given that S is a cutset of G, the graph G− S has at least two components. Clearly
all the vertices in T \ S are in the same component in the graph G− S. Let H be a
component of G− S that does not contain vertices of T (see Figure 2.2).

Figure 2.2: Independent or mutually separable.

Given that H is connected, all the vertices of V (H) are in the same component Q
in the graph G− T . By Proposition 4, every vertex of S is adjacent to at least one
vertex of H in G. Thus, all vertices of S \T are in the component Q in the graph G−T .
We conclude that T does not separate S in G, and the cutsets are independent.

Let S ⊂ Cutk(G) be a set of pairwise independent cutsets. We now study some
properties of the decomposition of G by the set S. In the end, we shall show that this
decomposition produces a tree-like structure. More precisely, we will show that the
properties of the sets Block(G;S) and S are identical to the properties of the sets B
and C respectively in the following definition.

Definition 10. Let G be a connected graph. A pair B, C ⊂ 2V (G) is said to form
a tree-like structure on G if the sets B and C, and the (B, C)-bipartite graph T ,
where B ∈ B is adjacent to C ∈ C in T if and only if C ⊂ B have the following
properties:

1. ⋃
B∈B

B = V (G).

2. All the elements of C have the same size.

3. Let A1, A2 ∈ B be distinct sets such that A1 ∩ A2 ̸= ∅. Then A1 ∩ A2 ∈ C.

4. Let A1, A2 ∈ B be sets and suppose that there is an edge a1a2 ∈ E(G) with a1 ∈
A1, and a2 ∈ A2. Then A1∩A2 ̸= ∅, and at least one of a1,a2 belongs to A1∩A2.

5. The graph T is a tree.

6. Every member of C has degree at least 2 in T (see Figure 2.3).
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Figure 2.3: A tree-like structure.

The classic block decomposition of a connected graph and the set of its cut-vertices
clearly forms a tree-like structure on G. However, the proof that the pair Block(G;S)

and S forms a tree-like structure on G is technical. Before going into the proof of
this fact, we first show some auxiliary properties of the set S of pairwise independent
cutsets that will be useful later.

Remark 11. Every cutset from S is a member of Ns(G;S) given that no other
cutset from S separates it. This implies that, by Remark 1 (b), every cutset of S is
contained in a member of Block(G;S).

Let GS be the graph resulting by taking the graph G and for each cutset S ∈ S,
adding all the edges that connect pairs of vertices of the set S. This graph will be
useful to study some properties of the block decomposition of G by S since, as we
prove later, the S-blocks of G and GS are the same.

Proposition 12. Two vertices of V (G) are separated in G by a cutset S ∈ S if and
only if they are separated in GS by S.

Proof. Clearly, if two vertices are separated in G ⊂ GS, the same holds in G.

Now assume that two vertices, say x and y are separated in G by a cutset S ∈ S. For
every cutset T ∈ S different from S, we know that the vertices in T \ S are contained
in a single component of the graph G− S given that S does not separate T . Hence,
any edge in E(GS) \E(G) cannot be incident with vertices in different components of
the graph G− S. So the components of G− S are GS − S are the same and hence, x
and y are separated by S in GS.

Corollary 13. The following statements hold:

(a) S ⊂ Cutk(GS), and the cutsets of S are also independent in GS.

(b) Ns(G;S) = Ns(GS;S).
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(c) Block(G;S) = Block(GS;S).

Proof. (a) Proposition 12 implies that, for every cutset S ∈ S, the vertex sets of the
components of G− S are the vertex sets of the components of GS − S. Hence, every
element of S is also a k-cutset of GS. Clearly no element of S is separated in GS

given that all of them are cliques.

(b) Let A ∈ Ns(GS;S) be an S-nonseparable set of GS, and suppose that A ̸∈
Ns(G;S). Then, there exists a cutset S ∈ S that separates A in G. Let a, b ∈ A\S be
vertices in different components in the graph G− S. Clearly the vertices a and b are
separated in G by S. By Proposition 12, the vertices a and b are also separated by S

in GS. This contradicts that A is a S-nonseparable set of G, and hence Ns(GS;S) ⊂
Ns(G;S). It is easy to see that Ns(G;S) ⊂ Ns(GS;S) given that the graph GS

contains all the edges of G.

(c) The set Block(G;S) is the collection of all inclusion-maximal elements
of Ns(G;S) = Ns(GS;S).

Proposition 14. Let A be a member of Block(G;S) and assume that S ≠ ∅. Then
there exists some S ∈ S such that S ⊂ A with S ̸= A.

Proof. Given that Block(G;S) = Block(GS;S), we may prove the statement for GS.
Suppose by contradiction that there is a set A ∈ Block(GS;S) that either does not
contain a cutset of S, or the only cutset F ∈ S it contains is F = A. Let S′ be
defined as S in the case that A does not contain a cutset and S \ {F} otherwise. We
now make two observations.

(a) No element of S′ is contained in A. This claim is obvious for the case where A

does not contain any element of S. In the case where A = F , the set A has size k.
Hence, it cannot contain a member of S other than F .

(b) The set A intersects some element of S′. In the case where A does not contain
a cutset of S, by Remark 8 it follows that Bound(A) ̸= ∅ given that S ̸= ∅, and
therefore set A intersects some element of S = S′. In the case where A = F , we
have Bound(A) = A. Let a ∈ A. By Proposition 6, a is adjacent to a vertex b ∈
V (G)\A. Given the maximality of A, the set A∪{b} is not a block of GS. Then, there
exists a cutset J ∈ S that separates A ∪ {b} in GS. Note that J ̸= F . Hence J ∈ S′.
Clearly J does not separate A in GS given that A is a block of GS. This implies that J
separates A \ J from b in GS. The vertices of A \ J belong to the same component of
the graph GS − J , and vertex b belongs to a different component of the graph GS − J .
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The fact that a and b are adjacent implies that a ̸∈ A \ J and therefore, that a ∈ J .
It follows that A intersects an element of S′.

Let us choose a cutset J ∈ S′ such that |A ∩ J | is maximum, and let Q = A ∩ J .
By the observations (a) and (b) it follows that 1 ⩽ |Q| < k. Let C ⊂ S′ be the
collection of cutsets of S′ such that their intersection with A is Q. Obviously C is
nonempty since it has J as a member. Also, the set A \Q is nonempty. Indeed, in the
case where A contains a cutset of S, we have |A| = k and |Q| < k. In the case that A
does not contain a cutset of S, if A \Q = ∅, then J ⊂ A since J cannot be separated
by any other cutset, but this is clearly a contradiction.

Let (S, v, u, P ) be a 4-tuple that satisfies the following conditions.

1. S ∈ C.

2. v ∈ S \ A.

3. u ∈ A \Q.

4. P is a vu-path in GS such that V (P ) ∩Q = ∅.

It is easy to see that at least one such tuple exists. Indeed, for condition 1, the
set C is nonempty. For condition 2, the set S is not contained in A for any S ∈ C.
For condition 3, the set A \Q is nonempty. For condition 4, note that v, u ̸∈ Q and
since |Q| < k clearly there is a vu-path in GS −Q. Choose a tuple (S, v, u, P ) such
that P is as short as possible.

Given the maximality of the set A, the set A∪{v} is not a block of GS. Then there
exists a cutset T ∈ S that separates A ∪ {v}, i.e., the set A ∪ {v} contains vertices
in different components in the graph GS − T . Note that the vertices of A \ T belong
to the same component, and the vertex v belongs to a different component in such a
graph. Clearly S ≠ T since v ∈ S. Observe however that Q ⊂ T . Indeed, if there is
a vertex v′ ∈ Q \ T , then v and v′ are in the same component in the graph GS − T

given that v, v′ ∈ S and S is a clique. But then vertex v′ ∈ Q \ T ⊂ A is in a different
component than the vertices of A \ T in such a graph, contradicting that A is a block
of GS. The fact that Q ⊂ T implies that T ∈ C by the maximality of Q. Note that
vertices v and u do not belong to T . Also, P contains some vertex t of T , otherwise v

and u are in the same component in the graph GS−T . Furthermore, t ∈ T \A since P
does not use vertices of Q. Let P ′ be the tu-subpath of P (see Figure 2.4).

We claim that the tuple (T, t, u, P ′) is valid and contradicts the choice of the
tuple (S, v, u, P ). For the conditions, the tuple satisfies that T ∈ C, t ∈ T \A, u ∈ A\Q,
and P ′ is a tu-path in GS such that V (P ′) ∩Q = ∅ and P ′ is strictly shorter than P
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Figure 2.4: Every block properly contains a cutset.

since v ̸= t, a contradiction. This shows that the supposition that there is a block
of Block(G;S) that does not contain a cutset of S properly is false, and the proof is
complete.

Remark 15. Every member of Block(G;S) contains at least k + 1 vertices. Indeed,
if S ̸= ∅, then by Proposition 14, every block of G contains some k-vertex cutset and
some other vertex. If S = ∅, then the single block in Block(G;S) is the set V (G),
which by k-connectivity has at least k + 1 vertices.

Proposition 16. Let T ⊂ S, let A ∈ Block(G;T), and let R ∈ Cut(GS[A]).
Then, R ∈ Cut(G).

Proof. Suppose by contradiction that R is not a cutset of G. Given that R is a cutset
of GS[A], let x, y ∈ A be vertices such that R separates x from y in GS[A]. The
cutset R does not separate x from y in G, and hence, in GS. Let P be a shortest xy-
path in the graph GS − R. Observe that the vertices of P do not all belong to A,
otherwise P is an xy-path in GS[A]−R and R does not separate x from y in GS[A]

(see Figure 2.5).

Figure 2.5: The cutsets of the blocks are cutsets of the graph.

Let z be a vertex of P that does not belong to set A. Given that A is a member
of Block(G;T), there is a cutset T ∈ T such that T separates A ∪ {z}. This implies
that the vertices of P intersect the set T . Let a, b be the last vertices of P that belong
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to T going from z to x and from z to y in P respectively. Clearly, a and b are different,
and adjacent in GS given that T is a clique in such a graph. Then, it is possible to
replace the ab-section of P with the edge ab and create an xy-path shorter than P , a
contradiction. This proves that R is a cutset of G.

Corollary 17. Let T ⊂ S, and let A ∈ Block(G;T). Then the graph GS[A] is k-
connected.

Proof. By Remark 15, the graph GS[A] contains at least k + 1 vertices. Thus, it is
enough to show that GS[A] does not contain a cutset of size fewer than k. Suppose
by contradiction that R ∈ Cutk−1(G

S[A]). Then, by Proposition 16, R ∈ Cutk−1(G),
which is not possible given that G is k-connected. Therefore Cutk−1(G

S[A]) = ∅.

Let T(G;S) be the bipartite graph in which one part is the set S, the other part
is the set Block(G;S), and two vertices S ∈ S and A ∈ Block(G;S) are adjacent if
and only if S ⊂ A.

Proposition 18. Let S ∈ S. Let Block(G; {S}) = {A1, . . . , Am}. For all, i =

1, . . . ,m, let Gi = GS[Ai], and let Si ⊂ S be the set of cutsets different from S that
are contained in Ai. Then,

(a) The graph Gi is k-connected.

(b) For each Ai ∈ Block(G; {S}), there is a unique Ui ∈ Block(G;S) with S ⊂
Ui ⊂ Ai.

(c) The following holds:

Block(G;S) =
m⋃
i=1

Block(Gi;Si), (2.1)

and this union is disjoint.

Proof. Item (a) follows immediately from Corollary 17, i.e. by setting T = {S}.

We now prove items (b) and (c). Fix i in {1, . . . ,m}. By the independence between
the members of S, each cutset from S \ {S} belongs to exactly one of S1, . . . ,Sm.
The fact that S is a clique in Gi implies that it is also an element of Ns(Gi;Si). By
Remark 1 (b), the set S is contained in a member of Block(Gi;Si). Furthermore,
we shall show that S is contained in exactly one such an element of Block(Gi;Si).
Suppose by contradiction that there are different sets X, Y ∈ Block(Gi;Si) that
contain S. By Proposition 2, the set X ∩ Y is contained in some cutset of Si. Then,
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set S ⊂ X ∩ Y is also contained in a cutset of Si. Given that all cutsets of Si have
size k, it follows that X ∩ Y = S and thus S belongs to Si, which contradicts the
definition of Si. Let Ui be the member of Block(Gi;Si) that contains cutset S.

For one side of Equation (2.1), we will show that Block(Gi;Si) ⊂ Block(GS;S) =

Block(G;S). Let U ∈ Block(Gi;Si), and let T ∈ S be given.

In order to show that U ∈ Block(GS;S), let us first prove that T does not
separate U in GS, i.e., U ∈ Ns(GS; {T}), and then we will prove that U is an
inclusion-maximal element of Ns(GS;S), which will imply that U is an S-block of GS.
Consider first the case in which T = S. It follows that U ⊂ Ai ∈ Block(GS; {S}) ⊂
Ns(GS; {S}) = Ns(GS; {T}). Hence U is contained in a member of Ns(GS; {T}),
which implies that U is also a member of Ns(GS; {T}). Consider now the case in
which T ≠ S. Suppose first that T ⊂ Ai. Given that T ̸= S, we have T ∈ Si.
Then U ∈ Block(Gi;Si) ⊂ Ns(Gi;Si) ⊂ Ns(Gi; {T}) ⊂ Ns(GS; {T}), where the last
step holds since Gi ⊂ GS. Therefore in this case we also have U ∈ Ns(GS; {T}).
Suppose now that T ̸⊂ Ai. It follows that |T ∩ Ai| < k since T has k elements. By
Corollary 17, the graph Gi = GS[Ai] is k-connected. Then, the set T ∩ Ai is not
a cutset of Gi. This also implies that T does not separate the set U ∈ Ai in GS,
i.e., U ∈ Ns(GS; {T}).

We now prove that U is an inclusion-maximal element of Ns(GS;S). Let B ∈
Block(GS;S) be a set and suppose by contradiction that U ⊂ B with U ̸= B.
By Remark 15, set U ⊂ Ai contains at least k + 1 vertices, at least one of which
belongs to Ai \ S given that S has k elements. Observe that B ⊂ Ai. Indeed, the
set B contains U , and therefore, contains at least one element of Ai \ S. Also, the
set B is not separated by S in GS given that B ∈ Block(GS;S). By the maximality
of U in Ns(Gi;Si), there is a cutset L ∈ Si that separates set B in Gi, i.e., B ̸∈
Ns(Gi; {L}). This implies that there are two vertices x, y ∈ B \ L such that every xy-
path in Gi contains a vertex of L. The fact that L does not separate set B in GS,
i.e., B ∈ Ns(GS;S) ⊂ Ns(GS; {L}) implies that there is an xy-path in GS that
contains vertices of V (GS) \ Ai and does not contain vertices of L. Note that such
a path contains vertices of S. Let a and b be the first and last vertices of the path
that belong to S going from x to y respectively. Given that S is a clique in GS,
the ab-section of the path can be replaced with the edge ab, obtaining an xy-path
in Gi that does not contain vertices of L, a contradiction. We conclude that U is
an inclusion-maximal element of Ns(GS;S). Thus, U ∈ Block(GS;S). This proves
that Block(Gi;Si) ⊂ Block(GS;S) (see Figure 2.6).

We will now prove the other side of Equation (2.1), i.e., that Block(GS;S) ⊂
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Figure 2.6: The decomposition of the components of G− S.

Block(Gi;Si). For this, let A ∈ Block(GS;S). We shall show that A ∈ Block(Gi;Si),
for some i. For this, it is clear that the set S does not separate A in GS. Indeed, A ∈
Block(GS;S) ⊂ Ns(GS;S) ⊂ Ns(GS; {S}). Consequently, A ⊂ Ai, for some i.

We will first prove that A ∈ Ns(Gi;Si), and then we will show that it is an
inclusion-maximal element of such a set, which will imply that A ∈ Block(Gi;Si) as
desired. Suppose by contradiction that A ̸∈ Ns(Gi;Si), i.e., there is a cutset M ∈ Si

that separates A in Gi. Then, there are two vertices x, y ∈ A \M such that every xy-
path in Gi contains a vertex of M . The fact that M does not separate set A in GS,
i.e., A ∈ Ns(GS;S) ⊂ Ns(GS; {M}) implies that there is an xy-path in GS that
contains vertices of V (GS) \ Ai and does not contain vertices of M . Note that such a
path contains vertices of S. Let a and b be the first and last vertices of the path that
belong to S going from x to y respectively. Given that S is a clique in GS, the ab-
section of the path can be replaced with the edge ab, obtaining an xy-path in Gi that
does not contain vertices of M , a contradiction. We conclude that A ∈ Ns(Gi;Si).

We will now prove that A is an inclusion-maximal element of Ns(Gi;Si). Suppose
by contradiction that there is a set A′ ∈ Block(Gi;Si) such that A ⊂ A′ with A ̸= A′.
We already showed that Block(Gi;Si) ⊂ Block(GS;S). Then, A,A′ ∈ Block(GS;S)

but A ⊂ A′ with A ̸= A′, a contradiction. Hence, the set A is an inclusion-maximal
element of Ns(Gi;Si), i.e., A ∈ Block(Gi;Si).

To see that the union in the right-hand side of Equation (2.1) is disjoint, consider
by contradiction two sets A ∈ Block(Gi;Si) and B ∈ Block(Gj;Sj) with i ̸= j

and A = B. Clearly, the set A cannot contain vertices of Aj \ S given that S does
not separate A in GS. Hence, the only vertices of A that belong to the set Aj are the
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vertices in S. But the sets A and B have both at least k + 1 vertices by Remark 15, a
contradiction. This proves item (c).

Item (b) follows from the fact that a member of Block(GS;S) that contains S is
a member of Block(Gi;Si) for some i, and the set Block(Gi;Si) has exactly one set
that contains S, namely, Ui.

Remark 19. (a) The degree of S ∈ S in the graph T(G;S) is |Block(G; {S})| ⩾ 2.

(b) Every degree-1 vertex of T(G;S) is a member of Block(G;S).

Proposition 20. The following statements hold:

(a) The graph T(G;S) is a tree.

(b) Two elements A,B ∈ Block(G;S) are separated by a cutset S ∈ S in G if
and only if they are separated by S in T(G;S).

Proof. We prove both claims by induction on |S|. The case when S is empty is trivial
since in this case the graph T(G;S) is a vertex being the only member of Block(G; ∅),
which is V (G). Given that Block(G;S) = Block(GS;S) and T(G;S) = T(GS;S), it
is enough to prove the statements for GS. Let Block(GS; {S}) = {A1, . . . , Am}. The
following is proven for i = 1, . . . ,m. By Proposition 18 (a), the graph Gi = GS[Ai]

is k-connected. Let Si ⊂ S be the set of cutsets different from S that are contained
in Ai. Let Ui ∈ Block(Gi;Si) be the set that contains cutset S. We apply the induction
hypothesis in the graph Gi with set of cutsets Si ⊂ Cutk(Gi). It follows that the
graph T(Gi;Si) is a tree. Each member of Block(Gi;Si), that is not Ui, is adjacent
to the same cutsets in T(Gi;Si) and in T(GS;S). In T(GS;S), the edge joining Ui

with S is added (see Figure 2.7). This completes the proof.

Figure 2.7: The decomposition forms a tree-like structure.

Note that this decomposition have the following property, which we already
mentioned earlier.
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Remark 21. The pair Block(G;S) and S form a tree-like structure on G.

2.2 For a 2-connected graph

Let k ⩾ 1 be fixed. Let G be a k-connected graph. A cutset S ∈ Cutk(G) is said
to be isolated if it is independent with all other cutsets from Cutk(G). We denote
by D(G) ⊂ Cutk(G) the set of all isolated cutsets of G. The block tree BT(G) of G
is the tree T(G;D(G)). We also denote by Block(G) the set Block(G;D(G)), and
call its elements blocks of the graph G. A block of G is said to be a leaf block if it
corresponds to a leaf of BT(G).

Observe that for the case of k = 1, the set D(G) is the set of all cut-vertices
of G. As we stated before, the presented decomposition corresponds to the classic
block decomposition of a connected graph. We now study some properties of the
decomposition for the case of k = 2. We omit some of the proofs in this section.

Proposition 22. Let G be a 2-connected graph, let S ∈ D(G) be an isolated cutset
of G, let v ∈ S, and let d = dBT(G)(S). Then, dG(v) ⩾ max{d, 3}. If dG(v) = d, then
the vertices of S are not adjacent.

Proof. By Proposition 18, d = |Block(G; {S})|. By Proposition 4, v is adjacent to at
least one vertex in every component of the graph G− S. Thus dG(v) ⩾ d. Suppose
now that dG(v) = d. Then all vertices adjacent to v belong to the interiors of the
members of Block(G; {S}), and v is not adjacent to the other vertex of S.

Clearly dG(v) ⩾ 2 by the 2-connectivity of G. Suppose that dG(v) = 2,
then |Block(G; {S})| = 2, and the vertices of S are not adjacent. Therefore, the
two vertices adjacent to v in G form a cutset of Cut2(G) and such a cutset separates S,
which implies that S is not isolated, a contradiction. It follows that dG(v) ⩾ 3.

Denote by G′ the graph GD(G). As before, we will use this graph as a tool, but we
also will prove some facts about G′ that do not hold in general for G.

Remark 23. Proposition 12 implies in this case that Cut2(G) = Cut2(G′).

Proposition 24. Let S ∈ Cut2(G) be a cutset that is not isolated and let S ⊂ A ∈
Block(G). Then S ∈ Cut2(G′[A]) and S is not an isolated cutset of G′[A] as well.

Proof. Let T ∈ Cut2(G) be a cutset of G that separates S in G. By Remark 23, S, T ∈
Cut2(G′). By Proposition 12, these cutsets are also dependent in G′. By Corol-
lary 17, G′[A] is 2-connected. Then the set S ⊂ A cannot be separated in G′[A]
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or in G′ by deleting a set of vertices that contains fewer than two vertices from A.
It follows that T ⊂ A. Because of this, S and T separate each other in G′[A].
Thus, S, T ∈ Cut2(G′[A]), and they are dependent in G′[A].

Proposition 25. Let S = {a, b} ∈ Cut2(G) be a cutset that is not isolated.
Then |Block(G; {S})| = 2, and for each set A ∈ Block(G; {S}), the graph G[A]

is not 2-connected and has a cut vertex that separates a from b.

Proof. Let T ∈ Cut2(G) be a cutset that separates S. Any ab-path in G[A] contains
a vertex of T . Then Int(A) contains vertices of T . Since the non-empty interiors of
any two different blocks are disjoint by Corollary 3, and T intersects the interiors of
each one of them, it follows that |Block(G; {S})| = 2. The only vertex in T ∩ Int(A)
separates a from b in G[A].

Proposition 26. Let G be a 2-connected graph with no isolated 2-cutsets. Then
either G is 3-connected or G is a cycle.

Proof. Suppose that G is not 3-connected. We will prove that G is a cycle by proving
that, for each cutset S = {a, b} ∈ Cut2(G) and each set A ∈ Block(G; {S}), the
graph G[A] is an ab-path. Observe that by Proposition 25, the set Block(G; {S})
contains two elements. Hence proving this fact is sufficient.

The proof follows by induction on |A|. For the case that |A| = 3, the graph G[A]

is a path of length 2. For the induction step, let H = G[A]. By Proposition 25, the
graph H is not 2-connected and has a cut vertex v that separates a from b in H.
Let Ca and Cb be the set of vertices of the components of H − v that contain a and b

respectively. Given that the graph G is two connected, there are only two components
in the graph H − v since any other component that does not contain a or b would be
a component of the graph G− v, which is not possible.

Let C ′
a = Ca \ {a}. Suppose first that C ′

a ≠ ∅. Let Ta = {a, v}. The set Ta

separates C ′
a from the set V (G)\C ′

a. Hence Ta ∈ Cut2(G). By the induction hypothesis,
the graph G[C ′

a ∪ Ta] = G[Ca ∪ {v}] is an av-path. Suppose now that C ′
a = ∅.

Then NH(a) = {v} and the graph G[Ca ∪ {v}] is an av-path. This completes the
proof.

Proposition 27. Let A ∈ Block(G). Then, either G′[A] is a cycle or a 3-connected
graph.
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Proof. By Corollary 17, the graph G′[A] is 2-connected. Suppose that S ∈ Cut2(G′[A])

exists. By Proposition 16, we have S ∈ Cut2(G). Given that the set S separates the
block A, it follows that the cutset S is not isolated. By Proposition 24, S is not an
isolated cutset of G′[A]. Since the graph G′[A] has no isolated cutsets, by Proposition 26,
it is either 3-connected or a cycle.

Proposition 28. Let A ∈ Block(G) be a block such that G′[A] is a cycle. Then all
vertices of Int(A) have degree 2 in G.

Proof. Let v ∈ Int(A). Given that Bound(A) is the set of vertices of A that have
neighbors in V (G) \ A, all the edges of G that have v as one end have the other end
in A. Therefore dG(v) = 2.

Proposition 29. Let A ∈ Block(G) be a block such that G′[A] is a cycle of length at
least 4. Then any pair of non-adjacent vertices of A is a non-isolated cutset of G. All
non-isolated cutsets of G are of this form.

Proof. Let S be a pair of non-adjacent vertices in the cycle G′[A]. Clearly S ∈
Cut2(G′[A]). By Proposition 16 S ∈ Cut2(G). Also, note that S ̸∈ D(G).

Let S be a non-isolated cutset of G. Given that no cutset of D(G) separates S, it
follows that there is a set A such that S ⊂ A ∈ Block(G). By Proposition 24, S ∈
Cut2(G′[A]). Then the graph G′[A] is not 2-connected and hence, not 3-connected.
Therefore by Proposition 27, the graph G′[A] is a cycle of length at least 4. Also, the
set S consists of two non-adjacent vertices of the cycle G′[A].
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Chapter 3

Some applications

We now present some applications of the decomposition to the study of classic
concepts in graph theory. For simplicity, we omit some proofs that are long or
technical.

3.1 Planarity of 2-connected graphs

A classic result is that a connected graph is planar if and only if the graphs induced
by its block (using the classic block decomposition) are planar. The necessary condition
clearly holds for the studied decomposition on k-connected graphs as well. In 1937,
Mac Lane gave a similar characterization of 2-connected planar graphs (Mac Lane,
1937). He studied a partition of a 2-connected graph into subgraphs which he called
atoms. He used Kuratowski’s theorem to show that a 2-connected graph is planar if
and only if its atoms are also planar. It is possible to reformulate this theorem in
terms of the block decomposition studied for 2-connected graphs.

In the following propositions, we denote by G′ the graph GD(G), whenever G is
a 2-connected graph.

Lemma 30. Let G be a 2-connected graph. Then G contains a subdivision of G′[A]

for every block A ∈ Block(G).

Proof. Observe that the edges ab ∈ E(G′[A])\E(G) are such that a, b ∈ A and {a, b} ∈
D(G). For every edge ab ∈ E(G′[A]) \ E(G) we perform the following operation in
the graph G′[A]. Let Ua,b be a component of G − {a, b} such that Ua,b ∩ A = ∅. By
Proposition 4, the vertices a and b are adjacent to a vertex of Ua,b in G. Then there
exist an ab-path in G whose internal vertices belong to Ua,b and do not belong to A.
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We replace edge ab in G′[A] by one such path Pa,b, adding its new vertices and edges.
Doing so for every edge in E(G′[A]) \ E(G), we obtain a new graph H, which is a
subgraph of G. Thus, it remains to show that H is a subdivision of G′[A].

Suppose by contradiction that there are two different cutsets S, T ∈ D(G) such that
the paths PS and PT contain a common internal vertex x. Consider the graph G− S.
The internal vertices of PS belong to a component US of G − S. Hence x ∈ US.
There is a component Q different from US that contains the set A \ S. It follows
that T \S ⊂ A\S ⊂ V (Q). Given that T \S ̸= ∅ since S ̸= T , and that the sets T \S
and {x} are in different components in the graph G−S, it follows that V (PT )∩S = S.
Then there is an internal vertex of PT that is contained in A. This contradicts that the
internal vertices of PT do not belong to A, and therefore, the graph H is a subdivision
of G′[A].

Lemma 31. Let H be a 3-connected graph, and let Q be a proper subdivision of H.
Then Q is 2-connected but not 3-connected. Also, for any cutset {a, b} ∈ Cut2(Q) of Q
we have a, b ∈ V (P ), where P is a subdivided path of Q, and the vertices a and b are
non-adjacent in P .

Proof. Since Q is a proper subdivision of H, it contains a vertex of degree 2. Then Q

is not 3-connected. Also, Q contains at least 5 vertices since H contains at least 4

vertices. Let {a, b} ∈ Cut2(Q) be a cutset of Q. Suppose by contradiction that a and b

do not belong to a subdivided path in Q. In the case that a, b ∈ V (H), then a and b are
not adjacent in H, otherwise both vertices belong to a (possibly properly) subdivided
path of Q. Also, given that the graph H − a − b is connected and that ab ̸∈ E(H),
the graph Q− a− b is also connected, and the set {a, b} is not a 2-cutset of Q. Let us
now consider the case in which a ∈ V (H) and b ̸∈ V (H) belongs to a subdivided path
of Q. Let F be the set of edges incident to a in H. Clearly b does not belong to a
subdivision of an edge of F , otherwise both vertices belong to a subdivided path in Q.
Also, given that the graph H − a is connected, the graph Q− a is also connected (see
Figure 3.1 (a)), and vertex b is in a subdivision of some edge of E(H) \ F . Then the
graph Q− a− b is connected, a contradiction. In the case where a, b ̸∈ V (H), those
vertices are not in the same subdivided path of Q, and it is also easy to see that the
graph Q− a− b is connected (see Figure 3.1 (b)), a contradiction. Therefore vertices a
and b belong to a subdivided path in Q. Clearly vertices a and b cannot be adjacent
in Q, otherwise the graph Q− a− b is not connected.
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Figure 3.1: In both cases, the graph Q− a− b is connected.

Lemma 32. Let G be a 2-connected graph, and let H be a 3-connected graph. If G
contains a subdivision of H, then there is some A ∈ Block(G) such that G′[A] contains
a subdivision of H.

Proof. The graph G′ also contains a subdivision of H since G ⊂ G′. Let Q be a
subgraph of G that is a subdivision of H with the minimum number of vertices. We
will show that Q ⊂ G′[A] for some A ∈ Block(G;D(G′)) = Block(G). Hence, it is
enough to show that V (Q) ∈ Ns(G′;D(G′)). Let {a, b} ∈ D(G′) be a cutset of G′. We
will prove that the cutset {a, b} does not separate Q in G′. For this, we will only prove
that Q− a− b is connected. Suppose by contradiction that {a, b} ∈ Cut2(Q). Given
that Cut2(H) = ∅, it follows that Q is a proper subdivision of H, i.e., Q ≠ H, which
is 3-connected. By Lemma 31 we have a, b ∈ V (P ), where P is a subdivided path
of Q. We also conclude that a and b are not adjacent in P . Note that the ab-section
of P contains at least three vertices. Since a and b are adjacent in G′, we can replace
the ab-section of P with the edge ab and obtain a subgraph of G that is a subdivision
of H with strictly less vertices than Q. This contradicts the minimality of Q and
proves that Q− a− b is connected. Then, Q ⊂ G′[A] for some A ∈ Block(G).

Theorem 33. A 2-connected graph G is planar if and only if the graph G′[A] is planar
for every A ∈ Block(G).

Proof. Let us first show that if G′[A] is not planar, for some A ∈ Block(G), then G is
not planar. By Kuratowski’s theorem, G′[A] contains a subdivision of K5 or K3,3. By
Lemma 30, if G′[A] contains a subdivision of K5, then G also contains a subdivision
of K5 since G contains a subdivision of G′[A]. Similarly, if G′[A] contains a subdivision
of K3,3, then G also contains a subdivision of K3,3. This implies that G is not planar.

We now prove that if G is not planar, then there is some A ∈ Block(G) such
that G′[A] is not planar. By Kuratowski’s theorem, G contains a subdivision of K5

or K3,3. Given that both of these graphs are 3-connected, by Lemma 32 it follows
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that there is some A ∈ Block(G) such that G′[A] contains a subdivision of K5 or K3,3.
Therefore, the graph G′[A] is not planar.

This result is equivalent with Mac Lane’s theorem since the subgraphs that
he defined as atoms of a 2-connected graph G are subdivisions of graphs G′[A],
where A ∈ Block(G).

3.2 Colouring

In this section we present some upper bounds for the chromatic number and choice
number of k-connected graphs in terms of these parameters of its blocks.

Lemma 34. Let G be a graph, let A∪B = V (G) be sets of vertices of G. Suppose that
the set S = A ∩B ̸= ∅ is a clique, and suppose that every edge ab ∈ E(G) with a ∈ A,
and b ∈ B has at least one end in S. Let H1 = G[A] and H2 = G[B]. Then

χ(G) = max {χ(H1), χ(H2)} . (3.1)

Proof. Obviously χ(G) ⩾ max {χ(H1), χ(H2)}.

Given two proper colourings γ1 and γ2 of H1 and H2 respectively, we can observe
that the partition they induce on the set S is the same, and every part contains exactly
one element. Therefore, we can synchronize the colourings to obtain a colouring of G
with max {χ(H1), χ(H2)} colours.

Lemma 35. Let G be a graph, let A∪B = V (G) be sets of vertices of G with |A∩B| =
k ⩾ 1. Suppose that every edge ab ∈ E(G) with a ∈ A, and b ∈ B has at least one end
in A ∩B. Let H1 = G[A] and H2 = G[B]. Then

χ(G) ⩽ max {k − 1 + χ(H1), χ(H2)} . (3.2)

Proof. Let γ1 : V (H2) → {1, . . . , χ(H2)} be a proper colouring of H2. Consider the
partition induced by γ1 on the set S = V (H1) ∩ V (H2).

We will first consider the case in which there is a part containing a single vertex.
Let v be such vertex, let S ′ = S \ {v}, and let C1 be the set of colours of γ1 that
are used in S ′. Clearly γ1(v) ̸∈ C1 since the set {v} is a part with a single element.
Let H ′

1 = H1−S ′. We will show that there is a proper colouring of H ′
1 with the colours

of C2 = {1, . . . , χ(H1)+k−1}\C1. Given that |S ′| = k−1, it follows that |C1| ⩽ k−1.
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Then, |C2| ⩾ χ(H1) + k− 1− (k− 1) = χ(H1). We also conclude that χ(H ′
1) ⩽ χ(H1)

given that H ′
1 ⊂ H1, which implies that χ(H ′

1) ⩽ |C2|.

Let γ2 : V (H ′
1) → C2 be a proper colouring of H ′

1. We now modify a copy of the
colouring γ2 to create a new proper colouring γ3 of H ′

1 such that γ3(v) = γ1(v). We
can achieve this by synchronizing the colours of vertex v according to γ1 and γ2.

We can observe that there is no edge ab ∈ E(G) such that a ∈ V (H ′
1) and b ∈

V (G) \ V (H ′
1) such that γ3(a) = γ1(b). Indeed, suppose by contradiction that such an

edge exists. Suppose first that a = v ∈ V (H ′
1). By the definition of the colouring γ3, we

conclude that γ3(a) = γ1(a). We also conclude that γ3(a) = γ1(b), and hence γ1(a) =

γ1(b). This contradicts that γ1 is a proper colouring of H2. Suppose now that a ̸= v.
We can see that a ̸∈ S since V (H ′

1)∩S = {v}. By hypothesis, the edge ab has at least
one end in S, then b ∈ S and furthermore, b ≠ v since b ∈ V (G) \V (H ′

1). Then b ∈ S ′.
By the definition of C1, we have γ1(b) ∈ C1. Suppose first that γ3(a) = γ2(a).
In this case it follows that γ3(a) ∈ C2, and hence γ3(a) ̸∈ C1 by the definition
of C2 = {1, . . . , χ(H1)+ k− 1} \C1. Therefore γ3(a) ̸= γ1(b), a contradiction. Suppose
now that γ3(a) ̸= γ2(a), i.e., that a changed its colour from γ2 to γ3. It follows that
either γ2(a) = γ2(v) or γ2(a) = γ1(v). In the first case we conclude that γ3(a) = γ1(v).
We also have that γ1(b) ̸= γ1(v) since vertex v is the only one with colour γ1(v)

in S. Therefore, we conclude that γ1(b) ̸= γ3(a), a contradiction. In the second
case, we have γ3(a) = γ2(v) ∈ C2. Then, γ3(a) ̸∈ C1 by the definition of C2 =

{1, . . . , χ(H1) + k − 1} \C1. Given that γ1(b) ∈ C1, we conclude that γ3(a) ̸= γ1(b), a
contradiction.

Given that vertex v is the only vertex of G that belongs to the domain of both γ1

and γ3, and that they assign v the same colour, i.e., γ1(v) = γ3(v); we can join
colourings γ1 and γ3 to make a proper colouring of G with the colours of the set C3 =

{1, . . . , χ(H2)} ∪ C2. Observe that |C3| ⩽ max(C3) = max(χ(H2),max(C2)). By the
definition of C2 = {1, . . . , χ(H1)+k−1}\C1, it follows that max(C2) ⩽ χ(H1)+k−1.
Then χ(G) ⩽ |C3| ⩽ max(k − 1 + χ(H1), χ(H2)).

We now consider the case in which γ1 induces a partition on the set S such that
every part contains at least two members. Let C4 be the set of colours of γ1 that are
used in S. It follows that |C4| ⩽ k/2 ⩽ k−1 since k ⩾ 2. Let H ′′

1 = H1−S. Observe that
there is a proper colouring of H ′′

1 with the colours of C5 = {1, . . . , χ(H1) + k− 1} \C4

since |C5| ⩾ χ(H1) + k− 1− (k− 1) = χ(H1) and the fact that χ(H ′′
1 ) ⩽ χ(H1) given

that H ′′
1 ⊂ H1, which implies that χ(H ′′

1 ) ⩽ |C5|. Let γ4 : V (H ′
1) → C5 be a proper

colouring of H ′
1.
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Observe that there is no edge ab ∈ E(G) such that a ∈ V (H ′′
1 ) and b ∈ V (G) \

V (H ′′
1 ) = V (H2) such that γ4(a) = γ1(b). Suppose by contradiction that such an

edge exists. Given that at least one end of ab lies in S and that a ̸∈ S, we conclude
that b ∈ S. Then γ1(b) ∈ C4. But since γ4(a) ̸∈ C4 by the definition of C5 =

{1, . . . , χ(H1) + k − 1} \ C4, we conclude that γ4(a) ̸= γ1(b), a contradiction.

Given that the domains of γ1 and γ4 do not share any vertex in common, we can
join colourings γ1 and γ4 to produce a proper colouring of G with the colours of the
set C6 = {1, . . . , χ(H2)} ∪ C5. Observe that |C6| ⩽ max(C6) = max(χ(H2),max(C5)).
By the definition of C5 = {1, . . . , χ(H1) + k − 1} \ C4, it follows that max(C5) ⩽

χ(H1)+k−1. Then χ(G) ⩽ max{k−1+χ(H1), χ(H2)}. This completes the proof.

We present a second proof by Cláudio Leonardo Lucchesi.

Let J be a graph and let u and v be distinct non-adjacent vertices of J . Denote
by J + uv the graph obtained from J by the addition of a new edge joining u and v.
Denote by J/{u, v} the graph obtained from J by contracting the set {u, v} to a
single vertex.

The following two propositions will be useful for the proof of Lemma 35.

Proposition 36. Let u and v be two non-adjacent vertices of a graph J . The following
properties hold:

χ(J + uv) ∈ {χ(J), χ(J) + 1} and χ(J/{u, v}) ∈ {χ(J), χ(J) + 1}.

Moreover, at least one of χ(J + uv) and χ(J/{u, v}) is equal to χ(J).

Proof. This proof is easy and is left as an exercise for the reader.

Proposition 37. Let I the set of pairs of non-adjacent vertices of a graph G and let G∗

be the graph obtained from G by the addition of the edges uv, for each pair {u, v} ∈ I.
Suppose that for every pair {u, v} ∈ I, χ(G/{u, v}) = χ(G) + 1. Then χ(G∗) = χ(G).

Proof. By induction on |I|. We prove the following two sub-statements.

(a) For every pair {u, v} ∈ I, χ(G+ uv) = χ(G).

Proof. By hypothesis, χ(G/{u, v}) = χ(G)+1. By Proposition 36, it follows that χ(G+

uv) = χ(G).
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If I is empty then the assertion holds trivially. Thus, suppose that I is non-empty.
Let {u, v} ∈ I. Let G′ = G+ uv and let I ′ = I \ {{u, v}}. Then χ(G′) = χ(G). If I is
a singleton then the assertion holds. We may thus assume that I ′ is nonempty.

(b) For each pair {w, x} ∈ I ′, χ(G′/{w, x}) = χ(G′) + 1.

Proof. Suppose that χ(G′/{w, x}) ̸= χ(G′) + 1. From Proposition 36 we infer
that χ(G′/{w, x}) = χ(G′). Then G′ has a proper χ(G′)-colouring, Γ, in which w

and x have the same colour. But χ(G′) = χ(G) and Γ is a proper colouring of G. This
conclusion is a contradiction to the hypothesis that χ(G/{w, x}) = χ(G) + 1.

By induction, with G′ playing the role of G and I ′ playing the role of I, we conclude
that χ(G∗) = χ(G′) = χ(G).

Proof of Lemma 35. Let S = A ∩B and let I denote the set of pairs of non-adjacent
vertices of S. The proof is by induction on |I|, the number of pairs of non-adjacent
vertices of A ∩B.

Case 1 I = ∅. Then S is a clique, and the assertion follows immediately from
Lemma 34.

Case 2 The set I contains a pair {u, v} such that χ(H1 + uv) = χ(H1) and χ(H2 +

uv) = χ(H2). By Proposition 36 and by induction,

χ(G) ⩽ χ(G+ uv) ⩽ max {k − 1 + χ(H1 + uv), χ(H2 + uv)}

= max {k − 1 + χ(H1), χ(H2)} .

Case 3 The set I contains a pair {u, v} such that χ(H2/{u, v}) = χ(H2). By
Proposition 36 and by induction,

χ(G) ⩽ χ(G/{u, v}) ⩽ max {k − 2 + χ(H1/{u, v}, χ(H2/{u, v})}

⩽ max {k − 1 + χ(H1), χ(H2)} .

Case 4 The set I contains a pair {u, v} such that χ(H2/{u, v}) = χ(H2) + 1 ⩽

k − 1 + χ(H1). By Proposition 36 and by induction,

χ(G) ⩽ χ(G/{u, v}) ⩽ max {k − 2 + χ(H1/{u, v}, χ(H2/{u, v})}

⩽ max {k − 1 + χ(H1), χ(H2) + 1}

= k − 1 + χ(H1).
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Case 5 The previous cases are not applicable. By Proposition 36, we have the
following equalities, for each pair {u, v} ∈ I:

χ(H1/{u, v}) = χ(H1), χ(H1 + uv) = χ(H1) + 1, (3.3)

χ(H2 + uv) = χ(H2), χ(H2/{u, v}) = χ(H2) + 1, (3.4)

We also have χ(H2) ⩾ k − 1 + χ(H1). (3.5)

By Proposition 37, H2 has a proper χ(H2)-colouring, Γ2, in which the k vertices
of S have k distinct colours. Let v ∈ S, let S ′ = S − v. From Equation (3.5) we
deduce that χ(H1) ⩽ χ(H2)− (k − 1). Thus, there exists a proper χ(H1)-colouring
of H1 = S ′, Γ′

1, which does not use any of the k − 1 colours of the vertices of S ′.
Moreover, we may fix the colour of v in Γ′

1 to coincide with its colour in Γ2. Thus, Γ′
1

may be extended to a proper χ(H2)-colouring Γ1 of H1 such that each vertex of S has
the same colour in both Γ1 and in Γ2. Thus, G has a proper χ(H2)-colouring. The
assertion holds.

For a graph G, we denote by χL(G) its list chromatic number.

Lemma 38. Let G be a graph, let A∪B = V (G) be sets of vertices of G with |A∩B| =
k ⩾ 1. Suppose that every edge ab ∈ E(G) of G with a ∈ A, and b ∈ B has at least
one end in A ∩B. Let H1 = G[A] and H2 = G[B]. Then

χL(G) ⩽ max {k + χL(H1), χL(H2)} . (3.6)

Proof. Let m = max {k + χL(H1), χL(H2)}. Let L = (L(v))v∈V (G) be a set of lists
assigned to each vertex of G, where |L(v)| = m for each v ∈ V (G). We will prove
that G is L-choosable. Given that |L(v)| = m ⩾ χL(H2) for every v ∈ V (H2),
there is a proper colouring γ1 of H2. such that γ1(v) ∈ L(v). Let C be the set
of colours that are used by γ1 in S = V (H1) ∩ V (H2). Clearly |C| ⩽ |S| = k.
Let H ′

1 = H1 − S. For every vertex u ∈ V (H ′
1), let L′(u) = L(u) \ C. For each such

vertex we have |L′(u)| ⩾ |L(u)|− |C| ⩾ k+χL(H1)−k = χL(H1). Therefore there is a
proper colouring γ2 of the vertices of H ′

1 such that γ2(u) ∈ L′(u) for every u ∈ V (H ′
1)

since χL(H
′
1) ⩽ χL(H1).

We can observe that there is no edge ab ∈ E(G) such that a ∈ V (H ′
1) and b ∈ V (H2)

with γ2(a) = γ1(b). Indeed, if such an edge exists, it follows that b ∈ S by hypothesis.
And then γ1(b) ∈ C, hence γ1(b) ̸∈ L′(a), which implies that γ2(a) ̸= γ1(b), a
contradiction.
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Given that no vertex belongs to the domain of both γ1 and γ2, we can join
colourings γ1 and γ2 to produce a proper colouring of G such that every vertex is
assigned to a colour of its list in L. This implies that G is L-choosable.

Lemma 39. Let G be a graph, and let B, C ⊂ 2V (G) be families of subsets of V (G).
Let T be the (B, C)-bipartite graph where B ∈ B is adjacent to C ∈ C in T if C ⊂ B.
Let k ⩾ 1 be an integer, and let the following conditions be met:

1. ⋃
B∈B

B = V (G).

2. For every C ∈ C, |C| = k.

3. Let A,B ∈ B be different sets such that A ∩B ̸= ∅. Then A ∩B ∈ C.

4. Let A,B ∈ B such that there is an edge ab ∈ E(G) with a ∈ A, and b ∈ B.
Then A ∩B ̸= ∅, and at least one of a,b belongs to A ∩B.

5. The graph T is a tree.

6. Every member of C has degree at least 2 in T .

Then,
χ(G) ⩽ k − 1 + max

B∈B
χ(G[B]). (3.7)

Proof. We prove the statement by induction on |B|. Clearly B is nonempty by
condition 1. For the case |B| = 1, let {B} = B. It follows that B = V (G),
then χ(G) = χ(G[B]) ⩽ k − 1 + χ(G[B]). Let G, B, C, and T be given. The tree T

has at least two vertices since v(T ) ⩾ |B| ⩾ 2. Let A ∈ B be a leaf of T , and
let S ∈ C be only the vertex adjacent to A in T , i.e., S ⊂ A. Let H = V (G) \ (A \ S).
Clearly A ∩H = S.

We will prove that for every edge ab ∈ E(G) such that a ∈ A, and b ∈ H, at
at least one of a, b belongs to S. Indeed, by condition 1, vertex b belongs to some
set B ∈ B. Then, by condition 4, A∩B ̸= ∅. If A = B, then clearly b ∈ S since b ∈ H,
and the statement holds. If A ̸= B, by condition 3 we conclude that A ∩B ∈ C, and
given that S is the only element of C contained in A, it follows that A ∩ B = S.
Therefore, at least one of a, b belongs to A ∩B = S.

Let G′ = G[H]. By Lemma 35, we conclude that

χ(G) ⩽ max {k − 1 + χ(G[A]), χ(G′)} . (3.8)
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Let B′ = B \ {A}. Let C ′ be defined as C \ {S} in the case where dT (S) = 2;
otherwise, i.e., when dT (S) ⩾ 3, let C ′ = C. Let T ′ be defined as T −A−S in the case
where dT (S) = 2; otherwise let T ′ = T − A. We will prove that the conditions of the
statement hold in order to apply the induction hypothesis in G′, B′, C ′, and T ′.

Condition 1. Let v ∈ V (G′) be a vertex of G′. By condition 1, v is contained in
some member of B. If such member is different from A, then it belongs to B′ and the
condition is maintained. If such member is equal to A, we can observe that v ∈ S

given that v ∈ V (G′) = H and that A∩H = S. By condition 6, the set S is contained
in at least 2 members of B, at least one of which is different from A, and the condition
is maintained.

Condition 2. Every member of C has size k. Every member of C \ {S} has size k

as well. The set C ′ is defined as one of these two sets.

Condition 3. Let C,D ∈ B′ be different sets such that C ∩D ̸= ∅. By condition 3,
we conclude that C ∩D ∈ C. If C ′ = C, then the condition is maintained. Otherwise it
follows that C ′ = C\{S}. Suppose by contradiction that C∩D = S. We have A ̸= C,D.
Then, S is contained in at least 3 members of B, i.e., dT (S) ⩾ 3. But then C ′ = C, a
contradiction. Therefore C ∩D ̸= S, and we still have that C ∩D ∈ C ′.

Condition 4. Let C,D ∈ B′ such that there is an edge ab ∈ E(G′) ⊂ E(G)

with a ∈ C and b ∈ B. By condition 4, C,D ∈ B, and we still have that C ∩D ≠ ∅,
and that at least one of a, b belongs to A ∩B.

Condition 5. The graph T − A is a tree since A is a leaf. The graph T − A− S

is also a tree provided that dT (S) = 2. The graph T ′ is defined as one of these two
graphs.

Condition 6. In the case that T ′ = T−A, it follows that dT (S) ⩾ 3. Then dT ′(S) ⩾ 2.
The remaining members of C ′ have the same degree in T ′ since S is the only vertex
adjacent to A in T . In the case that T ′ = T − A − S, we conclude that S is not
adjacent to any other cutset of C ′ since T is a (B, C)-bipartite graph. Then, the degree
of any member of C ′ in T ′ is the same in T , and the condition is maintained.

By the induction hypothesis, we have

χ(G′) ⩽ k − 1 + max
B∈B′

χ(G′[B]). (3.9)
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We combine 3.8 with 3.9 to get:

χ(G) ⩽ max

{
k − 1 + χ(G[A]), k − 1 + max

B∈B′
χ(G′[B])

}
= k − 1 + max

{
χ(G[A]),max

B∈B′
χ(G′[B])

}
= k − 1 + max

B∈B
χ(G[B]).

This completes the proof.

Theorem 40. Let G be a k-connected graph, and let S ⊂ Cutk(G) be a family of
pairwise independent k-cutsets of G. Then,

χ(G) ⩽ χ(G′) = max
A∈Block(G;S)

χ(G′[A]). (3.10)

Proof. This proof is easy and uses induction on the tree like structure of the decom-
position of G. It also uses Lemma 34.

Theorem 41. Let G be a k-connected graph, and let S ⊂ Cutk(G) be a family of
pairwise independent k-cutsets of G. Then,

χ(G) ⩽ k − 1 + max
A∈Block(G;S)

χ(G[A]). (3.11)

Proof. Clearly the blocks of G form a tree like structure as defined in Definition 10,
i.e., by assigning B = Block(G;S), C = S, and T = T(G;S). Thus, the hypothesis of
Lemma 39 holds for this case. The conclusion is immediate.

Theorem 42. Let G be a k-connected graph, and let S ⊂ Cutk(G) be a family of
pairwise independent k-cutsets of G. Then,

χL(G) ⩽ k + max
A∈Block(G;S)

χL(G[A]). (3.12)

Proof. We can prove a similar statement as in Lemma 39, where we have χL(G) ⩽

k +maxB∈B χL(G[B]). We can then proceed as in the proof of Theorem 41.
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3.3 Critically 2-connected graphs

A graph G is critically k-connected if G is k-connected with v(G) ⩾ k + 2 and for
any vertex v ∈ V (G) of G, the graph G− v is not k-connected.

Critically k-connected graphs were studied in (Chartrand et al., 1972) and
(Hamidoune, 1980). In (Hamidoune, 1980), it was proven that any critically k-
connected graph has at least two vertices of degree less than (3k − 1)/2. This implies
that any critically 2-connected graph has at least two vertices of degree 2. Using
the block decomposition for 2-connected graphs, we will prove that any critically 2-
connected graph has at least four vertices of degree 2.

Proposition 43. Let G be a 2-connected graph. Then the vertices not contained in the
cutsets of Cut2(G) are the internal vertices of the blocks A ∈ Block(G) where G′[A]

is 3-connected or a triangle.

Proposition 44. Let G be a 2-connected graph. Then G is critically 2-connected if
and only if Int(A) = ∅ for all of its blocks A ∈ Block(G) such that G′[A] is 3-connected
or a triangle.

Proof. Let G be a critically 2-connected graph. Let v ∈ V (G) be a vertex of G. We
will prove that v is either a boundary vertex, or belongs to a block that induces a
cycle on G′ with at least four vertices. It follows that G′ = G− v is connected, but
not 2-connected and has at least three vertices. Let u ∈ V (G′) be a vertex of G′ such
that G′ − u = G − v − u is disconnected. Clearly {v, u} ∈ Cut2(G). Assume first
that {v, u} is an isolated cutset. In this case, by Remark 11 there is a block that
contains the cutset, and the vertices v and u are boundary vertices of such block.
Assume now that {v, u} is not an isolated cutset. In this case, by Proposition 29,
there is a block B such that {v, u} ⊂ B and the graph G′[B] is a cycle on at least
four vertices. In both cases, vertex v is either a boundary vertex, or belongs to a block
that induces a cycle on G′ with at least four vertices. Then v cannot be an internal
vertex of a block that induces a 3-connected graph or a triangle in G′. Therefore the
interior of any such blocks are empty.

Let G be a 2-connected graph such that Int(A) = ∅ for all of its blocks A ∈ Block(G)

such that G′[A] is 3-connected or a triangle. Let v ∈ V (G) be a vertex of G. We will
prove that v is contained in a 2-cutset of G. It follows that v is either a boundary
vertex of some block, or belongs to some block that induces a cycle on G′ with at
least four vertices. In the case that v is a boundary vertex, it belongs to some isolated
cutset {v, u} ∈ D(G). In the case that v belongs to some block that induce a cycle
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on G′ with at least four vertices, by Proposition 29, the vertex v together with a
non-adjacent vertex in the cycle G′[A] forms a cutset of G that is not isolated. In
both cases, vertex v is contained in some cutset of Cut2(G), which implies that the
graph G− v is not 2-connected, and contains at least three vertices. Therefore G is
critically 2-connected.

Proposition 45. Let G be a critically 2-connected graph and let A be a leaf of BT(G)

adjacent to cutset S in BT(G). Then A is a cycle with at least four vertices and all
vertices of A, except for the two vertices of S have degree 2 in G.

Proof. Clearly Int(A) ̸= ∅, therefore by Proposition 44, G′[A] cannot be a 3-connected
graph or a triangle. By Proposition 27, G′[A] is a cycle with at least four vertices. By
Proposition 28, all the vertices of Int(A), i.e., all vertices of the cycle except for the
vertices of S, have degree 2 in G.

Corollary 46. Any critically 2-connected graph has at least four vertices of degree 2.

Proof. Let G be a critically 2-connected graph. If G has at least one isolated cutset,
i.e., D(G) ̸= ∅, then the tree BT(G) has at least two leaves. By Proposition 45, each
of the leaves of BT(G) contain at least two vertices of degree 2 in G.

In the case that D(G) = ∅, then by Proposition 26, G is 3-connected or a cycle.
Clearly G cannot be 3-connected and critically 2-connected. Then G is a cycle on at
least four vertices.
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Chapter 4

Decomposition of
certain 2-connected graphs into
three connected subgraphs

Between 1976 and 1977, Győri and Lovász independently proved the following
theorem (Győri, 1978; Lovász, 1977).

Theorem 47. Let k ⩾ 2 be an integer, let G be a k-connected graph on n vertices,
let v1, . . . , vk be distinct vertices of G, and let n1, . . . , nk be positive integers with n1 +

· · ·+ nk = n. Then G has disjoint connected subgraphs G1, . . . , Gk such that, for i =

1, 2, . . . , k, the graph Gi has ni vertices and vi ∈ V (Gi).

A natural question to ask is whether (k − 1)-connected graphs also share this
property (for k ⩾ 3). That is, if such a graph admits k disjoint connected subgraphs of
any sizes that cover the set of vertices of the graph. We now show a counter-example
for this property.

Fix an integer t ⩾ 2. Let G be a (k − 1)-connected graph of order n that contains
a cutset S of size k − 1 such that the graph G − S has at least k + 1 components,
each containing exactly t vertices. We have n ⩾ (k + 1)t+ (k − 1) > k(t+ 1). Then,
there exist integers n1, . . . , nk such that n1 + · · ·+ nk = n and such that ni ⩾ t+ 1.
We claim that the graph G cannot be partitioned into disjoint connected subgraphs of
orders n1, . . . , nk. Suppose that such subgraphs G1, . . . , Gk exist. Let W1,W2, . . . be
the components of the graph G− S. Then one of the subgraphs, Gi is contained in a
component Wj given that S only contains k−1 vertices and there are k such subgraphs,
and hence Gi does not contain vertices of S. But then we have v(Gi) ⩽ v(Wj) = t,
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which contradicts that v(Gi) = ni ⩾ t+ 1.

This counter-example suggest that, one possible obstruction for partitioning a (k−
1)-connected graph into k disjoint connected subgraphs is the existence of (k − 1)-
cutsets that separate the graph into more than k pieces. Karpov proposed the following
conjecture in (Karpov, 2017).

Conjecture 48. Let k ⩾ 3 be an integer, and let G be a (k− 1)-connected graph on n

vertices such that any (k − 1)-cutset of G splits the graph into at most k components.
Let n1, . . . , nk be positive integers with n1+· · ·+nk = n. Then G has disjoint connected
subgraphs G1, . . . , Gk such that for i = 1, 2, . . . , k, the graph Gi has ni vertices.

It is easy to see that the conjecture is not true for k = 2. For instance, consider
the graph that consists on taking the triangle K3 and then adding three new vertices
of degree one, each adjacent to a different vertex of of the triangle. This graph is
an example of a connected graph where any of its cut vertices (the vertices of the
triangle) separate the graph into two pieces: an isolated vertex and a path on four
vertices, but it cannot be partitioned into two disjoint connected subgraphs of order
three each (one of the subgraphs must contain two vertices of the triangle).

Karpov also proved the conjecture for the case k = 3 using the decomposition for
a 2-connected graph described in this work. In this section, we present his proof for
this case.

We first prove some auxiliary tools.

Proposition 49. Let G be a connected graph, and suppose that the graph BT(G) has
exactly two leaves B1 and B2 (using the block decomposition for k = 1, i.e., the classic
decomposition). Let v1 ∈ Int(B1) and v2 ∈ Int(B2), and let n1 and n2 be positive
integers such that n1 + n2 = n. Then G has disjoint connected subgraphs G1 and G2

such that v1 ∈ V (G1), v2 ∈ V (G2) and with v(G1) = n1 and v(G2) = n2.

Proof. Note that the graph G+ v1v2 is 2-connected. Then by Theorem 47 the desired
subgraph exists.

Proposition 50. Let A ∈ Block(G) be a block of a 2-connected graph G such that the
graph GD(G)[A] is 3-connected, and let v ∈ Int(A). Then the graph G−v is 2-connected.

Proof. Given that v is an internal vertex of a block of G, it does not belong to an
isolated cutset of G. By Proposition 28 and Proposition 29, the vertex v is also not part
of a non-isolated cutset of G. Therefore, the vertex v does not belong to any 2-cutset
of G, and the graph G− v is 2-connected.
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Proposition 51. Let G be a 2-connected graph, and let S = {a, b} ∈ D(G) be an
isolated cutset of G. Let A be the union of some blocks of Block(G;S). Then the
graph G[A] + ab is 2-connected.

Proof. Let A = B1 ∪ · · · ∪Bt be the union of blocks of Block(G;S). By Corollary 17,
the graphs G[Bi] + ab = G{S}[Bi] are 2-connected. Then removing one vertex from
the graph G[A] + ab clearly leaves the graph connected.

The following result is a more general version of Theorem 47 for the case k =

2.

Proposition 52. Let G be a 2-connected graph of order n. Let V1 ⊂ V (G) be a set of
vertices such that the graphs G[V1] and G− V1 are connected, and let v2 ∈ V (G) \ V1.
Let n1, n2 be positive integers such that n1 + n2 = n and |V1| ⩽ n1. Then there exist
disjoint connected subgraphs G1 and G2 of G with v(G1) = n1 and V (G2) = n2, and
such that V1 ⊂ V (G1) and v2 ∈ V (G2).

Proof. Let V1 be fixed and proceed by induction on n1. For the base case n1 = |V1|,
the graphs G[V1] and G−V1 satisfy the desired conditions. Suppose that n1 ⩾ |V1|+1

and that the statement is true for smaller values of n1. Then there exist connected
subgraphs G1 and G2 of G of orders n1 − 1 and n2 + 1 that contain the set V1 and
the vertex v2 respectively. Observe that if there is a vertex v ∈ V (G2) with v ̸= v2,
with v adjacent to a vertex of G1, and with the graph G2 − v connected, then the
graphs G1 + v and G2 − v satisfy the desired conditions.

Consider the block decomposition of the graph G2 (for the case k = 1, which
coincides with the classic block decomposition). In the case that the block tree of G2 is
trivial, then clearly any vertex of G2 that is different from v2 does not disconnect G2.
Also, given that G is 2-connected, there must be at least two vertices in G2 that are
adjacent to a vertex in G1, at least one of which is not vertex v2. In the case that
the block tree of G2 is not trivial, then it has at least two leaf blocks. If v2 is not a
cut-vertex of G2, then there is a leaf block B that does not contain vertex v2. If v2
is a cut-vertex of G2, then let B be any leaf block. Note that v2 ̸∈ Int(B). Let u be
a vertex of G2 that separates B from the rest of the graph G2. Then the set Int(B)

cannot be separated from the rest of the graph G by u. Then there is a vertex in the
set Int(B) that is adjacent to a vertex in G1. This vertex clearly does not disconnect
the graph G2 and is different from v2.

Let G be a 2-connected graph with a weight function w : V (G) → Z⩾1, and let n2

and n3 be positive integers such that the sum of the weights of all vertices of G
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is n2+n3. For a vertex z1 ∈ V (G) such that w(z1) ⩽ max{n2, n3}, a vertex x ∈ V (G),
and an integer k ⩽ w(x)− 1; a (z1, x, k)-operation consists on decreasing the weight
of x by k, and increasing the weight of z1 by k. Note that this operation creates a
new function w′.

Proposition 53. Let G, w, n2 and n3 be as above. Then, for any vertex z1 ∈ V (G)

such that w(z1) ⩽ max{n2, n3}, there exist a vertex x ∈ V (G) and an integer k

such that after a (z1, x, k)-operation, the graph G has disjoint connected subgraphs G2

and G3 such that, for i = 1, 2, the sum of the weights of the vertices of Gi is ni (using
the new weight function).

Proof. Suppose that w(z1) ⩽ n2. For a set U ⊂ V (G), let w(U) be the sum of the
weights of all vertices in U . Let V2 = {v}, with v ∈ V (G) \ {z1}, and V3 = V (G) \ {v}.
The graphs G[V2] and G[V3] are connected. In the case that w(v) = w(V2) ⩾ n2,
then we perform a (z1, v, w(v) − n2)-operation, after which the statement clearly
holds. Suppose now that w(V2) < n2. We will describe an algorithm to find the
operation that will be performed. In each step of the algorithm, we start with the
sets V2 and V3 and want to find a vertex u ∈ V3 such that u is adjacent to a vertex
in V2 and the graph G[V3] − u is connected. Then the new sets are V ′

2 = V2 ∪ {u}
and V ′

3 = V3 \ {u}, which are connected. In the case that w(V2) + w(u) ⩾ n2, then
we perform a (z1, u, w(u) − n2 + w(V2))-operation, so the final weight of vertex u

is n2 − w(V2), and the graphs G[V ′
2 ] and G[V ′

3 ] are the desired ones. In the case
that w(V2) + w(u) < n2, we perform another iteration of the algorithm. At each step,
the size of the set V2 increases. Therefore, the algorithm stops after at most v(G)

iterations.

At each iteration, we find vertex u in the following way. If the graph G[V3] is 2-
connected or has two vertices, then clearly such a vertex exist. If the graph G[V3] has
at least three vertices and is connected, but not 2-connected, then we perform the
block decomposition of G[V3] (for the case k = 1). Then the graph G[V3] has at least
two leaf blocks, one of which, L does not contain vertex z1 in its interior. Let d be a
cut-vertex of G[V3] that separates L from the rest of the graph G[V3]. The vertex d

cannot separate L from the rest of the graph. Then there is a vertex u in the interior
of L that is adjacent to a vertex of V2. Vertex u is the vertex used for the current
iteration (see Figure 4.1).

The following result offers a sufficient condition for partitioning a 2-connected
graph into three disjoint connected subgraphs.

Proposition 54. Let G be a 2-connected graph of order n, and let n1, n2, n3 be positive
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Figure 4.1: An iteration that increases V2.

integers with n1+n2+n3 = n. Suppose that there is an isolated 2-cutset S ∈ D(G) and
a block A ∈ Block(G; {S}) such that n1 ⩽ |Int(A)| ⩽ n1 +min{n2, n3} − 1. Then G

has three disjoint connected subgraphs of orders n1, n2, and n3 respectively.

Proof. Suppose without loss of generality that n2 ⩽ n3. Let {a, b} = S, let G′ = G[A]+

ab. By Proposition 51, the graph G′ is 2-connected. Also, the graphs G′[S] and G′ −S

are connected, and G′ has at least n1 + 2 vertices. Then by Proposition 52, G′ has
disjoint connected subgraphs G1 and G′

2 of such that v(G1) = n1, 2 ⩽ v(G′
2) ⩽ n3 +1,

and S ⊂ V (G′
2) (the graph G1 will be one of the resulting graphs offered by the

lemma).

In the case that ab ̸∈ E(G), we conclude that the graph G[V (G′
2)] has exactly

two components Ha and Hb containing vertices a and b respectively. In the case
that ab ∈ E(G), then the graph G[V (G′

2)] is connected and has disjoint connected
subgraphs Ha and Hb containing vertices a and b. In both cases, given the order of
the graph G′

2 and that the graphs Ha and Hb contain at least one vertex, we conclude
that v(Ha) ⩽ n2 and v(Hb) ⩽ n3. respectively (see Figure 4.2).

Figure 4.2: Decomposition of a block.

Let m2 = n2+1−v(Ha) and m3 = n3+1−v(Hb). Note that both m2,m3 ⩾ 1, and
that that the graph G∗ = G−Int(A)+ab has m2+m3 vertices. Also, by Proposition 51,



42

4 | DECOMPOSITION OF CERTAIN 2-CONNECTED GRAPHS INTO THREE CONNECTED SUBGRAPHS

the graph G∗ is 2-connected. By Proposition 52, the graph G∗ has disjoint connected
subgraphs F2 and F3 such that v(F2) = m2, v(F3) = m3 and that a ∈ V (F2)

and b ∈ V (F3). Observe that V (Ha)∩V (F2) = {a} and V (Hb)∩V (F3) = {b}. Let G2 =

Ha ∪ F2 and let G3 = Hb ∪ F3. Clearly both graphs are connected, and v(G2) = n2,
and v(G3) = n3. Then the graphs G1, G2 and G3 are disjoint connected subgraphs
of G with the desired orders.

4.1 Proof of Conjecture 48 for the case k = 3

We now use the block decomposition theory to prove Conjecture 48.

Let G be a 2-connected graph on n vertices such that any 2-cutset of G splits the
graph into at most 3 components. Let n1, n2, n3 be positive integers with n1+n2+n3 =

n, and assume without loss of generality that n1 ⩾ n2 ⩾ n3.

In the case that D(G) = ∅, by Proposition 26 the graph G is either a cycle
or 3-connected. If G is a cycle, it has disjoint connected subgraphs G1, G2 and G3

such that for i = 1, 2, 3, the graph Gi has ni vertices. If G is a 3-connected graph,
then by Theorem 47, the graph also admits the same decomposition 1.

For the rest of the proof, we assume that D(G) ̸= ∅, and hence, that the block
tree BT(G) of G is non-trivial.

Let ℓ be a leaf of the graph BT(G). In order to define parent and children
relationships between vertices of BT(G), consider an orientation of all the edges
of BT(G) away from vertex ℓ such that every other vertex is accessible from a directed
path starting in vertex ℓ. For an edge uv with orientation (u, v), we call vertex u the
parent of vertex v, and v is a child of vertex u. It is easy to see that every vertex v

of BT(G) has at most one parent. Let M(ℓ) = V (G). For a vertex A ∈ V (BT(G)) such
that A ∈ Block(G), let M(A) = B, with B ∈ Block(G; {p(A)}) and A ⊂ B (observe
that p(A) ∈ D(G)). For a vertex S ∈ V (BT(G)) such that S ∈ D(G), let M(S) be
the union of the members of Block(G; {S}) with the exception of the one containing ℓ

(see Figure 4.3). For a vertex v ∈ V (BT(G)), let m(v) = |M(v)|.

We will choose a special vertex of BT(G). Consider an ℓA-path of BT(G) maximal
with respect to the property that m(A) ⩾ n2+2 and m(B) ⩽ n2+1 for every child B

1 If G is a 3-connected graph and F ⊂ E(G) is a minimal set of edges such that G − F is not 3
connected, then every 2-cutset of the graph G − F splits it into two pieces. Thus, we can avoid
applying Theorem 47 and continue with the proof considering the graph G−F given that it satisfies
the conditions of the conjecture.
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Figure 4.3: Branching of the graph BT(G).

of A. This path clearly exists since m(ℓ) = n ⩾ n2 + 2, so we can take the trivial path
consisting of vertex ℓ.

Note that the vertex A can be either a block or an isolated 2-cutset of G. We will
now split the proof into two cases depending on these possibilities.

Suppose that the set A = S is an isolated cutset, i.e., S ∈ D(G). Let Bℓ ∈
Block(G; {S}) be the block that contains ℓ. Let Bg ∈ Block(G; {S}) be a block with
maximum cardinality different from Bℓ. By Proposition 18 (b), there is a block Bd ∈
Block(G) such that Bd is adjacent to S in BT(G) and Bd ⊂ Bg. Note that Bd is a child
of S (see Figure 4.4). Therefore, M(Bd) = Bg and m(Bd) = |Int(Bg)|+ 2, and given
the special property of vertex S, it follows m(Bd) ⩽ n2 + 1 and hence, |Int(Bg)| ⩽
n2 − 1.

Figure 4.4: When A = S is a 2-cutset.

We claim that |Int(Bg)| ⩾ n3 or |Int(Bℓ)| ⩾ n1. Suppose by contradiction
that |Int(Bg)| ⩽ n3 − 1 and that |Int(Bℓ)| ⩽ n1 − 1. It follows that |Block(G; {S})| ⩽
3 by the hypothesis of the conjecture. Also, by the choice of Bg each block
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of Block(G; {S}) different from Bℓ has at most |Int(Bg)| ⩽ n3 − 1 vertices on its
interior. Then n− 2 = |V (G) \ S| ⩽ n1 − 1 + 2(n3 − 1) ⩽ n1 + n2 + n3 − 3 = n− 3, a
contradiction.

In the case that |Int(Bg)| ⩾ n3, it follows that n3 ⩽ |Int(Bg)| ⩽ n2 − 1 <

n3 + n2 − 1 ⩽ n3 + n1 − 1, and thus we can apply Proposition 54 with S ∈ D(G)

and Bg ∈ Block(G; {S}) to get the desired decomposition of G.

In the case that |Int(Bℓ)| ⩾ n1, given that m(S) ⩾ n2 + 2 and that |Int(Bℓ)| +
m(T ) = n = n1 + n2 + n3, we conclude that |Int(Bℓ)| ⩽ n1 + n3 − 2 < n1 + n2 − 1,
and we also can apply Proposition 54 with S ∈ D(G) and Bℓ ∈ Block(G; {S}) to get
the desired decomposition of G. This completes the proof for the case when A = S is
an isolated cutset.

Suppose now that A is a block of G, i.e., A ∈ Block(G). Let T1, T2, . . . , Th be the
vertices adjacent to A in the graph BT(G) such that T1 = p(A). For i = 1, . . . , h, let Bi

be the union of all the blocks in Block(G; {Ti}) that do not contain A. Let Int(Bi) =

Bi \ Ti (given that Bi is not a block, this was not previously defined), and let m′
i =

|Int(Bi)|. For i = 2, . . . , h, we conclude that

m′
i = m(Ti)− 2 ⩽ n2 + 1− 2 = n2 − 1. (4.1)

We also have Int(B1)∪M(A) = V (G), where the sets Int(B1) and M(A) are disjoint.
Then m′

1+m(A) = |Int(B1)|+ |M(A)| = n = n1+n2+n3. Given that m(A) ⩾ n2+2,
it follows that

m′
1 = n1 + n2 + n3 −m(A) ⩽ n1 + n3 − 2. (4.2)

Let j be an integer such that m′
j is maximum among all m′

1, . . . ,m
′
h. Let A1, . . . , Ah

be the sets B1, . . . , Bh with A1 = Bj , Aj = B1, and Ai = Bi for i = 2, . . . , h, with i ̸= j.
For i = 1, . . . , h, let mi = |Int(Ai)|.

Equation (4.1) and Equation (4.2) hold for m1, . . . ,mh, indeed, in the case that j =

1, the claim is trivial. If j > 1, for i = 2, . . . , h we have

mi ⩽ m1 = m′
j ⩽ n2 − 1. (4.3)

Also, it follows that
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m1 = m′
j ⩽ n2 − 1 ⩽ n1 − 1 ⩽ n1 + n3 − 1− 1 = n1 + n3 − 2. (4.4)

Let T1 = {y1, z1}, T2 = {y2, z2}, . . . , Th = {yh, zh}. Let F = G[A] + y1z1 + y2z2 +

· · ·+ yhzh (see Figure 4.5). Let w(yizi) = mi = |Int(Ai)|, and w(e) = 0 for any other
edge e of G (the edge y1z1 has maximum weight m1).

Figure 4.5: When A is a block.

By Proposition 27, the graph F is a cycle, or it is 3-connected. We consider both
cases separately.

We first consider the case where F is a cycle. Let F = a0a1 . . . aℓ, and assume
that the vertices y1, z1, y2, z2, . . . , yh, zh are present in cyclic order, with a0 = y1

and a1 = z1. We now construct a new cycle C by taking a copy of the cycle F and, for
each edge aiai+1 adding w(aiai+1) new vertices of degree 2 (this new cycle represent
the whole graph G that we want to split in three pieces).

Note that if we “perform three cuts” to the cycle C such that it is decomposed
into three paths with n1, n2 and n3 vertices respectively and with no two cuts on
the same aiai+1-section of the cycle, then we can obtain the desire decomposition
of G. Indeed, suppose that we perform a cut in the aiai+1-segment of C. If there are
no internal vertices in the segment, i.e., if w(aiai+1) = 0, then we put vertex ai in
one subgraph and vertex ai+1 in another subgraph. If the segment contains internal
vertices, then w(aiai+1) > 0 and {ai, ai+1} is one of the sets Ti. Suppose that the
cut occurs after the jth vertex starting from vertex ai. Then, by Proposition 52,
the 2-connected graph G[Ai] + aiai+1 has disjoint connected subgraphs G1 and G2

such that v(G1) = j and ai ∈ V (G1), ai+1 ∈ V (G2). Performing this decomposition
for each of the three cuts creates three disjoint subgraphs of G with sizes n1, n2 and n3

respectively (see Figure 4.6).

We now prove that there is a choice of three cuts on the cycle C that decomposes
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Figure 4.6: Three cuts on F .

it into three paths with n1, n2 and n3 vertices respectively and with no two cuts on
the same aiai+1-section of the cycle.

In the case that w(a0a1) ⩾ n1 − 1, the first cut is made in the edge incident to
vertex a0 outside the aoa1-section. The second cut is made just after the n1th vertex
starting from the first cut (the first vertex is a0) and going in cyclic order. Given that
there are w(a0a1)+2 ⩾ n1+1 vertices in the a0a1-section, the second cut occurs in this
section and the first cut occurs outside of it. The third cut is made just after the n3th
vertex starting from the second cut and going in cyclic order. By Equation (4.4),
the third cut is not on the a0a1-section. Also, by Equation (4.3), this cut is not on
the aℓa0-section (see Figure 4.7 left).

In the case that w(a0a1) < n1 − 1, the first cut is made in the edge incident to
vertex a0 inside the a0a1-section. The second cut is made just after the n1th vertex
starting from the first cut and going in cyclic order. Given that there are w(a0a1)+2 ⩽

n1 vertices on the a0a1-section and that the vertex a0 lies before the first cut, the
second cut is in some aiai+1-section, where i > 0. The third cut is made just after
the n2th vertex starting from the second cut and going in cyclic order. Given that
there are w(aiai+1) < n2 − 1 internal vertices in the aiai+1-section, the third cut is
outside of it. Also, note that the third cut is outside the a0a1-section (see Figure 4.7
right). This completes the proof for the case where the graph F is a cycle.

For the rest of the proof, we assume that the graph F = G[A]+y1z1+y2z2+· · ·+yhzh

is 3-connected. For a set U ⊂ V (G) of vertices of G, let U ′ = U ∩ V (F ) = U ∩ A.
An edge yizi is said to be U -problematic if it is incident to exactly one vertex in U ′.
We now define the weights of the vertices of F . For a U -problematic edge yizi such
that yi ∈ U ′ ⊂ U , let w(yi) = 1 + |Int(Ai) ∩ U |, and w(zi) = 1 +mi − |Int(Aj) ∩ U |.
All other vertices of F have weight 1 (see Figure 4.8). Let wU ′ be the sum of the
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Figure 4.7: Choice of the cuts on F .

weights of all the vertices inside U ′ plus the sum of the weights of all edges of the
form yizi with yi, zi ∈ U ′.

Figure 4.8: Example of the weights of F .

We call a set U ⊂ V (G) promising if all the following conditions hold:

1. |U | ⩽ n1.

2. edge y1z1 is U -problematic, with y1 ∈ U and z1 ̸∈ U .

3. w(y1) ⩾ w(v) for all v ∈ A \ {z1}.

4. The graphs G[U ], F [U ′], G− U , and F − U ′ are connected.

5. The graph F −U ′ does not have cut-vertices (in particular, if it has more than 2

vertices, then it is 2-connected).

It is clear that, for any promising set U , if any edge yizi is such that yi, zi ∈ U ,
then Int(Ai) ⊂ U , otherwise the graph G − U separates Int(Ai) from the rest of
the graph, and hence it is disconnected, contradicting condition 4. Observe also
that wU ′ = |U | given that the sets Int(A1), Int(A2), . . . , Int(Ah) are disjoint.
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Let us first show that a promising set exist. In the case that m1 ⩽ n1 − 1,
let U = {y1} ∪ Int(A1). In the case where m1 > n1 − 1, by Proposition 52 the
graph G[A1] + y1z1 has disjoint connected subgraphs with vertex sets W1 and W2

with y1 ∈ W1 and z1 ∈ W2 and such that |W1| = n1; we let U = W1. Clearly the first
two conditions are satisfied. Also, since F is 3-connected, it follows that F−U = F−y1

is 2-connected, therefore conditions 4 and 5 are satisfied. Suppose that yizi is a U -
problematic edge, where i ⩾ 2. Then, w(yi) and w(zi) are both at most mi + 1. By
the choice of the set U , either w(y1) = m1 +1 ⩾ mi +1, or w(y1) = n1 ⩾ n2 ⩾ mi +1.
Then the weight of any vertex in the set A \ {z1} is at most w(y1), so condition 3 is
also satisfied, and the set U is promising.

Observe that, by Equation (4.4), it follows that w(z1) ⩽ max{0, 1+m1−n1} ⩽ n3.
Also, the graph F − U ′ has at least two vertices, otherwise it only contains vertex z1,
which is not possible.

For a promising set U , let G′ be the graph obtained by taking a copy of the
graph G− U and then, for each U -problematic edge yizi, deleting all the vertices of
each set Int(Ai).

Proposition 55. Let U be a promising set such that |A\U | ⩾ 3, then the graphs F−U ′

and G′ are 2-connected.

Proof. The graph F − U ′ has at least 3 vertices, and by condition 5, it does not have
cut-vertices, therefore it is 2-connected. Let Z be the set of edges of the form yizi such
that yi, zi ∈ U ′. Note that G′ = (F − U ′ − Z)∪

⋃
yizi∈Z G[Int(Ai)]. Given that F −U ′

and the graphs G[Int(Ai)] are both 2-connected, the graph G′ is also 2-connected.

Remark 56. By the above argument, if the graph F − U ′ is 2-connected, then the
graph G′ is also 2-connected.

A promising set U is perfect if |U | = n1.

Proposition 57. If there exists a perfect set U ⊂ V (G), then G has disjoint connected
subgraphs G1, G2 and G3 with n1, n2 and n3 vertices respectively.

Proof. Observe first that the sum of the weights of all vertices of the graph G′

is n2 + n3. For any U -problematic edge yizi, with yi ∈ U ′ and zi ̸∈ U , we conclude
that w(zj) = 1 + |Int(Aj) \ U |. Then the sum of the weights of the vertices in V (G′)

is the number of vertices in V (G) \ U , which is n2 + n3.

We will apply Proposition 53 in the 2-connected graph G′ using z1 as a fixed vertex
(for understanding, Figure 4.9 will be helpful). Observe that by Equation (4.4) we
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conclude that w(z1) ⩽ max{0,m1 − n1 +1} ⩽ n3 ⩽ n2. Also, we showed that the sum
of the weights of the vertices of the graph G′ is n2+n3. Roughly speaking, we will first
perform the operation described in Proposition 53, and then obtain disjoint subsets
of vertices V ′

2 , V
′
3 ⊂ V (G′) such that the graphs G′[V ′

2 ] and G′[V ′
3 ] are connected and

the sum of the weights of their vertices is n2 and n3 respectively. The set U will be
modified when performing the operation while still inducing a connected subgraph
and without changing the number of vertices.

Proposition 53 gives us a vertex u ∈ A \ U ′, and an integer d. Suppose that we
will perform a (z1, u, d)-operation by decreasing the weight of u and increasing the
weight of zi by d each. It follows that w(u) ⩾ d + 1, then u ∈ {yi, zi}, where yizi

is a U -problematic edge, with i ⩾ 2. Let u = zi and yi ∈ U ′, and let qi be such
that w(zi) = w(u) = qi+1. The 2-connected graph G[Ai] + yizi has disjoint connected
subgraphs with vertex sets Wi and Ui such that |Wi| = qi + 1, zi ∈ Wi and yi ∈ Ui,
and such that Wi ⊂ V (G) \ U and Ui ⊂ U . Also, by Proposition 52 we can divide the
graph G[Ai] + yizi into disjoint connected subgraphs with vertex sets W ′

i and U ′
i such

that |W ′
i | = 1+ qi − d, zi ∈ W ′

i and yi ∈ Ui and then replace the subset Ui by U ′
i in U ,

and the subset Wi by W ′
i in V (G) \ U .

For increasing the weight of z1 by d, the 2-connected graph G[A1]+y1z1 has disjoint
connected subgraphs with vertex sets W1 and U1 such that z1 ∈ W1 and y1 ∈ U1,
and such that W1 ⊂ V (G) \ U and U1 ⊂ U . By condition 3 of the promising
set U , we have |U1| = w(y1) ⩾ w(zi) ⩾ d + 1. By Proposition 52 we can divide the
graph G[A1] + y1z1 into disjoint connected subgraphs with vertex sets W ′

1 and U ′
1

such that |U ′
1| = |U1| − d, and such that z1 ∈ W ′

1 and y1 ∈ U ′
1 and then replace the

subset U1 by U ′
1 in U , and the subset W1 by W ′

1 in V (G) \ U . Clearly the new set U

induces a connected graph and still has n1 vertices (see Figure 4.9).

Figure 4.9: Performing a (z1, u, d)-operation in the outside world.
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We now construct the three desired disjoint connected subgraphs of G. Let V1 = U .
the graph G[V1] is connected with |V1| = n1 vertices. By Proposition 53, the graph G′

has disjoint connected subgraphs with vertex sets V ′
2 and V ′

3 such that w(V ′
2) =∑

x∈V ′
2
w(x) = n2 and w(V ′

3) =
∑

x∈V ′
3
w(x) = n3.

We will construct set V2 (the same process can construct set V3). Let v ∈ V ′
2

be a vertex such that w(v) ⩾ 2, and suppose that v ∈ {yj, zj}, where yjzj is a U -
problematic edge. The set Wv = Aj \ U is connected, and zj ∈ Wj with |Wj| = w(zj).
Let W be the union of the sets Wv for each vertex v ∈ V ′

2 such that w(v) ⩾ 2.
Let V2 = V ′

2 ∪ W . Observe that we replace each vertex zj by w(zj) new vertices
that induce a connected subgraph. Note that the set V3 = (V (G) \ V1) \ V2 can be
constructed in the same way. Thus, the graphs G[V2] and G[V3] are connected with n2

and n3 vertices respectively.

Proposition 58. Let U ⊂ V (G) be a promising set of maximum size. Then, either U

is perfect, or for all U-problematic edges yizi, Int(Ai) ⊂ U .

Proof. Assume that U is not perfect, and suppose by contradiction that there is a U -
problematic edge yizi such that Int(Ai) ̸⊂ U . Let yi ∈ U and z ̸∈ U . The 2-connected
graph is divided into disjoint connected subgraphs with vertex sets Uj and Wj such
that yj ∈ Uj and zj ∈ Wj , and Uj ⊂ U , Wj ∩U = ∅, and |Wj| ⩾ 2. By Proposition 52,
the 2-connected graph G[A]+yizi has disjoint connected subgraphs with vertex sets W ′

j

and U ′
j with |U ′

j| = |Uj|+ 1 and yj ∈ U ′
j , zj ∈ W ′

j . The set U can be replaced with the
set (U \ Uj) ∪ U ′

j, which is still a promising set and with one more vertex than the
set U . This contradicts the maximality of the set U .

Let U be a promising set of maximum size. By Proposition 58, the set U is perfect
or for all U -problematic edges yizi, Int(Ai) ⊂ U . If the set U is perfect, then the proof
is complete by Proposition 57. Suppose that |U | < n1 and that for all U -problematic
edges yizi, Int(Ai) ⊂ U .

Proposition 59. The graphs F − U ′ and G− U are 2-connected.

Proof. Given that the graph F − U ′ has at least two vertices, if it is not 2-connected,
then by Proposition 55 and Equation (4.4) it is the graph K2. If the edge on the
graph F − U ′ is not of the form yizi, then G− U = F − U ′, hence the graph G− U

has two vertices, and we have |U | ⩾ n1, which is a contradiction. If the edge of
the graph F − U ′ is of the form yizi, then i ⩾ 2 and mi = |Int(Ai)| ⩽ n2 − 1

by Equation (4.3). Therefore V (G − U) = V (Aj) and the graph G − U has at
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most n2 + 1 ⩽ n2 + n3 vertices. In this case we also conclude that |U | ⩾ n1, a
contradiction. Then the graph F − U ′ is 2-connected.

Observe that the graph G − U is the graph G′ since for all U -problematic
edges yizi, Int(Ai) ⊂ U . By Remark 56, the graph G− U is 2-connected.

Let H = F − U ′ be a 2-connected graph. In the case that the graph H is not 3-
connected and also is not a cycle, then it has isolated 2-cutsets, and we perform the
block decomposition (for the case k = 2) on H. In this case, the graph BT(H) has
at least two leaf blocks, and we let B ∈ V (BT(H)) be a leaf block such that z1 ̸∈
Int(B).

Proposition 60. The graph H is a cycle, or the graph HD(H)[B] is a cycle.

Proof. Suppose by contradiction that the graph H is 3-connected or that the
graph HD(H)[B] is 3-connected.

Observe that, given that the graph F is 3-connected, and that U ̸= ∅, no set M ⊂
V (G) can be separated from U ′ in the graph F by less than three vertices, and hence
it can also not be separated from U in G by less than three vertices. We will use this
observation in the following two cases.

Consider the case in which H is 3-connected. Then by the observation above, the
graph H has a vertex v ̸= z1 that is adjacent to a vertex in U , and the graph H − v =

F − (U ′ ∪ {v}) is 2-connected.

Consider now the case in which the graph H is not 3-connected, but the
graph HD(H)[B] is 3-connected. Then by the observation above, there exists a ver-
tex v ∈ Int(B) that is adjacent to a vertex in U and such that v ̸= z1. By Proposition 50,
the graph H − v = F − (U ′ ∪ {v}) is 2-connected.

In both cases, the graphs F [U ′ ∪ {v}] and G[U ∪ {v}] are connected. By Proposi-
tion 59, the graph G− U is 2-connected, and so the graph G− U − v is connected.
Note that the set U ∪ {v} is promising. This contradicts the maximality of U .

Suppose that the graph HD(H)[B] = C is a cycle. Let C = a0a1 . . . aℓaℓ+1.
Let Bound(B) = a0, aℓ+1. In the case that z1 ∈ Bound(B), let z1 = a0. If H is
a cycle, then let H = C = a0a1 . . . aℓ, and let a0 = z1.

Observe that each of the vertices a1, . . . , aℓ are adjacent to a vertex in U ′ given that
the graph F is 3-connected and that these vertices have degree 2 in the graph H =

F − U ′. Fix 0 ⩽ i < j ⩽ ℓ + 1, and let Si,j be union of the vertices ai+1, . . . , aj−1
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(note the exclusion of vertices ai and aj) and all the vertices in Int(Al), where
edge ylzl is one of aiai+1, ai+1ai+2, . . . , aj−1aj (note the inclusion of vertices ai and aj).
Let sij = |Si,j|.

It follows that s0,ℓ > n1 − |U |. Indeed, suppose that s0,ℓ ⩽ n1 − |U |. Then the
set U ∪ S0,ℓ is promising with size at most n1, which contradicts the maximality
of U .

Let us construct a new cycle C ′ as before, by adding to each edge aiai+1, w(aiai+1)

new vertices of degree 2. Let b be the vertex in the a0a1 section of C that is adjacent
to vertex a0. We perform a cut on the edge a0b (in the cycle C ′) and obtain a
path P .

We first consider the case in which s0,1 < n − |U |. In this case we consider the
subpath P1 of P that contains vertex b and has exactly n1 − |U | vertices. For this, we
perform a cut in P in the edge outside P1 that is adjacent to the endpoint of P1 opposite
to b. Suppose that such cut was performed on the aiai+1-section of P . Note that i ⩾ 1.
We start constructing set V1 by first putting all the vertices of the set U ∩ S0,i, which
induces a connected graph given that a1 is adjacent to a vertex in U . We will now
include in V1 the remaining t = n1 − |U | − s0,i ⩾ 0 vertices of the aiai+1-section of P1.
in the following way. In the case where the edge aiai+1 is not of the form yjzj is trivial
since there is nothing more to add, therefore assume that aiai+1 = yjzj , with j ⩾ 2. By
Proposition 52, the 2-connected graph G[A] + aiai+1 has disjoint connected subgraphs
with vertex sets W and W ′ such that ai ∈ W , ai+1 ∈ W ′, and |W | = t + 1. We
now add all the vertices of W to V1, i.e., let V1 = U ∪ S0,i ∪W . Note that |V1| = n1

and that G[V1] is connected. We conclude that |W ′| ⩽ mj + 1 ⩽ n2. Let V2 = W ′.
The graph G− U − S0,i+1 is connected. Also, given that G− U is 2-connected, the
vertex ai+1 is an internal vertex of a leaf block of G− U − S0,i+1. By Proposition 49,
the 2-connected graph G−U −S0,i+1 has disjoint connected subgraphs Z and V3 such
that |V3| = n3 and ai+1 ∈ V3. The graphs G[V1], G[V2], and G[V3] are connected and
have the desired sizes.

We now consider the case in which s0,1 ⩾ n1 − |U |. We have s0,1 > 0, and the
edge a0a1 is of the form yjzj, for some j ⩾ 2. We also have that s0,1 = mj. Let t =

n1 − |U |. Observe that 3+ s0,1 + s1,2 ⩽ v(G−U) = n2 + n3 + t since the graph G−U

contains the vertices a0, a1, and a2 and all the vertices of Int(Aj) and Int(Al) in the
case that the edge a1a2 is of the form ylzl; and also because v(G) = n1 + n2 + n3

and |U | = n1 − t.

Let t0 and t2 be non-negative integers such that t0 + t2 + 1 = t, t0 ⩽ s0,1 + 1, q3 =
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s0,1−t0+1 ⩽ n3, t2 ⩽ s1,2+1, q2 = s1,2−t2+1 ⩽ n2. These integers exist given the last
observation and Equation (4.3). By Proposition 52, the 2-connected graph G[Aj ]+a0a1

has disjoint connected subgraphs with vertex sets T0 and W3 such that a1 ∈ T0, a0 ∈ W3

and |T0| = t0 + 1 and |W3| = q3 ⩽ n3. We initially construct set V3 by putting the
vertices in W3. In the case that the edge a1a2 is not of the form ylzl, then t2 = 0

and q2 = 1, and we set T2 = {a1} and W2 = {a2}. In the case that the edge a1a2 is
of the form ylzl, by Proposition 52 the 2-connected graph G[Al] + a1a2 has disjoint
connected subgraphs T2 and W2 such that a1 ∈ T2, a2 ∈ W2 with |T2| = t2 + 1,
and |W2| = q2 ⩽ n2. We start constructing set V2 by putting first the vertices of W2.
Let T = T0 ∪ T2. Note that the set V1 = U ∪ T has n1 vertices since T has t vertices.
Also, the set V1 is connected given that a1 ∈ T is adjacent to a vertex in U .

Finally, let G∗ = G− U − S0,2. The graph G∗ is 2-connected, and has n2 + n3 +

2− q2− q3 vertices. By Proposition 52, the graph G∗ has disjoint connected subgraphs
with vertex sets W ′

2 and W ′
3 such that a2 ∈ W ′

2, a0 ∈ W ′
3 with |W ′

2| = n2 + 1 − q2

and |W ′
3| = n3 + 1 − q3. We finish the construction of sets V2 and V3 by adding

the vertices of W ′
2 and W ′

3 respectively, i.e., V2 = W2 ∪ W ′
2 and V3 = W3 ∪ W ′

3.
The graphs G[V1], G[V2], and G[V3] are connected and have sizes n1, n2, and n3

respectively.

We have the following theorem.

Theorem 61 (Karpov, 2017). Let G be a 2-connected graph on n vertices such that
any 2-cutset of G splits the graph into at most 3 components. Let n1, n2, n3 be positive
integers with n1 + n2 + n3 = n. Then G has disjoint connected subgraphs G1, G2, G3

such that for i = 1, 2, 3, the graph Gi has ni vertices.
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