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Resumo

Giovana Vieira de Morais. Estimação de andamento via self-supervised learning.
Dissertação (Mestrado). Instituto de Matemática e Estatística, Universidade de São

Paulo, São Paulo, 2023.

Métodos auto-supervisionados (self-supervised) aprendem representações de dados por meio da re-

solução de tarefas de pretexto (pretext tasks) que não necessitam de rótulos gerados por humanos, dimi-

nuindo a necessidade de dados anotados para o treinamento dos modelos. Esses métodos foram aplicados

em problemas de visão computacional, processamento de linguagem natural, análise de som ambiente, e,

recentemente, em recuperação de informação musical. Particularmente no contexto da música, existem

poucos insights sobre a fragilidade desses modelos no que diz respeito à diferentes distribuições de dados

e como elas podem ser mitigadas. Nesse trabalho, exploramos essas questões ao dissecar um modelo auto-

supervisionado, que foi adaptado da estimação de pitch para a estimação de andamento, por meio de uma

exploração rigorosa com dados sintéticos, cujo desempenho foi comparado ao uso de dados reais. Discu-

timos as escolhas de design a respeito do método e das representações dos dados de entrada. Finalmente,

estudamos a relação entre a representação de entrada e a distribuição dos dados para a estimação de anda-

mento.

Palavras-chave: estimação de andamento. self-supervised learning.





Abstract

Giovana Vieira de Morais. Tempo estimation via self-supervised learning. Thesis
(Master’s). Institute of Mathematics and Statistics, University of São Paulo, São Paulo,

2023.

Self-supervision methods learn representations by solving pretext tasks that do not require human-

generated labels, alleviating the need for time-consuming annotations. These methods have been applied

in computer vision, natural language processing, environmental sound analysis, and recently in music in-

formation retrieval, e.g. for pitch estimation (Gfeller et al., 2020). Particularly in the context of music, there

are few insights about the fragility of these models regarding different distributions of data, and how they

could be mitigated. In this work, we explore these questions by analyzing a self-supervised model for pitch

estimation that we adapted for tempo estimation via rigorous experimentation with synthetic data and

contrasting its behavior with real data. We discuss the design choices regarding the method and the input

representation. Finally, we study the relationship between the input representation and data distribution

for self-supervised tempo estimation.

Keywords: tempo estimation. self-supervised learning.
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Chapter 1

Introduction

1.1 Motivation
Tempo is a fundamental dimension ofmusic, representing the speed atwhich a listener

would tap along to mark the underlying pulse. Despite its significance, its definition re-
mains unclear, and when people are asked to annotate the tempo for a piece of music,
they often disagree on the values they assign, as revealed in an experiment conducted by
McKinney and Moelants (2006). Typically, these differences are multiples of the most
salient tempo, leading to the terms ”tempo harmonics” or ”tempo octaves.”

Automatic tempo estimation has become a prominent research topic within the Mu-
sic Information Retrieval (MIR) community, garnering significant attention over the past
decade. However, it remains a challenging task due to the intrinsic ambiguity of tempo,
resulting from the various possible interpretations of a given rhythm’s metrical structure.
In 2005, it was officially incorporated into the Music Information Retrieval Evaluation
eXchange (MIREX) competition (Downie, 2008) as the ”Audio Tempo Extraction” task1,
later renamed ”Audio Tempo Estimation” 2. Each year, new algorithms and improvements
are proposed and evaluated using standard datasets and metrics.

Despite more than 25 years of research on tempo estimation, various dimensions, such
as metrics, estimation algorithms, datasets, and possible biases, continue to be revisited
and debated (Schreiber, Urbano, et al., 2020). Outside of genres like pop and techno
music, which inherently possess well-established and periodic tempos, tempo estimation
is still considered an unsolved problem.

While early tempo estimation methods were largely based on signal processing, re-
cent approaches exploit deep neural networks (DNNs), bringing new perspectives to the
problem. This introductionmeant a change of paradigm and improvement in the accuracy
of tempo estimation models, but introduced a new problem: DNNs are very data-hungry
(Böck and Davies, 2020).

1 https://www.music-ir.org/mirex/wiki/Audio_Tempo_Extraction
2 https://www.music-ir.org/mirex/wiki/2021:Audio_Tempo_Estimation

https://www.music-ir.org/mirex/wiki/Audio_Tempo_Extraction
https://www.music-ir.org/mirex/wiki/2021:Audio_Tempo_Estimation
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Within the MIR domain, the data bottleneck poses a challenge, as obtaining annotated
data requires musical expertise. Additionally, available datasets are biased towards West-
ern and ”mainstream” music, typically found on popular media platforms like streaming
services.

To address the lack of new data and the bias of the available datasets, researchers are
developing and exploring techniques such as:

• Data augmentation to increase the size of existing datasets (Böck and Davies, 2020;
C. Zhang et al., 2021).

• Methods that can be adapted to new data with small samples, e.g. Few-Shot Learn-
ing (Wang, Salamon, et al., 2020; Wang, Stoller, et al., 2022).

• Unsupervised, semi-supervised or self-supervised alternatives, where data annota-
tion is not needed (Jansen et al., 2018).

In parallel with other research fields like computer vision and natural language pro-
cessing, the data bottleneck has spurred the adoption of self-supervised learning. This
set of methods derives labels algorithmically from the data, eliminating the need for hu-
man supervision. Self-supervised learning trains a model by solving a pretext task, which
may not directly relate to the final application (downstream task) but leverages intrinsic
information within the data (Balestriero et al., 2023). When well-designed, solving the
pretext task enables the model to learn meaningful internal representations that can be
applied to the problem of interest (Goodfellow et al., 2016).

This approach has been exploited in computer vision, environmental sound analysis,
and very recently in MIR for pitch (Gfeller et al., 2020), beat tracking (Desblancs et al.,
2022) and tempo estimation (Quinton, 2022).

1.2 Related Work
Previous work on self-supervised pitch estimation, SPICE (Gfeller et al., 2020), in-

troduced the concept of estimating relative pitch by inputting two shifted slices of a
constant-Q transform (CQT) to the same convolutional autoencoder, and trained the en-
coder so that the difference in its outputs would be proportional to the introduced shift.
This pretext task led to very good results while keeping pre-processing to a minimum:
the computation of a CQT and the shift.

Similar to how a magnitude spectrogram or CQT represents time-frequency varying
contents of a signal which are important for pitch analysis, the tempogram representation
indicates for each time frame the local relevance of a tempo estimate for a given music
recording, see Section 2.1.4. This makes it a compelling case to adapt an architecture such
as SPICE to tempo estimation using a tempogram as input representation.

Desblancs et al. (2022) proposed a self-supervised method for beat tracking in which
they trained two different Convolutional Neural Networks: one to process the percus-
sive part and another to process the non-percussive part of a music signal. The networks
should be able to find interesting data representations by learning how to synchronize
the percussive and non-percussive parts of the audio.
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Finally, the most recent study of self-supervision applied to tempo estimation was
done in Quinton (2022). In this work, the author creates a contrastive pretext task that
aims to find a tempo representation by comparing two time-stretched versions of an audio
sample.

On this basis, we explore the adaptation of SPICE to tempo estimation from a tem-
pogram and study the different design choices as well as their effect on tempo estimation,
such as the use of a logarithmic BPM sampled axis instead of the linear one, following
Grosche, Müller, et al. (2010).

The Self-supervised learning approaches will be discussed in-depth in Sec-
tion 2.2.2.

1.3 Objectives
• Understand if we can use a SPICE-inspired architecture to do tempo estima-
tion: In this work, we adapt the SPICE architecture and explore the performance
of the model when using tempograms as input data.

• Explore the effects of the dataset distribution in the model training and
evaluation performance, with both synthetic and real data: We create differ-
ent datasets of synthetic data and analyze how they affect the model output.

• Propose data augmentation strategies:Wewant to understand if the insights we
have found by training the model with synthetic data hold for real data. To do so,
we want to use the synthetic data distributions to guide data augmentation within
the real-world datasets and validate the results.

1.4 Text Outline
This document is structured as follows: Chapter 2 is an overview of onset detec-

tion, tempo representations (tempograms), tempo estimation, deep learning, deep learn-
ing methods for tempo estimation and self-supervised learning. In particular, the self-
supervised learning subsection introduces SPICE, the method that we use as a reference
for our own network framework implementation. Chapter 3 describes the proposed ar-
chitecture and the experiments, also discussing the results achieved.
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Chapter 2

Literature Review

2.1 Tempo Estimation
Musical beats are rhythmic units usually associated with our perception of the peri-

odicity of note events. Tempo estimation is a task that aims to infer the tempo value of a
given song, i.e. the number of beats occurring within a certain time period, typically mea-
sured in Beats Per Minute (BPM). This task is more challenging for songs that have local
tempo changes (e.g. accelerando) (Schreiber, Zalkow, et al., 2020) , syncopated rhythms
(where strong events appear outside the beat structure, and asymmetric rhythms (where
beats have varying durations) (Fouloulis et al., 2012). It can be further divided into other
two tasks, local tempo estimation (tempo as a function of musical time) and global tempo
estimation (tempo as a global value).

Automatic tempo estimation is a task that is researched for over 25 years in MIR
(Schreiber, Urbano, et al., 2020) and the proposed methods have evolved from signal
processing-based methods, i.e. classical methods, to deep learning based methods, which
are currently the state of the art (Böck and Davies, 2020).

Over the past 25 years, automatic tempo estimation has been a significant area of
research in Music Information Retrieval (MIR). The methods have evolved from classical
signal processing-based approaches to the current state-of-the-art deep learning-based
methods.

According to Oliveira et al. (2012), there are two main ways of analyzing tempo and
beat information: predictive and descriptive methods. The predictive method, also known
as online tracking, mimics human behavior by estimating beats and rhythmic information
causally, meaning the tracker does not have access to the full music audio. On the other
hand, the descriptive approach, or offline tracking, provides the tracker with access to the
entire music input.

Although early methods like (Goto and Muraoka, 1995; Scheirer, 1998; D. P. W.
Ellis, 2007) were online trackers, offline tracking has become more prevalent in research
due to its empirical accuracy and the fact that it does not require predicting tempo and
beats in a causal manner, as seen in the online approach. Online tempo estimation is
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outside of the scope of this work, so from now on ”tempo estimation” will refer as ”offline
tempo estimation”, unless defined otherwise.

The extraction of tempo and beat information follows a general scheme for signal
processing approaches, as shown in Figure 2.1. First, we calculate onset features (see Sec-
tion 2.1.1), which identifies timestamps characterized by a sudden energy increase in the
audio signal. Then, one can use onsets’ inner periodicity to infer tempo, by assuming
that onsets timestamps are associated with note events, some of which coincide with
beats.

Figure 2.1: Tempo estimation general workflow (Gouyon et al., 2006)

As mentioned in Chapter 1, tempo can be perceived differently by different peo-
ple (McKinney andMoelants, 2006). This leads to a big difficulty in the tempo estimation
problem definition: are we estimating the perceptual tempo or are we estimating the an-
notated data? McKinney and Moelants (2006) shows that the tempo ambiguity is highly
related to the music genre being analyzed.

cadê a tabela daqui? manter ou remover?

Quinton (2017) reinforces this argument by showing the disagreements between an-
notators for the GTZAN dataset, as shown in Table ??

This discussion is not new: some works try to estimate the perceived tempo by esti-
mating two values and showing their strength when compared to each other (Levy, 2011;
Geoffroy Peeters and Flocon-Cholet, 2012), while others try to estimate the annotated
tempo and then reduce the the octave error (Xiao et al., 2008; Gkiokas, Katsouros, and
G. Carayannis, 2012; Schreiber and Müller, 2017).

In this work, wewill not try to estimate the perceived tempo, but it is interesting to un-
derstand how psychoacoustics and perception guide some of the design choices presented
in the next pages.

2.1.1 Novelty Function
Classical tempo estimation approaches usually start from the onset detection. For-

mally, the onset definition depends on how the audio was annotated. Lerch (2012) de-
scribes the three different annotation methods proposed by Repp (1996):

Note Onset Time (NOT): considers the moment in which the instrument made a sound.
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Acoustic Onset Time (AOT): considers themoment inwhich the signal or event is tech-
nically measurable.

Perceptual Onset Time (POT): consider the moment in which the signal is perceived
by the listener.

Onset detection is especially challenging in polyphonic music, where simultaneous
events can occur at the same time, therefore making it difficult to understand where each
event starts. The method and the parameters that one chooses when trying to detect on-
sets also relies on some properties of the analyzed music. For example, Böck andWidmer
(2013) proposes a method that tackles classical songs and their softer onsets, while Nunes
et al. (2015) take into account specific frequency bands that have important information
for Candombe beat and tempo information.

Knowing that the task is signal-dependent, datasets, such as the one provided by
Bello et al. (2005) and the ones provided in MIREX, have distinctions between pitched
non-percussive (e.g. bowed strings), pitched percussive (e.g. piano), non-pitched percus-
sive (e.g. drums), and a complex mixture of onsets (e.g. pop songs). This is important to
assess the quality and robustness of the proposed method in different scenarios.

More recent works on onset detection apply machine learning and deep learning tech-
niques to it, such as Eyben et al. (2010), which uses a Recurrent Neural Network, and the
current state-of-the-art method by Schlüter and Böck (2014) that uses Convolutional
Neural Networks. Our implementation, as seen in Section 3.1, is based purely on signal
processing techniques.

Multi-band Analysis

For tempo and beat detection, one common pre-processing technique used is the divi-
sion of the signal in multiple frequency bands, that are analyzed independently, i.e. each
subband has its novelty function.

For example, Nunes et al. (2015) create the onset detection function knowing that
one specific instrument, the Piano, was responsible for carrying the tempo in the Can-
dombe songs, therefore they adapted the function to take into account the frequency band
that this instrument produced. This led to a great accuracy improvement for Candombe
songs when compared to other beat-tracking algorithms that considered the full spectrum
range.

Zapata and Gómez (2011) showed that analyzing the onset function in different fre-
quencies subbands is beneficial and increases the accuracy of the methods. McFee and
D. P. Ellis (2014) showed that not only the detection in subbands is important but the ag-
gregation of the results also makes a difference: using the median instead of the average
proved to generate a more robust beat tracking results.

Reduction

The reduction step is responsible for transforming the input audio signal 𝑥 in a sub-
sampled novelty function, also known in the literature as detection function and onset func-
tion, that reflects the onsets occurrences in the original signal.
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According to Bello et al., 2005 methods to achieve the detection function can be di-
vided into two main categories: based on signal features and based on probability models.
We will not dive into the second category of methods because it is out of the scope of this
work.

The works of Bello et al. (2005) and S. Dixon (2006) present the most common clas-
sical approaches, that once achieved state-of-the-art for the task, also analyzing the pros
and cons of the methods and discuss scenarios to apply them. Here, we describe the
process to create a Spectral-Based Novelty function (also known as Spectral Flux). The
Spectral Flux is a robust method that has been shown to work well in different scenar-
ios without the need for much fine-tuning. It is also the base method for other novelty
functions, such as the SuperFlux Böck and Widmer (2013).

Spectral-Based Novelty (Spectral Flux) The energy-based approach does not work
properly when we have polyphonic audio because the energy values are overlaid, making
it hard to detect every by looking only at the signal’s energy.

The spectral-based method, or spectral flux, analyzes the audio spectrum and iden-
tifies the increase of energy of one or multiple bands. We first calculate the spectro-
gram 𝑋 (Equation 2.1) of the audio signal through the Short-Term Fourier Transform
(STFT).

𝑋(𝑚, 𝑘) =
𝑁−1
∑
𝑛=0

𝑥(𝑛 + 𝑚𝐻)𝑤(𝑛) exp(−2𝜋𝑖𝑘𝑛/𝑁 ) (2.1)

where 𝑤 is a window function of length 𝑁 , and 𝑚 ∈ ℤ and 𝑘 ∈ [0 ∶ 𝐾].
We can enhance the spectral components by applying the logarithmic compression

(Equation 2.2).

𝒴 = Γ𝛾 (|𝑋 |) = log(1 + 𝛾 ⋅ |𝑋 |) (2.2)

where 𝛾 ∈ ℝ>0 regulates the degree of compression.

Then, following the same approach as the energy-based novelty, we calculate the first-
order derivative between the frames of 𝑋 and discard the negative values by using the
Half-Wave Rectification (Equation 2.3). The idea is that we should only account for new
events, i.e. energy increases.

|𝑟 |≥0 = 𝑟 + |𝑟 |
2 = {𝑟 , if 𝑟 ≥ 0,

0, if 𝑟 < 0. (2.3)

Finally, we aggregate the frequency bands and the result is the novelty function
ΔSpectral, shown in Equation 2.4. The frequency bands’ most frequent aggregation is ei-
ther the median or average. McFee and D. P. Ellis (2014) discusses the effects of different
aggregations in beat tracking results.
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ΔSpectral(𝑛) =
𝐾
∑
𝑘=0

|𝒴(𝑛 + 1, 𝑘) − 𝒴(𝑛, 𝑘)|≥0 (2.4)

There are still some postprocessing steps that one can apply to enhance the novelty
function onsets. For example, Müller (2015) mentions that subtracting the local average
can help to reduce small fluctuations.

𝜇(𝑛) = 1
2𝑀 + 1

𝑀
∑

𝑚=−𝑀
ΔSpectral(𝑛 + 𝑚), (2.5)

Δ̄Spectral(𝑛) = |ΔSpectral(𝑛) − 𝜇(𝑛)|≥0 (2.6)

Figure 2.2 shows how ΔSpectral looks like with and without the multi-band analysis.
Equation 2.4 shows the aggregation made by taking the mean of all frequencies coeffi-
cients, but if one chooses to do the multi-band analysis, then the aggregation would be
over frequencies bands, also called channels.

Figure 2.2: Spectral flux with and without multi-band analysis. The multi-band spectral flux is made
over 4 frequency bands.
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Other Approaches Müller (2015), Bello et al. (2005), and S. Dixon (2006) present
other approaches to derive the novelty function from the signal, such as a phase-deviation
approach and a complex domain approach (considering both the spectrum and the
phase).

It is also possible to combine different novelty function methods in the same signal, as
shown in Duxbury et al. (2002) work where they combine energy methods and spectral
methods in different subbands, by assuming that soft onsets, i.e. non-percussive onsets,
have more information in low frequency than high frequency.

Besides the spectral flux, one can choose to use other signal’s properties to detect
onsets. For example, Böck and Widmer (2013) proposed a method that incorporates the
signal’s phase, pitch, and a combination of both, reducing by 60% the false positives previ-
ously presented in datasets with classical songs, which are known for having much softer
and hard-to-detect onsets.

Peak picking

Peak picking is the final step to choosing the onset times for all the onset candidates. It
is a detection function that aims to find the local maxima of the novelty function derived
from the audio signal.Wewill not divemuch into this topic because this will not be used in
this work, i.e. we are going to analyze the novelty function (onset envelope) directly.

To choose the peaks that correspond to the onsets, discarding any false positives, one
needs to set a threshold, which can be fixed throughout the whole signal or adaptative,
which is a more robust choice in general. An in-depth comparison of peak picking meth-
ods for onset detection methods based on signal processing can be found in Rosão et al.
(2012) work.

2.1.2 Tempo Induction
Given a novelty function Δ, the tempo induction, also known as pulse induction, step

is the one responsible for measuring the periodicities.

One of the most common approaches is the use of the autocorrelation function (ACF)
to estimate the periodicities. Between the 23 systems evaluated in Zapata and Gómez
(2011), 13 used ACF as the Pulse Induction algorithm, 3 used Inter-Onset-Interval (IOI)
Clustering, one used Spectral Product, one used Bankcomb Filter, and 4 did not provide
the Pulse Induction Method.

Simon Dixon (2001) and later on Oliveira et al. (2012) examines times between pairs
of note onsets and uses a clustering algorithm to find significant clusters of IOIs. Each
cluster represents a tempo hypothesis that is tested by a multi-agent beat tracking system.
A similar idea of clustering tempo hypothesis is shown in Eronen and Klapuri (2010),
where the periodicities of the novelty function is measured using an autocorrelation func-
tion, followed by the tempo estimation using k-Nearest Neighbor (KNN) regression.

According to Gouyon et al. (2006) and Zapata and Gómez (2011) the pulse induction
is more efficient when combined with the subband division, i.e. when one analyzes the
periodicities in each frequency subband and then aggregate the results.



2.1 | TEMPO ESTIMATION

11

Interestingly, in both comparisons (Gouyon et al., 2006; Zapata and Gómez, 2011)
the ”winner” method (Klapuri et al., 2006) did not find onsets based on the approaches
presented in Subsection 2.1.1, but uses the differentials of the loudness in 36 frequency
bands which are the input for a bankcomb filter responsible for tempo induction. Zapata
and Gómez (2011) assumes that the success of Klapuri’s approach lies in good feature
extraction rather than in the tempo induction step.

Finally, other pre-deep-learning approaches rely on interesting techniques, such as
harmonic and noise separation (Alonso et al., 2007) and source separation (Gkiokas,
Katsouros, George Carayannis, et al., 2012), but that is out of the scope of this
work.

2.1.3 Metrics and Evaluation
In 2004, there was a tempo induction contest at the International Conference onMusic

Information Retrieval1 (ISMIR) with the goal to evaluate the state-of-the-art methods to
extract the global tempo value of an except, measured in beats per minute. The evaluation
system proposed in this conference is described in-depth by Gouyon et al. (2006) and
revisited by Schreiber, Urbano, et al. (2020).

The main metrics proposed were Accuracy 1 (ACC1) and Accuracy 2 (ACC2). The two
metrics remain the standard metrics for evaluating the tempo estimation system and are
defined as follows:

• Accuracy 1: The percentage of tempo estimates within 4% (the precision window)
of the ground-truth tempo.

• Accuracy 2: The percentage of tempo estimates withing 4% of either the ground-
truth tempo, or half, double, three times, or one-third of the ground-truth tempo.

Schreiber, Urbano, et al. (2020) discuss that the value of the precision window is
rather arbitrary and may be too high for music with stable tempi, but also too strict for
music with less stable tempi. The precision window, also known as tolerance window,
raises another problem related to the binary nature of these metrics. Even if ACC2 is less
strict than ACC1 because it takes octave errors into account, both metrics do not give any
additional information about the model performance. One just knows that the estimation
is wrong, but doesn’t know how much wrong it is.

Implementation for all metrics mentioned in this section can be seen in Ap-
pendix B.1.

2.1.4 Tempograms
Tempograms are one type of audio representation that indicates the local relevance

of a specific tempo for each audio time instance 𝑡 . For example, if the tempogram 𝒯 has
a high value 𝒯 (3, 160), that means that the signal has a dominant tempo 𝜏 = 160 BPM at
time 𝑡 = 3. It is a representation used to analyze the periodicities of the novelty function
and obtain a local tempo salience map.

1 https://ismir.net/

https://ismir.net/
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One of the main challenges of the periodicity analysis relates to the multiple period-
icities that exist in the hierarchical rhythmic structure of music, which are reflected in
the tempogram as harmonics or sub-harmonics. Although this “harmonic” organization
resembles harmonic-sound structures in a spectrogram representation, it can be more
ambiguous, as the predominantly perceived tempo of a piece might have a low salience
in the tempogram while its harmonics (or sub-harmonics) might have strong salience.
This “harmonic structure” depends on the music and the method used to compute the
tempogram (e.g autocorrelation or Fourier analysis).

Tempograms are not the only time-tempo representation available. There are also
other representations known as rhythmograms (Quinton, 2017), predominant local
pulses (Grosche and Muller, 2011), beat spectrograms (Foote and Uchihashi, 2001),
and cyclic beat spectrum (Kurth and Gehrmann, 2006), but they are out of the scope of
this work.

Tempograms can also be the first step tomore complexmid-level representations, such
as the tempo saliencemap (Thoshkahna et al., 2015), rhythmic saliencemap (Quinton et
al., 2016). Tian et al. (2015) uses tempogram-based features, such as Tempogram Principal
Component Analysis (TPCA), Tempogram Cepstral Coefficients (TCC), Tempo Intensity (TI)
and Tempo Intensity Ratio (TIR) in order to perform music structural segmentation. The
results showed that tempogram-based features have a strong capacity of describing music
structure.

We define a discrete tempogram 𝒯 as

𝒯 ∶ Z × Θ → R>0, (2.7)

where Θ ⊂ R>0 is a finite set o tempi specified in BPM, usually Θ = [30 ∶ 600] BPM.
According to Müller (2015, chapter 6) the motivation behind the boundaries relies on
the assumption that only events that show a temporal separation between roughly 100
ms (600 BPM) and 2 sec (30 BPM) contribute to the perception of tempo. In works like
Grosche, Müller, et al. (2010), the interval is even smaller, ranging from [30 ∶ 480]
BPM, covering four tempo octaves. Quinton (2022) defines the BPM interval as [0, 300]
BPM.

For generating the tempogram calculation, we first need to compute the novelty func-
tion and then analyze the salience of the novelty to obtain a local tempo salience map.
This general workflow is based on the premise that pulse positions usually go along with
note onsets, therefore we can gather useful information from the novelty function.

The analysis and estimation of the periodicity can be done using a short-time Fourier
transform (STFT), resulting in the Fourier Tempogram 𝒯F (Equation 2.9), or using the
autocorrelation function, which results in the Autocorrelation Tempogram 𝒯A (Equation
2.12).

Implementations examples can be found in the FMP notebooks (Müller and Zalkow,
2019)2.

2 https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6.html

https://www.audiolabs-erlangen.de/resources/MIR/FMP/C6/C6.html
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The figures below show tempograms of some examples in the GTZAN dataset. We
compare and discuss the tempograms in the following pages. More tempogram examples
from the dataset can be found in Appendix A.1

Figure 2.3: Linear and log tempograms example for GTZAN hip-hop track

In Figure 2.3 we see that the three variations of tempograms have a darker line around
160 BPM even if the annotated tempo of the track is around 80 BPM. At the first column,
we have the Fourier tempogram, showing the harmonics in 160 BPM and 320 BPM, while
the Autocorrelation variation shows sub-harmonics in 80 BPM, 60 BPM and 40 BPM.

Some music genres have a more stable tempi than others, for example it is common
that genres such as hip-hop (Figure 2.3) and metal (Figure 2.6) have a more steady tempo
than jazz (Figure 2.7).

Fourier Tempogram

The Fourier tempogram is the result of analyzing the novelty function via the discrete
STFT (Equation 2.1) but using 𝐻 = 1.

ℱ (𝑛, 𝜔) ∶= ∑
𝑚∈Z

Δ(𝑚) ̄𝑤(𝑚 − 𝑛) exp(−2𝜋𝑖𝜔𝑚) (2.8)

where Δ is the novelty function, 𝜔 ∈ Θ and 𝑤 is a window function of length N.

The coefficients ℱ (𝑛, 𝜔) are in Hertz (Hz), so we use the relationship 𝜏 = 60 ⋅ 𝜔 to
convert the frequency results to BPM, leading to the final formulation
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Figure 2.4: Linear vs log tempograms example for GTZAN blues tracks

Figure 2.5: Linear and log tempograms example for GTZAN classical track



2.1 | TEMPO ESTIMATION

15

Figure 2.6: Linear and log tempograms example for GTZAN metal track

Figure 2.7: Linear and log tempograms example for GTZAN jazz track
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𝒯F(𝑛, 𝜏 ) ∶= |ℱ (𝑛, 𝜏/60)|. (2.9)

The Fourier tempogram emphasizes tempo harmonics but suppresses tempo sub-
harmonics.

Autocorrelation Tempogram

In the context of tempo estimation, the autocorrelation function is widely used to ana-
lyze and estimate local periodicities, so it is natural to derive a tempogram representation
from this technique.

To calculate Autocorrelation tempogram 𝒯A, we first need to calculate the windowed
short-term autocorrelation 𝒜(𝑛, ℓ) of the novelty function Δ, as in Equation 2.10.

𝒜(𝑛, ℓ) = ∑𝑚∈Z Δ(𝑚)𝑤(𝑚 − 𝑛)Δ(𝑚 − ℓ)𝑤(𝑚 − 𝑛 − ℓ)
𝑁 + 1 − ℓ (2.10)

The correspondence between lag and tempo is defined by 2.11.

𝜏 = 60
𝑟 ⋅ ℓBPM (2.11)

where 𝑟 corresponds to the frame rate in seconds and 𝑟 ⋅ ℓ is the time lag of ℓ (in frames)
that corresponds to 𝑟 ⋅ ℓ.

A shift of 𝑟 ⋅ ℓ corresponds to a rate of 1/𝑟 ⋅ ℓ Hz, which corresponds to the relation
shown in Equation 2.11.

We then define the autocorrelation tempogram 𝒯A by

𝒯A(𝑛, 𝜏 ) = 𝒜(𝑛, ℓ), (2.12)

for each tempo 𝜏 = 60/(𝑟 ⋅ ℓ), ℓ ∈ [1, 𝐿].
There are a couple of things that we should highlight here:

• While ℓ is linear in the lag domain when we translate it to the tempo domain it is
not. Therefore we need to interpolate the values to the tempo axis, which causes
aliasing in higher frequencies (see Figures 2.4, 2.5, 2.6, 2.3, and 2.7).

• The lag ℓ represents an amount of periodicity, which is the inverse of frequency.
Looking again at Equation 2.11 we can notice that harmonics that happen at 𝑘 ⋅ ℓ
lags will correspond to 60

𝑟 ⋅(𝑘⋅ℓ) BPM. When 𝑘 gets bigger, the value of 𝜏 gets smaller.
This is why we see subharmonics instead of harmonics for this type of tempograms.

Hybrid Tempogram

Even before the proposal of a hybrid tempogram itself, G. Peeters (2006) proposes
the combination of temporal and spectral periodicities analysis in order to do pitch esti-
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mation.

As shown above, the octave uncertainty occurs in the inverse domain for the Fourier
(harmonics) and Autocorrelation tempogram (sub-harmonics). The Hybrid Tempogram
was proposed in Geoffroy Peeters (2006) and Geoffroy Peeters (2011) for several differ-
ent tasks, such as pitch and tempo estimation, and rhythmic description.

Geoffroy Peeters (2011) shows different ways of creating Hybrid Tempograms. Such
as the Product DFT and ACF (haDFTACF), the Product DFT/FM-ACF, Product TM-
DFT/ACF, Product Hybrid Axis DFT/ACF. Each of them combines the Fourier tempogram
and autocorrelation tempogram differently, for example, mapping frequencies from 𝒯F
to lag-axis, mapping 𝒯A to the frequency axis or creating a hybrid axis and making the
best use of the resolutions. We show a brief description of the combinations:

Product DFT and ACF (haDFTACF) The product DFT and ACF is obtained by multi-
plying the values of the two functions (DFT and ACF) after mapping one function to
the domain of definition of the other: mapping the lags of the ACF to the frequencies
of the DFT, or vice-versa.

Product DFT/FM-ACF FM-ACF stands for ”Frequency-Mapped ACF” because in this
case we map every lag 𝑝 to the frequency domain by using the fact that the lag 𝑝
represents the amount of periodicity at the lag 𝑙𝑝 = 𝑝/𝑠𝑟 , where 𝑠𝑟 is the sampling
rate. For this hybrid combination, we need to interpolate the resulting values to the
linearly spaced frequencies 𝑓𝑘 of the DFT. Now, both DFT and FM-ACF have the
same frequencies 𝑓𝑘 and the combination can be done by computing their product
at each frequency.

Product TM-DFT/ACF Inverserly, we can map the DFT frequencies to the lag domain.
The result is called ”Temporally Mapped DFT” (TM-DFT) and the combination of it
with the ACF is done by computing the product at each lag 𝑙𝑝 .

Hybrid Axis DFT/ACF (haDFTACF) This is the only combination that does not in-
clude a map between domains because this results in a loss of information and
aliasing. The loss of information happens because the ACF resolution is smaller
than the constant resolution of 𝑓𝑘 , so it causes aliasing when interpolating the val-
ues to the frequencies. Instead of mapping the domains, this approach creates a new
axis 𝑓𝑞 made of the values of the lag axis mapped to the frequency domain 1/𝑙𝑝 for
the lags 𝑝 < 𝑝𝑐 and the values for the frequency axis 𝑓𝑘 for 𝑓𝑘 > 1/𝑙𝑝𝑐 . Both ACF
and DFT are mapped to this new axis, interpolated at the new positions 𝑓𝑞 , and then
combined by computing the product at each frequency.

It is essential to point out that Product Hybrid Tempograms have aliasing embedded
to it because of the frequencies and resolutions of the DFT and ACF calculations i.e. ACF
has a better resolution on smaller frequencies while DFT has a better resolution on higher
frequencies, thus when you translate the lag axis to a frequency domain, it is visible that
the resolution gets bad.

The hybrid tempogram variation used in this work is the Product DFT/FM-
ACF.
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Cyclic Tempogram

There is a final way of calculating the tempogramwhich is the Cyclic Tempogram𝒯C.
The idea behind this approach is to have a representation that is more robust to harmonics,
i.e. create tempo equivalences that differs by a power of two.

According to Grosche, Müller, et al. (2010) we say that two pitches having funda-
mental frequencies 𝑓1 and 𝑓2 are considered octave equivalent if 𝑓1 = 2𝑘𝑓2 for some 𝑘 ∈ ℤ.
Similarly, we say that two tempi 𝜏1 and 𝜏2 are octave equivalent if 𝜏1 = 2𝑘𝜏2 for some 𝑘 ∈ ℤ.
Therefore, one type of error that tempo estimation systems have to take into account is
the so-called octave error.

Figure 2.8: Fourier tempogram, Fourier tempogram with log-axis and cyclic tempogram. Reproduced
from Müller and Zalkow (2019).

We will not explain the representation and its formulation in detail, but more context
can be found in Grosche, Müller, et al. (2010). The authors also provide the ”Tempogram
Toolbox”: a set of MATLAB implementations of tempo and pulse representations3.

As shown in Thoshkahna et al. (2015), cyclic tempogram features can be used as the

3 https://www.audiolabs-erlangen.de/resources/MIR/tempogramtoolbox

https://www.audiolabs-erlangen.de/resources/MIR/tempogramtoolbox
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foundation to understand if a part of a song has or not a salient tempo, i.e. whether that
part has a clear rhythm or a vague tempo.

Estimating tempo from the tempogram

There is a straightforward approach to estimating the global tempo of a piece of music
given a tempogram𝒯: we can average the tempogram values over the time axis, resulting
in a function 𝒯Average ∶ Θ → ℝ>0, defined by Equation 2.13, that has the salience values
for each 𝜏 ∈ Θ.

𝒯Average(𝜏 ) = 1
𝑁 ∑

𝑛∈[1∶𝑁 ]
𝒯(𝑛, 𝜏 ) (2.13)

To estimate the global tempo from 𝒯Average, one has to simply pick the maximum
value for every 𝜏 .

̂𝜏 = max𝒯Average(𝜏 )|𝜏 ∈ Θ (2.14)

This method is very simplistic and can be refined in a number of different ways, e.g. us-
ing themedian instead of the average to have amore robust method against outliers.

2.2 Deep Learning and Audio
According to Choi et al. (2017) in 2010 there were only 2 deep learning articles at

ISMIR conferences. This number increased to 6 in 2015 and 16 in 2016. Nowadays it is the
most common approach to use, which followed a trend in other research areas such as
Computer Vision and Natural Language Processing.

In conventional machine learning, one has to engineer features and then train a model
that maps the labels to the input data. On the other hand, when using Deep Learning,
every layer added is a set of features based on the input data, being able to learn more
complicated relations between input and label.

Choi also explains that the success of deep learning inMIR can be explained by the fact
that the research tasks can be subjective. For example, tempo and beat can be perceived
differently by different people, therefore making it difficult to design features. Deep learn-
ing comes in handy when using a data driven end-to-end learning to achieve the desired
goal.

There are clear tradeoffs between using or not deep learning approaches versus con-
ventional machine learning approaches or even signal processing approaches. While deep
learning allows better results and higher accuracy, these methods need a huge amount
of data. There are several ways of approaching this specific problem, such as few-shot
learning (Wang, Salamon, et al., 2020; Wang, Stoller, et al., 2022) (teaching the model
to learn from a few examples), transfer learning (Takahashi and Barthet, 2022; Ou et
al., 2022) (fine-tuning a pre-trained model), data augmentation (Böck and Davies, 2020;
C. Zhang et al., 2021) and, more recently, self-supervision (see 2.2.2). On the other hand,
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signal processing methods are very fast, even if the accuracy is not the best, they are
dependent of domain-specific knowledge to build the appropriate features for the appro-
priate task.

Purwins et al. (2019) offers an overview of deep learning for audio processing in gen-
eral, comparing approaches for speech, music and environmental audio processing.

2.2.1 Deep Learning and Tempo Estimation
Researchers explored the use of deep learning in different steps of the tempo es-

timation pipeline (Figure 2.1) such as onset detection (Eyben et al., 2010) or a mid-
representation to analyze the periodicities and peak-picking (Widmer, 2013).

Böck, Krebs, et al. (2015) used a recurrent neural network to learn an intermediate
beat-level representation of the signal and then processed it with a bank of resonating
comb filters to detect the periodicities. The network used was a network that was the
state-of-the-art for beat tracking at the time (Böck, 2011). This first work was able to
outperform the state-of-the-art tempo estimation methods for most of the datasets used
in the comparison for both ACC1 and ACC2 metrics.

Schreiber andMüller (2019) adapted a VGG-style network that was at first designed
for key estimation to tempo estimation. A VGG network, or VGG model, is a deep convo-
lutional neural network first proposed to image classification. The idea is to treat tempo
estimation as a classification problem, so the network output an integer that is mapped
to the tempo value, covering from 30 to 285 BPM.

Schreiber (2020) proposed a Convolutional Neural Network (CNN) that estimates
the tempo value directly instead of a mid-level representation, such as the novelty func-
tion or the beat activation function, that needs to be further processed by other system
components.

The work by Böck and Davies (2020), a follow-up of Böck, Davies, and Knees (2019),
showed a great performance improvement for tempo estimation, especially looking at
the ACC1 metric. The key idea of the work is not to have a specialized tempo estimation
model, but to have a multi-task model, responsible for tempo, beat and downbeat tracking.
The core component is a deep neural network architecture based on dilated convolutions.
The Temporal Convolutional Network (TCN) introduced by Davies and Böck (2019) was
first proposed in Lea et al. (2016) in order to join in the same network architecture the
capabilities of encoding spatiotemporal information locally (CNN) and also the capability
of capturing high-level temporal relationships (RNN).

Unlike Schreiber, Zalkow, et al. (2020), the work by Böck and Davies (2020) does
not output the tempo value directly, but instead a tempo activation function that has to
be further processed to estimate the tempo value.

Sun et al. (2021) proposes a Convolutional Neural Network with an Attention Mech-
anism to estimate tempo. When compared to the specialized tempo model, it overcomes
the performance of the competitors in the ACC1 metric but falls behind Böck, Krebs, et al.
(2015) in the ACC2. In another experiment, the authors also try to reframe the problem as
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a multi-task problem and the performance has a similar performance to Böck and Davies
(2020).

Changing the approach, Quinton (2022) proposed a self-supervised model to solve
tempo estimation without the need for annotated data. His model is able to have a similar
accuracy with unsupervised models but still did not reach the accuracy of the state-of-
the-art systems.

Because tempo can be inferred from beat information, we also provide a non-
exhaustive list of recent beat tracking methods that use deep learning in Table 2.1,
inspired by Fuentes (2019, Chapter 3) and Matthew E. P. Davies (2021, Chapter 3). We
omit downbeat tracking and online beat tracking methods because they are out of the
scope of this work.

authors approach

features likelihood post-proc

Böck (2011) log STFT BLSTMs peak-pick
Böck, Krebs, et al. (2014) mel log STFT RNNs DBN
Korzeniowski et al. (2014) log STFT BLSTMs DBN
Böck, Krebs, et al. (2016) mel log STFT BLSTMs DBN

Holzapfel and Grill (2016) mel log STFT CNN DBN
Vogl et al. (2017) log STFT CRNNs peak-pick
Cheng et al. (2018) mel log STFT RNNs DBN

Fuentes, Maia, et al. (2019) mel-STFT + ODF RNNs CRFs
Davies and Böck (2019) log-STFT TCN DBN

Böck, Davies, and Knees (2019) log-STFT TCN DBN
Böck and Davies (2020) log-STFT TCN DBN

Steinmetz and Reiss (2021) waveform TCN DBN
Pinto et al. (2021) log-STFT TCN DBN
Chen and Su (2022) mel log STFT TCN –

Table 2.1: Overview of recent deep learning methods for beat tracking. The variants adopted at the
different stages of the pipeline are indicated: input features (features), likelihood estimation (likeli-
hood) and post-processing (post-proc).

The acronyms used in the table:

• BLSTM: Bi-directional Long-Short Term Memory

• CNN: Convolutional Neural Network

• DBN: Dynamic Bayesian network

• LSTM: Long Short-Term Memory

• ODF: onset detection function

• TCN: Temporal Convolutional Network
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According to Matthew E. P. Davies (2021), Probabilistic Graphic Models (PGMs),
such as the Dynamic Bayesian Network, are the most used post-processing technique
since 2010. The authors argue that this might be because these models offer a flexible way
to incorporate musical knowledge and can be adapted to diverse music cultures.

There is some research on trying to estimate beats positions without the post-
processing, such as Chen and Su (2022) and Steinmetz and Reiss (2021). Themain reason
is that deep learning is supposed to be an end-to-end method, i.e. the methods should
discard as many human parametrizations as possible so the process is data-driven.

2.2.2 Self-Supervised Learning

.

Figure 2.9: Categorization of SSL methods (Balestriero et al., 2023)

The use of deep learning increased a lot the accuracy of methods in different tasks,
also introducing a new problem: data annotation. Deep learning approaches are data-
hungry and annotated data is a problem in Music Information Retrieval. Dealing with
music data involves copyright issues, it is time-consuming and expensive to annotate the
data because someone with musical training is needed. Because of the reasons above, the
models available right now are also biased toward the existing datasets.
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Self-Supervised Learning (SSL) is a recent deep learning paradigm that aims to solve
the lack of annotated data in some fields. The development of this the technique started
with Computer Vision and more recently started to gain popularity in the audio-visual
domain, in works such as Arandjelovic and Zisserman (2017).

The framework divides the deep learning problem into two stages: the pretext task and
the downstream task. The pretext task is based on unlabeled inputs and aims to produce
descriptive and intelligible representations (Goodfellow et al., 2016), teaching the net-
work some semantic information about the data. Balestriero et al. (2023) argues that the
advantage of SSL when compared to supervised learning is that SSL aims to learn generic
representations that may be useful across many different tasks.

According to Balestriero et al. (2023), pretext tasks can be grouped into three cate-
gories (detailed in Figure 2.9):

Generative: train an encoder to encode the input 𝑥 into an explicit vector 𝑧 and a decoder
to reconstruct 𝑥 from 𝑧;

Contrastive: train an encoder to encode input 𝑥 into an explicit vector 𝑧 to measure
similarity;

Generative-Contrastive (Adversarial): train an encoder-decoder to generate fake
samples and a discriminator to distinguish them from real samples.

Figure 2.10: Conceptual comparison between Generative, Contrastive and Generative-Contrastive
methods (Balestriero et al., 2023).

The creation of labels is usually done by hiding part of the data and trying to predict
it by letting the rest visible, for example, one can remove part of a spectrogram and make
the network predict the missing piece by showing its surroundings. Other examples of
pretext tasks are: colorization (R. Zhang et al. (2016), image rotation (Pathak et al. (2017)),
and audio and video correspondence (Arandjelovic and Zisserman (2017)). Once the
network has learned the data representations, it can be used to solve the downstream
task, with little or no re-training.
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As briefly mentioned in Section 1.2, the applications of SSL in MIR tasks are new and
come down to three works: Zero-Note Samba (Desblancs et al., 2022) for beat tracking,
SPICE (Gfeller et al., 2020) for pitch estimation and more recently the work by Quinton
(2022) for tempo estimation. We briefly review those works.

Zero-Note Samba

In Desblancs et al. (2022), the authors create two neural networks to process each part
of the song: a percussive and a non-percussive. The pretext task, called syn-pred, tries to
synchronize the samples. The input of the network is a variable-Q transform (VQT), i.e.
a variant of the CQT with an improved time resolution in the low-frequency range. The
motivation for this input is that important beat-tracking systems rely on information of
frequencies below 100 Hz. In total, the model was trained with 98 hours of audio.

This contrastive learning approach (second model of Figure fig:ssl_methods) uses
the non-percussive part as the anchor and the percussive part as the positive sample. The
negative part of this scenario is a randomly lagged version of the percussive part. The full
framework is described in Figure 2.11.

Figure 2.11: Zero-Note Samba (Desblancs et al., 2022) workflow.
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Following the approaches of methods such as Böck, Davies, and Knees (2019), Davies
and Böck (2019), and Böck and Davies (2020), the Zero-Note Samba (ZeroNS) model
does not output the beat positions, but instead, output a beat activation function, which
has to be further processed by a Dynamic Bayesian Network (DBN) to track the beat
positions.

The model is not able to overcome the state-of-the-art for supervised beat tracking,
but it surpasses unsupervised methods the trained model has an interesting capability of
being fine-tuned with few data (only 1 - 24 tracks are required) and still reach competitive
performance.

Although this work is highly promising, it relies on computationally expensive sound
source separation using Spleeter (Hennequin et al., 2020)4 to obtain the percussive and
non-percussive parts of the signal, which increases training time and can add noise
and artifacts to the training data. The code for Zero-Note Samba is freely available on
GitHub5.

Equivariant Self-Supervised Tempo Estimation

Quinton (2022) also proposes a contrastive learning approach to tempo estimation.
In this case, he uses two branches that will receive a time-stretched version of the sig-
nal.

Figure 2.12: Quinton (2022) workflow.

4 https://github.com/deezer/spleeter
5 https://github.com/deezer/zeroNoteSamba

https://github.com/deezer/spleeter
https://github.com/deezer/zeroNoteSamba
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In the contrastive learning framework, two views are generated by applying random
data augmentations so it can be compared to the anchor, or the positive value. The train-
ing objective then constrains the model to produce representations that are invariant to
the augmentations applied to the training data and yet discriminative between different
samples. What Quinton (2022) proposes to use the equivariant constraint to learn audio
representations that capture tempo information.

The network is trained with 25k tracks and no tempo annotation. Once the network
is trained, the projection head is discarded, the weights frozen and a linear classification
head is attached.

The network used in this work is based on Böck and Davies (2020) work, which uses
the Temporal Convolutional Network (TCN). This network started to be used because it
showed robustness to find temporal patterns. So Quinton adapted the architecture pro-
posed by Bock and Davies and removed the beat tracking branches from it, resulting in
only in the tempo branch, which creates an embedding with temporal information.

The code is available on GitHub6 and includes a pre-trained model.

SPICE

SPICE (Gfeller et al., 2020) is a self-supervised pitch estimation approach. The core
idea of the algorithm relies on the fact that a pitch shift maps to a simple translation when
the audio signal is analyzed through the constant-Q, transform. Also, it is perceptually
easier to find the relative pitch difference rather than the absolute difference.

A CQT is a representation first proposed by Brown (1991), to address the fact that the
linear spacing between DFT frequencies yields components that do not map efficiently
to musical frequencies. Therefore the CQT takes into account the logarithmic nature of
perception. and spreads the center frequencies in.

The representation proposed in Brown (1991) is equivalent to a 1/24th-oct bank of
filters. The idea is that frequency components correspond to the quarter-tone spacing of
the equal-tempered scale.

The authors proposed a pretext task that learns how to encode the pitch difference
between two CQT-shifted frames. Each network branch encodes one of the frames to a
single scalar 𝑦 , then reconstructs the input 𝑥 from it.

The shift 𝑘 plays an important role. Each slice can be randomly shifted by a integer
number between [0, 8], which translates to 0 to 4 semitones. The reason why this value
translates to a 4 semitones shift when 𝑘 = 8 is because the CQT, as mentioned before, does
not have a linear spacing between the DFT frequencies, yet a logarithmic spacing.

Their method was able to estimate the relative pitch, and also to provide confidence in
the estimation. SPICE was able to achieve similar accuracy to the fully-supervised meth-
ods but with the advantage of not using a labeled dataset.

6 https://github.com/Quint-e/equivariant-self-supervision-tempo

https://github.com/Quint-e/equivariant-self-supervision-tempo
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SPICE source code and training data are not available, but the trained model can be
downloaded and used via the Tensorflow Hub7.

Figure 2.13: Gfeller et al. (2020) architecture

Unline ZeroNS and the Equivariant Tempo Estimation works, SPICE pretext task is
not contrastive, i.e. it does not compare an anchor with positive and negative samples,
but instead generative, meaning that the pretext task is based on the reconstruction of
the input by using only the embedding outputted by the encoder.

SPICE code is not available, but the trained model is at TensorflowHub8, along with a
tutorial9, a demonstration video of estimations of the model provided10 and a short blog
post11.

7 https://www.tensorflow.org/hub/tutorials/spice
8 https://tfhub.dev/google/spice/2
9 https://www.tensorflow.org/hub/tutorials/spice

10 https://www.youtube.com/watch?v=pxIUtubtTws
11 https://ai.googleblog.com/2019/11/spice-self-supervised-pitch-estimation.html

https://www.tensorflow.org/hub/tutorials/spice
https://tfhub.dev/google/spice/2
https://www.tensorflow.org/hub/tutorials/spice
https://www.youtube.com/watch?v=pxIUtubtTws
https://ai.googleblog.com/2019/11/spice-self-supervised-pitch-estimation.html
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Chapter 3

Contributions

Between the contributions of the present work, we can list a poster presentation at
the KHIPU - the Latin America Meeting in Artificial Intelligence1, and a published paper
and a poster presentation at the 2023 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2023)2 (Morais et al., 2023).

3.1 Methodology

3.1.1 Framework
We first adapt the SPICE model to tempo estimation by following the information

provided in Gfeller et al. (2020).

The framework described is all implemented in Python with the support of the li-
braries Keras (Keras: The Python Deep Learning API 2023)3 and Tensorflow (Abadi et al.,
2016)4 for machine learning and librosa (McFee, McVicar, et al., 2023)5 for signal manip-
ulation. The implementation is open-source and hosted on GitHub6.

Given a tempogram 𝒯 , our method extracts two random slices 𝑥1 and 𝑥2 which cor-
respond to the same time instant, but are shifted vertically by 𝑘1 and 𝑘2 bins, respectively.
These shifts translate to artificial changes in tempo in the different slices fed to the model,
as the lines of the tempogram are vertically displaced. We sample the values 𝑘1 and 𝑘2
from the uniform distribution 𝒰(11, ..., 18), so the tempo range seen by the model ranges
from 30 BPM to 310 BPM.

The model is then trained to estimate the relative tempo within each slice using the
following loss function:

1 https://khipu.ai/
2 https://2023.ieeeicassp.org/
3 https://keras.io/
4 https://www.tensorflow.org/
5 https://librosa.org
6 https://github.com/giovana-morais/steme

https://keras.io/
https://www.tensorflow.org/
https://librosa.org
https://github.com/giovana-morais/steme
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Figure 3.1: Overview of the training framework.

ℒ𝑇 = |(𝑡1 − 𝑡2) − 𝜎(𝑘2 − 𝑘1)|, (3.1)

so the difference between estimated tempi in each branch has to be proportional to
the artificially introduced difference (𝑘2 − 𝑘1). The constant 𝜎 ensures that the difference
in the output model 𝑡1−𝑡2 corresponds to the right amount in bins within the training set,
and is set to

𝜎 = 1
𝑄 log2 ( 𝑡max

𝑡min
)
, (3.2)

as in Gfeller et al. (2020), where 𝑡max and 𝑡min are the maximum and minimum tempi
present in the training set and 𝑄 is the number of bins per tempo octave. We set 𝑄 = 40
to ensure a reasonable tempo range and resolution, e.g. three tempo octaves 30-240 BPM
correspond to 160 bins. Unlike Gfeller et al. (2020), we observed that 𝑘2 − 𝑘1 (instead of
𝑘1−𝑘2) preserves the monotonic correspondence between BPM and model output values,
as higher shifts correspond to tempogram slices with lower salience lines, and thus lower
tempi. Besides the loss in Equation 3.1, analogously to Gfeller et al. (2020) we use a
reconstruction loss as follows:
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ℒ𝑅 = 1
𝑇 ∑

𝑇
||𝑥1 − �̂�1||22 + ||𝑥2 − �̂�2||22, (3.3)

where 𝑥1, 𝑥2 are the input slices to each model branch and �̂�1, �̂�2 are the reconstructed
slices at the output of the decoder in Fig. 3.1. The final combined loss is given by:

ℒ = 𝜔𝑇ℒ𝑇 + 𝜔𝑅ℒ𝑅, (3.4)

with 𝜔𝑇 = 104 and 𝜔𝑅 = 1.
We use a 6-layered convolutional encoder that receives a 128-dimensional vector cor-

responding to a slice of the tempogram and outputs one scalar representing tempo.We use
filters of size 3 and stride equal to 2, and the number of channels is equal to 𝑑 ⋅[1, 2, 4, 8, 8, 8],
where 𝑑 = 64. The output of the last convolutional layer is flattened and fed into a tempo
estimation head that consists of two fully connected layers with 48 and 1 units respec-
tively. During training, the tempogram frames of the input audio are shuffled to ensure
that, for a given batch, different tempos are seen. The scalar output of the encoder is then
fed into a decoder which has the objective of reconstructing the tempogram slice from
this tempo estimation. The decoder also has 6 layers as 𝑑 ⋅ [8, 8, 8, 4, 2, 1].

There are a few, but important differences between the architecture proposed in this
work and the architecture of SPICE, such as

• we do not have a confidence/voicing head,

• we do not make use of BatchNormalization or MaxPooling layers,

• our filter values 𝑑 are the same for both encoder and decoder.

These changes are due to the results of informal testing that evaluated the capacity of
the model of reconstructing tempogram frames.

3.1.2 Tempogram parameters
Once the model was implemented, we started to investigate the impact with the in-

put itself. At the beginning, we decided to use linear tempograms, which were the most
straightforward implementation and would require almost no effort for using it. When
we started to analyze the input, we noticed a problem: the shift we were using was not
enough for us to cover the whole tempo range we needed.

The main idea of the SPICE formulation is that we analyze and compare shifted ver-
sions of the same input. The shifts that are used in their method work because the CQT
has a log axis instead of a linear axis.

Suppose that we calculate the tempograms with 𝜃 ∈ [30, 300] BPM and we want to
use the same shifts as SPICE, i.e. 𝑘 ∈ [0, 8].

We defined an input slice as a 128-dimensional vector. Therefore, a 0-sample shift
means that we have no shift at all, so we just take the 128 first positions of our tempogram
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T. This means that the slice we input in our model covers from 30 BPM to 158 BPM (30 +
128 positions) (blue rectangle on Figure 3.2).

Then, if the biggest 𝑘 value we can have is 8, then our 128-dimensional vector will
cover from 38 BPM (30 + 8-position shift) to 166 BPM (38 + 128 positions) (red rectangle
on Figure 3.2).

Figure 3.2: Model input. The left image shows a linear tempogram for GTZAN track ”metal.00070”,
which has an annotated tempo of 116 BPM. Each rectangle is a slice that will be inputted to the network.
Here for example purposes we get the minimum possible shift (𝑘 = 0) as the blue rectangle and the
maximum possible shift (𝑘 = 1) as the red rectangle.

This means that if a song has an annotated tempo higher than 166 BPM, the model
will not be able to learn from that song because no shift would be able to reach the region
of the tempogram that actually has the tempo information we need.

One could argue that the solution would be to increase the shift, but Figure 3.3 shows
what kind of problem this may introduce. If the shift is too big, one of the slices could
have meaningful tempo information while the other might only have harmonic informa-
tion.

To dig deeper into the discussion of the role of the harmonics and subharmonics in
this scenario we would need further experiments, but the first informal results we had
were not satisfactory, therefore we decided to choose a log-tempo axis instead of a linear-
tempo axis. The reasoning is that the in the log axis the shifts can cover the a whole range
of interests.

3.1.3 Datasets
To understand how the distribution of the data affects the self-supervised model per-

formance, representations of Section 2.1.4 and the distribution of the data, we synthe-
size metronome excerpts (𝑁 = 1000) following four different distributions7. For three,

7 The click track implementation is available on B.2
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Figure 3.3: Model input. The left image shows a linear tempogram for GTZAN track ”metal.00070”.
Each rectangle is a slice that will be inputted into the network. In this scenario, the red slice would
only have the harmonic information because the shift is too big, while the blue slice would miss the
harmonic information because it only covers from 30 to 158 BPM.

we model tempo as a log-normal random variable 𝑋 such that log2(𝑋) ∼ 𝒩 (𝜇, 𝜎2),
with 𝜇 ∈ {70, 120, 170} BPM and 𝜎 = 0.25. These three distributions are modeled af-
ter real-world datasets (e.g. GTZAN Tzanetakis and Cook (2002) and Marchand et
al. (2015)) shifted to different tempo ranges. We also include a log-uniform distribution
where log2(𝑋) ∼ 𝒰([30, 240]), representing a well-balanced ideal tempo distribution,
which is difficult to find in practice but serves as an upper-limit reference for our ex-
periments.

The lognormal datasets were created by using SciPy lognormal function8, with the
parameters shown in Table 3.1.

s loc scale size random_state
lognorm @ 70 0.25 30 50 1000 42
lognorm @ 120 0.25 70 50 1000 42
lognorm @ 170 0.25 120 50 1000 42

Table 3.1: SciPy’s function parameters

Besides the synthetic datasets presented, we also tested our model with real data by
using the GTZAN dataset (Tzanetakis and Cook, 2002; Marchand et al., 2015). GTZAN
is a dataset that was first created for genre classification, but it also received tempo an-
notations (Marchand et al., 2015). It is composed of 1000 audio music excerpts of 30
seconds duration. It is divided into 10 genres: blues, classical, country, disco, hip-hop,
jazz, metal, pop, reggae and rock, with 100 tracks each. The tracks are named with a pat-

8 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html
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Figure 3.4: Distributions of the generated synthetic datasets.

tern ”genre.number”, e.g. ”country.00001” and ”metal.00100”. Even though there are 1000
tracks available for GTZAN, we discard one that misses annotations (reggae.00086).

An analysis made by Sturm (2012) showed that at least 100 published papers used
the GTZAN dataset. The rhythmic annotations of the GTZAN, made by Marchand et al.
(2015) were made semi-automatically: first the beats and downbeats were automatically
tracked by a system and then corrected by the human annotators when necessary. A com-
prehensive explanation of the dataset and explanation of disagreements of annotations is
made by Quinton (2017).

In more practical terms, we use the mirdata library to load GTZAN tracks and
tempo information. mirdata is an open-source Python library aimed to foster the re-
producible use of MIR datasets available on GitHub9. We use the latest version, namely
v.0.3.0 (Fuentes, Bittner, et al., 2021). It is important to notice that GTZAN is not a
public dataset anymore 10.

Figure 3.5 shows the datasets tempi distributions including GTZAN.

The first row shows the synthetic datasets distributions in a linear axis. The second
row shows GTZAN dataset distribution is also in a linear axis. Finally, the third row shows
the four distributions in the logarithmic axis.

3.1.4 Tempogram variations
As explained in 2.1.4, there are three variations of the tempogram: Fourier Tempogram

(𝒯F), Autocorrelation Tempogram (𝒯A) and Hybrid Tempogram (𝒯H). We want to com-
pare the effects of harmonics, sub-harmonics and no harmonics in the learning process, so

9 https://github.com/mir-dataset-loaders/mirdata
10 https://github.com/mir-dataset-loaders/mirdata/issues/549

https://github.com/mir-dataset-loaders/mirdata
https://github.com/mir-dataset-loaders/mirdata/issues/549


3.1 | METHODOLOGY

35

Figure 3.5: Distributions of the used datasets

for each track in the datasets (synthetic and real-world) we compute the three variations
to use as input data.

The novelty function used to create all three variations is the spectral flux (Equa-
tion 2.4) with the following parameters: FFT window size of 2048 samples, Hann window
function and hop length (H) of 512 samples. We use the STFT implementation provided
by librosa11. We apply the logarithmic compression (Equation 2.2) with 𝛾 = 100 and pos-
process the novelty function by subtracting the local average, considering a window of
10 samples, and normalizing it. The implementation for the spectral flux is provided in
Appendix B.3.

Changes in frequency are perceived differently depending on the frequency range
they happen, e.g. an increase of 40 Hz from 40 Hz to 80 Hz is perceived as an octave, but
an increase of 40 Hz from 120 Hz to 160 Hz is perceived as a perfect fourth. Similarly,
tempo changes are perceived relative to their speed (Grosche, Müller, et al., 2010), so
an increase of 30 beats per minute (BPM, BPM) from 60 BPM to 90 BPM is perceived as a
bigger change than 130 BPM to 160 BPM. With this in mind, we convert the tempo axis
of the tempogram representations from a linear to a logarithmic scale, by combining the
linear bins into logarithmic ones centered at

𝑡𝑘 = 𝑡02
𝑘
𝑄 , (3.5)

11 https://librosa.org/doc/latest/generated/librosa.stft.html

https://librosa.org/doc/latest/generated/librosa.stft.html
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with 𝑡0 = 25 BPM and 𝑄 = 40 bins per octave. This bears a resemblance to how a
CQT (which has a log-frequency axis) can be derived from a (linear-frequency) spectro-
gram.

Tempograms implementations based on Müller and Zalkow (2021) are provided in
Appendix B.4.

3.1.5 Model calibration
The output of the tempo head is a real-valued scalar 𝑡 ∈ [0, 1], which indicates the

estimated tempo within a given slice. To perform inference with this model, we need to
map this output to a BPM range using a calibration step (Gfeller et al., 2020). Considering
the logarithmic nature of the tempogram, given a linear range of BPM values, the model
output will have a logarithmic distribution of values, with the values for higher tempi
being squeezed into closer activation values of 𝑡 . On this basis, we generate synthetic
metronome clicks following a logarithmic tempo range and map the model to BPM with
a linear model.

3.2 Results and discussions

Figure 3.6: Calibration results.

Since calibration results correlate with model performance, i.e. a model with more
linear and less disperse calibration curves leads to more consistent estimations Gfeller
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et al. (2020), we look at calibration results for each model, depicted in Figure 3.6. The
first row reflects the distributions that we tested in training. The three lines below are the
calibration results for Fourier, Autocorrelation, and Hybrid tempograms variations. These
results are published in Morais et al. (2023).

3.2.1 Data distributions
The experiments with the different data distributions show that the model does not

benefit from the wider range of a log-uniform distribution, and instead can extrapolate
from a log-normal distribution centered in the lower tempi end (70BPM).Whenwe look at
this result closely, an explanation may be found in Figure 3.5. Given a tempo distribution
expressed in linear BPM values (Figure 3.5 top), the model will be fed a slightly differ-
ent tempo distribution (Figure 3.5 bottom) because of the logarithmic effect of the input
tempogram. This logarithmic representation compresses the tempo range increasingly in
higher tempi, meaning that the model has access to a smaller range of log BPM values. In
more extreme cases, such as the log-normal distribution centered at 170 BPM, the model
learns to use the whole range of its output for the rather small range of tempo values it
sees, and “saturates” for values out of range, i.e. it assigns the same value to all unseen
tempi. This suggests that it would be more beneficial to annotate or augment data in this
lower range of tempi to ensure a more stable model.

Finally, when we look at the results for the model trained with real data, we see that
the same observations hold. The Fourier tempogram leads to a more stable model, which
shows a larger variance than models trained with synthetic data due to the inherent vari-
ability and noisiness of real data which complicates training. The GTZAN distribution
has similarities with the lower-BPM log-normal distributions, which shows in the smooth
trend of Figure 3.6 with the Fourier tempogram representation. For the GTZAN data, the
hybrid tempogram also does worse than the other two variations, which suggests that we
might introduce artifacts and noise by combining the two tempograms without further
processing of the signal, as done in Geoffroy Peeters (2006), even though this is enough
for synthetic data given its simplicity and steadiness.

3.2.2 Tempogram variations
The Fourier tempogram showsmore consistent calibration results across data distribu-

tions and leads to smoother curves for both synthetic and real data. This result aligns with
the intuition that the Fourier tempogram is the most similar to the CQT representation
in Gfeller et al. (2020) as it tends to have upper harmonics but not sub-harmonics. On
the contrary, the autocorrelation tempogram results present the most variation, mean-
ing that for similar tempo values, the model struggles to assign the same tempo output.
Surprisingly, the hybrid tempogram does worse than the Fourier tempogram, although
it is supposed to be a more consistent representation. This suggests that the multiplica-
tion of the autocorrelation and Fourier tempograms removes harmonic information that
the model relies on to perform tempo estimation. This multiplication also may introduce
noise when we are using real data. In order to reduce this noise, Geoffroy Peeters (2011)
proposes several methods of creating hybrid tempograms, such as creating a hybrid-axis
tempograms that makes the best use of both Fourier and ACF resolutions.
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3.2.3 Data augmentation
The first augmentation proposed is an augmentation based on the audio, i.e. a time-

stretching algorithm. We decided to use Rubberband12, a C++ library that has a Python
wrapper (pyrubberband13). We chose the finest configuration in order to preserve the
audio quality.

The target distribution to the augmentation was the lognorm @ 70, because we’ve
seen in previous results that even though this distribution is not uniform, the model is
able to extrapolate to unseen tempi. Figure 3.7 shows the difference between distributions
before and after augmentation and Figure 3.8 shows Fourier tempograms for the original
audio and the augmented audio.

Figure 3.7: Dataset distributions before and after data augmentation. The lognorm @ 70 distribution
was the target distribution for the augmentation.

In Figure 3.7 we can see that after augmentation the number of tracks was very simi-
lar. Still, because we are doing a time-stretching operation and slowing most of the tracks,
they are bigger than the original. For example, if we slow a 30s track by half the tempo,
the resulting augmented track has 60s. To have a fair comparison, we created two exper-
iments: one considering the full dataset and the other cropping the augmented audios to
30 seconds to have a ”fair” comparison.

Finally, we analyze all of the EarlyStopping parameter in the training. For this experi-
ment, we want to understand if the distribution type affects the model convergence. The
EarlyStopping parameter had a patience of 1 epoch, meaning that if the validation loss
does not decrease in 1 epoch, the training is stopped and the best model is saved.

The grouped results of the experiments can be seen in Figures 3.9 and 3.10. For read-
ability purposes, we show in those figures only the results for GTZAN. The full plot with

12 https://breakfastquay.com/rubberband/
13 https://pyrubberband.readthedocs.io/en/stable/index.html

https://breakfastquay.com/rubberband/
https://pyrubberband.readthedocs.io/en/stable/index.html
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Figure 3.8: Comparison between tempograms before and after augmentation via Rubberband. On
the left, we have the tempogram for the track ”blues.00002”. In the right column, the tempogram after
the rubberband’s augmentation.

all of the synthetic distributions can be found in Apendix A.2.

Figures 3.9 and 3.10 have unexpected results. Unlike Figure 3.6, the Fourier tempogram
has a poor result for the GTZAN dataset, while the autocorrelation variation has a very
good calibration performance and only a little variation. This is exactly the opposite of
what we have reported in Morais et al., 2023. One way of looking at and interpreting
these results is to remember that the autocorrelation has sub-harmonics and, because of
the log-axis of the tempogram, we have a high resolution in lower tempi than in higher
tempi. So the information of the subharmonics, that can hint the tempo value, is in a
tempogram region that the model can discriminate between very small tempi variations.
In any case, this does not explain why the Fourier approach suddenly had this decline in
performance when the training setup had not changed.

The way to investigate these discrepancies is to look at the training and validation
data, and the model itself that is stored and will be available on GitHub in a separate
repository for reproducibility purposes. Because the train/validation split is randomly
selected at the data generation step, this could be something that affects the performance
of the model.

3.3 Future work

3.3.1 Data augmentation
There are three ways of augmenting our dataset.

Augmenting by time-streching In this scenario, we change the dataset tracks tempi
until we have a distribution that matches our needs. The downside of this approach
is that the algorithm responsible for time-stretching can have artifacts that the
model can use to cheat.

Augmenting by combining datasets We combine datasets and then remove the tracks
that do not belong to the desired distribution. This might reduce the number of arti-
facts that the time stretch algorithm creates, but it is not certain that time-stretching
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Figure 3.9: Experiments with the EarlyStopping as True. Each row represents a training data distri-
bution and each column represents a tempogram variation. The left column stands for Fourier tem-
pograms, the middle column autocorrelation tempogram and the right column hybrid tempograms.

could be 100% avoided. It heavily depends on the aimed distribution.

Augmenting on the tempogram domain In this scenario, we do the augmentation on
the tempogram itself instead of the audio. This in theory allows us to avoid ar-
tifacts related to the time-stretching algorithm. The downside is that we cannot
reconstruct the audio from the tempogram, so we might lose some information to
inspect the samples qualitatively.

In this work, we explored option 1, but the effects of options 2 and 3 in the final result
remain open.
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Figure 3.10: Experiments with the EarlyStopping as False. Each row represents a training data dis-
tribution and each column represents a tempogram variation. The left column stands for Fourier tem-
pograms, the middle column autocorrelation tempogram and the right column hybrid tempograms.
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Chapter 4

Conclusions

In this work, we explored the possibility to adapt a self-supervised model to tempo
estimation. There are still some open questions that we need to answer to assess the
performance of the model per se.

We explore the use of the log-axis tempogram as the main representation, experiment-
ing with three variations: Fourier, autocorrelation and hybrid. The results showed that
the hybrid tempograms have the worst results, which indicates that the network can use
both harmonic and sub-harmonic information as useful signals to learn representations.
Using the hybrid tempogram could work if a more robust approach to calculating it was
used.

We also looked into the role of data distribution and its effects on model learning.
Experiments showed that in our scenario the model benefits more from data concentrated
in lower tempi than higher tempi.

While we saw that it is possible to adapt the SPICE model to tempo estimation, a
lot of questions and details remain unclear because we were comparing three different
variations of the input representation with different synthetic and real-world data distri-
butions. For future work, it would be better to focus on real-world datasets and focus on
only the Fourier and Autocorrelation tempograms.

Another question that should be discussed is: does it make sense to have the tem-
pogram as a representation or are we introducing toomany parameters that are optimized
before the model starts learning? For the tempogram, we have a set of parameters (from
both the novelty function step and the pulse induction step) that are empirically defined.
In this work, we did not explore the effects of those parameters in the final model, but
it goes against the idea of a single-step model, such as the ones proposed by Schreiber
(2018) and Steinmetz and Reiss (2021).
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Additional Figures

A.1 Linear and Logarithmic Tempograms
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A.2 Calibration Results

Figure A.1: Calibration results. Models trained here had the EarlyStopping parameter as False, mean-
ing that they were trained for 15 epochs.
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Figure A.2: Calibration results. Models trained here had the EarlyStopping parameter as True, mean-
ing that they were trained until the validation loss stopped reducing its value.





51

Appendix B

Implementation

B.1 Metrics

1 import numpy as np
2
3
4 def acc1(reference_tempo, estimated_tempo, tolerance=0.04, factor=1.0):
5 return np.abs(reference_tempo * factor - estimated_tempo)\
6 <= (reference_tempo * factor * tolerance)
7
8
9 def acc2(reference_tempo, estimated_tempo, tolerance=0.04):

10 return (
11 (acc1(reference_tempo, estimated_tempo, tolerance, 1.0))
12 | (acc1(reference_tempo, estimated_tempo, tolerance, 2.0))
13 | (acc1(reference_tempo, estimated_tempo, tolerance, 3.0))
14 | (acc1(reference_tempo, estimated_tempo, tolerance, 1.0 / 2.0))
15 | (acc1(reference_tempo, estimated_tempo, tolerance, 1.0 / 3.0))
16 )
17
18
19 def oe1(reference_tempo, estimated_tempo, octave_factor=1.0):
20 return np.log2((estimated_tempo * octave_factor) / reference_tempo)
21
22
23 def oe2(reference_tempo, estimated_tempo):
24 factors = [1 / 3, 1 / 2, 1, 2, 3]
25 oe = np.zeros_like(factors)
26
27 for idx, factor in enumerate(factors):
28 oe[idx] = oe1(reference_tempo, estimated_tempo, factor)
29
30 return oe.min()

Program B.1: ACC1 and ACC2 implementations
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B.2 Click tracks
1 def click_track(bpm, sr=22050, duration=60):
2 """
3 Generates a 60 seconds click track with the desired BPM
4
5 Parameters
6 ----------
7 bpm : int
8 desired tempo
9 sr : int, optional

10 sampling rate
11 duration : int
12 duration in seconds
13 """
14
15 step = 60 / bpm
16
17 times = np.arange(0, duration, step)
18
19 return librosa.clicks(times=times, sr=sr)

Program B.2: Function that generates metronome tracks

B.3 Spectral Flux
1 def spectral_flux(
2 x,
3 sr,
4 n_fft=1024,
5 hop_length=256,
6 gamma=100.0,
7 avg_window=10,
8 norm=True):
9 """

10 Compute the spectral flux of a signal and apply logarithmic compression.
11
12 Parameters
13 ---------
14 x : np.ndarray
15 audio signal
16 sr : int
17 sampling rate
18 n_fft : int, optional
19 fft window size
20 hop_length : int, optional
21 step between fft windows
22 gamma : float, optional
23 logarithmic compression factor
24 avg_window : int, optional
25 window size (in samples) to compute local average
26 norm : bool, optional
27 boolean flag to normalize or not the novelty function
28 Return
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29 ------
30 novelty : np.ndarray
31 the novelty function
32 sr_novelty : float
33 the sampling rate of the novelty function. defined as (sampling
34 rate)/hop length
35 """
36 X = librosa.stft(
37 x,
38 n_fft=n_fft,
39 hop_length=hop_length,
40 win_length=n_fft,
41 window="hann")
42 sr_novelty = sr / hop_length
43
44 Y = np.log(1 + gamma * np.abs(X))
45
46 Y_diff = np.diff(Y)
47 Y_diff[Y_diff < 0] = 0
48
49 novelty = np.sum(Y_diff, axis=0)
50 novelty = np.concatenate((novelty, np.array([0.0])))
51
52 # subtract local avg
53 if avg_window > 0:
54 L = len(novelty)
55 local_avg = np.zeros(L)
56 for m in range(L):
57 init = max(m - avg_window, 0)
58 end = min(m + avg_window + 1, L)
59 local_avg[m] = np.sum(novelty[init:end]) * \
60 (1 / (1 + 2 * avg_window))
61 novelty = novelty - local_avg
62 novelty[novelty < 0] = 0.0
63
64 if norm:
65 max_value = max(novelty)
66 if max_value > 0:
67 novelty /= max_value
68
69 return novelty, sr_novelty

Program B.3: Spectral flux calculation

B.4 Tempograms
1 def tempogram(x, sr, window_size_seconds, t_type, theta):
2 """
3 x : np.ndarray
4 signal
5 sr : float64
6 sampling rate
7 window_size : int, optional
8 size in seconds of the tempogram window. default is 5s.
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9 type : string, optional
10 tempogram type. accepted values are "fourier", "autocorrelation",
11 "hybrid"
12 theta : np.arange, optional
13 tempi interval (BPM). default is (30,300,1), i.e from 30 to 300, 1
14 at a time.
15 """
16
17 if not isinstance(theta, np.ndarray):
18 raise ValueError(
19 f"theta type incorrect. it should be np.ndarray, but is {type(theta)

}")
20
21 novelty, sr_novelty = spectral_flux(x, sr, n_fft=2048, hop_length=512)
22
23 window_size_frames = int(window_size_seconds * sr_novelty)
24 hop_size = 1
25
26 if t_type == "fourier":
27 T, t, bpm = fourier_tempogram(
28 novelty,
29 sr_novelty,
30 window_size=window_size_frames,
31 hop_size=hop_size,
32 theta=theta
33 )
34 elif t_type == "autocorrelation":
35 T, t, bpm, _, _ = autocorrelation_tempogram(
36 novelty, sr_novelty, window_size=window_size_frames, hop_size=

hop_size, theta=theta)
37 elif t_type == "hybrid":
38 ft, t, bpm = fourier_tempogram(
39 novelty, sr_novelty, window_size=window_size_frames, hop_size=

hop_size, theta=theta)
40 at, ta, freqsa, _, _ = autocorrelation_tempogram(
41 novelty, sr_novelty, window_size=window_size_frames, hop_size=

hop_size, theta=theta)
42
43 T = ft * at
44 else:
45 raise ValueError("tempogram_type incorrect. accepted values are \
46 ['fourier', 'autocorrelation', 'hybrid']")
47
48 return T, t, bpm

Program B.4: Tempogram implementation

B.4.1 Fourier Tempogram
1 def fourier_tempogram(novelty, sr_novelty, window_size, hop_size, theta):
2 """
3 Compute Fourier tempogram
4
5 Parameters
6 ----------
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7 novelty : np.ndarray
8 novelty function
9 sr_novelty : np.float

10 sampling rate of the novelty function
11 window_size : int
12 window size in frames. 1000 corresponds to 10s in a signal sampled
13 at 100 Hz
14 hop_size : int
15 hop size
16 theta : np.ndarray
17 range of BPM to cover
18 """
19 window = np.hanning(window_size)
20 pad_size = int(window_size // 2)
21
22 L = novelty.shape[0] + 2 * pad_size
23
24 novelty_pad = np.concatenate(
25 (np.zeros(pad_size), novelty, np.zeros(pad_size)))
26 t_pad = np.arange(L)
27
28 M = np.int64(np.floor(L - window_size) / hop_size + 1)
29 K = len(theta)
30 X = np.zeros((K, M), dtype=np.complex_)
31
32 for k in range(K):
33 omega = (theta[k] / 60) / sr_novelty
34
35 exponential = np.exp(-2 * np.pi * 1j * omega * t_pad)
36 x_exp = novelty_pad * exponential
37
38 for n in range(M):
39 t_0 = n * hop_size
40 t_1 = t_0 + window_size
41 X[k, n] = np.sum(window * x_exp[t_0:t_1])
42
43 times = np.arange(M) * hop_size / sr_novelty
44 tempi = theta
45
46 return np.abs(X), times, tempi

Program B.5: Fourier tempogram

B.4.2 Autocorrelation Tempogram
1 def autocorrelation_tempogram(
2 novelty, sr_novelty, window_size, hop_size, theta):
3 """
4 Compute autocorrelation-based tempogram
5
6 Parameters
7 ----------
8 novelty : np.ndarray
9 input novelty function

10 sr_novelty : float64
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11 sampling rate
12 window_size : int
13 window length in frames
14 hop_size : int
15 hop size
16 theta : np.ndarray
17 array with BPM values we want to interpolate the autocorrelation
18
19 Return
20 ------
21 tempogram : np.ndarray
22 autocorrelation tempogram
23 times : np.ndarray
24 time axis (seconds)
25 bpms : np.ndarray
26 tempo axis (BPM)
27 A_cut : np.ndarray
28 time-lag representation A_cut (cut according to theta)
29 lags_cut : np.ndarray
30 Lag axis lags_cut
31 """
32 tempo_min = theta[0]
33 tempo_max = theta[-1]
34 lag_min = int(np.ceil(sr_novelty * 60 / tempo_max))
35 lag_max = int(np.ceil(sr_novelty * 60 / tempo_min))
36
37 A, times, lags = local_autocorrelation(novelty, sr_novelty,
38 window_size, hop_size)
39 # getting the min/max lag interval to use in the interpolation
40 A_cut = A[lag_min:lag_max + 1, :]
41
42 # "cut" the frequencies out of the max/min
43 lags_cut = lags[lag_min:lag_max + 1]
44
45 # translate to BPM
46 bpms_cut = 60 / lags_cut
47 bpms = theta
48
49 # interpolate
50 axis_interpolation = interp1d(
51 bpms_cut,
52 A_cut,
53 kind='linear',
54 axis=0,
55 fill_value='extrapolate')
56
57 tempogram = axis_interpolation(bpms)
58 return tempogram, times, bpms, A_cut, lags_cut

Program B.6: Autocorrelation tempogram



57

References

[Abadi et al. 2016] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. Mar. 16, 2016. doi: 10.48550/arXiv.1603.04467.
arXiv: 1603 . 04467 [cs]. url: http : / / arxiv . org / abs / 1603 . 04467 (visited on
02/06/2023) (cit. on p. 29).

[Alonso et al. 2007] Miguel Alonso, Gaël Richard, and Bertrand David. “Accurate
tempo estimation based on harmonic + noise decomposition”. In: EURASIP Jour-
nal on Advances in Signal Processing 2007.1 (Jan. 2007), p. 161. issn: 1110-8657.
doi: 10.1155/2007/82795. (Visited on 07/26/2023) (cit. on p. 11).

[Arandjelovic and Zisserman 2017] Relja Arandjelovic and Andrew Zisserman.
“Look, Listen and Learn”. In: Proceedings of the IEEE International Conference
on Computer Vision. 2017, pp. 609–617. url: https : / /openaccess . thecvf .com/
content_iccv_2017/html/Arandjelovic_Look_Listen_and_ICCV_2017_paper.
html (visited on 02/06/2023) (cit. on p. 23).

[Balestriero et al. 2023] Randall Balestriero et al. A Cookbook of Self-Supervised
Learning. Apr. 2023. doi: 10 .48550/arXiv .2304 .12210. arXiv: 2304 .12210 [cs].
(Visited on 05/27/2023) (cit. on pp. ix, 2, 22, 23).

[Bello et al. 2005] J.P. Bello et al. “A tutorial on onset detection in music signals”. In:
IEEE Transactions on Speech and Audio Processing 13.5 (Sept. 2005), pp. 1035–1047.
issn: 1063-6676. doi: 10.1109/TSA.2005.851998. url: http://ieeexplore.ieee.org/
document/1495485/ (visited on 02/04/2023) (cit. on pp. 7, 8, 10).

[Böck 2011] Sebastian Böck. “Enhanced Beat Tracking With Context-Aware Neural
Networks”. In: (2011) (cit. on pp. 20, 21).

[Böck and Davies 2020] Sebastian Böck andMatthew E. P. Davies. “DECONSTRUCT,
ANALYSE, RECONSTRUCT: HOW TO IMPROVE TEMPO, BEAT, AND DOWN-
BEAT ESTIMATION”. In: (2020) (cit. on pp. 1, 2, 5, 19–21, 25, 26).

https://doi.org/10.48550/arXiv.1603.04467
https://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
https://doi.org/10.1155/2007/82795
https://openaccess.thecvf.com/content_iccv_2017/html/Arandjelovic_Look_Listen_and_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Arandjelovic_Look_Listen_and_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Arandjelovic_Look_Listen_and_ICCV_2017_paper.html
https://doi.org/10.48550/arXiv.2304.12210
https://arxiv.org/abs/2304.12210
https://doi.org/10.1109/TSA.2005.851998
http://ieeexplore.ieee.org/document/1495485/
http://ieeexplore.ieee.org/document/1495485/


58

REFERENCES

[Böck, Davies, and Knees 2019] Sebastian Böck, Matthew E. P. Davies, and Peter
Knees. “Multi-Task Learning of Tempo and Beat: Learning One to Improve the
Other”. In: Proceedings of the 20th International Society for Music Information Re-
trieval Conference (Delft, The Netherlands). Delft, The Netherlands: ISMIR, Nov.
2019, pp. 486–493. doi: 10.5281/zenodo.3527850. url: https://doi.org/10.5281/
zenodo.3527850 (cit. on pp. 20, 21, 25).

[Böck, Krebs, et al. 2014] Sebastian Böck, Florian Krebs, and Gerhard Widmer. “A
Multi-Model Approach to Beat Tracking Considering Heterogeneous Music
Styles”. In: (2014) (cit. on p. 21).

[Böck, Krebs, et al. 2015] Sebastian Böck, Florian Krebs, and Gerhard Widmer. “Ac-
curate tempo estimation based on recurrent neural networks and resonating
comb filters”. In: International Society for Music Information Retrieval Conference.
2015 (cit. on p. 20).

[Böck, Krebs, et al. 2016] Sebastian Böck, Florian Krebs, and GerhardWidmer. “Joint
Beat and Downbeat Tracking with Recurrent Neural Networks”. In: (2016) (cit. on
p. 21).

[Böck and Widmer 2013] Sebastian Böck and Gerhard Widmer. “Maximum Filter Vi-
brato Suppression for Onset Detection”. In: (2013) (cit. on pp. 7, 8, 10).

[Brown 1991] Judith C. Brown. “Calculation of a constant q spectral transform”. en.
In: The Journal of the Acoustical Society of America 89.1 (Jan. 1991), pp. 425–434.
issn: 0001-4966. doi: 10.1121/1.400476 (cit. on p. 26).

[Chen and Su 2022] Tsung-Ping Chen and Li Su. “TOWARD POSTPROCESSING-
FREE NEURAL NETWORKS FOR JOINT BEAT AND DOWNBEAT ESTIMA-
TION”. In: (2022) (cit. on pp. 21, 22).

[Cheng et al. 2018] Tian Cheng, Satoru Fukayama, and Masataka Goto. “Convolv-
ing Gaussian Kernels for RNN-Based Beat Tracking”. In: 2018 26th European Sig-
nal Processing Conference (EUSIPCO). Sept. 2018, pp. 1905–1909. doi: 10.23919/
EUSIPCO.2018.8553310 (cit. on p. 21).

[Choi et al. 2017] Keunwoo Choi, György Fazekas, Kyunghyun Cho, and Mark B.
Sandler. “A tutorial on deep learning for music information retrieval”. In: CoRR
abs/1709.04396 (2017). arXiv: 1709.04396. url: http://arxiv.org/abs/1709.04396
(cit. on p. 19).

[Davies and Böck 2019] Matthew E. P. Davies and Sebastian Böck. “Temporal convo-
lutional networks for musical audio beat tracking”. In: 2019 27th European Signal
Processing Conference (EUSIPCO). 2019 27th European Signal Processing Confer-
ence (EUSIPCO). Sept. 2019, pp. 1–5. doi: 10.23919/EUSIPCO.2019.8902578 (cit.
on pp. 20, 21, 25).

https://doi.org/10.5281/zenodo.3527850
https://doi.org/10.5281/zenodo.3527850
https://doi.org/10.5281/zenodo.3527850
https://doi.org/10.1121/1.400476
https://doi.org/10.23919/EUSIPCO.2018.8553310
https://doi.org/10.23919/EUSIPCO.2018.8553310
https://arxiv.org/abs/1709.04396
http://arxiv.org/abs/1709.04396
https://doi.org/10.23919/EUSIPCO.2019.8902578


REFERENCES

59

[Desblancs et al. 2022] Dorian Desblancs, Romain Hennequin, and Vincent
Lostanlen. “Zero-Note Samba: Self-Supervised Beat Tracking”. In: (2022) (cit. on
pp. ix, 2, 24).

[S. Dixon 2006] S. Dixon. “ONSET DETECTION REVISITED”. In: 2006. url: https :
//www.semanticscholar.org/paper/ONSET-DETECTION-REVISITED-Dixon/
ee97a58bc2813b56bb0d2319d99756bd731802e3 (visited on 02/06/2023) (cit. on
pp. 8, 10).

[Simon Dixon 2001] Simon Dixon. “Automatic Extraction of Tempo and Beat From
Expressive Performances”. In: Journal of New Music Research 30.1 (Mar. 1, 2001),
pp. 39–58. issn: 0929-8215. doi: 10.1076/jnmr.30.1.39.7119. url: https://www.
tandfonline .com/doi /abs/10 .1076/ jnmr .30 .1 .39 .7119 (visited on 02/06/2023)
(cit. on p. 10).

[Downie 2008] J. Stephen Downie. “The music information retrieval evaluation ex-
change (2005–2007): A window into music information retrieval research”. In:
Acoustical Science and Technology 29.4 (2008), pp. 247–255. doi: 10.1250/ast.29.247
(cit. on p. 1).

[Duxbury et al. 2002] Christopher Duxbury,Mark Sandler, andMikeDavies. “AHy-
brid Approach to Musical Note Onset Detection”. In: (2002) (cit. on p. 10).

[D. P. W. Ellis 2007] Daniel P.W. Ellis. “Beat Tracking byDynamic Programming”. In:
Journal of New Music Research 36.1 (Mar. 1, 2007), pp. 51–60. issn: 0929-8215. doi:
10.1080/09298210701653344. url: https://doi.org/10.1080/09298210701653344
(visited on 02/06/2023) (cit. on p. 5).

[Eronen and Klapuri 2010] A. J. Eronen andA. P. Klapuri. “Music tempo estimation
with k-nn regression”. In: Trans. Audio, Speech and Lang. Proc. 18.1 (Jan. 2010),
pp. 50–57. issn: 1558-7916 (cit. on p. 10).

[Eyben et al. 2010] Florian Eyben, Sebastian Böck, Björn Schuller, and Alex Graves.
“Universal onset detection with bidirectional long short-termmemory neural net-
works”. In: International Society for Music Information Retrieval Conference. 2010
(cit. on pp. 7, 20).

[Foote and Uchihashi 2001] Jonathan Foote and Shingo Uchihashi. “The Beat Spec-
trum: A New Approach To Rhythm Analysis”. In: Tokyo. Vol. 22. Aug. 2001. doi:
10.1109/ICME.2001.1237863 (cit. on p. 12).

[Fouloulis et al. 2012] Thanos Fouloulis, Aggelos Pikrakis, and Emilios Cam-
bouropoulos. “Asymmetric beat/tactus: Investigating the performance of
beat-tracking systems on traditional asymmetric rhythms”. In: (2012) (cit. on
p. 5).

https://www.semanticscholar.org/paper/ONSET-DETECTION-REVISITED-Dixon/ee97a58bc2813b56bb0d2319d99756bd731802e3
https://www.semanticscholar.org/paper/ONSET-DETECTION-REVISITED-Dixon/ee97a58bc2813b56bb0d2319d99756bd731802e3
https://www.semanticscholar.org/paper/ONSET-DETECTION-REVISITED-Dixon/ee97a58bc2813b56bb0d2319d99756bd731802e3
https://doi.org/10.1076/jnmr.30.1.39.7119
https://www.tandfonline.com/doi/abs/10.1076/jnmr.30.1.39.7119
https://www.tandfonline.com/doi/abs/10.1076/jnmr.30.1.39.7119
https://doi.org/10.1250/ast.29.247
https://doi.org/10.1080/09298210701653344
https://doi.org/10.1080/09298210701653344
https://doi.org/10.1109/ICME.2001.1237863


60

REFERENCES

[Fuentes 2019] Magdalena Fuentes. “Multi-Scale Computational Rhythm Analysis :
A Framework for Sections, Downbeats, Beats, andMicrotiming”. PhD thesis. Nov.
2019 (cit. on p. 21).

[Fuentes, Bittner, et al. 2021] Magdalena Fuentes, Rachel Bittner, et al. Mirdata
v.0.3.0. Version 0.3.0. Jan. 2021. doi: 10.5281/zenodo.4355859. url: https://doi.
org/10.5281/zenodo.4355859 (cit. on p. 34).

[Fuentes, Maia, et al. 2019] Magdalena Fuentes, Lucas S Maia, et al. “TRACKING
BEATS ANDMICROTIMING IN AFRO-LATIN AMERICANMUSIC USING CON-
DITIONAL RANDOM FIELDS AND DEEP LEARNING”. In: (2019) (cit. on p. 21).

[Gfeller et al. 2020] Beat Gfeller et al. “SPICE: Self-supervised Pitch Estimation”.
In: IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020),
pp. 1118–1128. issn: 2329-9290, 2329-9304. doi: 10 .1109/TASLP.2020 .2982285.
arXiv: 1910.11664 [cs, eess]. url: http://arxiv.org/abs/1910.11664 (visited on
10/05/2022) (cit. on pp. v, ix, 2, 24, 26, 27, 29, 30, 36, 37).

[Gkiokas, Katsouros, and G. Carayannis 2012] Aggelos Gkiokas, Vassilis Kat-
souros, and G. Carayannis. “Reducing Tempo Octave Errors by Periodicity
Vector Coding and SVM Learning”. In: Proceedings of the 13th International Soci-
ety for Music Information Retrieval Conference, ISMIR 2012. Oct. 2012, pp. 301–306
(cit. on p. 6).

[Gkiokas, Katsouros, George Carayannis, et al. 2012] Aggelos Gkiokas, Vassilis
Katsouros, George Carayannis, and Themos Stajylakis. “Music tempo esti-
mation and beat tracking by applying source separation and metrical relations”.
In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (Mar. 2012), pp. 421–424. doi: 10.1109/ICASSP.2012.6287906. (Visited
on 07/26/2023) (cit. on p. 11).

[Goodfellow et al. 2016] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. url: https://www.deeplearningbook.org/ (cit.
on pp. 2, 23).

[Goto and Muraoka 1995] Masataka Goto and Yoichi Muraoka. “A Real-time Beat
Tracking System for Audio Signals”. In: (1995) (cit. on p. 5).

[Gouyon et al. 2006] F. Gouyon et al. “An experimental comparison of audio tempo
induction algorithms”. In: IEEE Transactions on Audio, Speech, and Language Pro-
cessing 14.5 (Sept. 2006), pp. 1832–1844. issn: 1558-7916, 1558-7924. doi: 10.1109/
TSA.2005.858509. url: https://ieeexplore.ieee.org/document/1678001/ (visited
on 02/06/2023) (cit. on pp. ix, 6, 10, 11).

[Grosche and Muller 2011] Peter Grosche and Meinard Muller. “Extracting Pre-
dominant Local Pulse Information FromMusic Recordings”. In: IEEE Transactions
on Audio, Speech, and Language Processing 19.6 (Aug. 2011), pp. 1688–1701. issn:
1558-7924. doi: 10.1109/TASL.2010.2096216 (cit. on p. 12).

https://doi.org/10.5281/zenodo.4355859
https://doi.org/10.5281/zenodo.4355859
https://doi.org/10.5281/zenodo.4355859
https://doi.org/10.1109/TASLP.2020.2982285
https://arxiv.org/abs/1910.11664
http://arxiv.org/abs/1910.11664
https://doi.org/10.1109/ICASSP.2012.6287906
https://www.deeplearningbook.org/
https://doi.org/10.1109/TSA.2005.858509
https://doi.org/10.1109/TSA.2005.858509
https://ieeexplore.ieee.org/document/1678001/
https://doi.org/10.1109/TASL.2010.2096216


REFERENCES

61

[Grosche, Müller, et al. 2010] Peter Grosche, Meinard Müller, and Frank Kurth.
“Cyclic tempogram—Amid-level tempo representation for musicsignals”. In: 2010
IEEE International Conference on Acoustics, Speech and Signal Processing. 2010
IEEE International Conference on Acoustics, Speech and Signal Processing. Mar.
2010, pp. 5522–5525. doi: 10.1109/ICASSP.2010.5495219 (cit. on pp. 3, 12, 18, 35).

[Hennequin et al. 2020] Romain Hennequin, Anis Khlif, Felix Voituret, and
Manuel Moussallam. “Spleeter: a fast and efficient music source separation
tool with pre-trained models”. In: Journal of Open Source Software 5.50 (2020).
Deezer Research, p. 2154. doi: 10.21105/joss.02154. url: https://doi.org/10.21105/
joss.02154 (cit. on p. 25).

[Holzapfel and Grill 2016] Andre Holzapfel and Thomas Grill. “BAYESIAN ME-
TER TRACKING ON LEARNED SIGNAL REPRESENTATIONS”. In: New York
City (2016) (cit. on p. 21).

[Jansen et al. 2018] Aren Jansen et al. “Unsupervised Learning of Semantic Audio
Representations”. In: 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Apr. 2018, pp. 126–130. doi: 10 .1109/
ICASSP.2018.8461684 (cit. on p. 2).

[Keras: The Python Deep Learning API 2023] Keras: The Python Deep Learning API. url:
https://keras.io/ (visited on 02/17/2023) (cit. on p. 29).

[Klapuri et al. 2006] A. P. Klapuri, A. J. Eronen, and J. T. Astola. “Analysis of the
meter of acoustic musical signals”. In: IEEE Transactions on Audio, Speech, and
Language Processing 14.1 (Dec. 2006), pp. 342–355. issn: 1558-7916. doi: 10.1109/
TSA.2005.854090 (cit. on p. 11).

[Korzeniowski et al. 2014] Filip Korzeniowski, Sebastian Böck, and Gerhard Wid-
mer. “Probabilistic Extraction of Beat Positions from a Beat Activation Function”.
In: (2014) (cit. on p. 21).

[Kurth and Gehrmann 2006] Frank Kurth and Thorsten Gehrmann. “The Cyclic
Beat Spectrum: Tempo-Related Audio Features for Time-Scale Invariant Audio
Identification”. In: (2006) (cit. on p. 12).

[Lea et al. 2016] Colin Lea, Rene Vidal, Austin Reiter, and Gregory D. Hager. Tempo-
ral Convolutional Networks: A Unified Approach to Action Segmentation. Aug. 2016.
doi: 10.48550/arXiv.1608.08242. arXiv: 1608.08242 [cs]. (Visited on 07/27/2023)
(cit. on p. 20).

[Lerch 2012] Alexander Lerch. An Introduction to Audio Content Analysis. Guide
books. 2012. doi: 10.5555/2392638. url: https://dl .acm.org/doi/abs/10.5555/
2392638 (visited on 02/06/2023) (cit. on p. 6).

https://doi.org/10.1109/ICASSP.2010.5495219
https://doi.org/10.21105/joss.02154
https://doi.org/10.21105/joss.02154
https://doi.org/10.21105/joss.02154
https://doi.org/10.1109/ICASSP.2018.8461684
https://doi.org/10.1109/ICASSP.2018.8461684
https://keras.io/
https://doi.org/10.1109/TSA.2005.854090
https://doi.org/10.1109/TSA.2005.854090
https://doi.org/10.48550/arXiv.1608.08242
https://arxiv.org/abs/1608.08242
https://doi.org/10.5555/2392638
https://dl.acm.org/doi/abs/10.5555/2392638
https://dl.acm.org/doi/abs/10.5555/2392638


62

REFERENCES

[Levy 2011] Mark Levy. “IMPROVING PERCEPTUAL TEMPO ESTIMATION WITH
CROWD-SOURCED ANNOTATIONS”. In: Oral Session (2011) (cit. on p. 6).

[Marchand et al. 2015] Ugo Marchand, Quentin Fresnel, and Geoffroy Peeters.
GTZAN-Rhythm: Extending the GTZAN Test-Set with Beat, Downbeat and Swing
Annotations. Late-Breaking Demo Session of the 16th International Society for
Music Information Retrieval Conference, 2015. Oct. 2015. url: https : / / hal .
science/hal-01252607 (cit. on pp. 33, 34).

[Matthew E. P. Davies 2021] Magdalena Fuentes Matthew E. P. Davies Se-
bastian B ock. Tempo, Beat and Downbeat Estimation. 2021. url: https : / /
tempobeatdownbeat.github.io/tutorial/intro.html (cit. on pp. 21, 22).

[McFee and D. P. Ellis 2014] Brian McFee and Daniel P.W. Ellis. “Better beat track-
ing through robust onset aggregation”. In: 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2014 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). May 2014, pp. 2154–
2158. doi: 10.1109/ICASSP.2014.6853980 (cit. on pp. 7, 8).

[McFee, McVicar, et al. 2023] Brian McFee, Matt McVicar, et al. Librosa/librosa:
0.10.0rc1. Zenodo, Feb. 17, 2023. doi: 10 . 5281 / zenodo . 7650421. url: https :
//zenodo.org/record/7650421/export/hx (visited on 02/17/2023) (cit. on p. 29).

[McKinney and Moelants 2006] Martin F. McKinney and DirkMoelants. “Ambigu-
ity in Tempo Perception: What Draws Listeners to Different Metrical Levels?” In:
Music Perception 24.2 (Dec. 1, 2006), pp. 155–166. issn: 0730-7829. doi: 10.1525/
mp.2006.24.2.155. url: https://online.ucpress.edu/mp/article/24/2/155/62298/
Ambiguity-in-Tempo-Perception-What-Draws-Listeners (visited on 02/06/2023)
(cit. on pp. 1, 6).

[Morais et al. 2023] Giovana Morais, Matthew E. P. Davies, Marcelo Queiroz, and
Magdalena Fuentes. Tempo vs. Pitch: understanding self-supervised tempo estima-
tion. 2023. arXiv: 2304.06868 [cs.SD] (cit. on pp. 29, 37, 39).

[Müller 2015] Meinard Müller. Fundamentals of Music Processing: Audio, Analysis,
Algorithms, Applications. 1st. Springer Publishing Company, Incorporated, 2015.
Chap. 6. isbn: 3319219448 (cit. on pp. 9, 10, 12).

[Müller and Zalkow 2019] Meinard Müller and Frank Zalkow. “FMP NOTE-
BOOKS: EDUCATIONAL MATERIAL FOR TEACHING AND LEARNING FUN-
DAMENTALS OF MUSIC PROCESSING”. In: Sept. 26, 2019 (cit. on pp. ix, 12,
18).

[Müller and Zalkow 2021] Meinard Müller and Frank Zalkow. “Libfmp: A Python
Package for Fundamentals of Music Processing”. In: Journal of Open Source Soft-
ware 6.63 (July 20, 2021), p. 3326. issn: 2475-9066. doi: 10.21105/joss.03326. url:
https://joss.theoj.org/papers/10.21105/joss.03326 (visited on 02/08/2023) (cit. on
p. 36).

https://hal.science/hal-01252607
https://hal.science/hal-01252607
https://tempobeatdownbeat.github.io/tutorial/intro.html
https://tempobeatdownbeat.github.io/tutorial/intro.html
https://doi.org/10.1109/ICASSP.2014.6853980
https://doi.org/10.5281/zenodo.7650421
https://zenodo.org/record/7650421/export/hx
https://zenodo.org/record/7650421/export/hx
https://doi.org/10.1525/mp.2006.24.2.155
https://doi.org/10.1525/mp.2006.24.2.155
https://online.ucpress.edu/mp/article/24/2/155/62298/Ambiguity-in-Tempo-Perception-What-Draws-Listeners
https://online.ucpress.edu/mp/article/24/2/155/62298/Ambiguity-in-Tempo-Perception-What-Draws-Listeners
https://arxiv.org/abs/2304.06868
https://doi.org/10.21105/joss.03326
https://joss.theoj.org/papers/10.21105/joss.03326


REFERENCES

63

[Nunes et al. 2015] Leonardo O. Nunes, Martín Rocamora, Luis Jure, and L. Bis-
cainho. “Beat and Downbeat Tracking Based on Rhythmic Patterns Applied to
the Uruguayan Candombe Drumming”. In: International Society for Music In-
formation Retrieval Conference. 2015. url: https://www.semanticscholar.org/
paper /Beat - and-Downbeat - Tracking - Based - on - Rhythmic - to - the - Nunes -
Rocamora/99228cc4537bdcbf1646f84dda74ac68dd914c2b (visited on 02/05/2023)
(cit. on p. 7).

[Oliveira et al. 2012] J. L. Oliveira, M. E. P. Davies, F. Gouyon, and L. P. Reis. “Beat
Tracking for Multiple Applications: A Multi-Agent System Architecture With
State Recovery”. In: IEEE Transactions on Audio, Speech, and Language Processing
20.10 (2012), pp. 2696–2706. issn: 1558-7916. url: https://www.academia.edu/
2877208/Beat_tracking_for_multiple_applications_A_multi_agent_system_
architecture_with_state_recovery (visited on 02/08/2023) (cit. on pp. 5, 10).

[Ou et al. 2022] Longshen Ou, Xiangming Gu, and Ye Wang. Transfer Learning of
Wav2vec 2.0 for Automatic Lyric Transcription. Oct. 2022. doi: 10 . 48550 /arXiv .
2207.09747. arXiv: 2207.09747 [cs, eess]. (Visited on 08/02/2023) (cit. on p. 19).

[Pathak et al. 2017] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell,
and Bharath Hariharan. Learning Features by Watching Objects Move. 2017.
arXiv: 1612.06370 [cs.CV] (cit. on p. 23).

[G. Peeters 2006] G. Peeters. “Music Pitch Representation by Periodicity Measures
Based on Combined Temporal and Spectral Representations”. In: 2006 IEEE Inter-
national Conference on Acoustics Speed and Signal Processing Proceedings. Vol. 5.
Toulouse, France: IEEE, 2006, pp. V-53-V–56. isbn: 978-1-4244-0469-8. doi: 10 .
1109/ICASSP.2006.1661210. (Visited on 07/26/2023) (cit. on p. 16).

[Geoffroy Peeters 2006] Geoffroy Peeters. “Template-Based Estimation of Time-
Varying Tempo”. In: EURASIP Journal on Advances in Signal Processing 2007.1
(Dec. 2006), p. 067215. issn: 1687-6180. doi: 10 . 1155 / 2007 / 67215. url: https :
//asp-eurasipjournals.springeropen.com/articles/10.1155/2007/67215 (visited on
02/06/2023) (cit. on pp. 17, 37).

[Geoffroy Peeters 2011] Geoffroy Peeters. “Spectral and Temporal Periodicity Rep-
resentations of Rhythm for the Automatic Classification of Music Audio Signal”.
In: IEEE Transactions on Audio, Speech, and Language Processing 19.5 (July 2011),
pp. 1242–1252. issn: 1558-7924. doi: 10.1109/TASL.2010.2089452 (cit. on pp. 17,
37).

[Geoffroy Peeters and Flocon-Cholet 2012] Geoffroy Peeters and Joachim
Flocon-Cholet. “Perceptual tempo estimation using GMM-regression”. In:
Proceedings of the Second International ACM Workshop on Music Information
Retrieval with User-Centered and Multimodal Strategies. Nara Japan: ACM, Nov.
2012, pp. 45–50. isbn: 978-1-4503-1591-3. doi: 10.1145/2390848.2390861. (Visited
on 07/26/2023) (cit. on p. 6).

https://www.semanticscholar.org/paper/Beat-and-Downbeat-Tracking-Based-on-Rhythmic-to-the-Nunes-Rocamora/99228cc4537bdcbf1646f84dda74ac68dd914c2b
https://www.semanticscholar.org/paper/Beat-and-Downbeat-Tracking-Based-on-Rhythmic-to-the-Nunes-Rocamora/99228cc4537bdcbf1646f84dda74ac68dd914c2b
https://www.semanticscholar.org/paper/Beat-and-Downbeat-Tracking-Based-on-Rhythmic-to-the-Nunes-Rocamora/99228cc4537bdcbf1646f84dda74ac68dd914c2b
https://www.academia.edu/2877208/Beat_tracking_for_multiple_applications_A_multi_agent_system_architecture_with_state_recovery
https://www.academia.edu/2877208/Beat_tracking_for_multiple_applications_A_multi_agent_system_architecture_with_state_recovery
https://www.academia.edu/2877208/Beat_tracking_for_multiple_applications_A_multi_agent_system_architecture_with_state_recovery
https://doi.org/10.48550/arXiv.2207.09747
https://doi.org/10.48550/arXiv.2207.09747
https://arxiv.org/abs/2207.09747
https://arxiv.org/abs/1612.06370
https://doi.org/10.1109/ICASSP.2006.1661210
https://doi.org/10.1109/ICASSP.2006.1661210
https://doi.org/10.1155/2007/67215
https://asp-eurasipjournals.springeropen.com/articles/10.1155/2007/67215
https://asp-eurasipjournals.springeropen.com/articles/10.1155/2007/67215
https://doi.org/10.1109/TASL.2010.2089452
https://doi.org/10.1145/2390848.2390861


64

REFERENCES

[Pinto et al. 2021] António Pinto, Sebastian Böck, Jaime Cardoso, and Matthew
Davies. “User-Driven Fine-Tuning for Beat Tracking”. In: Electronics 10.13 (June
2021), p. 1518. issn: 2079-9292. doi: 10 . 3390 / electronics10131518. (Visited on
07/26/2023) (cit. on p. 21).

[Purwins et al. 2019] Hendrik Purwins et al. “Deep Learning for Audio Signal Pro-
cessing”. In: IEEE Journal of Selected Topics in Signal Processing 13.2 (May 2019),
pp. 206–219. issn: 1932-4553, 1941-0484. doi: 10.1109/JSTSP.2019.2908700. (Vis-
ited on 07/26/2023) (cit. on p. 20).

[Quinton 2017] Elio Quinton. “Towards the Automatic Analysis of Metric Modula-
tions”. PhD thesis. Queen Mary University of London, 2017 (cit. on pp. 6, 12, 34).

[Quinton 2022] Elio Quinton. Equivariant Self-Supervision for Musical Tempo Estima-
tion. Sept. 3, 2022. arXiv: 2209.01478 [cs, eess]. url: http://arxiv.org/abs/2209.
01478 (visited on 10/05/2022) (cit. on pp. ix, 2, 3, 12, 21, 24–26).

[Quinton et al. 2016] Elio Quinton, Mark Sandler, and Simon Dixon. “Estimation
of the reliability of multiple rhythm features extraction from a single descriptor”.
In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Mar. 2016, pp. 256–260. doi: 10 . 1109 / ICASSP .2016 . 7471676 (cit. on
p. 12).

[Repp 1996] Bruno H. Repp. “Patterns of note onset asynchronies in expressive piano
performance”. In: The Journal of the Acoustical Society of America 100.6 (Dec.
1996), pp. 3917–3932. issn: 0001-4966. doi: 10.1121/1.417245 (cit. on p. 6).

[Rosão et al. 2012] C. Rosão, Ricardo Ribeiro, and David Martins de Matos. “In-
fluence of Peak Selection Methods on Onset Detection”. In: International So-
ciety for Music Information Retrieval Conference. 2012. url: https : / / www .
semanticscholar.org/paper/Influence-of-Peak-Selection-Methods-on-Onset-
Ros%C3%A3o-Ribeiro/7bfc35ab2febcd31bec0bae071e00487d47d3508 (visited on
02/06/2023) (cit. on p. 10).

[Scheirer 1998] Eric D. Scheirer. “Tempo and beat analysis of acoustic musical sig-
nals”. en. In: The Journal of the Acoustical Society of America 103.1 (Jan. 1998),
pp. 588–601. issn: 0001-4966. doi: 10.1121/1.421129 (cit. on p. 5).

[Schlüter and Böck 2014] Jan Schlüter and Sebastian Böck. “Improved musical on-
set detection with Convolutional Neural Networks”. In: 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2014 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). May
2014, pp. 6979–6983. doi: 10.1109/ICASSP.2014.6854953 (cit. on p. 7).

[Schreiber 2018] Hendrik Schreiber. “A SINGLE-STEP APPROACH TO MUSICAL
TEMPO ESTIMATION USING A CONVOLUTIONAL NEURAL NETWORK”. In:
(2018) (cit. on p. 43).

https://doi.org/10.3390/electronics10131518
https://doi.org/10.1109/JSTSP.2019.2908700
https://arxiv.org/abs/2209.01478
http://arxiv.org/abs/2209.01478
http://arxiv.org/abs/2209.01478
https://doi.org/10.1109/ICASSP.2016.7471676
https://doi.org/10.1121/1.417245
https://www.semanticscholar.org/paper/Influence-of-Peak-Selection-Methods-on-Onset-Ros%C3%A3o-Ribeiro/7bfc35ab2febcd31bec0bae071e00487d47d3508
https://www.semanticscholar.org/paper/Influence-of-Peak-Selection-Methods-on-Onset-Ros%C3%A3o-Ribeiro/7bfc35ab2febcd31bec0bae071e00487d47d3508
https://www.semanticscholar.org/paper/Influence-of-Peak-Selection-Methods-on-Onset-Ros%C3%A3o-Ribeiro/7bfc35ab2febcd31bec0bae071e00487d47d3508
https://doi.org/10.1121/1.421129
https://doi.org/10.1109/ICASSP.2014.6854953


REFERENCES

65

[Schreiber 2020] Hendrik Schreiber. “Data-Driven Approaches for Tempo and
Key Estimation of Music Recordings”. doctoralthesis. Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU), 2020, p. 188 (cit. on p. 20).

[Schreiber and Müller 2017] Hendrik Schreiber and Meinard Müller. “A Post-
Processing Procedure for Improving Music Tempo Estimates Using Supervised
Learning”. In: International Society for Music Information Retrieval Conference.
2017. (Visited on 07/26/2023) (cit. on p. 6).

[Schreiber and Müller 2019] Hendrik Schreiber and Meinard Müller. “Musical
Tempo and Key Estimation using Convolutional Neural Networks with Direc-
tional Filters”. In: ArXiv (Mar. 2019). (Visited on 07/27/2023) (cit. on p. 20).

[Schreiber, Urbano, et al. 2020] Hendrik Schreiber, Julián Urbano, and Meinard
Müller. “Music Tempo Estimation: Are We Done Yet?” In: Transactions of the
International Society for Music Information Retrieval 3.1 (1 Aug. 24, 2020), pp. 111–
125. issn: 2514-3298. doi: 10.5334/tismir.43. url: http://transactions.ismir.net/
articles/10.5334/tismir.43/ (visited on 02/05/2023) (cit. on pp. 1, 5, 11).

[Schreiber, Zalkow, et al. 2020] Hendrik Schreiber, Frank Zalkow, and Meinard
Müller. “MODELING AND ESTIMATING LOCAL TEMPO: A CASE STUDY ON
CHOPIN’S MAZURKAS”. In: (2020) (cit. on pp. 5, 20).

[Steinmetz and Reiss 2021] Christian J. Steinmetz and Joshua D. Reiss. WaveBeat:
End-to-end Beat andDownbeat Tracking in the TimeDomain. https://arxiv.org/abs/2110.01436v1.
Oct. 2021. (Visited on 07/29/2023) (cit. on pp. 21, 22, 43).

[Sturm 2012] Bob L. Sturm. “An analysis of the GTZAN music genre dataset”. In: Pro-
ceedings of the Second International ACMWorkshop onMusic Information Retrieval
with User-Centered and Multimodal Strategies. MIRUM ’12. New York, NY, USA:
Association for Computing Machinery, Nov. 2, 2012, pp. 7–12. isbn: 978-1-4503-
1591-3. doi: 10.1145/2390848.2390851. url: https://doi .org/10.1145/2390848.
2390851 (visited on 02/06/2023) (cit. on p. 34).

[Sun et al. 2021] Xiaoheng Sun, Qiqi He, Yongwei Gao, and Wei Li. “Musical Tempo
Estimation Using a Multi-scale Network”. In: ArXiv (Sept. 2021). (Visited on
07/26/2023) (cit. on p. 20).

[Takahashi and Barthet 2022] Takuya Takahashi and Mathieu Barthet.
“EMOTION-DRIVEN HARMONISATION AND TEMPO ARRANGEMENT OF
MELODIES USING TRANSFER LEARNING”. In: (2022) (cit. on p. 19).

[Thoshkahna et al. 2015] Balaji Thoshkahna, Meinard Muller, Venkatesh Kulka-
rni, and Nanzhu Jiang. “Novel audio features for capturing tempo salience in
music recordings”. In: 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). South Brisbane, QLD, Australia: IEEE, Apr. 2015,
pp. 181–185. isbn: 978-1-4673-6997-8. doi: 10.1109/ICASSP.2015.7177956. (Vis-
ited on 07/26/2023) (cit. on pp. 12, 18).

https://doi.org/10.5334/tismir.43
http://transactions.ismir.net/articles/10.5334/tismir.43/
http://transactions.ismir.net/articles/10.5334/tismir.43/
https://doi.org/10.1145/2390848.2390851
https://doi.org/10.1145/2390848.2390851
https://doi.org/10.1145/2390848.2390851
https://doi.org/10.1109/ICASSP.2015.7177956


66

REFERENCES

[Tian et al. 2015] Mi Tian, György Fazekas, Dawn A. A. Black, and Mark Sandler.
“On the use of the tempogram to describe audio content and its application to
Music structural segmentation”. In: 2015 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). Apr. 2015, pp. 419–423. doi: 10.1109/
ICASSP.2015.7178003 (cit. on p. 12).

[Tzanetakis and Cook 2002] G. Tzanetakis and P. Cook. “Musical genre classifica-
tion of audio signals”. In: IEEE Transactions on Speech and Audio Processing 10.5
(2002), pp. 293–302. doi: 10.1109/TSA.2002.800560 (cit. on p. 33).

[Vogl et al. 2017] Richard Vogl, Matthias Dorfer, GerhardWidmer, and Peter Knees.
“Drum Transcription via Joint Beat And Drum Modeling using Convolutional
Recurrent Neural Networks”. In: Oct. 2017 (cit. on p. 21).

[Wang, Salamon, et al. 2020] Yu Wang, Justin Salamon, Mark Cartwright,
Nicholas J. Bryan, and Juan Pablo Bello. Few-Shot Drum Transcription in
Polyphonic Music. Aug. 2020. doi: 10.48550/arXiv.2008.02791. arXiv: 2008.02791
[cs, eess]. (Visited on 08/02/2023) (cit. on pp. 2, 19).

[Wang, Stoller, et al. 2022] Yu Wang, Daniel Stoller, Rachel M. Bittner, and Juan
Pablo Bello. “Few-Shot Musical Source Separation”. In: ICASSP 2022 - 2022 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). May
2022, pp. 121–125. doi: 10.1109/ICASSP43922.2022.9747536 (cit. on pp. 2, 19).

[Widmer 2013] Gerhard Widmer. “Enhanced peak picking for onset detection with
recurrent neural networks”. In: 2013 (cit. on p. 20).

[Xiao et al. 2008] Linxing Xiao, Aibo Tian, Wen Li, and Jie Zhou. “USING A STATIS-
TIC MODEL TO CAPTURE THE ASSOCIATION BETWEEN TIMBRE AND PER-
CEIVED TEMPO”. In: Rhythm and Meter (2008) (cit. on p. 6).

[Zapata and Gómez 2011] Jose R Zapata and Emilia Gómez. “COMPARATIVE
EVALUATION AND COMBINATION OF AUDIO TEMPO ESTIMATION AP-
PROACHES”. In: (2011) (cit. on pp. 7, 10, 11).

[C. Zhang et al. 2021] Chen Zhang et al. PDAugment: Data Augmentation by Pitch and
Duration Adjustments for Automatic Lyrics Transcription. Sept. 2021. arXiv: 2109.
07940 [cs, eess]. (Visited on 08/02/2023) (cit. on pp. 2, 19).

[R. Zhang et al. 2016] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful Im-
age Colorization. 2016. arXiv: 1603.08511 [cs.CV] (cit. on p. 23).

https://doi.org/10.1109/ICASSP.2015.7178003
https://doi.org/10.1109/ICASSP.2015.7178003
https://doi.org/10.1109/TSA.2002.800560
https://doi.org/10.48550/arXiv.2008.02791
https://arxiv.org/abs/2008.02791
https://arxiv.org/abs/2008.02791
https://doi.org/10.1109/ICASSP43922.2022.9747536
https://arxiv.org/abs/2109.07940
https://arxiv.org/abs/2109.07940
https://arxiv.org/abs/1603.08511

	Introduction
	Motivation
	Related Work
	Objectives
	Text Outline

	Literature Review
	Tempo Estimation
	Novelty Function
	Tempo Induction
	Metrics and Evaluation
	Tempograms

	Deep Learning and Audio
	Deep Learning and Tempo Estimation
	Self-Supervised Learning


	Contributions
	Methodology
	Framework
	Tempogram parameters
	Datasets
	Tempogram variations
	Model calibration

	Results and discussions
	Data distributions
	Tempogram variations
	Data augmentation

	Future work
	Data augmentation


	Conclusions
	Additional Figures
	Linear and Logarithmic Tempograms
	Calibration Results

	Implementation
	Metrics
	Click tracks
	Spectral Flux
	Tempograms
	Fourier Tempogram
	Autocorrelation Tempogram


	References

