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Resumo

Kádmo de Souza Laxa. Metaestabilidade em sistemas de processos pontuais com
memória de alcance variável interagindo entre si modelando redes sociais e
neuronais. Tese (Doutorado). Instituto de Matemática e Estatística, Universidade de São

Paulo, São Paulo, 2022.

Estudamos o comportamento metaestável de dois sistemas de processos pontuais com memória de

alcance variável interagindo entre si. Um dos sistemas é um novo modelo para uma rede social altamente

polarizada. Nesse sistema, os processos pontuais são marcados e indicam os instantes sucessivos em que

um ator social expressa uma opinião “favorável” ou “contrária” sobre determinado assunto. Para este

modelo, demonstramos que quando o coeficiente de polarização diverge, a rede social atinge o consenso

instantaneamente e esse consenso tem um comportamento metaestável. Isso significa que a direção das

pressões sociais sobre os atores muda globalmente após um tempo aleatório longo e imprevisível. O segundo

sistema que consideramos modela uma rede de neurônios com disparos. Neste modelo, associados a cada

neurônio existem dois processos pontuais, descrevendo seus instantes sucessivos de disparo e vazamento.

Demonstramos que este sistema tem um comportamento metaestável quando o tamanho da população

diverge. Isso significa que o instante em que o sistema fica preso pela lista de potenciais de membrana nulos

adequadamente reescalado converge para um tempo aleatório exponencial de média 1.

Palavras-chave: Metaestabilidade. Processos pontuais com memória de alcance variável interagindo entre

si. Redes sociais. Redes neuronais.





Abstract

Kádmo de Souza Laxa. Metastability in systems of interacting point processes
with memory of variable length modeling social and neuronal networks. Thesis

(Doctorate). Institute of Mathematics and Statistics, University of São Paulo, São Paulo,

2022.

We study the metastable behavior of two systems of interacting point processes with memory of variable

length. One of the systems is a new model for a highly polarized social network. In this system, the point

processes are marked and indicate the successive times in which a social actor express a “favorable” or

“contrary” opinion on a certain subject. For this model, we prove that when the polarization coefficient

diverges, the social network reaches instantaneous consensus and this consensus has a metastable behavior.

This means that the direction of the social pressures on the actors globally changes after a long and

unpredictable random time. The second system we consider models a network of spiking neurons. In this

model, associated to each neuron there are two point processes, describing its successive spiking and leakage

times. We prove that this system has a metastable behaviour when the population size diverges. This means

that the time at which the system gets trapped by the list of null membrane potentials suitably re-scaled

converges to a mean one exponential random time.

Keywords: Metastability. Interacting point processes with memory of variable length. Social networks.

Neuronal networks.
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Chapter 1

Introduction

In this PhD thesis we study the metastable behavior of two systems of interacting
point processes with memory of variable length. One of the systems we consider is a new
model for a highly polarized social network. The other system belongs to the class of
stochastic models for networks of spiking neurons introduced in a discrete time framework
in Galves and Löcherbach, 2013 and in a continuous time framework in De Masi et al.,
2014.

Systems of interacting point processes with memory of variable length are non-trivial
extensions of both the class of interacting Markov processes introduced by Spitzer, 1970
and the class of stochastic chains with memory of variable length introduced by Rissanen,
1983. They appear as natural candidates to model networks of spiking neurons due to
the fact that neurons reset the value of their membrane potentials every time they spike.
They appear also as a good candidates to model social networks in a democratic society in
which each social actor accepts resetting their personal beliefs under the influence of the
reaction of the network every time they expresses an opinion.

The model for a highly polarized social network is a system of interacting marked
point processes. Each point process indicates the successive times in which a social actor
express a “favorable” or “contrary” opinion on a certain subject. The orientation and the
rate at which an actor express an opinion is influenced by the social pressure exerted on
them, modulated by a polarization coefficient. The social pressure on an actor is reset to 0,
when they express an opinion, and simultaneously the social pressures on all the other
actors change by one unit in the direction of the opinion that was just expressed.

For this model, we prove that when the polarization coefficient diverges, this social
network reaches instantaneous consensus. Here by consensus we mean the set of lists in
which all the social pressures push in the same direction. This consensus has a metastable
behavior. This means that the direction of the social pressures on the actors globally
changes after a long and unpredictable random time.

The second model we consider is a system of interacting point processes with memory
of variable length modeling a finite but large network of spiking neurons with leakage.
Associated to each neuron there are two point processes, describing its successive spiking
and leakage times. For each neuron, the rate of the spiking point process is an exponential
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function of its membrane potential, with the restriction that the rate takes the value 0
when the membrane potential is 0, while the leakage rate is a constant. At each spiking
time, the membrane potential of the neuron resets to 0, and simultaneously, the membrane
potentials of the other neurons increase by one unit. At each leakage time, the membrane
potential of the neuron is reset to 0, with no effect on the other neurons.

We prove that the system has a metastable behavior as the population size diverges.
This means that the time at which the system gets trapped by the list of null membrane
potentials suitably re-scaled converges to a mean one exponential random time.

A more detailed informal description of the results with references are presented in
the beginning of Chapters 2 and 3.

This thesis is organized as follows. In Chapter 2 we study the model for a highly
polarized social network. In Chapter 3 we study the model for a system of spiking neurons
with leakage. Each chapter starts with a more detailed informal description of the models
and the results obtained, with references.
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Chapter 2

Fast Consensus and Metastability
in a Highly Polarized Social
Network

2.1 Introduction

Discrepancy between the results of electoral intentions carried out a few days before
the actual voting and the electoral poll results during the first round of the 2018 presidential
elections in Brazil was striking. See for instance Branco, 2018 and Franco, 2018.

At the time, it was conjectured that this discrepancy was the result of social-media
campaigning days before the elections. See for instance Belli, 2018 and Mello, 2018;
Mello, 2019. This conjecture rises a question: is social-media campaigning enough to
change in a quite short period of time the voting intention of a significant portion of
voters? To address this question we introduce a new stochastic model that mimics some
important features of real world social networks.

The model we propose can be informally described as follows.

1. The model is a system with interacting marked point processes with memory of
variable length.

2. Each point process indicates the successive times in which a social actor express
either a “favorable” (+1) or “contrary” (−1) opinion on a certain subject.

3. The social pressure on an actor determines the orientation and the rate at which
they express an opinion.

4. When an actor express their opinion, social pressure on them is reset to 0, and
simultaneously, social pressures on all the other actors change by one unit in the
direction of the opinion that was just expressed.

5. The orientation and the rate at which an actor express an opinion is influenced by
the social pressure exerted on them, modulated by a polarization coefficient.
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It is natural to conjecture that the formation of the conjectured “wave” that pushes
the opinions in a direction is a consequence of the social pressure exerted on actors. In
our model, this is represented by the fact that every time an actor express an opinion, the
social pressure on them is reset to 0 and its new value depends on the group’s reaction to
the opinion that they have just expressed. This is the content of the fourth point of the
informal description given above.

Starting with the classical voter model, introduced by Holley and Liggett, 1975,
several articles addressed issues associated to opinion dynamics in a social network. See
Wasserman and Faust, 1994; Castellano et al., 2009 and Aldous, 2013 for a general
review on this subject. However, to the best of our knowledge, a model with the features
introduced here was not considered yet in the literature of social networks.

Actually, our model belongs to the same class of systems of interacting point process
with memory of variable length that was introduced in discrete time by Galves and
Löcherbach, 2013 and in continuous time by De Masi et al., 2014 to model system of
spiking neurons. This class of systems was since then studied in several articles, includ-
ing Duarte, Ost, and Rodríguez, 2015; Brochini et al., 2016; Duarte and Ost, 2016;
Fournier and Löcherbach, 2016; Galves and Löcherbach, 2016; Yaginuma, 2016; Fer-
rari et al., 2018; André, 2019; Baccelli and Taillefumier, 2019; Duarte, Galves, et al.,
2019; Galves, Löcherbach, Pouzat, and Presutti, 2019; André and Planche, 2021;
Baccelli and Taillefumier, 2021; Nascimento, 2022; De Santis et al., 2022; Baccelli,
Davydov, et al., 2022; Chariker and Lebowitz, 2022 and Löcherbach and Monmarché,
2022.

Let us now informally present our results. The existence of the process and the unique-
ness of its invariant probability measure is the content of Theorem 2.1.

When the polarization coefficient diverges, the invariant probability measure concen-
trates on the set of consensus lists and the time the system needs to get there goes to zero.
Here by a consensus list we mean any list in which all the social pressures push in the
same direction. This is the content of Theorem 2.2.

In the social network, the consensus has a metastable behavior. This means that the
direction of the social pressures on the actors globally change direction after a long and
unpredictable random time. This is the content of Theorem 2.3.

The notion of metastability considered here is inspired by the so called pathwise
approach to metastability introduced by Cassandro et al., 1984. For more references and
an introduction to the topic, we refer the reader to Olivieri and Vares, 2005; Hollander,
2009 and Fernández et al., 2015.

This chapter is organized as follows. In Section 2.2 we introduce the model, the notation
and state the main results. In Section 2.3 we introduce some extra notation and prove
two auxiliary propositions. In Section 2.4, 2.5 and 2.6 we prove Theorems 2.1, 2.2 and 2.3,
respectively.
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2.2 Definitions, notation and main results
Let  = {1, 2, ..., 𝑁 } be the set of social actors, with 𝑁 ≥ 3, and let  = {−1, +1} be the

set of opinions that an actor can express, where +1 (respectively, −1) represents a favorable
opinion (respectively, a contrary opinion).

Let 𝛽 ≥ 0 be the polarization coefficient of this network. The polarization coefficient of
the network parametrizes the tendency of each actor 𝑎 ∈  to follow the social pressure
that the actors belonging to  ⧵ {𝑎} exert on 𝑎.

To describe the time evolution of the social network we introduce a family of maps on
the set of lists of social pressures. For any actor 𝑎 ∈ , for any opinion o ∈  and for any
list 𝑢 = (𝑢(𝑎) ∶ 𝑎 ∈ ), where 𝑢(𝑎) is a integer number, we define the new list 𝜋𝑎,o(𝑢) as
follows

𝜋𝑎,o(𝑢)(𝑏) =

{
𝑢(𝑏) + o, if 𝑏 ≠ 𝑎,
0, if 𝑏 = 𝑎.

The time evolution of the social network can be described as follows.

• Assume that at time 0, the list of social pressures exerted on the actors is 𝑢 = (𝑢(𝑎) ∶
𝑎 ∈ ).

• Independent exponential random times with parameters exp (𝛽o𝑢(𝑎)) are associated
to each actor 𝑎 ∈  and each opinion o ∈ .

• Denote (𝐴1, 𝑂1) the pair (actor, opinion) associated to the exponential random time
that occurs first.

• At this random time, the list of social pressures changes from 𝑢 to 𝜋𝐴1,𝑂1(𝑢).

• At the new list of social pressures 𝜋𝐴1,𝑂1(𝑢), independent exponential random times
with parameters exp (𝛽o𝜋𝐴1,𝑂1(𝑢)(𝑎)) are associated to each actor 𝑎 ∈  and opinion
o ∈ .

• Denote (𝐴2, 𝑂2) the pair (actor, opinion) associated to the exponential random time
that occurs first, and so on.

Let ((𝐴𝑛, 𝑂𝑛) ∶ 𝑛 ≥ 1) be the sequence of pairs (actor, opinion), associated to the
exponential random times realizing the successive minima and let (𝑇𝑛 ∶ 𝑛 ≥ 1) be the
successive random times associated to them. Let also (𝑈 𝛽,𝑢

𝑡 )𝑡∈[0,+∞) be the time evolution
defined as follows

𝑈 𝛽,𝑢
𝑡 = 𝑢, if 0 ≤ 𝑡 < 𝑇1,

and for any 𝑡 ≥ 𝑇1,
𝑈 𝛽,𝑢
𝑡 = 𝜋𝐴𝑚 ,𝑂𝑚 (𝑈 𝛽,𝑢

𝑇𝑚−1
), if 𝑇𝑚 ≤ 𝑡 < 𝑇𝑚+1,

where 𝑇0 = 0.

So defined, the system of social pressures (𝑈 𝛽,𝑢
𝑡 )𝑡∈[0,+∞) evolves as a Markov jump process

taking values in the set

 = {𝑢 = (𝑢(𝑎) ∶ 𝑎 ∈ ) ∈ ℤ𝑁 ∶ min{|𝑢(𝑎)| ∶ 𝑎 ∈ } = 0}
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and with infinitesimal generator defined as follows

𝑓 (𝑢) = ∑
o∈

∑
𝑏∈

exp (𝛽o𝑢(𝑏)) [𝑓 (𝜋𝑏,o(𝑢)) − 𝑓 (𝑢)] , (2.1)

for any bounded function 𝑓 ∶  → ℝ.

The opinion dynamics of the social network is described by the system of interacting
marked point process ((𝑇𝑛, (𝐴𝑛, 𝑂𝑛)) ∶ 𝑛 ≥ 1) together with the initial list of social pressures
𝑈 𝛽,𝑢
0 = 𝑢.

Observes that the rates of these marked point processes have a variable length depen-
dency from the past. This comes from the fact that each time actor 𝑎 express an opinion,
the social pressure on them is reset to 0 and therefore, the actor forgets the past.

In a more formal way, for any pair (𝑎, o), with 𝑎 ∈ , o ∈  and for any pair of real
numbers 𝑠 < 𝑡 , let us define the counting measure

𝑍 𝑎,o((𝑠, 𝑡]) =
+∞

∑
𝑛=1

𝟏{𝑠 < 𝑇𝑛 ≤ 𝑡, (𝐴𝑛, 𝑂𝑛) = (𝑎, o)}.

For any time 𝑡 > 0, let 𝐿𝑎𝑡 be the last expression time of actor 𝑎 before time 𝑡

𝐿𝑎𝑡 = sup{𝑇𝑛 ≤ 𝑡 ∶ 𝐴𝑛 = 𝑎}.

We use the convention that sup∅ = 0. Then, the social pressure on actor 𝑎 at time 𝑡 > 0
can be equivalently defined as

𝑈 𝛽,𝑢
𝑡 (𝑎) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑢(𝑎) +∑
o∈

∑
𝑏∈⧵{𝑎}

o𝑍 𝑏,o((0, 𝑡]), if 𝐿𝑎𝑡 = 0,

∑
o∈

∑
𝑏∈⧵{𝑎}

o𝑍 𝑏,o((𝐿𝑎𝑡 , 𝑡]), if 𝐿𝑎𝑡 > 0.

A standard computation shows that the rate of the point process 𝑁 𝑎,o at time 𝑡 , conditioned
in the past history, is given by

exp(𝛽o𝑈 𝛽,𝑢
𝑡 (𝑎)),

and this value depends on the history of the system in the interval (𝐿𝑎𝑡 , 𝑡] which has a
variable length.

The process (𝑈 𝛽,𝑢
𝑡 )𝑡∈[0,+∞) is well defined for any 𝑡 ∈ [0, sup{𝑇𝑚 ∶ 𝑚 ≥ 1}). The unique

thing that must yet be clarified is whether this process is defined for any positive time 𝑡 ,
i.e. if sup{𝑇𝑚 ∶ 𝑚 ≥ 1} = +∞ or not. This is part of the content of the first theorem.

Theorem 2.1. For any 𝛽 ≥ 0 and for any starting list 𝑢 ∈  , the following holds.

1. The sequence (𝑇𝑚 ∶ 𝑚 ≥ 1) of jumping times of the process (𝑈 𝛽,𝑢
𝑡 )𝑡∈[0,+∞) satisfies

ℙ(sup{𝑇𝑚 ∶ 𝑚 ≥ 1} = +∞) = 1,

which assures the existence of the process for all time 𝑡 ∈ [0, +∞).

2. The process (𝑈 𝛽,𝑢
𝑡 )𝑡∈[0,+∞) has a unique invariant probability measure 𝜇𝛽 .
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We define the set of positive (respectively negative) consensus lists as

+ = {𝑢 ∈  ∶ 𝑢 ≠ 0⃗, 𝑢(𝑎) ≥ 0, for all 𝑎 ∈ }

and
− = {𝑢 ∈  ∶ 𝑢 ≠ 0⃗, 𝑢(𝑎) ≤ 0, for all 𝑎 ∈ },

where 0⃗ ∈  is the null list. Consider also the set of positive and negative ladder lists

+ = {𝑢 ∈  ∶ {𝑢(1), ..., 𝑢(𝑁 )} = {0, 1, ..., 𝑁 − 1}}

and
− = {𝑢 ∈  ∶ {𝑢(1), ..., 𝑢(𝑁 )} = {0, −1, ..., −(𝑁 − 1)}}.

The set of ladder lists is given by  = + ∪ −.

To state the next theorems, we define for any 𝑢 ∈  and for any 𝐵 ⊂  , the reaching
time 𝑅𝛽,𝑢(𝐵) as follows

𝑅𝛽,𝑢(𝐵) = inf{𝑡 > 0 ∶ 𝑈 𝛽,𝑢
𝑡 ∈ 𝐵}.

Theorem 2.2 states that the invariant measure gets concentrated in the set of the ladder
lists as the polarization coefficient diverges. Moreover, for any non-null initial list, the
time it takes for the process to reach the set of ladder lists goes to 0, as the polarization
coefficient diverges.

Theorem 2.2.

1. There exists a constant 𝐶 > 0, such that for any 𝛽 ≥ 0 the invariant probability measure
𝜇𝛽 satisfies

𝜇𝛽() ≥ 1 − 𝐶𝑒−𝛽 .

2. For any fixed 𝛿 > 0

sup
𝑢∈⧵{0⃗}

ℙ(𝑅
𝛽,𝑢() > 𝑒−𝛽(1−𝛿)) → 0, as 𝛽 → +∞.

Theorem 2.3 states that a highly polarized social network has a metastable behav-
ior.

Theorem 2.3. For any 𝑣 ∈ +,

𝑅𝛽,𝑣(−)
𝔼[𝑅𝛽,𝑣(−)]

→ Exp(1) in distribution, as 𝛽 → +∞,

where Exp(1) denotes the mean 1 exponential distribution.

2.3 Auxiliary notation and results
In this section we will prove some auxiliary results that will be used to prove Theorems

2.1, 2.2 and 2.3. To do this, we need to extend the notation introduced before.
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Extra notation

• The Markov chain embedded in the process (𝑈 𝛽,𝑢
𝑡 )𝑡∈[0,+∞) will be denoted (𝑈̃ 𝛽,𝑢

𝑛 )𝑛≥0.
In other terms,

𝑈̃ 𝛽,𝑢
0 = 𝑢 and 𝑈̃ 𝛽,𝑢

𝑛 = 𝑈 𝛽,𝑢
𝑇𝑛 , for any 𝑛 ≥ 1.

• The invariant probability measure of the Markov chain (𝑈̃ 𝛽,𝑢
𝑛 )𝑛≥0 will be denoted 𝜇̃𝛽 .

• For any list 𝑢 ∈  , the first return time of the embedded Markov chain (𝑈̃ 𝛽,𝑢
𝑛 )𝑛≥0 to 𝑢

will be denoted
𝑅̃𝛽,𝑢(𝑢) = inf{𝑛 ≥ 1 ∶ 𝑈̃ 𝛽,𝑢

𝑛 = 𝑢}.

• For any 𝑢 ∈  , the opposite list −𝑢 ∈  is given by

(−𝑢)(𝑎) = −𝑢(𝑎), for all 𝑎 ∈ .

• Let 𝜎 ∶  →  be a bijective map. For any 𝑢 ∈  , the permuted list 𝜎(𝑢) ∈  is
given by

𝜎(𝑢)(𝑎) = 𝑢(𝜎(𝑎)), for all 𝑎 ∈ .

• The following event will appear several times in what follows. For a fixed 𝑢 ∈  and
for any 𝑛 ≥ 1,

𝑀𝑛 = {𝐴𝑛 ∈ argmax{|𝑈̃ 𝛽,𝑢
𝑛−1(𝑎)| ∶ 𝑎 ∈ } and 𝑂𝑛𝑈̃

𝛽,𝑢
𝑛−1(𝐴𝑛) ≥ 0}.

Proposition 2.4.

1. For any 𝑚 ≥ 1,

ℙ
(

𝑚

⋂
𝑗=1

𝑀𝑗)
≥ 𝜁𝑚

𝛽 ,

where

𝜁𝛽 =
𝑒𝛽

𝑒𝛽 + 𝑒−𝛽 + 2(𝑁 − 1)
→ 1, as 𝛽 → +∞.

2. For any 𝑢 ∈  ,

ℙ
(
𝑈̃ 𝛽,𝑢
3(𝑁−1) ∈  |||

3(𝑁−1)

⋂
𝑗=1

𝑀𝑗)
= 1.

Proof. To prove Part 1 of Proposition 2.4, we first observe that by the Markov property,

ℙ
(

𝑚

⋂
𝑗=1

𝑀𝑗)
= ∑

𝑣∈
ℙ
(

𝑚−1

⋂
𝑗=1

𝑀𝑗 , 𝑈̃
𝛽,𝑢
𝑚−1 = 𝑣

)
ℙ(𝑀𝑚

|||𝑈̃
𝛽,𝑢
𝑚−1 = 𝑣) . (2.2)

Observe that the condition 𝑂𝑚𝑈̃
𝛽,𝑢
𝑚−1(𝐴𝑛) ≥ 0 in the definition of the event 𝑀𝑚 is satisfied
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for any value of 𝑂𝑚 ∈ {−1, +1}, whenever 𝑈̃ 𝛽,𝑢
𝑚−1(𝐴𝑚) = 0. Therefore, the smallest value for

ℙ(𝑀𝑚 | 𝑈̃ 𝛽,𝑢
𝑚−1 = 𝑣)

is obtained for any list in which all actors, except one, have null pressure, and the unique
actor with non-null pressure has pressure +1 or −1. This implies that for any 𝑣 ∈  ,

inf
{
ℙ(𝑀𝑚 | 𝑈̃ 𝛽,𝑢

𝑚−1 = 𝑣) ∶ 𝑣 ∈ 
}
= ℙ(𝑀𝑚 | 𝑈̃ 𝛽,𝑢

𝑚−1 = (1, 0, ..., 0)) = 𝜁𝛽 .

Applying this lower bound 𝑚 times in Equation (2.2), we conclude the proof of Part 1.

The proof of Part 2 of Proposition 2.4 is based in two Lemmas. Before proving Lemmas
2.5 and 2.6, let us introduce some extra notation.

+ is the set of lists 𝑢 ∈  such that there exists 𝑛(𝑢) ∈ {1, … , 𝑁 − 1} and a sequence
of 𝑛(𝑢) different actors 𝑎1(𝑢), … , 𝑎𝑛(𝑢)(𝑢) satisfying

𝑢(𝑎𝑖(𝑢)) = 𝑗, for 𝑗 = 1, ..., 𝑛(𝑢) and 𝑢(𝑎) ≥ −(𝑛(𝑢) − 1), for all 𝑎 ∈ .

In the same way, we define − as set of lists 𝑢 ∈  such that there exists 𝑛(𝑢) ∈
{1, … , 𝑁 − 1} and a sequence of 𝑛(𝑢) different actors 𝑎1(𝑢), … , 𝑎𝑛(𝑢)(𝑢) satisfying

𝑢(𝑎𝑖(𝑢)) = −𝑗, for 𝑗 = 1, ..., 𝑛(𝑢) and 𝑢(𝑎) ≤ (𝑛(𝑢) − 1), for all 𝑎 ∈ .

Let
𝜏 = inf{𝑛 ≥ 1 ∶ 𝐴𝑛 ∈ {𝐴1, ..., 𝐴𝑛−1} ∪ {𝑎 ∈  ∶ 𝑢(𝑎) = 0}}.

Note that the event {𝜏 = 1} ∩𝑀1 is only possible if 𝑢 = 0⃗. In this case, 𝑈̃ 𝛽,𝑢
1 ∈ + ∪−.

Lemma 2.5. Assume that 𝜏 ≥ 2. For any initial list 𝑢 ∈  , if the event 𝑀𝜏 occurs, then

𝑈̃ 𝛽,𝑢
𝜏 ∈ + ∪ −.

Proof. At instant 𝜏 − 1, we have that 𝑈̃ 𝛽,𝑢
𝜏−1(𝐴𝜏−1) = 0 and for any 𝑗 = 1, … , 𝜏 − 2,

𝑈̃ 𝛽,𝑢
𝜏−1(𝐴𝑗) = 𝑂𝑗+1 + … + 𝑂𝜏−1,

which implies that
|𝑈̃ 𝛽,𝑢

𝜏−1(𝐴𝑗) − 𝑈̃ 𝛽,𝑢
𝜏−1(𝐴𝑗−1)| = |𝑂𝑗 | = 1.

Moreover, for any 𝑎 ∈  such that 𝑢(𝑎) = 0, we have that

𝑈̃ 𝛽,𝑢
𝜏−1(𝑎) = 𝑂1 + … + 𝑂𝜏−1.

Let,
𝑚 = max{|𝑂𝜏−1|, |𝑂𝜏−2 + 𝑂𝜏−1|, … , |𝑂1 + … + 𝑂𝜏−1|}.
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It follows that there exists a set with 𝑚 + 1 actors

{𝑎0, 𝑎1, … , 𝑎𝑚} ⊂ {𝐴1, … , 𝐴𝜏−1} ∪ {𝑎 ∈  ∶ 𝑢(𝑎) = 0},

such that either
{𝑈̃ 𝛽,𝑢

𝜏−1(𝑎𝑗) ∶ 𝑗 = 0, 1, … ,𝑚} = {0, 1, … ,𝑚}

or
{𝑈̃ 𝛽,𝑢

𝜏−1(𝑎𝑗) ∶ 𝑗 = 0, 1, … ,𝑚} = {0, −1, … , −𝑚}.

By assumption,

𝐴𝜏 ∈ argmax{|𝑈̃ 𝛽,𝑢
𝜏−1(𝑎)| ∶ 𝑎 ∈ } and 𝑂𝑛𝑈̃

𝛽,𝑢
𝜏−1(𝐴𝑛) ≥ 0.

This implies that
|𝑈̃ 𝛽,𝑢

𝜏−1(𝐴𝜏 )| = 𝑚 ≥ |𝑈̃ 𝛽,𝑢
𝜏−1(𝑎)|, for all 𝑎 ∈ ,

and therefore, either

{𝑈̃ 𝛽,𝑢
𝜏 (𝑎𝑗) ∶ 𝑗 = 0, 1, … ,𝑚 − 1} = {1, … ,𝑚} and 𝑈̃ 𝛽,𝑢

𝜏 (𝑎) ≥ −(𝑚 − 1), for all 𝑎 ∈ ,

or

{𝑈̃ 𝛽,𝑢
𝜏 (𝑎𝑗) ∶ 𝑗 = 0, 1, … ,𝑚 − 1} = {0, −1, … , −𝑚} and 𝑈̃ 𝛽,𝑢

𝜏 (𝑎) ≤ 𝑚 − 1, for all 𝑎 ∈ .

This concludes the proof of Lemma 2.5.

Lemma 2.6. For any 𝑢 ∈ +, if the event
𝑛(𝑢)−1

⋂
𝑗=1

𝑀𝑗 occurs, then 𝑈̃ 𝛽,𝑢
𝑛(𝑢)−1 ∈ +.

Proof. If 𝑀1 occurs, then

𝑈̃ 𝛽,𝑢
0 (𝐴1) = max{|𝑢(𝑎)| ∶ 𝑎 ∈ } and 𝑂1 = +1.

Moreover, by assumption, for any 𝑗 = 0, … , 𝑛(𝑢) − 1 there exists an actor 𝑎𝑗(𝑢) ∈  such
that 𝑈̃ 𝛽,𝑢

0 (𝑎𝑗(𝑢)) = 𝑢(𝑎𝑗(𝑢)) = 𝑗. Therefore,

𝑈̃ 𝛽,𝑢
1 (𝑎𝑗(𝑢)) = 𝑢(𝑎𝑗(𝑢)) + 1 = 𝑗 + 1.

As a consequence,

{1, … , 𝑛(𝑢)} ⊂ {𝑈̃ 𝛽,𝑢
1 (𝑎) ∶ 𝑎 ∈ } and 𝑈̃ 𝛽,𝑢

1 (𝑎) ≥ −(𝑛(𝑢) − 2), for all 𝑎 ∈ .

In general, for any 𝑘 = 1, … , 𝑛(𝑢) − 1, if ⋂𝑘
𝑗=1𝑀𝑗 occurs, then there exists a sequence of

actors 𝑎0(𝑈̃
𝛽,𝑢
𝑘−1), …, 𝑎𝑛(𝑢)(𝑈̃

𝛽,𝑢
𝑘−1) such that for any 𝑗 = 0, … , 𝑛(𝑢) − 1, we have that

𝑈̃ 𝛽,𝑢
𝑘 (𝑎𝑗(𝑈̃

𝛽,𝑢
𝑘−1)) = 𝑗 + 1,
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and therefore,

{1, … , 𝑛(𝑢)} ⊂ {𝑈̃ 𝛽,𝑢
𝑘 (𝑎) ∶ 𝑎 ∈ } and 𝑈̃ 𝛽,𝑢

𝑘 (𝑎) ≥ −(𝑛(𝑢) − (𝑘 + 1)), for all 𝑎 ∈ .

This concluded the proof of Lemma 2.6.

In the proof of Part 2 of Proposition 2.4 that follows, we will indicate the initial list
𝑢 ∈  when referring to the event 𝑀𝑛. In other words, for a fixed 𝑢 ∈  and for any 𝑛 ≥ 1,
we will denote

𝑀𝑢
𝑛 = {𝐴𝑛 ∈ argmax{|𝑈̃ 𝛽,𝑢

𝑛−1(𝑎)| ∶ 𝑎 ∈ } and 𝑂𝑛𝑈̃
𝛽,𝑢
𝑛−1(𝐴𝑛) ≥ 0}.

Proof. We will now prove Part 2 of Proposition 2.4.

Lemma 2.5 and the fact that 𝜏 ≤ 𝑁 for any initial list 𝑢 ∈  , imply that if ⋂𝑁
𝑘=1𝑀𝑢

𝑘
occurs, then

𝑈̃ 𝛽,𝑢
𝑁 ∈ + ∪ −.

Lemma 2.6 and the fact that 𝑛(𝑣) ≤ 𝑁 − 1 for any 𝑣 ∈ + ∪ −, imply that if ⋂𝑁−2
𝑘=1 𝑀𝑣

𝑘
occurs, then

𝑈̃ 𝛽,𝑣
𝑁−2 ∈ + ∪ −.

We also have that for any 𝑣′ ∈ + ∪ −, if ⋂𝑁−1
𝑘=1 𝑀𝑣′

𝑘 occurs, then

𝑈̃ 𝛽,𝑣′
𝑁−1 ∈ .

Putting all this together, by the Markov property we conclude that for any 𝑢 ∈  ,

ℙ
(
𝑈̃ 𝛽,𝑢
3(𝑁−1) ∈ |||

3(𝑁−1)

⋂
𝑘=1

𝑀𝑢
𝑘)

=

∑
𝑣∈+∪−

∑
𝑣′∈+∪−

ℙ
(
𝑈̃ 𝛽,𝑢
𝑁 = 𝑣|||

𝑁

⋂
𝑘=1

𝑀𝑢
𝑘)

ℙ
(
𝑈̃ 𝛽,𝑣
𝑁−2 = 𝑣′|||

𝑁−2

⋂
𝑘=1

𝑀𝑣
𝑘 )

ℙ
(
𝑈̃ 𝛽,𝑣′
𝑁−1 ∈ |||

𝑁−1

⋂
𝑘=1

𝑀𝑣′
𝑘 )

.

We conclude the proof by noting that the sum above is equal 1.

For any fixed 𝑙 ∈ +, let 𝑐𝛽,𝑙 be the positive real number such that

ℙ(𝑅𝛽,𝑙(−) > 𝑐𝛽,𝑙) = 𝑒−1. (2.3)

Due to the symmetric properties of the process, it is clear that 𝑐𝛽,𝑙 = 𝑐𝛽,𝑙′ , for any pair of
lists 𝑙 and 𝑙′ belonging to +. Therefore, in what follows we will omit to indicate 𝑙 in the
notation of 𝑐𝛽 . The next proposition gives an lower bound to 𝑐𝛽 .

Proposition 2.7. There exists 𝐶1 > 0 such that for any 𝛽 ≥ 0,

𝑐𝛽 ≥ 𝐶1𝑒𝛽 .
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Proof. For any fixed 𝑙 ∈ +, let

𝜏 (1)− = inf{𝑇𝑛 ∶ 𝑂𝑛 = −1, 𝑈 𝛽,𝑙
𝑇𝑛−1(𝐴𝑛) > 0}.

Consider also
𝜏 (2)− = inf{𝑇𝑛 ∶ 𝐸−

𝑛 ∩ (𝐸
−
𝑛−1 ∪ 𝐸

−
𝑛−2)},

where 𝐸−
𝑛 = {𝑂𝑛 = −1, 𝑈 𝛽,𝑙

𝑇𝑛−1(𝐴𝑛) = 0}. By definition,

𝑅𝛽,𝑙( ⧵ +) ≥ min{𝜏 (1)− , 𝜏 (2)− }.

For any 𝑡 > 0,
ℙ(𝜏 (1)− > 𝑡) ≥ ℙ(Exp((𝑁 − 1)𝑒−𝛽) > 𝑡),

where Exp((𝑁 −1)𝑒−𝛽) is a random variable exponentially distributed with mean 𝑒𝛽/(𝑁 −1).

Let 𝑛−0 = 0 and for 𝑗 ≥ 1,

𝑛−𝑗 = inf{𝑛 > 𝑛−𝑗−1 ∶ 𝑂𝑛 = −1, 𝑈 𝛽,𝑙
𝑇𝑛−1(𝐴𝑛) = 0}.

We have that

𝜏 (2)− =
𝐽

∑
𝑗=1

(𝑇𝑛−𝑗 − 𝑇𝑛−𝑗−1),

where 𝐽 = inf{𝑗 ≥ 1 ∶ 𝑛−𝑗 = 𝑛−𝑗−1 + 1 or 𝑛−𝑗 = 𝑛−𝑗−1 + 2}.

Therefore, for any 𝑡 > 0,

ℙ(𝜏 (2)− > 𝑡|𝜏 (1)− > 𝑡) ≥ ℙ
(

𝐺

∑
𝑗=1

𝐸𝑗 > 𝑡
)
,

where (𝐸𝑗)𝑗≥1 is a sequence of i.i.d. random variables exponentially distributed with mean 1,
and 𝐺 is random variable independent from (𝐸𝑗)𝑗≥1 with Geometric distribution assuming
values in {1, 2, ...} with parameter

𝜆𝛽 = 2 ×
(𝑁 − 1)

(𝑁 − 1) + 𝑒𝛽
.

This implies that for any 𝑡 > 0,

ℙ(𝜏 (2)− > 𝑡|𝜏 (1)− > 𝑡) ≥ ℙ (Exp(𝜆𝛽) > 𝑡) ,

where Exp(𝜆𝛽) is a random variable exponentially distributed with mean 1/𝜆𝛽 .

Therefore, for any 𝑡 > 0,

ℙ(𝑅𝛽,𝑙( ⧵ +) > 𝑡) ≥ ℙ[Exp((𝑁 − 1)𝑒−𝛽) > 𝑡]ℙ[Exp(𝜆𝛽) > 𝑡].
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This implies that

𝑒−1 = ℙ(𝑅𝛽,𝑙(−) > 𝑐𝛽) ≥ ℙ(𝑅𝛽,𝑙( ⧵ +) > 𝑐𝛽) ≥ 𝑒−𝑐𝛽((𝑁−1)𝑒−𝛽+𝜆𝛽),

and therefore
𝑐𝛽 ≥ ((𝑁 − 1)𝑒−𝛽 + 𝜆𝛽)

−1 .

With this we concluded the proof of Proposition 2.7.

2.4 Proof of Theorem 2.1
To prove Part 1 of Theorem 2.1 we first need to prove the following Lemma.

Lemma 2.8. For any list 𝑢 ∈  ,

inf
{
𝑛 ≥ 1 ∶ |𝑈 𝛽,𝑢

𝑇𝑛−1(𝐴𝑛)| < 𝑁
}
≤ 𝑁 .

Proof. The initial list of social pressures 𝑢 belongs to  . Therefore, there exists 𝑎0 ∈ 
such that 𝑢(𝑎0) = 0. By definition, for any 𝑚 ≥ 1,

|𝑈 𝛽,𝑢
𝑇𝑚 (𝑎0)| ≤

|||||

𝑚

∑
𝑗=1

𝑂𝑗

|||||
≤

𝑚

∑
𝑗=1

||𝑂𝑗 || = 𝑚.

More generally, if 𝐴𝑛 = 𝑎 then for any 𝑚 ≥ 1,

|𝑈 𝛽,𝑢
𝑇𝑛+𝑚 (𝑎)| ≤

|||||

𝑚

∑
𝑗=1

𝑂𝑛+𝑗

|||||
≤

𝑚

∑
𝑗=1

||𝑂𝑛+𝑗 || = 𝑚.

Therefore, if no actor express opinions twice in the first 𝑁 − 1 steps and moreover, 𝑎0 ≠ 𝐴𝑗
for 𝑗 = 1, ..., 𝑁 − 1, i.e.

|{𝑎0, 𝐴1, ..., 𝐴𝑁−1}| = 𝑁 ,

then necessarily the social pressure on actor expressing opinion at instant 𝑇𝑁 is smaller
than 𝑁 in absolute value. This implies that

inf
{
𝑛 ≥ 1 ∶ |𝑈 𝛽,𝑢

𝑇𝑛−1(𝐴𝑛)| < 𝑁
}
≤ 𝑁 .

Now, if
|{𝑎0, 𝐴1, ..., 𝐴𝑁−1}| ≤ 𝑁 − 1,

there exists 𝑚 ∈ {1, ..., 𝑁 − 1} such that

𝐴𝑚 ∈ {𝑎0, 𝐴1, ..., 𝐴𝑚−1}.

This implies that
|𝑈 𝛽,𝑢

𝑇𝑚−1
(𝐴𝑚)| ≤ 𝑚 ≤ 𝑁 − 1,
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and therefore,
inf

{
𝑛 ≥ 1 ∶ |𝑈 𝛽,𝑢

𝑇𝑛−1(𝐴𝑛)| < 𝑁
}
≤ 𝑚 < 𝑁 .

Define 𝑇 <
0 = 𝑇 >

0 = 0 and for any 𝑘 ≥ 1,

𝑇 <
𝑘 = inf{𝑇𝑛 > 𝑇 <

𝑘−1 ∶ |𝑈 𝛽,𝑢
𝑇𝑛−1(𝐴𝑛)| < 𝑁},

𝑇 >
𝑘 = inf{𝑇𝑛 > 𝑇 >

𝑘−1 ∶ |𝑈 𝛽,𝑢
𝑇𝑛−1(𝐴𝑛)| ≥ 𝑁}.

Lemma 2.8 implies that 𝑇 <
𝑘 is well defined for any 𝑘 ≥ 1. Now we can prove Part 1 of

Theorem 2.1.

Proof. To prove Part 1 of Theorem 2.1, we will construct the process (𝑈 𝛽,𝑢
𝑡 )𝑡∈[0,+∞) with jump

times {𝑇𝑛 ∶ 𝑛 ≥ 1} as the superposition of two process with jump times {𝑇 <
𝑘 ∶ 𝑘 ≥ 1} and

{𝑇 >
𝑘 ∶ 𝑘 ≥ 1} in the following way. For any 𝑣 ∈  , the jump rates of these two processes

are
𝑞<(𝑣) = ∑

𝑎∈𝐴
𝟏{𝑣(𝑎) < 𝑁}(𝑒𝛽𝑣(𝑎) + 𝑒−𝛽𝑣(𝑎))

and
𝑞>(𝑣) = ∑

𝑎∈𝐴
𝟏{𝑣(𝑎) ≥ 𝑁}(𝑒𝛽𝑣(𝑎) + 𝑒−𝛽𝑣(𝑎)).

For any list 𝑣 ∈  , we have that
𝑞<(𝑣) ≤ 𝜆,

with
𝜆 = 𝑁 (𝑒𝛽(𝑁−1) + 𝑒−𝛽(𝑁−1)).

For any 𝑣 ∈  , define

Φ<,−
𝑣 (0) = Φ<,+

𝑣 (0) = 0 and Φ>,−
𝑣 (0) = Φ>,+

𝑣 (0) = 𝜆.

For any 𝑎 ∈ , define

Φ<,−
𝑣 (𝑎) = Φ<,+

𝑣 (𝑎 − 1) + 𝟏{|𝑣(𝑎)| < 𝑁}𝑒−𝛽𝑣(𝑎),

Φ<,+
𝑣 (𝑎) = Φ<,−

𝑣 (𝑎) + 𝟏{|𝑣(𝑎)| < 𝑁}𝑒+𝛽𝑣(𝑎),

Φ>,−
𝑣 (𝑎) = Φ>,+

𝑣 (𝑎 − 1) + 𝟏{|𝑣(𝑎)| ≥ 𝑁}𝑒−𝛽𝑣(𝑎),

Φ>,+
𝑣 (𝑎) = Φ>,−

𝑣 (𝑎) + 𝟏{|𝑣(𝑎)| ≥ 𝑁}𝑒+𝛽𝑣(𝑎).

Using this partitions indexed by  (see Figure 2.1), we now construct the process
(𝑈 𝛽,𝑢

𝑡 )𝑡∈[0,+∞) as follows. Consider an homogeneous rate 1 Poisson point process in the plane
[0, +∞)2. Call  the counting measure of this process. Given the initial list 𝑢 ∈  , define

𝑇1 = inf
{
𝑡 > 0 ∶ ((0, 𝑡] × {[0, 𝑞

<(𝑢)) ∪ [𝜆, 𝜆 + 𝑞>(𝑢))} ) = 1
}
.
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Denoting 𝑅1 as the second coordinate of the mark (𝑇1, 𝑅1) of  , we have

𝐴1 = 𝑏, 𝑂1 = −1, if 𝑅1 ∈ [Φ<,+
𝑢 (𝑏 − 1), Φ<,−

𝑢 (𝑏)) ∪ [Φ>,+
𝑢 (𝑏 − 1), Φ>,−

𝑢 (𝑏)),

𝐴1 = 𝑏, 𝑂1 = +1, if 𝑅1 ∈ [Φ<,−
𝑢 (𝑏), Φ<,+

𝑢 (𝑏)) ∪ [Φ>,−
𝑢 (𝑏), Φ>,+

𝑢 (𝑏)).

At time 𝑇1, we have 𝑈 𝛽,𝑢
𝑇1 = 𝜋𝐴1,𝑂1(𝑢).

𝜆

Φ>,+
𝑢 (5)

Φ>,−
𝑢 (2)

Φ>,+
𝑢 (2)

Φ>,−
𝑢 (4)

Φ>,+
𝑢 (4)

Φ>,−
𝑢 (5)

Φ<,−
𝑢 (1)

Φ<,+
𝑢 (1)

Φ<,−
𝑢 (3)

Φ<,+
𝑢 (3)

Φ<,−
𝑢 (6)

Φ<,+
𝑢 (6)

𝑇1

Figure 2.1: The regions of plane [0, 𝑇1] × [0, 𝜆 + 𝑞>(𝑢)] considered on the construction 𝑇1. In this
example, 𝑁 = 6 and the list 𝑢 ∈  , satisfies 𝑢(𝑎) < 𝑁 for 𝑎 = 1, 3, 6 and 𝑢(𝑎) ≥ 𝑁 for 𝑎 = 2, 4, 5.

More generally, for 𝑛 ≥ 1, we have

𝑇𝑛 = inf
{
𝑡 > 𝑇𝑛−1 ∶ ((𝑇𝑛−1, 𝑡] ×

{
[0, 𝑞<(𝑈 𝛽,𝑢

𝑇𝑛−1)) ∪ [𝜆, 𝜆 + 𝑞>(𝑈 𝛽,𝑢
𝑇𝑛−1))

}
) = 1

}
.

Denoting 𝑅𝑛 as the second coordinate of the mark (𝑇𝑛, 𝑅𝑛) of  , we have

𝐴𝑛 = 𝑏, 𝑂𝑛 = −1, if 𝑅𝑛 ∈ [Φ
<,+
𝑈 𝛽,𝑢
𝑇𝑛−1

(𝑏 − 1), Φ<,−
𝑈 𝛽,𝑢
𝑇𝑛−1

(𝑏)) ∪ [Φ
>,+
𝑈 𝛽,𝑢
𝑇𝑛−1

(𝑏 − 1), Φ>,−
𝑈 𝛽,𝑢
𝑇𝑛−1

(𝑏)) ,

𝐴𝑛 = 𝑏, 𝑂𝑛 = +1, if 𝑅𝑛 ∈ [Φ
<,−
𝑈 𝛽,𝑢
𝑇𝑛−1

(𝑏), Φ<,+
𝑈 𝛽,𝑢
𝑇𝑛−1

(𝑏)) ∪ [Φ
>,−
𝑈 𝛽,𝑢
𝑇𝑛−1

(𝑏), Φ>,+
𝑈 𝛽,𝑢
𝑇𝑛−1

(𝑏)) .

At time 𝑇𝑛, we have 𝑈 𝛽,𝑢
𝑇𝑛 = 𝜋𝐴𝑛 ,𝑂𝑛 (𝑈 𝛽,𝑢

𝑇𝑛−1) (see Figure 2.2).

For any 𝑛 ≥ 1, we have that

𝑇 <
𝑛 = inf

{
𝑇𝑚 > 𝑇 <

𝑛−1 ∶ 𝑅𝑚 ∈ [0, 𝑞<(𝑈
𝛽,𝑢
𝑇𝑚−1

))
}
,
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𝜆

𝜆 + 𝑞>(𝑢)

𝑞<(𝑢)

𝜆 + 𝑞>(𝑈 𝛽,𝑢
𝑇1 )

𝑞<(𝑈 𝛽,𝑢
𝑇1 )

𝜆 + 𝑞>(𝑈 𝛽,𝑢
𝑇2 )

𝑞<(𝑈 𝛽,𝑢
𝑇2 )

𝑇1 𝑇2
…

Figure 2.2: The regions of the plane (𝑇𝑛, 𝑇𝑛+1) × [0, 𝑞<(𝑈
𝛽,𝑢
𝑇𝑛 )] and (𝑇𝑛, 𝑇𝑛+1) × [𝜆, 𝜆 + 𝑞>(𝑈 𝛽,𝑢

𝑇𝑛 )], for
𝑛 = 0, 1, 2, ….

𝑇 >
𝑛 = inf

{
𝑇𝑚 > 𝑇 >

𝑛−1 ∶ 𝑅𝑚 ∈ [𝜆, 𝜆 + 𝑞>(𝑈 𝛽,𝑢
𝑇𝑚−1

))
}
.

Define 𝑇 𝜆
0 = 0 and for any 𝑛 ≥ 1,

𝑇 𝜆
𝑛 = inf

{
𝑡 > 𝑇 𝜆

𝑛−1 ∶ ((𝑇
𝜆
𝑛−1, 𝑡] × [0, 𝜆)) = 1

}
.

By construction, {𝑇 <
𝑛 ∶ 𝑛 ≥ 1} ⊂ {𝑇 𝜆

𝑛 ∶ 𝑛 ≥ 1}. Also, {𝑇 𝜆
𝑛 ∶ 𝑛 ≥ 1} are the marks of a

homogeneous Poisson point process with rate 𝜆. Since sup{𝑇 𝜆
𝑛 ∶ 𝑛 ≥ 1} = +∞, we have

that sup{𝑇 <
𝑛 ∶ 𝑛 ≥ 1} = +∞. By Lemma 2.8, the event sup{𝑇 <

𝑛 ∶ 𝑛 ≥ 1} = +∞ implies
that sup{𝑇 >

𝑛 ∶ 𝑛 ≥ 1} = +∞. {𝑇𝑛 ∶ 𝑛 ≥ 1} is the superposition of {𝑇 <
𝑛 ∶ 𝑛 ≥ 1} and

{𝑇 >
𝑛 ∶ 𝑛 ≥ 1}, and then, we conclude that sup{𝑇𝑛 ∶ 𝑛 ≥ 1} = +∞.

To conclude the proof of Theorem 2.1, we will prove that (𝑈 𝛽,𝑢
𝑡 )𝑡∈[0,+∞] is an ergodic

Markov process.

Proof. To prove Part 2 of Theorem 2.1, let 𝑙 ∈ + satisfies 𝑙(𝑎) = 𝑎 − 1, for all 𝑎 ∈ . For
any 𝑢 ∈  , we have that

𝑙 = 𝜋 1,+1 ◦ 𝜋 2,+1 ◦ … ◦ 𝜋𝑁 ,+1(𝑢),

and then, if the event ⋂𝑁
𝑗=1{𝐴𝑗 = 𝑁 − 𝑗 + 1, 𝑂𝑗 = +1} occurs, then 𝑈̃ 𝛽,𝑢

𝑁 = 𝑙.

For any 𝑢′ ∈  ,

ℙ(𝑈̃
𝛽,𝑢
𝑛+2𝑁 = 𝑙 ||| 𝑈̃

𝛽,𝑢
𝑛 = 𝑢′

) ≥

ℙ
(
⋂
𝑎∈

{|𝑈̃ 𝛽,𝑢
𝑛+𝑁 (𝑎)| < 𝑁}||| 𝑈̃

𝛽,𝑢
𝑛 = 𝑢′

)
ℙ
(
𝑈̃ 𝛽,𝑢
𝑛+2𝑁 = 𝑙 ||| ⋂

𝑎∈
{|𝑈̃ 𝛽,𝑢

𝑛+𝑁 (𝑎)| < 𝑁}
)
.
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For any 𝑢 ∈  , using Proposition 2.4 we have that

ℙ
(
⋂
𝑎∈

{|𝑈̃ 𝛽,𝑢
𝑁 (𝑎)| < 𝑁}

)
≥ ℙ

(

𝑁

⋂
𝑗=1

𝑀𝑗)
≥ 𝜁 𝑁

𝛽 .

Also, there exists 𝜖∗ > 0 such that

ℙ
(
𝑈̃ 𝛽,𝑢
𝑛+2𝑁 = 𝑙 ||| ⋂

𝑎∈
{|𝑈̃ 𝛽,𝑢

𝑛+𝑁 (𝑎)| < 𝑁}
)

≥

min

{

ℙ(𝑈̃
𝛽,𝑢
𝑛+2𝑁 = 𝑙 ||| 𝑈̃

𝛽,𝑢
𝑛+𝑁 = 𝑣) ∶ 𝑣 ∈  , ⋂

𝑎∈
{|𝑣(𝑎)| < 𝑁}

}

= 𝜖∗.

Therefore, for any 𝑢′ ∈  ,

ℙ(𝑈̃
𝛽,𝑢
𝑛+2𝑁 = 𝑙 ||| 𝑈̃

𝛽
𝑛 = 𝑢′

) ≥ 𝜁 𝑁
𝛽 𝜖∗.

Recall that 𝑅̃𝛽,𝑙(𝑙) = inf{𝑛 ≥ 1 ∶ 𝑈̃ 𝛽,𝑙
𝑛 = 𝑙}. The last inequality implies that for any 𝑡 > 0,

ℙ(𝑅̃𝛽,𝑙(𝑙) > 𝑡) ≤ ℙ(2𝑁 × Geom(𝜁 𝑁
𝛽 𝜖∗) > 𝑡),

where Geom(𝑟) denotes a random variable with geometric distribution assuming values in
{1, 2, …} and with parameter 𝑟 ∈ (0, 1). This implies that 𝔼(𝑅̃𝛽,𝑙(𝑙)) < +∞ and then, (𝑈̃ 𝛽,𝑢

𝑛 )𝑛≥0
is a positive-recurrent Markov chain.

The jump rate of the process (𝑈 𝛽,𝑢
𝑡 )𝑡∈[0,+∞) satisfies

∑
𝑎∈

(𝑒𝛽𝑣(𝑎) + 𝑒−𝛽𝑣(𝑎)) ≥ 2𝑁 ,

for any 𝑣 ∈  . Putting all this together we conclude that (𝑈 𝛽,𝑢
𝑡 )𝑡∈[0,+∞) is ergodic.

2.5 Proof of Theorem 2.2
To prove Part 1 of Theorem 2.2 we will need the following Proposition.

Proposition 2.9. For any 𝛽 > 0 and 𝑢 ∉  such that max{|𝑢(𝑎)| ∶ 𝑎 ∈ } < 𝑁 we have
that

𝜇̃𝛽(𝑢) ≤ 𝐶 ′𝑒−𝛽(𝑁−1),

where 𝐶 ′ > 0.

Proof. First, we have that

𝔼(𝑅̃𝛽,𝑢(𝑢)) ≥
+∞

∑
𝑚=3(𝑁−1)

ℙ(𝑅̃𝛽,𝑢(𝑢) ≥ 𝑚). (2.4)
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For any 𝑢 ∉  such that max{|𝑢(𝑎)| ∶ 𝑎 ∈ } < 𝑁 , considering Proposition 2.4 we
have that

ℙ({𝑈̃
𝛽,𝑢
𝑛 ≠ 𝑢, for 𝑛 = 1, 2, ..., 3(𝑁 − 1)} ∩ {𝑈̃ 𝛽,𝑢

3(𝑁−1) ∈ }) ≥ ℙ
(

3(𝑁−1)

⋂
𝑗=1

𝑀𝑗)
.

Also, for any 𝑙 ∈  and for any 𝑚 ≥ 1, we have that

ℙ ({𝑈̃ 𝛽,𝑙
𝑛 ≠ 𝑢, for 𝑛 = 1, 2, ..., 𝑚}) ≥ ℙ

(

𝑚

⋂
𝑗=1

{𝑂𝑗𝑈̃
𝛽,𝑙
𝑗−1(𝐴𝑗) > 0}

)
.

Therefore, for any 𝑚 ≥ 1 we have that

ℙ(𝑅̃𝛽,𝑢(𝑢) ≥ 3(𝑁 − 1) + 𝑚) ≥ ℙ
(

3(𝑁−1)

⋂
𝑗=1

𝑀𝑗)
ℙ
(

𝑚

⋂
𝑗=1

{𝑂𝑗𝑈̃
𝛽,𝑙
𝑗−1(𝐴𝑗) > 0}

)
. (2.5)

For any 𝑙 ∈ , we have that

ℙ
(

𝑚

⋂
𝑗=1

{𝑂𝑗𝑈̃
𝛽,𝑙
𝑗−1(𝐴𝑗) > 0}

)
≥ 𝜂𝑚, (2.6)

where

𝜂 =

𝑁−1

∑
𝑗=1

𝑒𝛽𝑗

𝑁−1

∑
𝑗=0

(𝑒𝛽𝑗 + 𝑒−𝛽𝑗)
.

Therefore, by Proposition 2.4 and Equations (2.4), (2.5) and (2.6), it follows that

𝔼(𝑅̃𝛽,𝑢(𝑢)) ≥ ℙ
(

3(𝑁−1)

⋂
𝑗=1

𝑀𝑗)(
1 +

∞

∑
𝑚=1

𝜂𝑚
)

≥
(2𝑁 )−3(𝑁−1)

1 − 𝜂
.

From the classical Kac’s Lemma (see Kac, 1947), this implies that

𝜇̃𝛽(𝑢) ≤
1 − 𝜂

(2𝑁 )−3(𝑁−1) .

We have that

1 − 𝜂 =

𝑁−1

∑
𝑗=0

𝑒−𝛽𝑗 + 1

𝑁−1

∑
𝑗=0

(𝑒𝛽𝑗 + 𝑒−𝛽𝑗)
≤

𝑁 + 1
𝑒𝛽(𝑁−1) = (𝑁 + 1)𝑒−𝛽(𝑁−1).

Taking 𝐶 ′ = (𝑁 + 1)(2𝑁 )3(𝑁−1), we conclude that

𝜇̃𝛽(𝑢) ≤ 𝐶 ′𝑒−𝛽(𝑁−1).
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Corollary 2.10. 𝜇̃𝛽(0⃗) < 𝐶 ′
1𝑒−𝑁𝛽 for all 𝛽 > 0, where 𝐶 ′

1 > 0.

Proof. Let 𝑣 ∈  be the list in which 𝑣(1) = 0 and 𝑣(𝑎) = 1, for 𝑎 ∈  ⧵ {1}. We have that

{𝑢 ∈  ∶ ℙ(𝑈̃ 𝛽,𝑢
1 = 0⃗) > 0} = {𝜎(𝑣), −𝜎(𝑣) ∈  such that 𝜎 ∶  →  is a bijective map}.

Therefore,
𝜇̃𝛽(0⃗) = ∑

𝑢∈
ℙ(𝑈̃ 𝛽,𝑢

1 = 0⃗)𝜇̃𝛽(𝑢) = 2𝑁ℙ(𝑈̃ 𝛽,𝑣
1 = 0⃗)𝜇̃𝛽(𝑣).

Since
ℙ(𝑈̃ 𝛽,𝑣

1 = 0⃗) =
1

2 + (𝑁 − 1)(𝑒+𝛽 + 𝑒−𝛽)
≤ 𝑒−𝛽 ,

from Proposition 2.9 we conclude that

𝜇̃𝛽(0⃗) ≤ (𝑁 + 1)(2𝑁 )3(𝑁−1)𝑒−𝛽(𝑁−1)(2𝑁 )𝑒−𝛽 = 𝐶 ′
1𝑒

−𝛽𝑁 .

Now we can prove the Part 1 of Theorem 2.2.

Proof. To prove Part 1 of Theorem 2.2, first note that for any 𝑢 ∈  , the invariant measure
𝜇𝛽 satisfies

𝜇𝛽(𝑢) =
𝜇̃𝛽(𝑢)
𝑞𝛽(𝑢) (

∑
𝑢′∈

𝜇̃𝛽(𝑢′)
𝑞𝛽(𝑢′))

−1

,

where for any 𝑣 ∈  ,
𝑞𝛽(𝑣) = ∑

𝑎∈
(𝑒𝛽𝑣(𝑎) + 𝑒−𝛽𝑣(𝑎))

is the jump rate of (𝑈 𝛽,𝑢
𝑡 )𝑡∈[0,+∞) at list 𝑣. Therefore,

𝜇𝛽() = ∑
𝑢∈

𝜇̃𝛽(𝑢)
𝑞𝛽(𝑢) (

∑
𝑢′∈

𝜇̃𝛽(𝑢′)
𝑞𝛽(𝑢′))

−1

=
𝜇̃𝛽()

𝑁−1

∑
𝑗=0

(𝑒𝛽𝑗 + 𝑒−𝛽𝑗)
(
∑
𝑢′∈

𝜇̃𝛽(𝑢′)
𝑞𝛽(𝑢′))

−1

=

1

1 +
∑𝑁−1

𝑗=0 (𝑒𝛽𝑗 + 𝑒−𝛽𝑗)
𝜇̃𝛽()

∑
𝑢′∉

𝜇̃𝛽(𝑢′)
𝑞𝛽(𝑢′)

.

By Proposition 2.4, we have that

𝜇̃𝛽() ≥ (2𝑁 )−3(𝑁−1).

We also have that
𝑁−1

∑
𝑗=0

(𝑒𝛽𝑗 + 𝑒−𝛽𝑗) ≤ 2𝑁𝑒𝛽(𝑁−1),
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and then,

𝜇𝛽() ≥
1

1 + (2𝑁 )3(𝑁−1)+1𝑒𝛽(𝑁−1) ∑
𝑢′∉

𝜇̃𝛽(𝑢′)
𝑞𝛽(𝑢′)

For any 𝑢 ∈  such that max{|𝑢(𝑎)| ∶ 𝑎 ∈ } ≥ 𝑁 , we have that 𝑞𝛽(𝑢) ≥ 𝑒𝛽𝑁 , and then

𝜇̃𝛽(𝑢)
𝑞𝛽(𝑢)

≤ 𝜇̃𝛽(𝑢)𝑒−𝛽𝑁 .

Observe that for any 𝑢 ≠ 0⃗, 𝑞𝛽(𝑢) ≥ 𝑒𝛽 . Therefore, by Proposition 2.9 and Corollary 2.10, it
follows that for any 𝑢 ∈ 𝑐 such that max{|𝑢(𝑎)| ∶ 𝑎 ∈ } < 𝑁 , we have that

𝜇̃𝛽(𝑢)
𝑞𝛽(𝑢)

≤ 𝐶 ′
1𝑒

−𝛽𝑁 .

Since |{𝑢 ∈ 𝑐 ∶ max{|𝑢(𝑎)| ∶ 𝑎 ∈ } < 𝑁}| ≤ 𝑁 (2𝑁 − 1)𝑁−1, we have that

(2𝑁 )3(𝑁−1)+1𝑒𝛽(𝑁−1) ∑
𝑢′∉

𝜇̃𝛽(𝑢′)
𝑞𝛽(𝑢′)

≤ 𝐶𝑒−𝛽 .

where
𝐶 = (2𝑁 )3(𝑁−1)+1[1 + 𝐶 ′

1𝑁(2𝑁 − 1)𝑁−1].

We conclude that

𝜇𝛽() ≥
1

1 + 𝐶𝑒−𝛽
= 1 −

𝐶𝑒−𝛽

1 + 𝐶𝑒−𝛽
≥ 1 − 𝐶𝑒−𝛽 .

Now we can prove Part 2 of Theorem 2.2.

Proof. To prove Part 2 of Theorem 2.2, we first note that for any 𝑢 ∈  ⧵ {0⃗}, we have that

ℙ(𝑅
𝛽,𝑢() > 𝑡) ≤ ℙ

(
𝑅𝛽,𝑢() > 𝑡 ,

3(𝑁−1)

⋂
𝑗=1

𝑀𝑗)
+ ℙ

(

3(𝑁−1)

⋃
𝑗=1

𝑀 𝑐
𝑗 )

. (2.7)

Part 2 of Proposition 2.4 implies that the right-hand side of Equation (2.7) is bounded
above by

ℙ
(
𝑇3(𝑁−1) > 𝑡 ,

3(𝑁−1)

⋂
𝑗=1

𝑀𝑗)
+ ℙ

(

3(𝑁−1)

⋃
𝑗=1

𝑀 𝑐
𝑗 )

.

By Part 1 of Proposition 2.4, we have that

ℙ
(

3(𝑁−1)

⋃
𝑗=1

𝑀 𝑐
𝑗 )

≤ 1 − (
𝑒𝛽

𝑒𝛽 + 𝑒−𝛽 + 2(𝑁 − 1))

3(𝑁−1)

. (2.8)

Note that the exit rate of any list different from the null list is always bigger than 𝑒𝛽 .
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Therefore,

ℙ
(
𝑇3(𝑁−1) > 𝑡 ,

3(𝑁−1)

⋂
𝑗=1

𝑀𝑗)
≤ ℙ

(

3(𝑁−1)

∑
𝑛=1

𝐸𝑛 > 𝑡
)
, (2.9)

where (𝐸𝑛)𝑛≥1 is an i.i.d. sequence of exponentially distributed random variables with mean
1/𝑒𝛽 . It follows that

ℙ
(

3(𝑁−1)

∑
𝑛=1

𝐸𝑛 > 𝑡
)

≤ ℙ
(

3(𝑁−1)

⋃
𝑛=1

{
𝐸𝑛 >

𝑡
3(𝑁 − 1)

}

)
≤ 3(𝑁 − 1)𝑒−𝑒

𝛽 𝑡/(3(𝑁−1)).

We conclude the proof by considering 𝑡 = 𝑒−𝛽(1−𝛿) and noting that the bounds in (2.8) and
(2.9) does not depend on 𝑢.

The next corollary follows from Theorem 2.2.

Corollary 2.11. For any fixed 𝛿 > 0,

ℙ(𝑅
𝛽,0⃗() > 𝜏 + 𝑒−𝛽(1−𝛿)) → 0 as 𝛽 → ∞,

where 𝜏 exponentially distributed random time with mean 1/2𝑁 .

Proof. Corollary 2.11 follows directly from Part 2 of Theorem 2.2 and the fact that given
the initial list 0⃗, the first jump time 𝑇1 is an exponentially distributed random time with
mean 1/2𝑁 .

2.6 Proof of Theorem 2.3
Recall that in Section 2.3, for any 𝑙 ∈ + and for any 𝛽 ≥ 0 we considered 𝑐𝛽 as the

positive real number such that

ℙ(𝑅𝛽,𝑙(−) > 𝑐𝛽) = 𝑒−1.

To prove Theorem 2.3, we prove Proposition 2.12 which is interesting by itself.

Proposition 2.12. For any 𝑙 ∈ +

𝑅𝛽,𝑙(−)
𝑐𝛽

→ Exp(1), as 𝛽 → +∞,

where Exp(1) is a random variable exponentially distributed with mean 1.

To prove Proposition 2.12, we will first prove the following lemma.

Lemma 2.13. For any 𝛽 ≥ 0, for any 𝑙 ∈  and for any 𝑠 > 0,

ℙ(𝑈 𝛽,𝑙
𝑠 ∈  ⧵ ) ≤

1 − 𝜇𝛽()
𝜇𝛽()

.
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Proof. For any 𝑠 > 0,

𝜇𝛽() = ∑
𝑢∈

𝜇𝛽(𝑢)ℙ(𝑈 𝛽,𝑢
𝑠 ∈ ) + ∑

𝑢∈⧵
𝜇𝛽(𝑢)ℙ(𝑈 𝛽,𝑢

𝑠 ∈ ).

By the symmetric properties of the process, it follows that for any 𝑙, 𝑙′ ∈ ,

ℙ(𝑈 𝛽,𝑙
𝑠 ∈ ) = ℙ(𝑈 𝛽,𝑙′

𝑠 ∈ ).

Moreover,
∑
𝑢∈⧵

𝜇𝛽(𝑢)ℙ(𝑈 𝛽,𝑢
𝑠 ∈ ) ≤ 1 − 𝜇𝛽().

This implies that
𝜇𝛽() ≤ 𝜇𝛽()ℙ(𝑈 𝛽,𝑙

𝑠 ∈ ) + (1 − 𝜇𝛽()),

and therefore,

ℙ(𝑈 𝛽,𝑙
𝑠 ∈ ) ≥

𝜇𝛽() − (1 − 𝜇𝛽())
𝜇𝛽()

.

With this we concluded the proof of Lemma 2.13.

Proof. We will now prove Proposition 2.12. First of all, we will prove that for any 𝑙 ∈ +

and for any pair of positive real numbers 𝑠, 𝑡 ≥ 0, the following holds

lim
𝛽→+∞

|||||
ℙ(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑠 + 𝑡) − ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑠)ℙ(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡)

|||||
= 0. (2.10)

To simplify the presentation of the proof, we will use the shorthand notation 𝑅𝛽,𝑢

instead of 𝑅𝛽,𝑢(−), for any 𝑢 ∉ −.

Indeed, for a fixed 𝑙 ∈ +,

|||||
ℙ(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑠 + 𝑡) − ℙ(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑠)ℙ(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑡)

|||||
≤

∑
𝑢∈⧵−

ℙ(𝑈 𝛽,𝑙
𝑐𝛽 𝑠 = 𝑢,

𝑅𝛽,𝑙

𝑐𝛽
> 𝑠)

|||||
ℙ(

𝑅𝛽,𝑢

𝑐𝛽
> 𝑡) − ℙ(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑡)

|||||
. (2.11)

By the symmetric properties of the process, for any 𝑢 ∈ +,

ℙ(
𝑅𝛽,𝑢

𝑐𝛽
> 𝑡) = ℙ(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑡) .

Therefore, the left-hand Equation (2.11) is bounded above by

∑
𝑢∈⧵

ℙ(𝑈 𝛽,𝑙
𝑐𝛽 𝑠 = 𝑢,

𝑅𝛽,𝑙

𝑐𝛽
> 𝑠)

|||||
ℙ(

𝑅𝛽,𝑢

𝑐𝛽
> 𝑡) − ℙ(

𝑅𝛽,𝑙

𝑐𝛽
> 𝑡)

|||||
≤
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ℙ(𝑈 𝛽,𝑙
𝑐𝛽 𝑠 ∈  ⧵ ,

𝑅𝛽,𝑙

𝑐𝛽
> 𝑠) ≤ ℙ(𝑈

𝛽,𝑙
𝑐𝛽 𝑠 ∈  ⧵ ) . (2.12)

By Lemma 2.13, Equation (2.12) and Theorem 2.2 implies (2.10).

By definition,

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 1) = 𝑒−1.

Iterating (2.10) with 𝑡 = 𝑠 = 2−𝑛, for 𝑛 = 1, 2, …, we have that

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 2−𝑛) → 𝑒−2

−𝑛
, as 𝛽 → +∞.

More generally, we have that for any

𝑡 ∈

{
𝑚

∑
𝑛=1

𝑏(𝑛)2−𝑛 ∶ 𝑏(𝑛) ∈ {0, 1}, 𝑛 = 1, ..., 𝑚,𝑚 ≥ 1

}

is valid that

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑡) → 𝑒−𝑡 , as 𝛽 → +∞. (2.13)

Any real number 𝑟 ∈ (0, 1) has a binary representation

𝑟 =
+∞

∑
𝑛=1

𝑏(𝑛)2−𝑛,

where for any 𝑛 ≥ 1, 𝑏(𝑛) ∈ {0, 1}. Therefore, the monotonicity of

𝑡 → ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑡)

implies that the convergence in (2.13) is valid for any 𝑡 ∈ (0, 1). Moreover, for any positive
integer 𝑛 ≥ 1, Equation (2.10) implies that

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑛) → 𝑒−𝑛, as 𝛽 → +∞.

We conclude that (2.13) is valid for any 𝑡 > 0.

Remark 2.14. For any 𝑙 ∈ + and for any 𝛽 ≥ 0, the function 𝑓𝛽 ∶ [0, +∞) → [0, 1] given by

𝑓𝛽(𝑡) = ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑡)

is monotonic. Also, by Proposition 2.12, it converges pointwise as 𝛽 → +∞ to a continuous
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function. Therefore, given 𝜖𝛽 > 0 such that lim
𝛽→+∞

𝜖𝛽 = 0, for any 𝑡 > 0 we have that

lim
𝛽→+∞

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑡 + 𝜖𝛽) = lim

𝛽→+∞
ℙ(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡 − 𝜖𝛽) = 𝑒−𝑡 .

To prove Theorem 2.3, we will first prove the two following lemmas.

Lemma 2.15. For any 𝑢 ∈  , let

𝜌𝑢 = ℙ
(
𝑅𝛽,𝑢(+) < 𝑅𝛽,𝑢(−)|||

3(𝑁−1)

⋂
𝑗=1

𝑀𝑗)
.

Then, for any 𝑡 > 0,

lim
𝛽→+∞

sup
𝑢∈⧵−

|||||
ℙ(

𝑅𝛽,𝑢(−)
𝑐𝛽

> 𝑡) − 𝑒−𝑡𝜌𝑢
|||||
= 0.

Proof. Denoting 𝐸𝛽,𝑢 = {𝑅𝛽,𝑢() < 𝑒𝛽/2, ⋂3(𝑁−1)
𝑗=1 𝑀𝑗}, we have that for any 𝑢 ∉ ,

ℙ(
𝑅𝛽,𝑢(−)

𝑐𝛽
> 𝑡) = ℙ(

𝑅𝛽,𝑢(−)
𝑐𝛽

> 𝑡, 𝐸𝛽,𝑢, 𝑅𝛽,𝑢(+) < 𝑅𝛽,𝑢(−)) + (2.14)

ℙ(
𝑅𝛽,𝑢(−)

𝑐𝛽
> 𝑡, 𝐸𝛽,𝑢, 𝑅𝛽,𝑢(−) < 𝑅𝛽,𝑢(+)) + ℙ(

𝑅𝛽,𝑢(−)
𝑐𝛽

> 𝑡, 𝐸𝑐
𝛽,𝑢) .

By Proposition 2.7, there exists 𝛽𝑡 > 0 such that for any 𝛽 > 𝛽𝑡 , 𝑐𝛽 𝑡 > 𝑒𝛽/2. This implies that,
for any 𝛽 > 𝛽𝑡 ,

ℙ(
𝑅𝛽,𝑢(−)

𝑐𝛽
> 𝑡, 𝐸𝛽,𝑢, 𝑅𝛽,𝑢(−) < 𝑅𝛽,𝑢(+)) = 0.

Considering 𝑙 ∈ +, for any 𝑢 ∈  ⧵ − and for all 𝛽 > 𝛽𝑡 , the left-hand side of Equation
(2.14) is bounded bellow by

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑡) 𝜌𝑢[1 − ℙ(𝐸𝑐

𝛽,𝑢)] (2.15)

and bounded above by

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑡 −

𝑒𝛽/2

𝑐𝛽 )𝜌𝑢 + ℙ(𝐸𝑐
𝛽,𝑢). (2.16)

By Theorem 2.2 and Corollary 2.11,

lim
𝛽→+∞

sup
𝑢∈⧵−

ℙ (𝐸𝑐
𝛽,𝑢) = 0.
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By Proposition 2.7, it follows that lim
𝛽→+∞

𝑒𝛽/2/𝑐𝛽 = 0. Therefore, by Remark 2.14 we have that

lim
𝛽→+∞

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑡) = lim

𝛽→+∞
ℙ(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑡 −
𝑒𝛽/2

𝑐𝛽 ) = 𝑒−𝑡 .

We conclude the proof by noting that the limits in the last equation do not depend on 𝑢.

Lemma 2.16. There exists 𝛼 ∈ (0, 1) and 𝛽𝛼 > 0 such that for any 𝛽 > 𝛽𝛼 and any 𝑙 ∈ +,
the following upperbound holds

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑛) ≤ 𝛼𝑛,

for any positive integer 𝑛 ≥ 1.

Proof. By Lemma 2.15, for any fixed 𝛼 ∈ (𝑒−1, 1), there exists 𝛽𝛼 such that for all 𝛽 > 𝛽𝛼 and
for any 𝑢 ∉ −,

ℙ(
𝑅𝛽,𝑢(−)

𝑐𝛽
> 1) ≤ 𝛼 < 1. (2.17)

For any 𝑙 ∈ + and for any 𝑛 ∈ {2, 3, …},

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑛) = ∑

𝑢∈⧵−

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑛 − 1, 𝑈 𝛽,𝑙

𝑐𝛽 (𝑛−1) = 𝑢)ℙ(
𝑅𝛽,𝑢(−)

𝑐𝛽
> 1) .

Equation (2.17) implies that for any 𝛽 > 𝛽𝛼 ,

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
> 𝑛) ≤ 𝛼ℙ(

𝑅𝛽,𝑙(−)
𝑐𝛽

> 𝑛 − 1) . (2.18)

We finish the proof by iterating (2.18).

Proof. We will now prove Theorem 2.3.

First of all, we will prove that for any 𝑙 ∈ +, the following holds

𝑅𝛽,𝑙(−)
𝔼[𝑅𝛽,𝑙(−)]

→ Exp(1) in distribution, as 𝛽 → +∞. (2.19)

Considering Proposition 2.12, we only need to show that

lim
𝛽→+∞

𝔼[𝑅𝛽,𝑙(−)]
𝑐𝛽

= 1.

Actually,

lim
𝛽→+∞

𝔼[𝑅𝛽,𝑙(−)]
𝑐𝛽

= lim
𝛽→+∞ ∫

+∞

0
ℙ(𝑅𝛽,𝑙(−) > 𝑐𝛽𝑠)𝑑𝑠.
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Lemma 2.16 and the Dominated Convergence Theorem, allow us to put the limit inside
the integral in the last term

lim
𝛽→+∞ ∫

+∞

0
ℙ(𝑅𝛽,𝑙(−) > 𝑐𝛽𝑠)𝑑𝑠 = ∫

+∞

0
lim

𝛽→+∞
ℙ(𝑅𝛽,𝑙(−) > 𝑐𝛽𝑠)𝑑𝑠 = ∫

+∞

0
𝑒−𝑠𝑑𝑠 = 1.

This and Proposition 2.12 imply (2.19).

For any 𝛽 > 0, for any 𝑢 ∈ + and for any 𝑠 > 0,

ℙ(𝑅𝛽,𝑢(−) ≥ 𝑐𝛽𝑠) = ℙ(𝑅𝛽,𝑢(−) ≥ 𝑐𝛽𝑠, 𝐸𝛽,𝑢) + ℙ(𝑅𝛽,𝑢(−) ≥ 𝑐𝛽𝑠, 𝐸𝑐
𝛽,𝑢),

where
𝐸𝛽,𝑢 = {𝑅𝛽,𝑢(+) < min{1, 𝑅𝛽,𝑢(−)}, 𝑅𝛽,𝑢(−) < 𝑅𝛽,𝑢(−) + 1}.

For any 𝑙 ∈ +, we have

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
≥ 𝑠 +

1
𝑐𝛽
, 𝐸𝛽,𝑢) ≤ ℙ(𝑅𝛽,𝑢(−) ≥ 𝑐𝛽𝑠, 𝐸𝛽,𝑢) ≤ ℙ(

𝑅𝛽,𝑙(−)
𝑐𝛽

≥ 𝑠 −
1
𝑐𝛽
, 𝐸𝛽,𝑢) .

(2.20)
By Theorem 2.2, for any 𝑢 ∈ +,

lim
𝛽→+∞

ℙ(𝐸𝛽,𝑢) = 1,

and then,

lim
𝛽→+∞

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
≥ 𝑠 +

1
𝑐𝛽
, 𝐸𝛽,𝑢) = lim

𝛽→+∞
ℙ(

𝑅𝛽,𝑙(−)
𝑐𝛽

≥ 𝑠 +
1
𝑐𝛽)

,

lim
𝛽→+∞

ℙ(𝑅𝛽,𝑢(−) ≥ 𝑐𝛽𝑠, 𝐸𝛽,𝑢) = lim
𝛽→+∞

ℙ(𝑅𝛽,𝑢(−) ≥ 𝑐𝛽𝑠),

lim
𝛽→+∞

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
≥ 𝑠 −

1
𝑐𝛽
, 𝐸𝛽,𝑢) = lim

𝛽→+∞
ℙ(

𝑅𝛽,𝑙(−)
𝑐𝛽

≥ 𝑠 −
1
𝑐𝛽)

.

By Proposition 2.7, lim
𝛽→+∞

𝑐−1𝛽 = 0. Therefore, Remark 2.14 implies that

lim
𝛽→+∞

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
≥ 𝑠 +

1
𝑐𝛽)

= lim
𝛽→+∞

ℙ(
𝑅𝛽,𝑙(−)

𝑐𝛽
≥ 𝑠 −

1
𝑐𝛽)

= 𝑒−𝑠 .

The conclusion follows from Equation (2.20) and by observing that the Dominated Con-
vergence Theorem allow us to replace 𝑐𝛽 by 𝔼[𝑅𝛽,𝑢(−)] as we did to prove that Equation
(2.19) holds.
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Chapter 3

Metastability in a Stochastic
System of Spiking Neurons with
Leakage

3.1 Introduction
We study a system of interacting point processes with memory of variable length

modeling a finite but large network of spiking neurons with leakage. We prove that when
the population size diverges this system has a metastable behavior.

The system we consider can be informally described as follows. Each neuron is associ-
ated to two point processes. The first point process indicates the successive spiking times
of the neuron. The rate of this point process is an exponential function of the membrane
potential of the neuron, with the restriction that the rate takes the value 0 when the
membrane potential is 0. When a neuron spikes, its membrane potential resets to 0, and
simultaneously, the membrane potentials of the other neurons increase by one unit.

The second point process associated to each neuron indicates its successive leakage
times. This point process has a constant rate 1. At each leakage time of the neuron,
its membrane potential is reset to 0, with no effect on the other neurons membrane
potentials.

Let us now informally present our results. For any initial configuration of membrane
potentials, the number of spiking and leakage times of the system is finite. Moreover,
the process gets trapped after a finite time in the configuration in which the membrane
potentials of all neurons are 0. This is the content of Theorem 3.1.

Let us suppose that the system starts with a configuration in which a sufficiently large
set of neurons have strictly positive membrane potential. With such a starting point, as
the number of neurons of the system diverges, the system instantaneously reaches a set of
configurations in which all neurons but one have strictly positive membrane potentials
and these membrane potentials are all different. The system are in this set with probability
approaching to 1, for any instant before it gets trapped as the number of neurons of the
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system diverges. This is the content of Theorem 3.2.

The system has a metastable behavior, namely the time at which it gets trapped in the
null membrane potentials configuration re-normalized by its mean value converges in
distribution to a mean 1 exponential random time as the population size diverges. This is
the content of Theorem 3.3. Theorem 3.3 assumes that the system starts with the same
type of initial configuration considered in Theorem 3.2. This initial configuration condition
prevents the system to be immediately attracted by the null configuration.

This system belongs to the class of models introduced by Ferrari et al., 2018. In this
article it was considered the case in which the spiking rate is 1 when the membrane
potential is strictly positive and it is 0 otherwise, the leakage rate is constant and the set of
neurons is the set of all integers, with each neuron interacting only with its two neighbors.
In this framework it was proven that there exists a critical value for the leakage rate such
that the system has either one or two extremal invariant measures when the leakage rate
is either greater or smaller than the critical value, respectively. It was proven by André,
2019 that for a finite system with a sufficiently small leakage rate, the system displays
a metastable behavior when the number of the neurons diverges (see also André and
Planche, 2021 and André, 2022).

This system belongs to the class of systems of interacting point process with memory
of variable length that was introduced in discrete time by Galves and Löcherbach, 2013
and in continuous time by De Masi et al., 2014 to model systems of spiking neurons. The
metastable behavior of systems of interacting point processes with memory of variable
length was also analyzed by Yu and Taillefumier, 2022 and Löcherbach andMonmarché,
2022. Other aspects of systems of interacting point processes with memory of variable
length in this class of models was considered in several articles, including Duarte, Ost, and
Rodríguez, 2015; Brochini et al., 2016; Duarte andOst, 2016; Fournier and Löcherbach,
2016; Galves and Löcherbach, 2016; Yaginuma, 2016; Baccelli and Taillefumier, 2019;
Duarte, Galves, et al., 2019; Galves, Löcherbach, Pouzat, and Presutti, 2019; Baccelli
and Taillefumier, 2021; Nascimento, 2022; Baccelli, Davydov, et al., 2022; Chariker
and Lebowitz, 2022 and De Santis et al., 2022. For a self-contained and neurobiological
motivated presentation of this class of variable length memory models for system of
spiking neurons, both in discrete and continuous time, we refer the reader to Galves,
Löcherbach, and Pouzat, 2021.

The notion of metastability considered here is inspired by the so called pathwise
approach to metastability introduced by Cassandro et al., 1984. For more references and
an introduction to the topic, we refer the reader to Olivieri and Vares, 2005; Hollander,
2009 and Fernández et al., 2015.

This chapter is organized as follows. In Section 3.2 we present the definitions, basic and
extra notation and state the main results. In Section 3.3 we prove Theorem 3.1. In Section
3.4 we present a coupling construction and prove some auxiliary results. In Sections 3.5
and 3.6 we prove Theorems 3.2 and 3.3, respectively.
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3.2 Definitions, notation and main results

Let 𝑁 = {1, 2, ..., 𝑁 } be the set of neurons, with 𝑁 ≥ 2 and denote

𝑁 =
{
𝑢 = (𝑢(𝑎) ∶ 𝑎 ∈ 𝑁 ) ∈ {0, 1, 2, …}𝑁 ∶ min{𝑢(𝑎) ∶ 𝑎 ∈ 𝑁} = 0

}

the set of lists of membrane potentials.

We want to describe the time evolution of the list of membrane potentials of a system
of spiking neurons. To to this, for any neuron 𝑎 ∈ 𝑁 , we define the maps 𝜋𝑎,∗ and 𝜋𝑎,† on
𝑁 as follows. For any 𝑢 ∈ 𝑁 ,

𝜋𝑎,∗(𝑢)(𝑏) =

{
𝑢(𝑏) + 1 , if 𝑏 ≠ 𝑎,
0 , if 𝑏 = 𝑎,

𝜋𝑎,†(𝑢)(𝑏) =

{
𝑢(𝑏) , if 𝑏 ≠ 𝑎,
0 , if 𝑏 = 𝑎.

The map 𝜋𝑎,∗ represents the effect of a spike of neuron 𝑎 in the system. When we apply
the map 𝜋𝑎,∗, the membrane potential of neuron 𝑎 resets to 0 and the membrane potentials
of all the other neurons increase by one unit.

The map 𝜋𝑎,† represents the leakage effect on the membrane potential of neuron 𝑎.
When we apply the map 𝜋𝑎,†, the membrane potential of neuron 𝑎 resets to 0 and the
membrane potentials of all the other neurons remain the same.

The time evolution of the system of neurons can be described as follows. Denote
the initial list of membrane potentials 𝑈 𝑁 ,𝑢

0 = 𝑢 ∈ 𝑁 . The list of membrane potentials
(𝑈 𝑁 ,𝑢

𝑡 )𝑡∈[0,+∞) evolves as a Markov jump process taking values in the set 𝑁 and with
infinitesimal generator  defined as follows

𝑓 (𝑢) = ∑
𝑏∈𝑁

𝑒𝑢(𝑏)𝟏{𝑢(𝑏) > 0} [𝑓 (𝜋𝑏,∗(𝑢)) − 𝑓 (𝑢)] + ∑
𝑏∈𝑁

[𝑓 (𝜋𝑏,†(𝑢)) − 𝑓 (𝑢)] ,

for any bounded function 𝑓 ∶ 𝑁 → ℝ.

Observe that the null list 0⃗𝑁 ∈ 𝑁 , defined as

0⃗𝑁 (𝑎) = 0, for any 𝑎 ∈ 𝑁

is a trap for the process. The goal is to study the time the process takes to get trapped and
its behavior before get trapped.

To state our main results, we need to introduce some notation. Let

𝜏𝑁 ,𝑢 = inf{𝑡 > 0 ∶ 𝑈 𝑁 ,𝑢
𝑡 = 0⃗𝑁}

and define  𝑁 ,𝑢 as the number of spikes and leakages of membrane potential of the
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process, namely

 𝑁 ,𝑢 =
||||

{
𝑠 ∈ (0, 𝜏𝑁 ,𝑢] ∶ 𝑈 𝑁 ,𝑢

𝑠 ≠ lim
𝑡→𝑠−

𝑈 𝑁 ,𝑢
𝑡

}||||
.

We consider also the set

𝑆(0)𝑁 = {𝑢 ∈ 𝑁 ∶ |{𝑎 ∈ 𝑁 ∶ 𝑢(𝑎) > 0}| ≥ ⌊𝑁 1/2⌋}

and the set

𝑁 =

{

𝑢 ∈ 𝑁 ∶
{
1,… , 𝑁 − ⌊𝑁 1/2⌋

}
⊂ {𝑢(𝑎) ∶ 𝑎 ∈ 𝑁}; ⋂

𝑎∈𝑁

⋂
𝑏≠𝑎

{𝑢(𝑎) ≠ 𝑢(𝑏)}

}

.

We can now state our main results.

Theorem 3.1. For any 𝑁 ≥ 2 and for any initial list 𝑢 ∈ 𝑁 , it follows that

ℙ( 𝑁 ,𝑢 < +∞) = 1

and
ℙ(𝜏𝑁 ,𝑢 < +∞) = 1.

Theorem 3.2. For any 𝑡 > 0, it follows that

inf
𝑢∈𝑆(0)𝑁

ℙ (𝑈 𝑁 ,𝑢
𝑡 ∈ 𝑁 | 𝜏𝑁 ,𝑢 > 𝑡) → 1, as 𝑁 → +∞.

Theorem 3.3. For any sequence (𝑢𝑁 ∈ 𝑆(0)𝑁 ∶ 𝑁 ≥ 2),

𝜏𝑁 ,𝑢𝑁

𝔼[𝜏𝑁 ,𝑢𝑁 ]
→ Exp(1) in distribution, as 𝑁 → +∞,

where Exp(1) denotes a mean 1 exponential distributed random variable.

To prove our results it is convenient to extend the notation introduced before.

Extra notation

• Let 𝑇0 = 0 and for 𝑛 = 1, … , 𝑁 ,𝑢, denote 𝑇𝑛 the successive jumping times of the
process (𝑈 𝑁 ,𝑢

𝑡 )𝑡∈[0,+∞), namely

𝑇𝑛 = inf
{
𝑡 > 𝑇𝑛−1 ∶ 𝑈 𝑁 ,𝑢

𝑡 ≠ 𝑈 𝑁 ,𝑢
𝑇𝑛−1

}
.

• For 𝑛 = 1, … , 𝑁 ,𝑢, we define 𝐴𝑛 ∈ 𝑁 and 𝑂𝑛 ∈ {∗, †} as the pair such that

𝑈 𝑁 ,𝑢
𝑇𝑛 = 𝜋𝐴𝑛 ,𝑂𝑛 (𝑈 𝑁 ,𝑢

𝑇𝑛−1) .



3.3 | PROOF OF THEOREM 3.1

31

• The leakage times are defined as 𝑇 †
0 = 0 and for 𝑛 ≥ 1,

𝑇 †
𝑛 = inf{𝑇𝑚 > 𝑇 †

𝑛−1 ∶ 𝑂𝑚 = †}.

• The spiking times are defined as 𝑇 ∗
0 = 0 and for 𝑛 ≥ 1,

𝑇 ∗
𝑛 = inf{𝑇𝑚 > 𝑇 ∗

𝑛−1 ∶ 𝑂𝑚 =∗}.

• For any time interval 𝐼 ⊂ [0, +∞), the counting measures indicating the number of
leakage times and spiking times that occurred during the time interval 𝐼 are defined
as

𝑍†(𝐼 ) =
+∞

∑
𝑚=1

𝟏{𝑇 †
𝑚 ∈ 𝐼} and 𝑍 ∗(𝐼 ) =

+∞

∑
𝑚=1

𝟏{𝑇 ∗
𝑚 ∈ 𝐼}.

• For any 𝑢 ∈ 𝑁 , we define 𝑎𝑢1 , … , 𝑎𝑢𝑁 ∈ 𝑁 in the following way

𝑎𝑢1 ∈ argmin{𝑢(𝑎) ∶ 𝑎 ∈ 𝑁},

𝑎𝑢2 ∈ argmin{𝑢(𝑎) ∶ 𝑎 ∈ 𝑁 ⧵ {𝑎𝑢1}},

...

𝑎𝑢𝑁 ∈ argmin{𝑢(𝑎) ∶ 𝑎 ∈ 𝑁 ⧵ {𝑎𝑢1 , 𝑎
𝑢
2 , ..., 𝑎

𝑢
𝑁−1}}.

To avoid ambiguity, we use the following convention: if 𝑢(𝑎𝑢𝑗 ) = 𝑢(𝑎𝑢𝑗+1), then 𝑎𝑢𝑗 <
𝑎𝑢𝑗+1.

• The set of ladder lists is defined as

𝑁 =
{
𝑢 ∈ 𝑁 ∶ {𝑢(𝑎) ∶ 𝑎 ∈ 𝑁} = {0, 1, ..., 𝑁 − 1}

}
.

• Let 𝜎 ∶ 𝑁 → 𝑁 be a bijective map. For any 𝑢 ∈ 𝑁 , the permuted list 𝜎(𝑢) ∈ 𝑁
is defined as

𝜎(𝑢)(𝑎) = 𝑢(𝜎(𝑎)), for all 𝑎 ∈ 𝑁 .

• For any 𝜆 > 0, 𝜉 {𝜆} and (𝜉 {𝜆}𝑗 ∶ 𝑗 = 1, 2, …) will always be, respectively, a random
variable exponentially distributed with mean 𝜆−1 and a sequence of independent
random variables exponentially distributed with mean 𝜆−1.

3.3 Proof of Theorem 3.1
In this section we will prove Theorem 3.1. First we need to prove the following

lemma.

Lemma 3.4. For any 𝑢 ∈ 𝑁 ⧵ {0⃗𝑁}, it follows that

ℙ(𝑈 𝑁 ,𝑢
𝑇𝑁−1

∈ 𝑁 ) ≥ (
1

2(𝑁 − 1))

𝑁−1

.
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Proof. For any initial list 𝑢 ∈ 𝑁 ⧵ {0⃗𝑁}, the occurrence of the event {𝐴1 = 𝑎𝑢𝑁 , 𝑂1 =∗}
implies that 𝑈 𝑁 ,𝑢

𝑇1 ∈ 𝑁 in the case 𝑁 = 2, and implies that

𝑎
𝑈𝑁 ,𝑢
𝑇1

1 = 0, 𝑎
𝑈𝑁 ,𝑢
𝑇1

2 = 1, 𝑎
𝑈𝑁 ,𝑢
𝑇1

𝑗 ≥ 1, for 𝑗 = 3, … , 𝑁 ,

in the case 𝑁 ≥ 3. As a consequence, the occurrence of the event
{
𝐴1 = 𝑎𝑢𝑁 , 𝑂1 =∗, 𝐴2 = 𝑎

𝑈𝑁 ,𝑢
𝑇1

𝑁 , 𝑂2 =∗
}

implies that implies that 𝑈 𝑁 ,𝑢
𝑇2 ∈ 𝑁 in the case 𝑁 = 3, and it implies that

𝑎
𝑈𝑁 ,𝑢
𝑇2

1 = 0, 𝑎
𝑈𝑁 ,𝑢
𝑇2

2 = 1, 𝑎
𝑈𝑁 ,𝑢
𝑇2

3 = 2, 𝑎
𝑈𝑁 ,𝑢
𝑇2

𝑗 ≥ 2, for 𝑗 = 4, … , 𝑁 .

in the case 𝑁 ≥ 4. Iterating this, we conclude that the occurrence of the event

𝑁−1

⋂
𝑗=1

{𝐴𝑗 = 𝑎
𝑈𝑁 ,𝑢
𝑇𝑗−1

𝑁 , 𝑂𝑗 =∗}

implies that 𝑈 𝑁 ,𝑢
𝑇𝑁−1

∈ 𝑁 . Therefore,

ℙ(𝑈 𝑁 ,𝑢
𝑇𝑁−1

∈ 𝑁 ) ≥ ℙ
(

𝑁−1

⋂
𝑗=1

{𝐴𝑗 = 𝑎
𝑈𝑁 ,𝑢
𝑇𝑗−1

𝑁 , 𝑂𝑗 =∗})
. (3.1)

The smallest value for
ℙ(𝐴1 = 𝑎𝑢𝑁 , 𝑂1 =∗)

is obtained for any initial list 𝑢 in which all neurons, except one, have membrane potential
equal 1. This implies that

inf
{
ℙ(𝐴1 = 𝑎𝑣𝑁 , 𝑂1 =∗ | 𝑈 𝑁 ,𝑣

0 = 𝑣) ∶ 𝑣 ∈ 𝑁 ⧵ {0⃗𝑁}
}
≥

1
2(𝑁 − 1)

.

We conclude the proof by using Markov property and applying this lower bound 𝑁 − 1
times in Equation (3.1).

Proof. We will now prove Theorem 3.1.

For any 𝑁 ≥ 2 and for any 𝑢, 𝑢′ ∈ 𝑁 ⧵ {0⃗𝑁}, we have that

ℙ(
𝑁 ,𝑢 ≤ 𝑛 + 2(𝑁 − 1) ||| 𝑈

𝑁 ,𝑢
𝑇𝑛 = 𝑢′

) ≥

ℙ(𝑈
𝑁 ,𝑢
𝑇𝑛+𝑁−1

∈ 𝑁
||| 𝑈

𝑁 ,𝑢
𝑇𝑛 = 𝑢′

)ℙ(
𝑁 ,𝑢 ≤ 𝑛 + 2(𝑁 − 1) ||| 𝑈

𝑁 ,𝑢
𝑇𝑛+𝑁−1

∈ 𝑁) .

Using together the Markov property and Lemma 3.2, we get

ℙ(𝑈
𝑁 ,𝑢
𝑇𝑛+𝑁−1

∈ 𝑁
||| 𝑈

𝑁 ,𝑢
𝑇𝑛 = 𝑢′

) ≥ [2(𝑁 − 1)]−(𝑁−1).
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The invariance by permutation of the process implies that, for any 𝑙, 𝑙′ ∈ 𝑁 , we have

ℙ(
𝑁 ,𝑢 ≤ 𝑛 + 2(𝑁 − 1) ||| 𝑈

𝑁 ,𝑢
𝑇𝑛+𝑁−1

= 𝑙) = ℙ(
𝑁 ,𝑢 ≤ 𝑛 + 2(𝑁 − 1) ||| 𝑈

𝑁 ,𝑢
𝑇𝑛+𝑁−1

= 𝑙′) .

Calling

𝜖′ = ℙ(
𝑁 ,𝑢 ≤ 𝑛 + 2(𝑁 − 1) ||| 𝑈

𝑁 ,𝑢
𝑇𝑛+𝑁−1

= 𝑙) ,

we conclude that

ℙ(
𝑁 ,𝑢 ≤ 𝑛 + 2(𝑁 − 1) ||| 𝑈

𝑁 ,𝑢
𝑇𝑛+𝑁−1

∈ 𝑁) = 𝜖′ > 0.

Therefore, for any 𝑢′ ∈ 𝑁 ,

ℙ(
𝑁 ,𝑢 ≤ 𝑛 + 2(𝑁 − 1) ||| 𝑈

𝑁 ,𝑢
𝑇𝑛 = 𝑢′

) ≥ [2(𝑁 − 1)]−(𝑁−1)𝜖′.

The last inequality implies that for any 𝑛 ≥ 1,

ℙ( 𝑁 ,𝑢 ≥ 𝑛) ≤ ℙ(2(𝑁 − 1) × Geom([2(𝑁 − 1)]−(𝑁−1)𝜖′) ≥ 𝑛),

where Geom(𝑟) denotes a random variable with geometric distribution assuming values in
{1, 2, …} and with mean 1/𝑟 . This implies that ℙ( 𝑁 ,𝑢 < +∞) = 1, concluding the first part
of the proof.

The jump rate of the process (𝑈 𝑁 ,𝑢
𝑡 )𝑡∈[0,+∞) satisfies

∑
𝑎∈𝑁

𝟏{𝑢′(𝑎) > 0}(𝑒𝑢
′(𝑎) + 1) ≥ 𝑒 + 1,

for any 𝑢′ ∈ 𝑁 ⧵ {0⃗𝑁}. Putting all this together we conclude that ℙ(𝜏𝑁 ,𝑢 < +∞) = 1.

3.4 A coupling construction
In this section we will prove the following proposition.

Proposition 3.5. The following holds

lim
𝑁→+∞

sup
𝑡≥0

sup
𝑤,𝑤′∈𝑁

|||ℙ(𝜏
𝑁 ,𝑤 > 𝑡) − ℙ(𝜏𝑁 ,𝑤′

> 𝑡)||| = 0.

To prove Proposition 3.5, we need to introduce a coupling construction of the processes
(𝑈 𝑁 ,𝑢′

𝑡 )𝑡∈[0,+∞) and (𝑈 𝑁 ,𝑣′
𝑡 )𝑡∈[0,+∞) starting from two different lists 𝑢′, 𝑣′ ∈ 𝑁 .

We want to describe the time evolution of (𝑈 𝑁 ,𝑢′
𝑡 , 𝑈 𝑁 ,𝑣′

𝑡 )𝑡∈[0,+∞). To to this, for any
index 𝑗 ∈ {1, … , 𝑁}, we define the maps 𝜋 𝑗,min, 𝜋 𝑗,max and 𝜋 𝑗,† on 2

𝑁 as follows. For any
(𝑢, 𝑣) ∈ 2

𝑁 ,
𝜋 𝑗,min(𝑢, 𝑣) = (𝜋𝑎𝑢𝑗 ,∗(𝑢), 𝜋𝑎𝑣𝑗 ,∗(𝑣)),
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𝜋 𝑗,max(𝑢, 𝑣) =

{
(𝜋𝑎𝑢𝑗 ,∗(𝑢), 𝑣) , if 𝑢(𝑎𝑢𝑗 ) > 𝑣(𝑎𝑣𝑗 ),
(𝑢, 𝜋𝑎𝑣𝑗 ,∗(𝑣)) , if 𝑣(𝑎𝑣𝑗 ) > 𝑢(𝑎𝑢𝑗 ),

𝜋 𝑗,†(𝑢, 𝑣) = (𝜋𝑎𝑢𝑗 ,†(𝑢), 𝜋𝑎𝑣𝑗 ,†(𝑣)).

The map 𝜋 𝑗,min(𝑢, 𝑣) represents the simultaneous effect of a spike of neuron 𝑎𝑢𝑗 in the
system (𝑈 𝑁 ,𝑢′

𝑡 )𝑡≥0 and a spike of neuron 𝑎𝑣𝑗 in the system (𝑈 𝑁 ,𝑣′
𝑡 )𝑡∈[0,+∞).

The map 𝜋 𝑗,max(𝑢, 𝑣) represents the effect of either a spike of neuron 𝑎𝑢𝑗 in the system
(𝑈 𝑁 ,𝑢′

𝑡 )𝑡≥0 in the case in which 𝑢(𝑎𝑢𝑗 ) > 𝑣(𝑎𝑣𝑗 ), or a spike of neuron 𝑎𝑣𝑗 in the system
(𝑈 𝑁 ,𝑣′

𝑡 )𝑡∈[0,+∞) in the case in which 𝑣(𝑎𝑣𝑗 ) > 𝑢(𝑎𝑢𝑗 ).

The map 𝜋 𝑗,†(𝑢, 𝑣) represents the simultaneous leakage effect on the membrane poten-
tial of neuron 𝑎𝑢𝑗 in the system (𝑈 𝑁 ,𝑢′

𝑡 )𝑡≥0 and on the membrane potential of neuron 𝑎𝑣𝑗 in
the system (𝑈 𝑁 ,𝑣′

𝑡 )𝑡∈[0,+∞).

The pair of lists of membrane potentials (𝑈 𝑁 ,𝑢′
𝑡 , 𝑈 𝑁 ,𝑣′

𝑡 )𝑡∈[0,+∞) evolves as a Markov jump
process taking values in the set 2

𝑁 and with infinitesimal generator 𝐶 defined as fol-
lows

𝐶𝑓 (𝑢, 𝑣) =
𝑁

∑
𝑗=1

𝑒min{𝑢(𝑎𝑢𝑗 ),𝑣(𝑎𝑣𝑗 )}𝟏{min{𝑢(𝑎𝑢𝑗 ), 𝑣(𝑎
𝑣
𝑗 )} > 0} [𝑓 (𝜋 𝑗,min(𝑢, 𝑣)) − 𝑓 (𝑢, 𝑣)] +

𝑁

∑
𝑗=1

𝑒 |𝑢(𝑎
𝑢
𝑗 )−𝑣(𝑎𝑣𝑗 )|𝟏{𝑢(𝑎𝑢𝑗 ) ≠ 𝑣(𝑎𝑣𝑗 )} [𝑓 (𝜋

𝑗,max(𝑢, 𝑣)) − 𝑓 (𝑢, 𝑣)] +
𝑁

∑
𝑗=1

[𝑓 (𝜋 𝑗,†(𝑢, 𝑣)) − 𝑓 (𝑢, 𝑣)] ,

for any bounded function 𝑓 ∶ 2
𝑁 → ℝ.

For the coupling construction we introduce some extra notation.

Extra notation - coupling construction

• Define
𝜏𝑁 (𝑢, 𝑣) = inf{𝑠 > 0 ∶ (𝑈 𝑁 ,𝑢

𝑠 , 𝑈 𝑁 ,𝑣
𝑠 ) = (0⃗𝑁 , 0⃗𝑁 )}.

• Define  𝑁 (𝑢, 𝑣) as the number of spikes and leakages of membrane potential of the
coupling process, namely

 𝑁 (𝑢, 𝑣) =
||||

{
𝑠 ∈ (0, 𝜏𝑁 (𝑢, 𝑣)] ∶ (𝑈 𝑁 ,𝑢

𝑠 , 𝑈 𝑁 ,𝑣
𝑠 ) ≠ ( lim𝑡→𝑠−

𝑈 𝑁 ,𝑢
𝑡 , lim

𝑡→𝑠−
𝑈 𝑁 ,𝑣
𝑡 )

}||||
.

• Let 𝑇0(𝑢, 𝑣) = 0 and for 𝑛 = 1, … , 𝑁 (𝑢, 𝑣) denote 𝑇𝑛(𝑢, 𝑣) the successive jumping
times of the process (𝑈 𝑁 ,𝑢

𝑡 , 𝑈 𝑁 ,𝑣
𝑡 )𝑡∈[0,+∞), namely

𝑇𝑛(𝑢, 𝑣) = inf
{
𝑡 > 𝑇𝑛−1(𝑢, 𝑣) ∶ (𝑈 𝑁 ,𝑢

𝑡 , 𝑈 𝑁 ,𝑣
𝑡 ) ≠ (𝑈 𝑁 ,𝑢

𝑇𝑛−1(𝑢,𝑣), 𝑈
𝑁 ,𝑣
𝑇𝑛−1(𝑢,𝑣))

}
.

• For each 𝑛 = 1, … , 𝑁 (𝑢, 𝑣), we define 𝐽𝑛(𝑢, 𝑣) ∈ {1, … , 𝑁} and 𝐾𝑛(𝑢, 𝑣) ∈
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{min,max, †} as the pair such that

(𝑈 𝑁 ,𝑢
𝑇𝑛(𝑢,𝑣), 𝑈

𝑁 ,𝑣
𝑇𝑛(𝑢,𝑣)) = 𝜋 𝐽𝑛(𝑢,𝑣),𝐾𝑛(𝑢,𝑣) (𝑈 𝑁 ,𝑢

𝑇𝑛−1(𝑢,𝑣), 𝑈
𝑁 ,𝑣
𝑇𝑛−1(𝑢,𝑣)) .

• For any 𝑗 ≥ 1, we define the event

𝐸𝑗(𝑢, 𝑣) =
2𝑗⌈𝑁 1/2⌉

⋂
𝑛=2(𝑗−1)⌈𝑁 1/2⌉+1

{𝐽𝑛(𝑢, 𝑣) = 𝑁 , 𝐾𝑛(𝑢, 𝑣) ≠ †} .

• The number of jumping times of the process (𝑈 𝑁 ,𝑢
𝑡 , 𝑈 𝑁 ,𝑣

𝑡 )𝑡∈[0,+∞) until the first leakage
time is defined as

 𝑁
† (𝑢, 𝑣) = inf{𝑛 ∶ 𝐾𝑛(𝑢, 𝑣) = †}.

• The number of jumping times of the process (𝑈 𝑁 ,𝑢
𝑡 , 𝑈 𝑁 ,𝑣

𝑡 )𝑡∈[0,+∞) until the coupling
time is defined as

 𝑁
𝐶 (𝑢, 𝑣) = inf

{
𝑛 ∶ exists 𝜎 ∶ 𝑁 → 𝑁 bijective, such that 𝑈 𝑁 ,𝑢

𝑇𝑛(𝑢,𝑣) = 𝜎 (𝑈 𝑁 ,𝑣
𝑇𝑛(𝑢,𝑣))

}
.

Remark 3.6. There exists a bijective map 𝜎 ∶ 𝑁 → 𝑁 such that

𝑈 𝑁 ,𝑢
𝑠 = 𝜎 (𝑈 𝑁 ,𝑣

𝑠 ) , for all 𝑠 ≥ 𝑇 𝑁
𝐶 (𝑢,𝑣)(𝑢, 𝑣).

Moreover, if there exists 𝑡 ≥ 0 such that 𝑈 𝑁 ,𝑢
𝑡 ∈ 𝑁 and 𝑈 𝑁 ,𝑣

𝑡 ∈ 𝑁 , then 𝑡 ≥ 𝑇 𝑁
𝐶 (𝑢,𝑣)(𝑢, 𝑣).

The proof of Proposition 3.5 is based on the three following lemmas about the coupling
construction.

Lemma 3.7. For any lists 𝑤,𝑤′ ∈ 𝑁 , if the event 𝐸1(𝑤, 𝑤′) occurs, then

 𝑁
𝐶 (𝑤, 𝑤′) ≤ 2⌈𝑁 1/2⌉.

Proof. The occurrence of the event

𝐸1(𝑤, 𝑤′) =
2⌈𝑁 1/2⌉

⋂
𝑛=1

{
𝐽𝑛(𝑤, 𝑤′) = 𝑁 , 𝐾𝑛(𝑤, 𝑤′) ≠ †

}

implies that in the first 2⌈𝑁 1/2⌉ steps of the coupling construction there are neurons spiking
and at each step, the neuron that spikes is the neuron with greatest membrane potential.

For the first step, denoting 𝑢1 = 𝑈 𝑁 ,𝑤
𝑇1(𝑤,𝑤′) and 𝑢′

1 = 𝑈 𝑁 ,𝑤′

𝑇1(𝑤,𝑤′), we have two possible cases:

• If 𝐽1(𝑤, 𝑤′) = 𝑁 and 𝐾1(𝑤, 𝑤′) = min, then
{
1,… , 𝑁 − ⌊𝑁 1/2⌋ + 1

}
⊂ {𝑢1(𝑎) ∶ 𝑎 ∈ 𝑁}; ⋂

𝑎∈𝑁

⋂
𝑏≠𝑎

{𝑢1(𝑎) ≠ 𝑢1(𝑏)}
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and
{
1,… , 𝑁 − ⌊𝑁 1/2⌋ + 1

}
⊂ {𝑢′

1(𝑎) ∶ 𝑎 ∈ 𝑁}; ⋂
𝑎∈𝑁

⋂
𝑏≠𝑎

{𝑢′
1(𝑎) ≠ 𝑢′

1(𝑏)}.

• If 𝐽1(𝑤, 𝑤′) = 𝑁 and 𝐾1(𝑤, 𝑤′) = max, then either 𝑢′
1 = 𝑤′ and

{
1,… , 𝑁 − ⌊𝑁 1/2⌋ + 1

}
⊂ {𝑢1(𝑎) ∶ 𝑎 ∈ 𝑁}; ⋂

𝑎∈𝑁

⋂
𝑏≠𝑎

{𝑢1(𝑎) ≠ 𝑢1(𝑏)}

in the case 𝑢1(𝑎𝑢1𝑁 ) > 𝑢′
1(𝑎

𝑢′1
𝑁 ), or 𝑢1 = 𝑤 and

{
1,… , 𝑁 − ⌊𝑁 1/2⌋ + 1

}
⊂ {𝑢′

1(𝑎) ∶ 𝑎 ∈ 𝑁}; ⋂
𝑎∈𝑁

⋂
𝑏≠𝑎

{𝑢′
1(𝑎) ≠ 𝑢′

1(𝑏)}

in the case 𝑢′
1(𝑎

𝑢′1
𝑁 ) > 𝑢1(𝑎𝑢1𝑁 ).

Iterating this, we conclude that if the event 𝐸1(𝑤, 𝑤′) occurs, then

𝑈 𝑁 ,𝑤
𝑇2⌈𝑁1/2⌉(𝑤,𝑤′) ∈ 𝑁 and 𝑈 𝑁 ,𝑤′

𝑇2⌈𝑁1/2⌉(𝑤,𝑤′) ∈ 𝑁 . (3.2)

By Remark 3.6, (3.2) implies that  𝑁
𝐶 (𝑤, 𝑤′) ≤ 2⌈𝑁 1/2⌉.

Lemma 3.8. For any 𝑛 ≥ 1 and for any 𝑤,𝑤′ ∈ 𝑁 ,

ℙ( 𝑁
𝐶 (𝑤, 𝑤′) ≤ 2𝑛⌈𝑁 1/2⌉ <  𝑁

† (𝑤, 𝑤′)) ≥

ℙ(Geom(𝜁
2⌈𝑁 1/2⌉

) ≤ 𝑛)(
𝑒⌊𝑁 1/2⌋

𝑒⌊𝑁 1/2⌋ + 2(𝑁 − 1))

2𝑛⌈𝑁 1/2⌉

,

where 𝜁 = 1 − 𝑒−1 and Geom (𝜁 2⌈𝑁 1/2⌉) is a random variable with geometric distribution
assuming values in {1, 2, …} and with mean 1/𝜁 2⌈𝑁 1/2⌉.

Proof. For any 𝑛 ≥ 1 and for any 𝑤,𝑤′ ∈ 𝑁 , the occurrence of the event

2𝑛⌈𝑁 1/2⌉

⋂
𝑚=1

{
𝐽𝑚(𝑤, 𝑤′) ∈ {𝑁 − ⌊𝑁 1/2⌋ + 1, … , 𝑁}, 𝐾𝑚(𝑤, 𝑤′) ≠ †

}

implies that 𝑈 𝑁 ,𝑤
𝑚 ∈ 𝑁 and 𝑈 𝑁 ,𝑤′

𝑚 ∈ 𝑁 , for all 𝑚 = 1,… , 2𝑛⌈𝑁 1/2⌉. This implies that for
any 𝑤,𝑤′ ∈ 𝑁 ,

ℙ( 𝑁
𝐶 (𝑤, 𝑤′) ≤ 2𝑛⌈𝑁 1/2⌉ <  𝑁

† (𝑤, 𝑤′)) ≥

ℙ
(

𝑛

⋃
𝑚=1

𝐸𝑚(𝑤, 𝑤′),
2𝑛⌈𝑁 1/2⌉

⋂
𝑚=1

{
𝐽𝑚(𝑤, 𝑤′) ∈ {𝑁 − ⌊𝑁 1/2⌋ + 1, … , 𝑁}, 𝐾𝑚(𝑤, 𝑤′) ≠ †

}
)
.
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For any lists 𝑢, 𝑣 ∈ 𝑁 we have that

ℙ(𝐽1(𝑢, 𝑣) = 𝑁 , 𝐾1(𝑢, 𝑣) ≠ †) =
𝑒max{𝑢(𝑎𝑢𝑁 ),𝑣(𝑎

𝑣
𝑁 )}

𝑁

∑
𝑗=2

𝑒max{𝑢(𝑎𝑢𝑗 ),𝑣(𝑎𝑣𝑗 )}

ℙ(𝐾1(𝑢, 𝑣) ≠ †). (3.3)

The left term of the right-hand side in Equation (3.3) is bounded below by

𝑒(𝑁−1)

𝑁−1

∑
𝑗=1

𝑒𝑗
≥ 𝜁 .

Therefore,

ℙ
(
𝐸1(𝑤, 𝑤′),

2⌈𝑁 1/2⌉

⋂
𝑚=1

{
𝐽𝑚(𝑤, 𝑤′) ∈ {𝑁 − ⌊𝑁 1/2⌋ + 1, … , 𝑁}, 𝐾𝑚(𝑤, 𝑤′) ≠ †

}
)

≥

𝜁 2⌈𝑁 1/2⌉ℙ
(

2⌈𝑁 1/2⌉

⋂
𝑚=1

{
𝐽𝑚(𝑤, 𝑤′) ∈ {𝑁 − ⌊𝑁 1/2⌋ + 1, … , 𝑁}, 𝐾𝑚(𝑤, 𝑤′) ≠ †

}
)
,

and more generally, for any 𝑛 = 1, 2, …,

ℙ
(

𝑛

⋃
𝑚=1

𝐸𝑚(𝑤, 𝑤′),
2𝑛⌈𝑁 1/2⌉

⋂
𝑚=1

{
𝐽𝑚(𝑤, 𝑤′) ∈ {𝑁 − ⌊𝑁 1/2⌋ + 1, … , 𝑁}, 𝐾𝑚(𝑤, 𝑤′) ≠ †

}
)

≥

(1 − (1 − 𝜁 2⌈𝑁 1/2⌉)
𝑛
)ℙ

(

2𝑛⌈𝑁 1/2⌉

⋂
𝑚=1

{
𝐽𝑚(𝑤, 𝑤′) ∈ {𝑁 − ⌊𝑁 1/2⌋ + 1, … , 𝑁}, 𝐾𝑚(𝑤, 𝑤′) ≠ †

}
)
.

To conclude the proof, note that for any lists 𝑢, 𝑣 ∈ 𝑁 , we have max{𝑢(𝑎𝑢𝑁 ), 𝑣(𝑎𝑣𝑁 )} ≥
𝑁 − 1 and 𝑢(𝑎𝑢𝑁−⌊𝑁 1/2⌋) = 𝑣(𝑎𝑣𝑁−⌊𝑁 1/2⌋) = 𝑁 − ⌊𝑁 1/2⌋ − 1. This implies that

ℙ
(

2𝑛⌈𝑁 1/2⌉

⋂
𝑚=1

{
𝐽𝑚(𝑤, 𝑤′) ∈ {𝑁 − ⌊𝑁 1/2⌋ + 1, … , 𝑁}, 𝐾𝑚(𝑤, 𝑤′) ≠ †

}
)

≥

(
𝑒⌊𝑁 1/2⌋

𝑒⌊𝑁 1/2⌋ + 2(𝑁 − 1))

2𝑛⌈𝑁 1/2⌉

.

Lemma 3.9. The following holds

inf
𝑤,𝑤′∈𝑁

ℙ( 𝑁
𝐶 (𝑤, 𝑤′) < 𝑒𝑁

1/2
𝑁 −2 <  𝑁

† (𝑤, 𝑤′)) → 1, as 𝑁 → +∞.
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Proof. For any 𝑤,𝑤′ ∈ 𝑁 , taking 𝑛 = ⌊𝑒𝑁 1/2𝑁 −2⌋/(2⌈𝑁 1/2⌉) in Lemma 3.8, we have that

ℙ( 𝑁
𝐶 (𝑤, 𝑤′) < ⌊𝑒𝑁

1/2
𝑁 −2⌋ <  𝑁

† (𝑤, 𝑤′)) ≥ (3.4)

(
1 − (1 − 𝜁 2⌈𝑁 1/2⌉

)
⌊𝑒𝑁1/2𝑁 −2⌋/(2⌈𝑁 1/2⌉)

)(
𝑒⌊𝑁 1/2⌋

𝑒⌊𝑁 1/2⌋ + 2(𝑁 − 1))

⌊𝑒𝑁1/2𝑁 −2⌋

→ 1, as 𝑁 → +∞.

To finish the proof, just note that the bound of Equation 3.4 does not depend on the initial
lists 𝑤,𝑤′ ∈ 𝑁 and take 𝑛 = ⌈𝑒𝑁 1/2𝑁 −2⌉/(2⌈𝑁 1/2⌉) in Lemma 3.8.

Corollary 3.10. The following holds

sup
𝑤,𝑤′∈𝑁

ℙ(𝑇 𝑁
𝐶 (𝑤,𝑤′)(𝑤, 𝑤′) > 𝑒−(𝑁−𝑁 1/2)) → 0, as 𝑁 → +∞.

Proof. For any 𝑤,𝑤′ ∈ 𝑁 and for any 𝑡 > 0,

ℙ(𝑇 𝑁
𝐶 (𝑤,𝑤′)(𝑤, 𝑤′) > 𝑡) ≤

ℙ(𝑇 𝑁
𝐶 (𝑤,𝑤′)(𝑤, 𝑤′) > 𝑡, 𝑁

𝐶 (𝑤, 𝑤′) < 𝑒𝑁
1/2
𝑁 −2 <  𝑁

† (𝑤, 𝑤′))+

ℙ({ 𝑁
𝐶 (𝑤, 𝑤′) < 𝑒𝑁

1/2
𝑁 −2 <  𝑁

† (𝑤, 𝑤′)}𝑐).

Lemma 3.9 implies that

sup
𝑤,𝑤′∈𝑁

ℙ({ 𝑁
𝐶 (𝑤, 𝑤′) < 𝑒𝑁

1/2
𝑁 −2 <  𝑁

† (𝑤, 𝑤′)}𝑐) → 0, as 𝑁 → +∞.

Moreover,

ℙ(𝑇 𝑁
𝐶 (𝑤,𝑤′)(𝑤, 𝑤′) > 𝑡, 𝑁

𝐶 (𝑤, 𝑤′) < 𝑒𝑁
1/2
𝑁 −2 <  𝑁

† (𝑤, 𝑤′)) ≤

ℙ(𝑇⌊𝑒𝑁1/2𝑁 −2⌋(𝑤, 𝑤′) > 𝑡, 𝑁
𝐶 (𝑤, 𝑤′) < 𝑒𝑁

1/2
𝑁 −2 <  𝑁

† (𝑤, 𝑤′)). (3.5)

For any initial lists 𝑤,𝑤′ and for any 𝑠 > 0, if the event  𝑁
† (𝑤, 𝑤′) > 𝑒𝑁 1/2𝑁 −2 occurs, then

ℙ(𝑇𝑗(𝑤, 𝑤′) − 𝑇𝑗−1(𝑤, 𝑤′) > 𝑠) ≤ ℙ(𝜉 𝑒
(𝑁−1)

> 𝑠), for any 𝑗 = 1, … , ⌊𝑒𝑁
1/2
𝑁 −2⌋.

Therefore, taking 𝑡 = 𝑒−(𝑁−𝑁 1/2) the right-hand side of Equation (3.5) is bounded above by

ℙ
⎛
⎜
⎜
⎝

⌊𝑒𝑁1/2𝑁 −2⌋

∑
𝑗=1

𝜉 {𝑒
(𝑁−1)}

𝑗 > 𝑒−(𝑁−𝑁 1/2)
⎞
⎟
⎟
⎠
→ 0, as 𝑁 → +∞. (3.6)

We conclude the proof by putting Equations (3.5) and (3.6) together and noting that the
bound on (3.6) does not depend on the lists 𝑤,𝑤′ ∈ 𝑁 .
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Remark 3.11. By Remark 3.6 and Equation (3.2), we can replace  𝑁
𝐶 (𝑤, 𝑤′) by

inf{𝑠 > 0 ∶ {𝑈 𝑁 ,𝑤
𝑠 ∈ 𝑁} ∩ {𝑈 𝑁 ,𝑤′

𝑠 ∈ 𝑁}}

in Lemmas 3.7, 3.8 and 3.9. This implies that

sup
𝑤∈𝑁

ℙ(inf{𝑠 > 0 ∶ 𝑈 𝑁 ,𝑤
𝑠 ∈ 𝑁} > 𝑒−(𝑁−𝑁 1/2)) → 0, as 𝑁 → +∞.

Proof. We have now all the ingredients to prove Proposition 3.5.

For any 𝑡 > 0 and for any 𝑤,𝑤′ ∈ 𝑁 ,

ℙ(𝜏𝑁 ,𝑤 > 𝑡) ≤ ℙ(𝜏𝑁 ,𝑤 > 𝑡, 𝑁
𝐶 (𝑤, 𝑤′) <  𝑁

† (𝑤, 𝑤′)) + ℙ( 𝑁
𝐶 (𝑤, 𝑤′) >  𝑁

† (𝑤, 𝑤′))

Now, note that

ℙ(𝜏𝑁 ,𝑤 > 𝑡, 𝑁
𝐶 (𝑤, 𝑤′) <  𝑁

† (𝑤, 𝑤′)) = ℙ(𝜏𝑁 ,𝑤′
> 𝑡, 𝑁

𝐶 (𝑤, 𝑤′) <  𝑁
† (𝑤, 𝑤′)).

This implies that

ℙ(𝜏𝑁 ,𝑤 > 𝑡) − ℙ(𝜏𝑁 ,𝑤′
> 𝑡) ≤ ℙ( 𝑁

𝐶 (𝑤, 𝑤′) >  𝑁
† (𝑤, 𝑤′)).

Analogously,

ℙ(𝜏𝑁 ,𝑤′
> 𝑡) − ℙ(𝜏𝑁 ,𝑤 > 𝑡) ≤ ℙ( 𝑁

𝐶 (𝑤, 𝑤′) >  𝑁
† (𝑤, 𝑤′)),

and therefore,

|ℙ(𝜏𝑁 ,𝑤 > 𝑡) − ℙ(𝜏𝑁 ,𝑤′
> 𝑡)| ≤ ℙ( 𝑁

𝐶 (𝑤, 𝑤′) >  𝑁
† (𝑤, 𝑤′)).

By Lemma 3.9, we conclude that

sup
𝑡≥0

sup
𝑤,𝑤′∈𝑁

|ℙ(𝜏𝑁 ,𝑤 > 𝑡) − ℙ(𝜏𝑁 ,𝑤′
> 𝑡)| ≤ sup

𝑤,𝑤′∈𝑁

ℙ( 𝑁
𝐶 (𝑤, 𝑤′) <  𝑁

† (𝑤, 𝑤′)) → 0,

as 𝑁 → +∞, and with this we concluded the proof.

3.5 Proof of Theorem 3.2

To prove Theorem 3.2 we need to introduce the auxiliary process (𝑈̃ 𝑁 ,𝑢
𝑡 )𝑡∈[0,+∞) that

evolves as a Markov jump process taking values in the set ̃𝑁 = 𝑁 ⧵ {0⃗𝑁} with initial list
𝑢 ∈ ̃𝑁 and with infinitesimal generator ̃ defined as follows

̃𝑓 (𝑢) = ∑
𝑏∈𝑁

𝑒𝑢(𝑏)𝟏{𝑢(𝑏) > 0} [𝑓 (𝜋𝑏,∗(𝑢)) − 𝑓 (𝑢)] + ∑
𝑏∈𝑁

𝟏{𝜋𝑏,†(𝑢) ≠ 0⃗𝑁} [𝑓 (𝜋𝑏,†(𝑢)) − 𝑓 (𝑢)] ,

for any bounded function 𝑓 ∶ ̃𝑁 → ℝ.

Remark 3.12. In general, the processes (𝑈̃ 𝑁 ,𝑢
𝑡 )𝑡∈[0,+∞) and (𝑈 𝑁 ,𝑢

𝑡 )𝑡∈[0,+∞) have the same jump
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rates. The only exception is that (𝑈̃ 𝑁 ,𝑢
𝑡 )𝑡∈[0,+∞) can not jump from a list in which only one

neuron has non-null membrane potential to the null list.

This implies that the processes (𝑈 𝑁 ,𝑢
𝑡 )𝑡∈[0,+∞) and (𝑈̃ 𝑁 ,𝑢

𝑡 )𝑡∈[0,+∞) can be coupled in such way
that

𝑈̃ 𝑁 ,𝑢
𝑠 = 𝑈 𝑁 ,𝑢

𝑠 , for all 𝑠 ∈ [0, 𝜏𝑁 ,𝑢).

For the auxiliary process (𝑈̃ 𝑁 ,𝑢
𝑡 )𝑡∈[0,+∞), let us introduce some extra notation.

Extra notation - auxiliary process

• Denote 𝑇0 = 0 and for 𝑛 = 1, 2, …, denote 𝑇𝑛 the successive jumping times of the
process (𝑈̃ 𝑁 ,𝑢

𝑡 )𝑡∈[0,+∞), namely

𝑇𝑛 = inf
{
𝑡 > 𝑇𝑛−1 ∶ 𝑈̃ 𝑁 ,𝑢

𝑡 ≠ 𝑈̃ 𝑁 ,𝑢
𝑇𝑛−1

}
.

• For 𝑛 = 1, 2, …, we define 𝐴̃𝑛 ∈ 𝑁 and 𝑂̃𝑛 ∈ {∗, †} as the pair such that

𝑈̃ 𝑁 ,𝑢
𝑇𝑛

= 𝜋 𝐴̃𝑛 ,𝑂̃𝑛
(𝑈̃

𝑁 ,𝑢
𝑇𝑛−1) .

• The leakage times are defined as 𝑇 †
0 = 0 and for 𝑛 ≥ 1,

𝑇 †
𝑛 = inf{𝑇𝑚 > 𝑇 †

𝑛−1 ∶ 𝑂̃𝑚 = †}.

• The spiking times are defined as 𝑇 ∗
0 = 0 and for 𝑛 ≥ 1,

𝑇 ∗
𝑛 = inf{𝑇𝑚 > 𝑇 ∗

𝑛−1 ∶ 𝑂̃𝑚 =∗}.

• For any time interval 𝐼 ⊂ [0, +∞), the counting measures indicating the number of
leakage times and spiking times that occurred during the time interval 𝐼 are defined
as

𝑍̃†(𝐼 ) =
+∞

∑
𝑗=1

𝟏{𝑇 †
𝑗 ∈ 𝐼} and 𝑍̃ ∗(𝐼 ) =

+∞

∑
𝑗=1

𝟏{𝑇 ∗
𝑗 ∈ 𝐼}.

• In the next proposition, we prove that (𝑈̃ 𝑁 ,𝑢
𝑡 )𝑡∈[0,+∞) has an unique invariant proba-

bility measure. We use the symbol 𝜇𝑁 to denote this probability measure.

Proposition 3.13. The process (𝑈̃ 𝑁 ,𝑢
𝑡 )𝑡∈[0,+∞) is ergodic.

Proof. Let 𝑙 ∈ 𝑁 satisfies 𝑙(𝑎) = 𝑎 − 1, for all 𝑎 ∈ 𝑁 . For any 𝑢 ∈ ̃𝑁 , we have that

𝑙 = 𝜋 1,∗ ◦ 𝜋 2,∗ ◦ … ◦ 𝜋𝑁 ,∗(𝑢),

and then, if the event ⋂𝑁
𝑗=1{𝐴̃𝑗 = 𝑁 − 𝑗 + 1, 𝑂̃𝑗 =∗} occurs, then 𝑈̃ 𝑁 ,𝑢

𝑁 = 𝑙.

Let
̃ 𝑁 ,𝑢 = inf{𝑛 ≥ 1 ∶ 𝑈̃ 𝑁 ,𝑢

𝑇𝑛
= 𝑙}.
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As in Theorem 3.1, for any 𝑢′ ∈ ̃𝑁 , we have that

ℙ(̃
𝑁 ,𝑢 ≤ 𝑛 + 2𝑁 − 1 ||| 𝑈̃

𝑁 ,𝑢
𝑇𝑛

= 𝑢′
) ≥

ℙ(𝑈̃
𝑁 ,𝑢
𝑇𝑛+𝑁−1

∈ 𝑁
||| 𝑈̃

𝑁 ,𝑢
𝑇𝑛

= 𝑢′
)ℙ(̃

𝑁 ,𝑢 ≤ 𝑛 + 2𝑁 − 1 ||| 𝑈̃
𝑁 ,𝑢
𝑇𝑛+𝑁−1

∈ 𝑁) .

Moreover, the right-hand side of the equation above is bounded above by [2(𝑁 − 1)]−(𝑁−1)𝜖,
where

𝜖 = min

{

ℙ
(

𝑁

⋂
𝑗=1

{𝐴̃𝑛+𝑗 = 𝑁 − 𝑗 + 1, 𝑂̃𝑛+𝑗 =∗}
||| 𝑈̃

𝑁 ,𝑢
𝑇𝑛 = 𝑣

)
∶ 𝑣 ∈ 𝑁

}

.

We conclude that for any 𝑛 ≥ 1,

ℙ(̃ 𝑁 ,𝑙 ≥ 𝑛) ≤ ℙ((2𝑁 − 1) × Geom([2(𝑁 − 1)]−(𝑁−1)𝜖) ≥ 𝑛),

where Geom(𝑟) denotes a random variable with geometric distribution assuming values
in {1, 2, …} and with mean 1/𝑟 . This implies that 𝔼(̃ 𝑁 ,𝑙) < +∞ and then, (𝑈̃ 𝑁 ,𝑢

𝑇𝑛
)𝑛≥0 is a

positive-recurrent Markov chain. The jump rate of the process (𝑈̃ 𝑁 ,𝑢
𝑡 )𝑡∈[0,+∞) satisfies

∑
𝑎∈𝑁

𝟏{𝑢′(𝑎) > 0} (𝑒𝑢
′(𝑎) + 𝟏{𝜋𝑎,†(𝑢′) ≠ 0⃗𝑁}) ≥ 𝑒,

for any 𝑢′ ∈ ̃𝑁 . Putting all this together we conclude that (𝑈̃ 𝑁 ,𝑢
𝑡 )𝑡∈[0,+∞) is ergodic.

The proof of Theorem 3.2 is based on two lemmas.

Lemma 3.14. The invariant probability measure 𝜇𝑁 of the auxiliary process satisfies

𝜇𝑁 (𝑁 ) → 1, as 𝑁 → +∞.

Proof. To prove Lemma 3.14, we will first show that there exists sets 𝑆(1)𝑁 , 𝑆(2)𝑁 and 𝑆(3)𝑁 such
that

𝑆(1)𝑁 ⊃ 𝑆(2)𝑁 ⊃ 𝑆(3)𝑁 ⊃ 𝑁

and for any 𝑗 ∈ {1, 2, 3},
𝜇𝑁 (𝑆(𝑗)𝑁 ) → 1, as 𝑁 → +∞.

Let
𝑆(1)𝑁 = {𝑢 ∈ ̃𝑁 ∶ |{𝑎 ∈ 𝑁 ∶ 𝑢(𝑎) = 0}| ≤ 𝑁

1
2}

and consider the following events

𝐸(1)
𝑁 ,1 = {𝑍̃ ∗([0, 𝑁

1
2 ]) ≥ 1},

𝐸(1)
𝑁 ,2 = {𝑍̃†([0, 𝑁

1
2 ]) ≤ 𝑁 2},



42

3 | METASTABILITY IN A STOCHASTIC SYSTEM OF SPIKING NEURONS WITH LEAKAGE

𝐸(1)
𝑁 ,3 =

𝑁 2/⌊ 𝑁
1/2
2 ⌋

⋂
𝑗=1

{
𝑍̃ ∗

([𝑇
†
(𝑗−1)⌊ 𝑁1/2

2 ⌋+1
, 𝑇 †

𝑗⌊ 𝑁1/2
2 ⌋]) ≥ 1

}
.

For any 𝑢 ∈ ̃𝑁 , the rate in which the process has a leakage is bounded above by 𝑁 .
Moreover, the rate in which the process has a spike is bounded bellow by 𝑒. This implies
that

ℙ(𝐸(1)
𝑁 ,1) ≥ ℙ(𝜉

{𝑒} ≤ 𝑁
1
2) → 1, as 𝑁 → +∞, (3.7)

ℙ(𝐸(1)
𝑁 ,2) ≥ ℙ

(

𝑁 2

∑
𝑗=1

𝜉 {𝑁}
𝑗 ≥ 𝑁

1
2

)
→ 1, as 𝑁 → +∞. (3.8)

For any list 𝑢 ∈ ̃𝑁 and for any instant 𝑛 ≥ 1, we have that

ℙ(𝑂̃𝑛 =∗ ||𝑈̃
𝑁 ,𝑢′

𝑇𝑛−1
= 𝑢) ≥

1
2
.

This implies that for any initial list 𝑢 ∈ ̃𝑁 and for any 𝑗 = 1, … , 𝑁 2/⌊𝑁 1/2

2 ⌋,

ℙ(𝑍̃
∗
([𝑇

†
(𝑗−1)⌊ 𝑁1/2

2 ⌋+1
, 𝑇 †

𝑗⌊ 𝑁1/2
2 ⌋]) ≥ 1) ≥ ℙ(Geom(

1
2)

≤ ⌊
𝑁 1/2

2 ⌋ − 1) ,

where Geom ( 1
2) is a random variable with geometric distribution assuming values in

{1, 2, …} and with mean 2. Therefore,

ℙ(𝐸(1)
𝑁 ,3) ≥ (1 − 2−⌊

𝑁1/2
2 ⌋+1

)
𝑁 2/⌊ 𝑁

1/2
2 ⌋

→ 1, as 𝑁 → +∞. (3.9)

If the event 𝐸(1)
𝑁 ,1 ∩ 𝐸

(1)
𝑁 ,2 ∩ 𝐸

(1)
𝑁 ,3 occurs, then until time 𝑁 1/2 the process has at least one

spiking time and at most ⌊𝑁 1/2⌋ − 1 successive leakage times (with no spiking times in
between). This implies that 𝑈̃ 𝑁 ,𝑢

𝑁 1/2 ∈ 𝑆(1)𝑁 . Since the inequalities of Equations (3.7) , (3.8) and
(3.9) holds for any 𝑢 ∈ ̃𝑁 and they do not depend on 𝑢, it follows that

sup
𝑢∈̃𝑁

ℙ(𝑈̃ 𝑁 ,𝑢
𝑁 1/2 ∉ 𝑆(1)𝑁 ) → 0, as 𝑁 → +∞,

and as a consequence,

𝜇𝑁 (𝑆(1)𝑁 ) = ∑
𝑢∈̃𝑁

𝜇𝑁 (𝑢)ℙ(𝑈̃ 𝑁 ,𝑢
𝑁 1/2 ∈ 𝑆(1)𝑁 ) → 1, as 𝑁 → +∞.

Let

𝑆(2)𝑁 =
{
𝑢 ∈ ̃𝑁 ∶ there exists 𝑎1, … , 𝑎⌈𝑁 1/2⌉ ∈ 𝑁 , such that 1 ≤ 𝑢(𝑎1) < … < 𝑢 (𝑎⌈𝑁 1/2⌉)

}
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and consider the following events

𝐸(2)
𝑁 ,1 =

𝑁 2/⌊ 𝑁
1/2
2 ⌋

⋂
𝑗=1

{
𝑍̃ ∗

([𝑇
†
(𝑗−1)⌊ 𝑁1/2

2 ⌋+1
, 𝑇 †

𝑗⌊ 𝑁1/2
2 ⌋]) ≥ 1

}
,

𝐸(2)
𝑁 ,2 = {𝑍̃†([0, 𝑁 − 1

4 ]) ≤ 𝑁 2},

𝐸(2)
𝑁 ,3 = {𝑍̃ ∗([0, 𝑁 − 1

4 ]) ≥ ⌈𝑁 1/2⌉}.

As in Equation (3.8) and (3.9),

ℙ(𝐸(2)
𝑁 ,1) ≥ (1 − 2−⌊

𝑁1/2
2 ⌋+1

)
𝑁 2/⌊ 𝑁

1/2
2 ⌋

→ 1, as 𝑁 → +∞, (3.10)

ℙ(𝐸(2)
𝑁 ,2) ≥ ℙ

(

𝑁 2

∑
𝑗=1

𝜉 {𝑁}
𝑗 ≥ 𝑁 − 1

4

)
→ 1, as 𝑁 → +∞. (3.11)

For any initial list 𝑢 ∈ 𝑆(1)𝑁 , the occurrence of 𝐸(2)
𝑁 ,1 ∩ 𝐸

(2)
𝑁 ,2 implies that until time 𝑁 −1/4

the rate in which the process has a spike is bounded bellow by 𝑒(𝑁 − 2⌈𝑁 1/2⌉). This implies
that

ℙ(𝐸(2)
𝑁 ,3) ≥ ℙ

(

⌈𝑁 1/2⌉

∑
𝑗=1

𝜉 {𝑒(𝑁−2⌈𝑁 1/2⌉)}
𝑗 ≤ 𝑁 − 1

4

)
ℙ(𝐸

(2)
𝑁 ,1 ∩ 𝐸

(2)
𝑁 ,2) → 1, as 𝑁 → +∞.

For any initial list 𝑢 ∈ 𝑆(1)𝑁 , if the event 𝐸(2)
𝑁 ,1 ∩ 𝐸

(2)
𝑁 ,2 ∩ 𝐸

(2)
𝑁 ,3 occurs, then until time 𝑁 −1/4 the

process has at least ⌈𝑁 1/2⌉ spiking times and at most ⌊𝑁 1/2⌋ − 1 successive leakage times
(with no spiking times in between). This implies that 𝑈̃ 𝑁 ,𝑢

𝑁 −1/4 ∈ 𝑆(2)𝑁 . Therefore,

sup
𝑢∈𝑆(1)𝑁

ℙ(𝑈̃ 𝑁 ,𝑢
𝑁 −1/4 ∉ 𝑆(2)𝑁 ) → 0, as 𝑁 → +∞,

and as a consequence,

𝜇𝑁 (𝑆(2)𝑁 ) = ∑
𝑢∈̃𝑁

𝜇𝑁 (𝑢)ℙ(𝑈̃ 𝑁 ,𝑢
𝑁 −1/4 ∈ 𝑆(2)𝑁 ) → 1, as 𝑁 → +∞.

Let
𝑆(3)𝑁 = {𝑢 ∈ ̃𝑁 ∶ 𝑢(𝑎𝑢𝑗 ) ≥ 𝑗 − 1, for all 𝑗 = 1, … , 𝑁}

and consider the following events

𝐸(3)
𝑁 ,1 = {𝑍̃†([0, 𝑁 −2]) = 0},

𝐸(3)
𝑁 ,2 = {𝑍̃ ∗([0, 𝑁 −2]) ≥ 𝑁}.

For any 𝑢 ∈ 𝑆(2)𝑁 ,
ℙ(𝐸(3)

𝑁 ,1) ≥ ℙ (𝜉 {𝑁} ≥ 𝑁 −2) → 1, as 𝑁 → +∞,
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For any initial list 𝑢 ∈ 𝑆(2)𝑁 , the occurrence of the event 𝐸(3)
𝑁 ,1 implies that until time 𝑁 −2 the

rate in which the process has a spike is bounded bellow by 𝑒⌊𝑁 1/2⌋. This implies that

ℙ(𝐸(3)
𝑁 ,2) ≥ ℙ

(

𝑁

∑
𝑗=1

𝜉 {𝑒
⌊𝑁1/2⌋}

𝑗 ≤ 𝑁 −2

)
ℙ(𝐸

(3)
𝑁 ,1) → 1, as 𝑁 → +∞.

For any initial list 𝑢 ∈ 𝑆(2)𝑁 , if the event 𝐸(3)
𝑁 ,1 ∩𝐸

(3)
𝑁 ,2 occurs, then until time 𝑁 −2 the process

has at least 𝑁 spiking times and does not have any leakage. This implies that 𝑈̃ 𝑁 ,𝑢
𝑁 −2 ∈ 𝑆(3)𝑁 .

Therefore,
sup
𝑢∈𝑆(2)𝑁

ℙ(𝑈̃ 𝑁 ,𝑢
𝑁 −2 ∉ 𝑆(3)𝑁 ) → 0, as 𝑁 → +∞,

and as a consequence,

𝜇𝑁 (𝑆(3)𝑁 ) = ∑
𝑢∈̃𝑁

𝜇𝑁 (𝑢)ℙ(𝑈̃ 𝑁 ,𝑢
𝑁 −2 ∈ 𝑆(3)𝑁 ) → 1, as 𝑁 → +∞.

Recall that

𝑁 =

{

𝑢 ∈ 𝑁 ∶
{
1,… , 𝑁 − ⌊𝑁 1/2⌋

}
⊂ {𝑢(𝑎) ∶ 𝑎 ∈ 𝑁}; ⋂

𝑎∈𝑁

⋂
𝑏≠𝑎

{𝑢(𝑎) ≠ 𝑢(𝑏)}

}

and consider the following events

𝐸(4)
𝑁 ,1 = {𝑍̃†([0, 𝑒−(𝑁−𝑁 1/4)]) = 0},

𝐸(4)
𝑁 ,2 =

{
+∞

∑
𝑗=1

𝟏{𝑇𝑗 ≤ 𝑒−(𝑁−𝑁 1/4), 𝑈̃ 𝑁 ,𝑢
𝑇𝑗−1

(𝐴̃𝑗) ≤ 𝑁 − ⌊𝑁 1/2⌋, 𝑂𝑗 =∗} = 0

}

,

𝐸(4)
𝑁 ,3 = {𝑍̃ ∗([0, 𝑒−(𝑁−𝑁 1/4)]) ≥ 𝑁 + ⌈𝑁 1/2⌉},

𝐸(4)
𝑁 ,4 =

𝑁+⌈𝑁 1/2⌉

⋂
𝑗=1

{
𝑈̃ 𝑁 ,𝑢
𝑇𝑗−1

(𝐴̃𝑗) ≥ max
{
𝑈̃ 𝑁 ,𝑢
𝑇𝑗−1

(𝑎) ∶ 𝑎 ∈ 𝑁

}
− ⌊𝑁 1/2⌋

}
.

For any 𝑢 ∈ ̃𝑁 ,

ℙ(𝐸(4)
𝑁 ,1) ≥ ℙ(𝜉

{𝑁} ≥ 𝑒−(𝑁−𝑁 1/4)
) → 1, as 𝑁 → +∞.

The rate in which the process has a spike of a neuron that in the moment of the spike have
membrane potential smaller or equal 𝑁 − ⌊𝑁 1/2⌋ is bounded above by 𝑁𝑒𝑁−⌊𝑁 1/2⌋. Therefore,

ℙ(𝐸(4)
𝑁 ,2) ≥ ℙ(𝜉

{𝑁𝑒𝑁−⌊𝑁1/2⌋} > 𝑒−(𝑁−𝑁 1/4)
) → 1, as 𝑁 → +∞.

For any 𝑢 ∈ 𝑆(3)𝑁 , the occurrence of the event 𝐸(4)
𝑁 ,1 implies that the rate in which the
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process has a spike is bounded bellow by 𝑒(𝑁−1). Therefore,

ℙ(𝐸(4)
𝑁 ,3) ≥ ℙ

(

𝑁+⌈𝑁 1/2⌉

∑
𝑗=1

𝜉 {𝑒
(𝑁−1)}

𝑗 ≤ 𝑒−(𝑁−𝑁 1/4)

)
ℙ(𝐸

(4)
𝑁 ,1) → 1, as 𝑁 → +∞.

Moreover, the probability

ℙ(𝑈̃
𝑁 ,𝑢
𝑇0

(𝐴̃1) ≥ max {𝑢(𝑎) ∶ 𝑎 ∈ 𝑁} − ⌊𝑁 1/2⌋) (3.12)

is minimized when the difference between the membrane potential of the neuron with
greatest potential and the membrane potential of the other neurons is ⌊𝑁 1/2⌋ + 1. This
implies that (3.12) is bounded bellow by

𝑒⌊𝑁 1/2⌋

𝑒⌊𝑁 1/2⌋ + 2(𝑁 − 1)
,

and therefore,

ℙ(𝐸(4)
𝑁 ,4) ≥ (

𝑒⌊𝑁 1/2⌋

𝑒⌊𝑁 1/2⌋ + 2(𝑁 − 1))

𝑁+⌈𝑁 1/2⌉

ℙ(𝐸
(4)
𝑁 ,1 ∩ 𝐸

(4)
𝑁 ,3) → 1, as 𝑁 → +∞.

For any initial list 𝑢 ∈ 𝑆(3)𝑁 , if the event 𝐸(4)
𝑁 ,1 ∩ … ∩ 𝐸(4)

𝑁 ,4 occurs, then until time 𝑒−(𝑁−𝑁 1/4)

the process has at least 𝑁 + ⌈𝑁 1/2⌉ spiking times, does not have any leakage of membrane
potential and does not have any spike of a neuron with membrane potential smaller or
equal 𝑁 − ⌊𝑁 1/2⌋. This implies that

{
1,… , 𝑁 − ⌊𝑁 1/2⌋

}
⊂
{
𝑈̃ 𝑁 ,𝑢
𝑒−(𝑁−𝑁1/4)(𝑎) ∶ 𝑎 ∈ 𝑁

}
.

Moreover, the occurrence of the events 𝐸(4)
𝑁 ,1∩𝐸

(4)
𝑁 ,3∩𝐸

(4)
𝑁 ,4 implies that all neurons spikes at least

once in the first 𝑁 +⌈𝑁 1/2⌉ steps of the process. This implies that 𝑈̃ 𝑁 ,𝑢
𝑒−(𝑁−𝑁1/4)(𝑎) ≠ 𝑈̃ 𝑁 ,𝑢

𝑒−(𝑁−𝑁1/4)(𝑎
′),

for all 𝑎 ≠ 𝑎′. We conclude that 𝑈̃ 𝑁 ,𝑢
𝑒−(𝑁−𝑁1/4) ∈ 𝑁 .

Therefore,
sup
𝑢∈𝑆(3)𝑁

ℙ(𝑈̃
𝑁 ,𝑢
𝑒−(𝑁−𝑁1/4) ∉ 𝑁) → 0, as 𝑁 → +∞,

and as a consequence,

𝜇𝑁 (𝑁 ) = ∑
𝑢∈̃𝑁

𝜇𝑁 (𝑢)ℙ (𝑈̃
𝑁 ,𝑢
𝑒−(𝑁−𝑁1/4) ∈ 𝑁) → 1, as 𝑁 → +∞.

From Lemma 3.14 it follows Corollaries 3.15 and 3.16, that are used to prove Theorems
3.2 and 3.3.
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Corollary 3.15. The following holds

inf
𝑢∈̃𝑁

ℙ(inf
{
𝑇𝑛 ∶ 𝑈̃ 𝑁 ,𝑢

𝑇𝑛
∈ 𝑁

}
≤ 𝑡(𝑁 ) + 𝑒−(𝑁−𝑁 1/2)

) → 1, as 𝑁 → +∞,

where 𝑡(𝑁 ) = 𝑁 1/2 + 𝑁 −1/4 + 𝑁 −2 + 𝑒−(𝑁−𝑁 1/4).

Proof. First, note that

inf
𝑢∈̃𝑁

ℙ(inf
{
𝑇𝑛 ∶ 𝑈̃ 𝑁 ,𝑢

𝑇𝑛
∈ 𝑁

}
≤ 𝑡(𝑁 )) ≥

inf
𝑢∈̃𝑁

ℙ(𝑈̃
𝑁 ,𝑢
𝑁 1/2 ∈ 𝑆(1)𝑁 , 𝑈̃ 𝑁 ,𝑢

𝑁 1/2+𝑁 −1/4 ∈ 𝑆(2)𝑁 , 𝑈̃ 𝑁 ,𝑢
𝑁 1/2+𝑁 −1/4+𝑁 −2 ∈ 𝑆(3)𝑁 , 𝑈̃ 𝑁 ,𝑢

𝑡(𝑁 ) ∈ 𝑁) .

Remark 3.11 implies that for any 𝑤 ∈ 𝑁 ,

inf
𝑤∈𝑁

ℙ(inf
{
𝑇𝑛 ∶ 𝑈̃ 𝑁 ,𝑤

𝑇𝑛
∈ 𝑁

}
≤ 𝑒−(𝑁−𝑁 1/2)

) → 1, as 𝑁 → +∞.

We conclude the proof by putting all this together with Lemma 3.14 and Markov property.

Corollary 3.16. The following holds

inf
𝑢∈𝑆(0)𝑁

ℙ (inf
{
𝑇𝑛 ∶ 𝑈 𝑁 ,𝑢

𝑇𝑛 ∈ 𝑁
}
≤ 𝑡 ′(𝑁 )) → 1, as 𝑁 → +∞,

where 𝑡 ′(𝑁 ) = 𝑁 −1/4 + 𝑁 −2 + 𝑒−(𝑁−𝑁 1/4) + 𝑒−(𝑁−𝑁 1/2).

Proof. Note that starting from any list 𝑢 ∈ 𝑆(0)𝑁 , as in the proof of Lemma 3.14 we have that

ℙ(𝐸
(2)
𝑁 ,1 ∩ 𝐸

(2)
𝑁 ,2 ∩ 𝐸

(2)
𝑁 ,3) → 1, as 𝑁 → +∞.

Then, as in Corollary 3.15 we have that

inf
𝑢∈𝑆(0)𝑁

ℙ(inf
{
𝑇𝑛 ∶ 𝑈̃ 𝑁 ,𝑢

𝑇𝑛
∈ 𝑁

}
≤ 𝑡 ′(𝑁 )) → 1, as 𝑁 → +∞. (3.13)

By the definition of the events 𝐸(2)
𝑁 ,1, 𝐸

(3)
𝑁 ,1 and 𝐸(4)

𝑁 ,1, we have that

inf
𝑢∈𝑆(0)𝑁

ℙ(inf
{
𝑇𝑛 ∶

|||𝑎 ∈ 𝑁 ∶ 𝑈̃ 𝑁 ,𝑢
𝑇𝑛

(𝑎) > 0||| = 1
}
> 𝑡 ′(𝑁 )) → 1, as 𝑁 → +∞.

By Remark 3.12 and the coupling construction, it follows that

inf
𝑢∈𝑆(0)𝑁

ℙ (𝑈 𝑁 ,𝑢
𝑡 = 𝑈̃ 𝑁 ,𝑢

𝑡 , for all 𝑡 ∈ [0, 𝑡 ′(𝑁 )]) → 1, as 𝑁 → +∞.

Therefore, we can replace 𝑈̃ by 𝑈 and 𝑇𝑛 by 𝑇𝑛 on Equation (3.13) and with this we
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concluded the proof.

Lemma 3.17. For any 𝑁 ≥ 2, for any list 𝑙 ∈ 𝑁 and for any 𝑠 > 0,

ℙ(𝑈̃ 𝑁 ,𝑙
𝑠 ∈  𝑐

𝑁 ) ≤
𝜇𝑁 ( 𝑐

𝑁 )
𝜇𝑁 (𝑁 )

+ 𝛿(𝑁 , 𝑠),

where lim𝑁→+∞ 𝛿(𝑁 , 𝑠) = 0, for any 𝑠 > 0.

Proof. For any 𝑠 > 0,

𝜇𝑁 (𝑁 ) = ∑
𝑢∈𝑁

𝜇𝑁 (𝑢)ℙ(𝑈̃ 𝑁 ,𝑢
𝑠 ∈ 𝑁 ) + ∑

𝑢∈̃𝑁 ⧵𝑁

𝜇𝑁 (𝑢)ℙ(𝑈̃ 𝑁 ,𝑢
𝑠 ∈ 𝑁 ).

By Remark 3.12, for any 𝑙 ∈ 𝑁 and 𝑤 ∈ 𝑁 we have

ℙ(𝑈̃ 𝑁 ,𝑤
𝑠 ∈ 𝑁 ) ≤ ℙ(𝑈̃ 𝑁 ,𝑙

𝑠 ∈ 𝑁 ) + ℙ ({𝑇 𝑁
𝐶 (𝑙,𝑤)(𝑙, 𝑤) > 𝑠} ∪ { 𝑁

𝐶 (𝑙, 𝑤) >  𝑁
† (𝑙, 𝑤)}) .

Considering

𝛿(𝑁 , 𝑠) = sup
𝑙∈𝑁

sup
𝑤∈𝑁

ℙ ({𝑇 𝑁
𝐶 (𝑙,𝑤)(𝑙, 𝑤) > 𝑠} ∪ { 𝑁

𝐶 (𝑙, 𝑤) >  𝑁
† (𝑙, 𝑤)}) ,

by Lemma 3.9 and Corollary 3.10 it follows that lim
𝑁→+∞

𝛿(𝑁 , 𝑠) = 0, for any 𝑠 > 0. Moreover,

∑
𝑢∈̃𝑁 ⧵𝑁

𝜇𝑁 (𝑢)ℙ(𝑈̃ 𝑁 ,𝑢
𝑠 ∈ 𝑁 ) ≤ 1 − 𝜇𝑁 (𝑁 ).

This implies that

𝜇𝑁 (𝑁 ) ≤ 𝜇𝑁 (𝑁 )(ℙ(𝑈̃ 𝑁 ,𝑙
𝑠 ∈ 𝑁 ) + 𝛿(𝑁 , 𝑠)) + (1 − 𝜇𝑁 (𝑁 )),

and therefore,

ℙ(𝑈 𝑁 ,𝑙
𝑠 ∈ 𝑁 ) ≥

𝜇𝑁 (𝑁 ) − (1 − 𝜇𝑁 (𝑁 ))
𝜇𝑁 (𝑁 )

− 𝛿(𝑁 , 𝑠).

With this we concluded the proof of Lemma 3.17.

Proof. Now we will prove Theorem 3.2.

By Remark 3.12 and the invariance by permutation of the process it follows that for
any 𝑢 ∈ 𝑆(0)𝑁 , for any 𝑙 ∈ 𝑁 and for any 𝑡 > 0,

ℙ(𝑈
𝑁 ,𝑢
𝑡 ∈ 𝑁 ⧵𝑁

||| 𝜏
𝑁 ,𝑢 > 𝑡) ≤ ℙ(inf{𝑡 > 0 ∶ 𝑈 𝑁 ,𝑢

𝑡 ∈ 𝑁} > 𝑡/2)+ sup
𝑠∈[𝑡/2,𝑡]

ℙ (𝑈̃ 𝑁 ,𝑙
𝑠 ∈ ̃𝑁 ⧵𝑁) .
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By Corollary 3.16,

sup
𝑢∈𝑆(0)𝑁

ℙ(inf{𝑡 > 0 ∶ 𝑈 𝑁 ,𝑢
𝑡 ∈ 𝑁} > 𝑡/2) → 0, as 𝑁 → +∞.

By Lemma 3.17,

sup
𝑠∈[𝑡/2,𝑡]

ℙ (𝑈̃ 𝑁 ,𝑙
𝑠 ∈ ̃𝑁 ⧵𝑁) ≤

𝜇𝑁 ( 𝑐
𝑁 )

𝜇𝑁 (𝑁 )
+ 𝛿(𝑁 , 𝑡/2).

By Lemmas 3.14 and 3.17 it follows that

lim
𝑁→+∞

𝛿(𝑁 , 𝑡/2) = lim
𝑁→+∞

𝜇𝑁 ( 𝑐
𝑁 ) = 0

and with this we concluded the proof.

Remark 3.18. For any 𝑁 ≥ 2, ℙ(inf{𝑡 > 0 ∶ 𝑈 𝑁 ,𝑢
𝑡 ∈ 𝑁} > 𝑡/2) and 𝛿(𝑁 , 𝑡/2) decreases

with 𝑡 . This implies that for any (𝑡𝑁 ∶ 𝑁 ≥ 2) such that lim
𝑁→+∞

𝑡𝑁 = +∞, we have

inf
𝑢∈𝑆(0)𝑁

ℙ (𝑈 𝑁 ,𝑢
𝑡𝑁 ∈ 𝑁 | 𝜏𝑁 ,𝑢 > 𝑡𝑁) → 1, as 𝑁 → +∞.

3.6 Proof of Theorem 3.3

For any fixed 𝑙 ∈ 𝑁 , let 𝑐𝑁 ,𝑙 be the positive real number such that

ℙ(𝜏𝑁 ,𝑙 > 𝑐𝑁 ,𝑙) = 𝑒−1. (3.14)

Due to the invariance by permutation of the process, it is clear that 𝑐𝑁 ,𝑙 = 𝑐𝑁 ,𝑙′ , for any pair
of lists 𝑙 and 𝑙′ belonging to 𝑁 . Therefore, in what follows we will omit to indicate 𝑙 in
the notation of 𝑐𝑁 .

To prove Theorem 3.3, we first prove the following proposition that gives a bound for
𝑐𝑁 .

Proposition 3.19. For any 𝑁 ≥ 3,

𝑐𝑁 ≥
𝑁 − 1 + 𝑒(𝑁−2)

(𝑁 − 1)3
.

Proof. For a initial list 𝑙 ∈ 𝑁 , let

𝜏𝑁− = inf

{

𝑇𝑛 ∶ 𝑂𝑛 = †,
𝑁−1

⋃
𝑗=1

{𝑂𝑛−𝑗 = †}

}

.
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We have

𝜏𝑁− =
𝐺

∑
𝑗=1

(𝑇 †
𝑗 − 𝑇 †

𝑗−1),

where 𝐺 = inf{𝑗 ∶ 𝑍 ∗([𝑇 †
𝑗−1, 𝑇

†
𝑗 ]) ≤ 𝑁 − 2}.

The rate in which the process has a leakage is bounded above by 𝑁 − 1. Therefore, for
any 𝑗 ≥ 1 and for any 𝑠 > 0,

ℙ(𝑇 †
𝑗 − 𝑇 †

𝑗−1 > 𝑠) ≥ ℙ(𝜉 {𝑁−1} > 𝑠).

Recall that

𝑆(3)𝑁 = {𝑢 ∈ 𝑁 ∶ 𝑢(𝑎𝑢𝑗 ) ≥ 𝑗 − 1, for any 𝑗 = 1, … , 𝑁}.

For any initial list 𝑤 ∈ 𝑁 , we have that

𝑈 𝑁 ,𝑤
𝑡 ∈ 𝑆(3)𝑁 , for any 𝑡 < 𝑇 †

1 .

Moreover, for any initial list 𝑢 ∈ 𝑁 ⧵ {0⃗𝑁}, if 𝑂1 = … = 𝑂𝑁−1 =∗, then 𝑈 𝑁 ,𝑢
𝑇𝑁−1

∈ 𝑆(3)𝑁 . Together
with Markov property, this implies that for any 𝑚 ≥ 1 and for any 𝑗 ≥ 1,

ℙ(𝑍 ∗([𝑇 †
𝑗−1, 𝑇

†
𝑗 ]) ≤ 𝑁 − 2 | 𝑇 †

𝑗−1 = 𝑇𝑚, 𝐺 ≥ 𝑗) = ℙ
(

𝑁−1

⋃
𝑗=1

{𝑂𝑗+𝑚 = †} ||| 𝑂𝑚 = †, 𝑈 𝑁 ,𝑢
𝑇𝑚−1

∈ 𝑆(3)𝑁 )
.

The probability on the right-hand side of equation above is bounded above by

𝜆𝑁 = (𝑁 − 1) ×
𝑁 − 1

𝑁 − 1 + 𝑒(𝑁−2) .

Therefore, for any 𝑠 > 0,

ℙ(𝜏𝑁− > 𝑠) ≥ ℙ
(

Geom(𝜆𝑁 )

∑
𝑗=1

𝜉 {𝑁−1}
𝑗 > 𝑡

)
,

where Geom(𝜆𝑁 ) is a random variable independent of (𝜉 {𝑁−1}
𝑗 )𝑗≥1 with Geometric distribu-

tion assuming values in {1, 2, ...} with mean 1/𝜆𝑁 . This implies that

ℙ(𝜏𝑁− > 𝑠) ≥ ℙ (𝜉 {𝜆𝑁 (𝑁−1)} > 𝑠) .

Therefore,

𝑒−1 = ℙ(𝜏𝑁 ,𝑙 > 𝑐𝑁 ) ≥ ℙ(𝜏𝑁− > 𝑐𝑁 ) ≥ 𝑒−𝑐𝑁 𝜆𝑁 (𝑁−1),

and then,

𝑐𝑁 ≥
1

𝜆𝑁 (𝑁 − 1)
.
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To prove Theorem 3.3, we prove Proposition 3.20 which is interesting by itself.

Proposition 3.20. For any sequence (𝑙𝑁 ∈ 𝑁 ∶ 𝑁 ≥ 2),

𝜏𝑁 ,𝑙𝑁

𝑐𝑁
→ Exp(1), as 𝑁 → +∞,

where Exp(1) is a random variable exponentially distributed with mean 1.

Proof. First of all, we will prove that for any sequence (𝑙𝑁 ∈ 𝑁 ∶ 𝑁 ≥ 2) and for any pair
of positive real numbers 𝑠, 𝑡 ≥ 0, the following holds

lim
𝑁→+∞

|||||
ℙ(

𝜏𝑁 ,𝑙𝑁

𝑐𝑁
> 𝑠 + 𝑡) − ℙ(

𝜏𝑁 ,𝑙𝑁

𝑐𝑁
> 𝑠)ℙ(

𝜏𝑁 ,𝑙𝑁

𝑐𝑁
> 𝑡)

|||||
= 0. (3.15)

Indeed, for any 𝑁 ≥ 2 and for any 𝑙 ∈ 𝑁 ,

|||||
ℙ(

𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑠 + 𝑡) − ℙ(

𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑠)ℙ(

𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑡)

|||||
≤

∑
𝑢∈𝑁 ⧵{0⃗𝑁 }

ℙ(𝑈 𝑁 ,𝑙
𝑐𝑁 𝑠 = 𝑢,

𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑠)

|||||
ℙ(

𝜏𝑁 ,𝑢

𝑐𝑁
> 𝑡) − ℙ(

𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑡)

|||||
. (3.16)

The right-hand side of Equation (3.16) is equal

∑
𝑢∈𝑁

ℙ(𝑈 𝑁 ,𝑙
𝑐𝑁 𝑠 = 𝑢,

𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑠)

|||||
ℙ(

𝜏𝑁 ,𝑢

𝑐𝑁
> 𝑡) − ℙ(

𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑡)

|||||
+

∑
𝑢∈𝑁 ⧵{𝑁 ∪ 0⃗𝑁 }

ℙ(𝑈 𝑁 ,𝑙
𝑐𝑁 𝑠 = 𝑢,

𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑠)

|||||
ℙ(

𝜏𝑁 ,𝑢

𝑐𝑁
> 𝑡) − ℙ(

𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑡)

|||||
≤

sup
𝑤∈𝑁

|||ℙ(𝜏
𝑁 ,𝑙 > 𝑐𝑁 𝑡) − ℙ(𝜏𝑁 ,𝑤 > 𝑐𝑁 𝑡)

||| + ℙ (𝑈 𝑁 ,𝑙
𝑐𝑁 𝑠 ∈ 𝑁 ⧵𝑁 , 𝜏𝑁 ,𝑙 > 𝑐𝑁 𝑠) . (3.17)

By Theorem 3.2, Remark 3.18 and Propositions 3.5 and 3.19, Equation (3.17) and the
invariance by permutation of the process implies (3.15).

By definition, for any 𝑁 ≥ 2 and for any 𝑙 ∈ 𝑁 ,

ℙ(
𝜏𝑁 ,𝑙

𝑐𝑁
> 1) = 𝑒−1.

Iterating (3.15) with 𝑡 = 𝑠 = 2−𝑛, for 𝑛 = 1, 2, …, we have that for any sequence (𝑙𝑁 ∈ 𝑁 ∶
𝑁 ≥ 2),

ℙ(
𝜏𝑁 ,𝑙𝑁

𝑐𝑁
> 2−𝑛) → 𝑒−2

−𝑛
, as 𝑁 → +∞.
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More generally, we have that for any

𝑡 ∈

{
𝑚

∑
𝑛=1

𝑏(𝑛)2−𝑛 ∶ 𝑏(𝑛) ∈ {0, 1}, 𝑛 = 1, ..., 𝑚,𝑚 ≥ 1

}

is valid that

ℙ(
𝜏𝑁 ,𝑙𝑁

𝑐𝑁
> 𝑡) → 𝑒−𝑡 , as 𝑁 → +∞. (3.18)

Any real number 𝑟 ∈ (0, 1) has a binary representation

𝑟 =
+∞

∑
𝑛=1

𝑏(𝑛)2−𝑛,

where for any 𝑛 ≥ 1, 𝑏(𝑛) ∈ {0, 1}. Therefore, the monotonicity of

𝑡 → ℙ(
𝜏𝑁 ,𝑙𝑁

𝑐𝑁
> 𝑡)

implies that the convergence in (3.18) is valid for any 𝑡 ∈ (0, 1). Moreover, for any positive
integer 𝑛 ≥ 1, Equation (3.15) implies that

ℙ(
𝜏𝑁 ,𝑙𝑁

𝑐𝑁
> 𝑛) → 𝑒−𝑛, as 𝑁 → +∞.

We conclude that (3.18) is valid for any 𝑡 > 0.

Remark 3.21. For any 𝑁 ≥ 2 and for any 𝑙𝑁 ∈ 𝑁 , the function 𝑓𝑁 ∶ [0, +∞) → [0, 1] given
by

𝑓𝑁 (𝑡) = ℙ(
𝜏𝑁 ,𝑙𝑁

𝑐𝑁
> 𝑡)

is monotonic. Also, by Proposition 3.20, it converges pointwise as 𝑁 → +∞ to a continuous
function. Therefore, for any (𝜖𝑁 ∶ 𝑁 ≥ 2) such that lim

𝑁→+∞
𝜖𝑁 = 0 , for any 𝑡 > 0 and for any

sequence (𝑙𝑁 ∈ 𝑁 ∶ 𝑁 ≥ 2), we have

lim
𝑁→+∞

ℙ(
𝜏𝑁 ,𝑙𝑁

𝑐𝑁
> 𝑡 + 𝜖𝑁) = lim

𝑁→+∞
ℙ(

𝜏𝑁 ,𝑙𝑁

𝑐𝑁
> 𝑡 − 𝜖𝑁) = 𝑒−𝑡 .

To prove Theorem 3.3, we need the two following lemmas.

Lemma 3.22. For any 𝑡 > 0,

lim
𝑁→+∞

sup
𝑢∈𝑁 ⧵{0⃗𝑁 }

ℙ(
𝜏𝑁 ,𝑢

𝑐𝑁
> 𝑡) ≤ 𝑒−𝑡 .

Proof. For any 𝑢 ∈ 𝑁 ⧵ 𝑁 and for any 𝑁 ≥ 2, considering the event

𝐸𝑁 ,𝑢 =
{
min{𝜏𝑁 ,𝑢, inf{𝑇𝑛 ∶ 𝑈 𝑁 ,𝑢

𝑇𝑛 ∈ 𝑁}} ≤ 𝑁 1/2 + 𝑁 −1/4 + 𝑁 −2 + 𝑒−(𝑁−𝑁 1/4) + 𝑒−(𝑁−𝑁 1/2)},
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we have that

ℙ(
𝜏𝑁 ,𝑢

𝑐𝑁
> 𝑡) = ℙ(

𝜏𝑁 ,𝑢

𝑐𝑁
> 𝑡, 𝐸𝑁 ,𝑢, inf{𝑇𝑛 ∶ 𝑈 𝑁 ,𝑢

𝑇𝑛 ∈ 𝑁} < 𝜏𝑁 ,𝑢
)+ (3.19)

ℙ(
𝜏𝑁 ,𝑢

𝑐𝑁
> 𝑡, 𝐸𝑁 ,𝑢, 𝜏𝑁 ,𝑢 < inf{𝑇𝑛 ∶ 𝑈 𝑁 ,𝑢

𝑇𝑛 ∈ 𝑁}) + ℙ(
𝜏𝑁 ,𝑢

𝑐𝑁
> 𝑡, 𝐸𝑐

𝑁 ,𝑢) .

By Proposition 3.19, there exists 𝑁𝑡 > 0 such that for any 𝑁 > 𝑁𝑡 , we have that 𝑐𝑁 𝑡 >
𝑁 1/2 + 𝑁 −1/4 + 𝑁 −2 + 𝑒−(𝑁−𝑁 1/4) + 𝑒−(𝑁−𝑁 1/2). This implies that, for any 𝑁 > 𝑁𝑡 and for any
𝑢 ∈ 𝑁 ⧵ 𝑁 ,

ℙ(
𝜏𝑁 ,𝑢

𝑐𝑁
> 𝑡, 𝐸𝑁 ,𝑢, 𝜏𝑁 ,𝑢 < inf{𝑇𝑛 ∶ 𝑈 𝑁 ,𝑢

𝑇𝑛 ∈ 𝑁}) = 0.

Considering 𝑙 ∈ 𝑁 , for any 𝑢 ∈ 𝑁 ⧵ {𝑁 ∪ 0⃗𝑁} and for any 𝑁 > 𝑁𝑡 , the left-hand side of
Equation (3.19) is bounded above by

ℙ(
𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑡 −

𝑁 1/2 + 𝑁 −1/4 + 𝑁 −2 + 𝑒−(𝑁−𝑁 1/4) + 𝑒−(𝑁−𝑁 1/2)

𝑐𝑁 ) + ℙ(𝐸𝑐
𝑁 ,𝑢). (3.20)

By Remark 3.12 and Corollary 3.15, it follows that

lim
𝑁→+∞

sup
𝑢∈𝑁 ⧵{0⃗𝑁 }

ℙ (𝐸𝑐
𝑁 ,𝑢) = 0.

By Proposition 3.19, it follows that

lim
𝑁→+∞

𝑁 1/2 + 𝑁 −1/4 + 𝑁 −2 + 𝑒−(𝑁−𝑁 1/4) + 𝑒−(𝑁−𝑁 1/2)

𝑐𝑁
= 0.

Therefore, by Remark 3.21 we have that

lim
𝑁→+∞

sup
𝑙∈𝑁

ℙ(
𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑡 −

𝑁 1/2 + 𝑁 −1/4 + 𝑁 −2 + 𝑒−(𝑁−𝑁 1/4) + 𝑒−(𝑁−𝑁 1/2)

𝑐𝑁 ) = 𝑒−𝑡 .

We conclude the proof by noting that the limits in the last equation do not depend on 𝑢.

Lemma 3.23. There exists 𝛼 ∈ (0, 1) and 𝑁𝛼 > 0 such that for any 𝑁 > 𝑁𝛼 and any 𝑙 ∈ 𝑁 ,
the following upperbound holds

ℙ(
𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑛) ≤ 𝛼𝑛,

for any positive integer 𝑛 ≥ 1.
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Proof. By Lemma 3.22, for any fixed 𝛼 ∈ (𝑒−1, 1), there exists 𝑁𝛼 such that for all 𝑁 > 𝑁𝛼 ,

sup
𝑢∈𝑁 ⧵{0⃗𝑁 }

ℙ(
𝜏𝑁 ,𝑢

𝑐𝑁
> 1) ≤ 𝛼 < 1. (3.21)

For any 𝑙 ∈ 𝑁 and for any 𝑛 ∈ {2, 3, …},

ℙ(
𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑛) = ∑

𝑢∈𝑁 ⧵{0⃗𝑁 }

ℙ(
𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑛 − 1, 𝑈 𝑁 ,𝑙

𝑐𝑁 (𝑛−1) = 𝑢)ℙ(
𝜏𝑁 ,𝑢

𝑐𝑁
> 1) .

Equation (3.21) implies that for any 𝑁 > 𝑁𝛼 ,

ℙ(
𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑛) ≤ 𝛼ℙ(

𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑛 − 1) . (3.22)

We finish the proof by iterating (3.22).

Proof. We will now prove Theorem 3.3.

First of all, we will prove that for any sequence (𝑙𝑁 ∈ 𝑁 ∶ 𝑁 ≥ 2), the following holds

𝜏𝑁 ,𝑙𝑁

𝔼[𝜏𝑁 ,𝑙𝑁 ]
→ Exp(1) in distribution, as 𝑁 → +∞. (3.23)

Considering Proposition 3.20, we only need to show that

lim
𝑁→+∞

𝔼[𝜏𝑁 ,𝑙𝑁 ]
𝑐𝑁

= 1.

Actually,

lim
𝑁→+∞

𝔼[𝜏𝑁 ,𝑙𝑁 ]
𝑐𝑁

= lim
𝑁→+∞ ∫

+∞

0
ℙ(𝜏𝑁 ,𝑙𝑁 > 𝑐𝑁 𝑠)𝑑𝑠.

Lemma 3.23 and the Dominated Convergence Theorem, allow us to put the limit inside
the integral in the last term

lim
𝑁→+∞ ∫

+∞

0
ℙ(𝜏𝑁 ,𝑙𝑁 > 𝑐𝑁 𝑠)𝑑𝑠 = ∫

+∞

0
lim

𝑁→+∞
ℙ(𝜏𝑁 ,𝑙𝑁 > 𝑐𝑁 𝑠)𝑑𝑠 = ∫

+∞

0
𝑒−𝑠𝑑𝑠 = 1.

This and Proposition 3.20 imply (3.23).

For any 𝑁 ≥ 2, for any 𝑢 ∈ 𝑆(0)𝑁 and for any 𝑠 > 0,

ℙ(𝜏𝑁 ,𝑢 > 𝑐𝑁 𝑠) = ℙ(𝜏𝑁 ,𝑢 > 𝑐𝑁 𝑠, 𝐸𝑁 ,𝑢) + ℙ(𝜏𝑁 ,𝑢 > 𝑐𝑁 𝑠, 𝐸𝑐
𝑁 ,𝑢),

where
𝐸𝑁 ,𝑢 = {inf{𝑡 ∶ 𝑈 𝑁 ,𝑢

𝑡 ∈ 𝑁} ≤ 1}.

For any 𝑙 ∈ 𝑁 , by Markov property and the invariance by permutation of the process we
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have

ℙ(
𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑠)ℙ(𝐸𝑁 ,𝑢) ≤ ℙ(𝜏𝑁 ,𝑢 > 𝑐𝑁 𝑠, 𝐸𝑁 ,𝑢) ≤ ℙ(

𝜏𝑁 ,𝑙

𝑐𝑁
> 𝑠 −

1
𝑐𝑁 )ℙ(𝐸𝑁 ,𝑢). (3.24)

By Corollary 3.16,
lim

𝑁→+∞
inf
𝑢∈𝑆(0)𝑁

ℙ(𝐸𝑁 ,𝑢) = 1,

and then, for any sequence (𝑢𝑁 ∈ 𝑆(0)𝑁 ∶ 𝑁 ≥ 2),

lim
𝑁→+∞

ℙ(𝜏𝑁 ,𝑢𝑁 > 𝑐𝑁 𝑠, 𝐸𝑁 ,𝑢𝑁 ) = lim
𝑁→+∞

ℙ(𝜏𝑁 ,𝑢𝑁 > 𝑐𝑁 𝑠).

Proposition 3.19 and Remark 3.21 implies that for any sequence (𝑙𝑁 ∈ 𝑁 ∶ 𝑁 ≥ 2),

lim
𝑁→+∞

ℙ(
𝜏𝑁 ,𝑙𝑁

𝑐𝑁
> 𝑠) = lim

𝑁→+∞
ℙ(

𝜏𝑁 ,𝑙𝑁

𝑐𝑁
> 𝑠 −

1
𝑐𝑁 ) = 𝑒−𝑠 .

The conclusion follows from Equation (3.24) and by observing that the Dominated Con-
vergence Theorem allow us to replace 𝑐𝑁 by 𝔼[𝜏𝑁 ,𝑢𝑁 ] as we did to prove that Equation
(3.23) holds.
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