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Resumo

Daniel Araújo Nóbrega. Regressão beta com um pequeno cluster em uma fron-
teira. Dissertação (Mestrado). Instituto de Matemática e Estatística, Universidade de São
Paulo, São Paulo, 2021.

Análises de dados cujas variáveis respostas estão contidas no intervalo (0,1) têm recebido muita atenção
nas últimas duas décadas, principalmente com o uso do modelo de regressão beta. No entanto, existem
situações em que os dados contêm observações nas fronteiras, isto, é observações iguais a zero ou a um, em
que outras metodolgias precisam ser consideradas, Neste trabalho, o foco é em dados que têm um pequeno
cluster de observações em uma das fronteiras e os métodos utilizados fornecem maneiras de continuar
ajustando um modelo de regressão beta, por máxima verossimilhança ou por um método de estimação
robusto, para estes cenários após uma adaptação dos dados ou usar um modelo que é capaz lidar com a
presença de observações nas fronteiras; aqui, o modelo de regressão beta in�acionado e um modelo de
quasi-verossimilhança foram usados para esta �nalidade. Os métodos foram aplicados em dois conjuntos
de dados com características distintas; análises de diagnóstico foram conduzidas para avaliar a qualidade
dos ajustes e então, cenários de simulação foram feitos para avaliar a performance de cada um dos métodos
em situações que podem surgir na prática. Finalmente, algumas conclusões foram apresentadas sobre quais
métodos funcionam melhor em cada uma das situações exploradas.

Palavras-chave: Estimação robusta. Observações de fronteira. Quasi-verossimilhança. Regressão beta.
Regressão beta in�acionada.





Abstract

Daniel Araújo Nóbrega. Beta regression with a small cluster at a boundary. Thesis
(Masters). Institute of Mathematics and Statistics, University of São Paulo, São Paulo,
2021.

Analyses of data that have response variables contained in the (0,1) interval have received a lot of
attention in the past two decades, most notably through the use of the beta regression model. However,
there are situtations where there are boundary observations in the data, i.e. observations equal to zero or
to one, in which other methodologies must be considered. In this work, the focus is on data that have a
small custer of observations at one of the boundaries and the methods used either provide ways to still �t a
beta regression model, via maximum likelihood or via a robust estimation method, for these scenarios by
adapting the data to �t onto the (0,1) interval or using a model that can naturally cope with the presence
boundary observations; here, the in�ated beta regression model and a quasi-likelihood model were used for
this purpose. The methods were applied to two di�erent datasets that had distinct characteristics; diagnostic
analyses were conducted to assess the quality of the �ts and then simulation scenarios were carried out
to evaluate the performance of each of the methods in situations that may arise in practice. Finally, some
conclusions were made about which methods work best in each of the situations explored.

Keywords: Beta regression. Boundary observations. In�ated beta regression. Quasi-likelihood. Robust
estimation.
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Chapter 1

Introduction

The analysis of data observed in the (0,1) interval has received plenty of attention in
the past two decades through research that aims to develop methodologies speci�c to
such data. Due to its bounded nature and di�erent shapes it can assume, this type of data
presents challenges that must be addressed by whichever method is chosen to analyse
it.

Regression models have been proposed based on a number of distributions: the beta
regression model proposed in Ferrari and Cribari-Neto (2004), the simplex model
(Jørgensen, 1997), the Kumarasawamy regression model (Mitnik and Baek, 2013), among
others, that are de�ned on the (0,1) interval, therefore these models provide a way to
link a response variable to a set of explanatory variables that will always respect the
bounded nature of the data and remain contained in (0,1). The beta regression proposed by
Ferrari and Cribari-Neto (2004) is the most used regression model for the type of data
in question as the beta distribution is very versatile and can be �tted to di�erent shapes of
data. Smithson and Verkuilen (2006) extend the beta regression model to accommodate
the situation of having a varying precision. However, if the data in the unit interval also
includes observations at the boundaries, i.e. observations equal to zero or equal to one, the
aforementioned assumption that the density is greater than zero only in (0,1) is violated,
thus these models are not, on their own, adequate to analyse this situation. That being the
case, it is important to understand in what scenarios boundary observations may appear
and what they can mean before proceeding to methods that allow these observations to be
taken into account. For instance, the small cluster of observations at one of the boundaries
may not have a special meaning at all, such as seen in Rudolf et al. (2019).

One possible scenario where there may be boundary observations in the data is when
these imply a special meaning. For instance, suppose the response variable in analysis rep-
resents the proportion of people in a country that have been diagnosed with poliomyelitis
in the past ten years. If an observation of this response is zero, it suggests that this disease
may in fact have been eradicated in that particular country. However, if this observation is
greater than zero, it can possibly indicate that the inhabitants of that country may still be
susceptible to contracting that disease, especially if no eradication campaigns have been
conducted since the diagnosed cases. In such situations, due to the special meaning of the
boundary observations, a regression model based on a distribution that is de�ned on (0,1)
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but is in�ated to include at least one of the boundaries is often used. An example of such
a model is the in�ated beta regression model proposed by Ospina and Ferrari (2012),
which provides a model that allows the �tting of a model where the response variable
is contained in [0,1), (0,1] or even [0,1]. Another situation where boundary observations
may arise is when these do not carry a special meaning. Rudolf et al. (2019) analyse the
fracture resistance of dragon�y wings, where the measurement of fracture is given as
a proportion of the wing that presents some kind of injury. In this dataset, there are a
number of observations equal to zero, however given that the measurement instrument is
mostly visual and subject to slight error, there is probably very little di�erence between
a wing that is considered to be without any injuries (response equal to zero) and a wing
considered 0.1% compromised. Thus, making it a di�erent scenario to when there is a
particular meaning to the boundary observations, so it would be natural to hypothesize
that the methods to analyse these di�erent scenarios may di�er.

Another aspect to consider is the quantity of boundary observations compared to the
total sample size in the data. If an observation being equal to zero (or to one) is a regular
occurrence and it represents a signi�cant proportion of the data, it makes sense to analyse
these observations separately as these observations may have di�erent characteristics
from the rest of the data and having a large number of them allows statistical methods
to be used speci�cally on these observations, such as �tting the aforementioned in�ated
regression models. As a regular occurrence of boundary observations implies a clear way
of analysing the data, the focus of this work will be on situations in which the amount of
boundary observations is relatively small compared to the full data as in such cases the
best method to use will be more subjective and may vary depending on the characteristics
of the dataset.

The aim of this work will be to compare di�erent methodologies that can deal with
having small clusters of observations at the boundaries and o�er conclusions taking into
account the context of the data in which these methods will be applied to. Naturally,
di�erent methods may work the best depending on the context of the data and how the
boundary observations compare to the rest of the data. It is important to note that there
are other ways to analyse data with boundary observations by transforming the response
variable in order for it to be normally distributed, such as in Piepho (2003) and Malik and
Piepho (2016), but the focus here will be on methodologies that allow a model related to
the beta regression model to be �tted.

In Chapter 2, the methodologies that will be compared are presented, along with the
theory behind some of them and the bene�ts and drawbacks of choosing each one. The
methodologies are applied to two distinct datasets in Chapter 3, in which this distinction
a�ects what methods may be appropriate for use in each one. All computational work was
done using the R software (R Core Team, 2020) and the source code for the applications
can be found at h�ps://github.com/danielanobrega/BR_boundaries. In Chapter 4, three
simulation scenarios are conducted to further assess the performance of the methods and
to expand the �ndings in the applications chapter. Finally, the conclusions are presented
in Chapter 5.

https://github.com/danielanobrega/BR_boundaries
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Chapter 2

Methods

Data observed in the [0,1] interval may or may not have a negligible number of
observations equal to zero or one, therefore it is important to consider di�erent approaches
to analyse this type of data.

There are situations in which the number of boundary observations is either su�-
ciently negligible to not consider it a mass of points large enough to warrant a probability
distribution associated with them or there may be no particular special meaning relative
to the appearance of these observations in the sample.

A common way to deal with having zeros or ones in the data is to transform either
all the observations or just those at the boundary in order for all of them to be contained
within the (0, 1) interval. The advantage of doing this is that it allows methodologies
developed for analysis of data in the open interval (0,1) to be used even in the presence of
boundary observations, most notably, the beta regression model introduced by Ferrari and
Cribari-Neto (2004) and its extensions because of the versatility of the beta distribution,
which allows it to model data with di�erent shapes.

Let y1,… , yn be a random sample, in which each yi , i = 1,… , n, follows a beta distribu-
tion with mean �i (0 < �i < 1) and precision parameter �i > 0 (we write yi ∼ (�i , �i)). The
probability density function of yi is

f (yi; �i , �i) =
Γ(�i)

Γ(�i�i)Γ((1 − �i)�i)
y�i�i−1(1 − yi)(1−�i )�i−1, yi ∈ (0, 1), (2.1)

where Γ(⋅) is the gamma function. If yi ∼ (�i , �i), then Var(yi) = V (�i)/(�i + 1), where
V (�i) = �i(1 − �i) denotes the "variance function". For a �xed value of �i , the larger the
value of the precision parameter �i , the smaller the variance of yi .

The beta regression (BR) model is de�ned by assuming that the mean of yi and the
precision are

g�(�i) = �1i = x⊤i � (2.2)
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and
g�(�i) = �2i = z⊤i  (2.3)

respectively, where g�(⋅) and g�(⋅) are strictly monotonic and twice di�erentiable link func-
tions that map �1i and �2i onto the (0, 1) and (0, ∞) intervals, respectively, x⊤i = (xi1,… , xiq1)
and z⊤i = (zi1,… , ziq2) are vectors of covariates associated with the ith observation in the
sample and � = (�1,… , �q1)⊤ ∈ ℝq1 , and  = (1,… , q2)⊤ ∈ ℝq2 are vectors of unknown
regression parameters. The model proposed in Ferrari and Cribari-Neto (2004) is a
particular case of the described model in which �i = � ∀i = 1,… , n, that is say that is a
constant precision model, which may in fact be adequate in certain situations.

The estimation of the parameters in the beta regression models can be done by the
maximum likelihood estimator, therefore the log-likelihood function � (�,  ) = ∑n

i=1 �i(�i , �i)
must be maximized, where

�i(�i , �i) = log Γ(�i)− log Γ(�i�i)− log Γ((1−�i)�i)+(�i�i −1) log yi +{(1−�i)�i −1} log(1−yi).

There are situations, however, where the maximum likelihood estimator is very sensi-
tive to the presence of discrepant observations in the data. Ribeiro and Ferrari (2020)
proposed a robust estimation method for beta regression models based on the maximization
of a reparameterized Lq-likelihood. This alternative estimator o�ers a trade-o� between
robustness and e�ciency through a tuning constant q, whose optimal value is selected by
using a data driven method that ensures full e�ciency of the estimator in the absence of
outliers. Henceforth, this method provides a robust beta regression inference.

2.1 Mapping data onto (0,1)

As previously mentioned, before using the beta regression model on data that possesses
boundary observations, it is necessary to use a method to map the response variable onto
the (0,1) interval. The methods are more adequate to use in situations where there is not a
large mass of observations equal to zero or to one and when there is no special meaning
to the boundary observations that di�erentiates them from responses with values close to
those of the boundaries. For instance, let the response value be the percentage of votes
a certain candidate had in a particular district. There is not much di�erence between
having 0% of the votes and 0.1%, as both cases would just imply that the candidate is very
unpopular in that particular district.

The subsequent subsections will cover some of the most commonly used methods to
transform data into the (0,1) interval, consequently presenting ways to make it possible to
model the data with a beta regression model which is the most popular when it comes to
dealing with responses in the unit interval.

2.1.1 Removing boundary observations

A common method to transform the data, albeit a little extreme, is to simply remove
the boundary observations, thus only keeping sample units in the (0,1) interval and
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then proceeding with the desired analysis methodology. Although this method may be
considered simple and fairly intuitive in situations where there are but few boundary
observations, discarding observations may not be the most appropriate solution as it can
be valuable to a better understanding of the situation being studied.

2.1.2 Adding or subtracting " > 0

A very simple way to transform data in the [0,1] interval so that they �t in the (0,1)
interval is to add (subtract) a very small value " > 0 to observations equal to zero (to one),
thereby altering the data so that it no longer has any boundary observations, furthermore
allowing the use of methodologies to analyse data in the (0,1) interval.

In Rudolf et al. (2019) this method was used; in order to �t the beta regression model,
the authors opted to add 0.0001 to the observations equal to zero in the dataset. This
method is also used to deal with boundary observations in Hunger et al. (2012) and in
Lima-Filho et al. (2020). In Ribeiro and Ferrari (2020), 0.001 was subtracted from the sole
observation equal to one before proceeding with the regression model. The same dataset
will be analysed here in Chapter 3.

It is important to keep in mind that how small the " must be depends on the magnitude
of the response variable’s observations, thus choosing an inappropriate value of " may
negatively a�ect not only the �tting of the model, but also the interpretations.

2.1.3 Replacing by the largest (smallest) observations in the unit
interval

It is also possible to replace the boundary observations to maintain the range of the
observations in the (0,1) interval.

Let the sample to be analysed be given by  = {y1,… , yn}, where n is the sample size
and the observations are contained within the [0, 1] interval.

Let y (0)1 ,… , y (0)k be observations from the sample that are equal to zero and y (1)1 ,… , y (1)k′
observations from the sample equal to one.

To transform the data, we modify the observations at the boundaries. For j = 1,… , k
and j′ = 1,… , k′ let

y (0)j = min
i
{yi ∈  ∶ 0 < yi < 1}

and

y (1)j′ = max
i
{yi ∈  ∶ 0 < yi < 1}.

That way all observations will be in the unit interval and further analyses may proceed
by using a method appropriate for data in the (0,1) interval.
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2.1.4 Linear transformation

Smithson and Verkuilen (2006) analysed the relative contribution of nonverbal IQ
and dyslexic versus non-dyslexic status to the distribution of 44 children’s (25 dyslexic and
19 non-dyslexic) scores on a test of reading accuracy. Verifying the skewness of the data
at hand, they decided to linearly transform the scores from the test from their original
scale to the open interval (0,1) and avoid 0’s and 1’s by taking

y′ = (1 − 1/n)y + 1/2n (2.4)

where y denotes the original score and n is the sample size. Note that in this transforma-
tion, all observations in the samples are transformed, unlike the previously mentioned
methodologies to avoid boundary observations. This transformation works as the weighted
mean between the observation y and 1/2, which is the centre of the (0,1) interval, with
weight (1-1/n) and 1/n, respectively.

Morrison et al. (2020) analysed conscientious vaccination exemptions in kindergarten
in the US state of Texas and this data contained boundary observations, therefore before
modelling the data, this transformation was used. In fact, this transformation seems to be
the most common way in published works to transform data onto the (0,1) interval before
�tting a model; this transformation is also discussed as a way of dealing with boundary
observations in Schmid et al. (2013) and in Hunger et al. (2012).

Thus, it is possible to deal with data in the unit interval that contain observations equal
to 0 or 1 by transforming the data using the method proposed by Smithson and Verkuilen
(2006), which, in this paper, will hereafter be referred to as the linear transformation.

2.2 Models that accommodate boundary
observations

Another way to deal with boundary observations in the data, is to use models that can
naturally cope with their presence, thus not requiring a transformation of the data before
proceeding with the �tting of a model.

2.2.1 Zero-in�ated beta regression and one-in�ated beta
regression

In situations in which the number of boundary observations is non-negligible, it may
be worth investigating if the boundary observations have any special meaning which
separates them from the rest of the data. For instance, suppose the variable being analysed
refers to the proportion of monthly income spent with mobile phone services. As this is a
proportion, the value of each observation will be between 0 and 1. It is impossible for an
observation to be equal to 1 seeing as, at the very least, part of the monthly income will
be spent with food, bills and other necessities. However, it is possible that there may be
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observations equal to zero in the data, furthermore these have a special meaning, which is
that the sample unit (whether it be a household or an individual) does not have a mobile
phone, hence separating them from the rest of the data. Because of this distinct nature
between the boundary observations and the remaining ones, such as in the aforementioned
scenario, it might be worth analysing this type of data separating the interior and boundary
observations by resorting to two-part models.

By de�nition, two-part models are able to separate the analysis of two di�erent parts of
the data, therefore allowing the interpretation of the results for the interior and boundary
observations to be conducted separately. In the scenario previously described, a two-part
model would grant the possibility of interpreting the results for those who do not have a
mobile phone to be done independently from those who do. In this work, the two-part model
used will be one that is de�ned under the assumption that the interior observations are
distributed according to the beta distribution. To accommodate the boundary observations,
the two-part model used will be based on the in�ated beta distribution initially proposed
by Ospina and Ferrari (2010).

The in�ated beta distributions are mixed continuous-discrete distributions. The con-
tinuous component has a beta distribution and the discrete component is a degenerate
component at zero or at one, called the zero-in�ated beta distribution and one-in�ated beta
distribution, respectively, or a Bernoulli distribution for the discrete component (if both
zeros and ones are present in the sample) mixed with a beta distribution for the continuous
component, which is then named the zero-and-one in�ated beta distribution.

The cumulative distribution function of the beta distrbution in�ated at c, where c = 0
or c = 1, is given by

BIc(y; �, �, �) = �I[c,+∞](y) + (1 − �)F (y; �, �), y ∈ ℝ, (2.5)

where IA(y) is an indicator function that equals 1 if y ∈ A and 0 if y ∉ A and F (⋅) denotes
the cumulative distribution of the beta distribution (�, �). Also, 0 < � < 1 is the mixture
parameter. The corresponding probability density function with respect to the measure
generated by the mixture is given by

bic(y; �, �, �) =
{
�, if y = c,
(1 − �)f (y; �, �), if y ∈ (0, 1) (2.6)

where f (y; �, �) denotes the density of the beta distribution (�, �) in (2.1).

If c = 0, the distribution is called zero-in�ated beta distribution (BEZI) and we write y ∼
BEZI(�, �, �). In the case that c = 1, the distribution is called one-in�ated beta distribution
(BEOI) and we write y ∼ BEOI(�, �, �). Some authors refer to these distributions as the
zero-augmented beta distribution and the one-augmented beta distribution, respectively,
such as in Douma and Weedon (2019).

The rth moment of y and its variance are

E(yr ) = �c + (1 − �)�r , r = 1, 2,… ,
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and

Var(y) = (1 − �) V (�)
� + 1

+ �(1 − �)(c − �)2,

respectively, where �r = (��)(r)/�(r), with a(r) = a(a + 1)… (a + r − 1), is the rth moment
of the beta distribution. The mean of the distribution is a weighted average between the
degenerate distribution at c and the beta distribution.

Let y1,… , yn be a random sample, where each yi follows a c-in�ated beta distri-
bution with parameters �i , �i and �i . The likelihood function for � = (�, �, �), where
� = (�1,… , �n)⊤, � = (�1,… , �n)⊤ and � = (�1,… , �n) given the sample (y1,… , yn) is

L(�) =
n
∏
i=1

bic(yi; �i , �i , �i) = L1(�)L2(�, �),

where

L1(�) =
n
∏
i=1
� I{c}(yi )
i (1 − �i)1−I{c}(yi ),

and
L2(�, �) =

n
∏
i=1
f (yi; �i , �i)1−I{c}(yi ).

The likelihood function is said to be separable as it factors into a term that depends
only on �i and one that depends only on �i and �i . Therefore, the maximum likelihood
estimation for (�i , �i) can be performed separately to that of �i as if the other value was
known.

The log-likelihood function for the in�ated beta distribution is given by

� (�) = log L(�) = �1(�) + �2(�, �),

where

�1(�) =
n
∑
i=1
log

{
� I{c}(yi )
i (1 − �i)1−I{c}(yi )

}

and

�2(�, �) =
n
∑
i=1
{1 − I{c}(yi)} log f (yi; �i , �i).

Let y1,… , yn be independent random variables in which yi follows, ∀i = 1,… , n, either
the zero-in�ated beta distribution or the one-in�ated beta distribution with conditional
mean E(yi |yi ∈ (0, 1)) ≡ �i and unknown mixture parameter � . The regression model is
de�ned under the assumptions (2.2) and (2.3). It is also assumed that

g� (�i) = w⊤
i �,
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where w⊤
i = (wi1,… , wiq3). However, in the applications on this thesis � was assumed

to be constant throughout the observations as in the situations analysed here there are
too few observations at a boundary to justify a submodel for � . Although it could be
argued that the assumption that � is constant is unreasonable, since there are but few
observations equal to zero, this assumption is not likely to cause problems in the model.
The parameters can be estimated by maximizing L(�) (or equivalently, � (�)). The model
proposed in Ospina and Ferrari (2012) is a particular case of the described model in
which �i = � ∀i = 1,… , n.

This model is implemented in the gamlss package on R and even though the estimation
can be made using the maximum likelihood estimator, the package uses its own algorithm
to estimate parameters, thus estimations can di�er very slightly.

The method proposed in this subsection is not suitable for the analysis of data that
possess observations equal to zero and equal to one. Hence an alternative method is needed
for such situations. Ospina and Ferrari (2010) also introduce the zero-and-one in�ated
beta distribution, which is appropriate for such scenarios, however it will not be expanded
upon here since we are not dealing with such scenarios.

2.2.2 Quasi-beta regression model

To deal with the presence of boundary observations one might also resort to the quasi-
likelihood (QL) approach. Due to the fact that a distribution for the data is not assumed
when this methodology is employed, the presence of observations equal to zero or to one
does not violate any prior assumptions, which would be the case if a distribution de�ned
in the (0, 1) interval was chosen to model the data.

There are various regression models for data in the (0,1) interval, such as the, al-
ready mentioned, beta regression model and the simplex regression model discussed in
Kieschnick and Mccullough (2003). There have also been proposed new probability
density functions for modelling continuous bounded data. Lemonte and Bazán (2016)
introduced a model based on the Johnson SB distribution and, as an alternative to the
beta regression model, Mitnik and Baek (2013) proposed a regression model based on
the Kumaraswamy distribution. There have also been models that have been proposed
using mixtures of beta distributions that alow more �exibility in dealing with atypical
observations, such as in Bayes et al. (2012), Migliorati et al. (2017) and Di Brisco et al.
(2020). Therefore, when analysing data in the unit interval, there is a certain variety of
possible models to choose from. Oftentimes, however, it may be di�cult to argue which
is the best model for a particular dataset with conviction seeing as di�erent measures of
goodness-of-�t (Akaike Information Criterium and Bayesian Information Criterium, for
instance) may lead to di�erent models being considered the "best" one. In cases where the
choice may prove to be unclear, it may be advantageous to possess a regression model
that can adapt to di�erent forms of the variance function, therefore being �exible to
di�erent shapes of the response variable’s distribution and that can be easily implemented
in practice.

Bonat et al. (2019) propose a quasi-beta regression model based only on second moment
assumptions. Let y1,… , yn be independent random variables in which the distribution of
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yi need not be speci�ed. The model is de�ned under the assumptions that the mean is as
de�ned in (2.2) and that

Var(yi) = �i = ��pi (1 − �i)p ,

where � is a dispersion parameter and p is a power parameter that allows more �exibility
in modelling the relationship between the mean and the variance function. For p = 1 the
variance is equivalent to that of the beta distribution, where � = 1/(1+�). For convenience,
the vector of parameters used in this model will be denoted by � = (�⊤, �⊤)⊤, where
�⊤ = (�, p)⊤.

Adapting results presented in Jørgensen and Knudsen (2004) and Bonat and Jør-
gensen (2015), the authors adopted the quasi-score and Pearson estimating functions for
estimation of the regression and dispersion parameters. The quasi-score function for �
is

 �(�, �) = (
n
∑
i=1

)�i
)�1

�−1i (yi − �i),… ,
n
∑
i=1

)�i
)�q

�−1i (yi − �i))

⊤

,

where )�i/)�j = �i(1 − �i)xij for j = 1,… , q. The entry (j, k) of the q × q sensitivity matrix
S� for  � is

S�jk = E(
)
)�k

 �j (�, �)) = −
n
∑
i=1
�i(1 − �i)xij�−1i xik�i(1 − �i)

and the entry (j, k) of the q × q variability matrix V� for  � is

V�jk = Cov( �j (�, �),  �k (�, �)) =
n
∑
i=1
�i(1 − �i)xij�−1i xik�i(1 − �i).

The Pearson estimating functions for the dispersion parameters are

 �(�, �) = (−
n
∑
i=1

)�−1i
)�

[(yi − �i)2 − �i], −
n
∑
i=1

)�−1i
)p

[(yi − �i)2 − �i])

⊤

.

These are unbiased estimating functions for � based on the square residuals (yi − �i)2 with
expected value �i .

The entry (j, k) of the 2 × 2 sensitivity matrix S� is

S�jk = E(
)
)�k

 �j (�, �)) = −
n
∑
i=1

)�−1i
)�j

�i
)�−1i
)�k

�i ,

where �j or �k denote either � or p. The cross entries of the sensitivity matrices S�� and
S�� are

S�j�k = E(
)
)�k

 �j (�, �)) = 0



2.2 | MODELS THAT ACCOMMODATE BOUNDARY OBSERVATIONS

11

and
S�j�k = E(

)
)�k

 �j (�, �)) = −
n
∑
i=1

)�−1i
)�j

�i
)�−1i
)�k

�i .

Therefore, the joint sensitivity matrix for � is

S� = (
S� 0
S�� S� ) .

The asymptotic variance of the estimating function estimators �̂ is obtained through
the inverse Godambe information matrix, whose general form is J −1� = S−1� V�S−⊤� , where
−⊤ indicates the inverse transpose operation and

V� = (
V� V��
V�� V� ) ,

where V�� = V ⊤
�� and V� depend on the third and fourth moments of yi , respectively. To

avoid this dependance on higher moments, Bonat et al. (2019) use empirical versions of
V� and V�� whose entries (j, k) are given by

Ṽ�jk =
n
∑
i=1
 �j (�, �)i �k (�, �)i

and
Ṽ�j�k =

n
∑
i=1
 �j (�, �)i �k (�, �)i .

The approximate distribution of �̂ is the multivariate Gaussian distribution with mean
� and variance J −1� . The task of estimating these functions have been implemented onto
the mcglm package on R (R Core Team, 2020). Recently, during the writing of this thesis,
the package was removed from the CRAN repository on R, but the results in this work are
not a�ected and the package may return to R. An alternative to this model if you consider
p �xed as one, which would be the classical quasi-likelihood approach for bounded data,
is to use the quasibinomial family of the glm function on R as it provides estimates that
are nearly equivalent to the method discussed in this section.

One limitation of this model is that it has been implemented solely as a constant
precision (or dispersion) model, therefore in situations where it may be appropriate to �t
a model with varying precision, this model is not adequate.
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Applications

In this chapter, two applications will be considered to illustrate the di�erences between
the aforementioned methods to deal with having boundary observations for data in the
unit interval. The �rst one showcases an example where the boundary observation present
in the dataset is a discrepant observation, therefore the robust beta regression model
introduced in Ribeiro and Ferrari (2020) is also �tted. The second application is an
example where the boundary observations are very similar in value to the observations in
(0,1), thus providing a di�erent context for the data.

In all applications, the R software (R Core Team, 2020) was used to �t models and
produce �gures and tables. In order to �t the beta regression models, the betareg
package was used, the robust beta regression models (RobBR) was �tted with com-
putational programs provided in Ribeiro and Ferrari (2020) which can be found in
h�ps://github.com/terezinharibeiro/RobustBetaRegression. The in�ated beta regression
models are implemented in the gamlss package and the quasi-likelihood model was �tted
using the mcglm package.

For the diagnostics of the models, worm plots were created. According to Buuren and
Fredriks (2001), a worm plot is a diagnostic tool for checking the residuals within di�erent
ranges of the explanatory variables. In order to produce the worm plots the randomized
quantile residual given by

rq,i = Φ−1{F (yi; �̂i , �̂i)}

was used, where F (⋅) is the cumulative distribution function of the beta regression de�ned in
(2.1), Φ(⋅) denotes the cumulative distribution function of the standard normal distribution
and �̂i and �̂i are the estimates for �i and �i respectively. In the case of the zero-in�ated
beta regression model the randomized quantile residual is given by

rq,i =
{
Φ−1{�̂ui}, if yi = 0,
Φ−1{�̂ + (1 − �̂)F (yi; �̂i , �̂i)}, if yi ∈ (0, 1),

(3.1)

where ui is a random draw from the uniform distribution in the (0,1) interval. The ran-

https://github.com/terezinharibeiro/RobustBetaRegression
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domized quantile residual in the one-in�ated beta regression model is

rq,i =
{
Φ−1{(1 − �̂)F (yi; �̂i , �̂i)}, if yi ∈ (0, 1),
Φ−1{ui}, if yi = 1,

(3.2)

where ui is a random draw from the uniform distribution in (1 − �̂ , 1). As per Dunn and
Smyth (1997), apart from the sampling variability in �̂i and �̂i , the rq,i is exactly standard
normal, therefore if � and  are consistently estimated, rq,i converges in distribution
to a standard normal distribution. In Pereira (2019), it is stated that when using the
beta regression, the randomized quantile regression is overall a better choice to perform
diagnostics analysis, compared to the standardized weighted residual 1 and 2, particularly
when the observations are very close to zero or very close to one.

There are also additional diagnostics graphs that can be found in Appendix A and in
Appendix B. For the beta regression and robust beta regression models, the standardized
weighted residual 2 proposed by Espinheira et al. (2008) was used to produce the diagnostic
graphs aside from the worm plots. The expression for this residual can be found in eq. (7)
of that paper. In order to perform the same diagnostic techniques in both applications,
which have di�erent characteristics, the randomized quantile residual and the standardized
residual type 2 were both used.

The QL model estimates the value of a dispersion parameter � = 1/(1 + �), where
� is the precision parameter of the beta distribution as presented in (2.1). To unify the
estimates so that they may be compared, the dispersion parameter of the QL models was
transformed to be on the same scale as the � in the beta regression models (and the in�ated
beta regression models) by taking (1 − �̂ )/�̂ and the standard error of the estimate of 
was obtained through the delta method.

3.1 Tuna application

In this application, the dataset used can be found in the Supplementary Material of
Monllor-Hurtado et al. (2017). The response variable is the tropical tuna percentage
(TTP) in longliner catches and the explanatory variable is the sea surface temperature
(SST). This dataset consists of 77 observations of longliner catches in di�erent points of
the southern Indian Ocean in the year 2000 and one of these observations (observation 46)
equals one, which goes to say that in that speci�c catch, only tuna was caught, which is a
very unusual outcome compared to the rest of the data as the second highest value is 35%,
for instance.

The methods used to �t a model for the analysis of this dataset were:

(1) Using the linear transformation proposed by Smithson and Verkuilen (2006) and
then �tting a beta regression (BR) model via maximum likelihood and the robust
approach (RobBR) proposed by Ribeiro and Ferrari (2020).

(2) Subtrating 0.01 from the boundary observation and then �tting a beta regression
(BR) model via maximum likelihood and the robust approach (RobBR) proposed by
Ribeiro and Ferrari (2020).
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(3) Subtrating 0.001 from the boundary observation and then �tting a beta regression
(BR) model via maximum likelihood and the robust approach (RobBR) proposed by
Ribeiro and Ferrari (2020).

(4) Replacing observation 46 with the largest observation observed in the (0,1) interval in
the dataset and and then �tting a beta regression (BR) model via maximum likelihood
and the robust approach (RobBR) proposed by Ribeiro and Ferrari (2020).

(5) Removing observation 46 and and then �tting a beta regression (BR) model via
maximum likelihood and the robust approach (RobBR) proposed by Ribeiro and
Ferrari (2020).

(6) Fitting a one-in�ated-beta regression model.

(7) Fitting a quasi-likelihood model proposed by Bonat et al. (2019) with an estimated
p and with p �xed as 1.

The beta regression model used in methods (1) to (5) was �tted assuming that �i , which is
the mean proportion of tuna caught in the ith �shing trip, and �i , the precision parameter
for the ith observation, are

log(
�i

1 − �i)
= �0 + �1 × SSTi (3.3)

and
log(�i) =  , (3.4)

respectively.

Method (6) was done �tting a one-in�ated-beta regression model, with assumptions for
�i and �i as in (3.3) and (3.4), with the distinction that �i is the conditional mean of yi given
that it is contained within the (0,1) interval. There is also the unknown mixture paramter
� , which is assumed constant across all observations, hence �i = � ∀i = 1,… , n.

The quasi-likelihood model was �tted with the same assumption for �i as in the other
models, but with the assumption that the variance of each observation is as stated in
Section 2.2.2 where there is a power parameter p to be estimated.

After using methods (1) (applying linear transformation to the data), (2) (subtracting
0.01 from obs. 46) and (3) (subtracting 0.001 from obs. 46) and estimating the parameters
via maximum likelihood note that observation 46 is considered to be in�uent on the model
estimation and to be a leverage point (Figures A.1, A.2 and A.3), not to mention the models
being considered a poor �t (Figures A.6a-c and Figures 3.3a-c). In each of these three
situations, the BR model was �tted after using methods that, despite transforming the
response variable so that it �ts in the (0,1) interval, do not reduce the disparity between
observation 46, which has response 1, and the rest of the observations. Hence, certain
characteristics are similar in the diagnostics of these three models, which is shown in
greater detail in Appendix A.

The models in methods (4) and (5) were �tted after using methods to transform the
data that are more "aggressive", as when the boundary observation is replaced with the
largest observation in (0,1) the method changes it to one that is within the range of the
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rest of the data and in method (5) the observation is removed altogether. Because of this,
the Cook’s distance measure (see Appendix A) for observation 46 in both these models
does not indicate that this observation is in�uential. Also, the worm plots in Figures 3.3d
and 3.3e reinforce that these models are adequately �tted. The drawbacks of using such
aggressive methods is that one is actually discarding information which may in fact be
important when removing the observation and completely altering the response when
replacing it, which is usually ill advised.

Table 3.1 shows the estimates for �0, �1 and � in all �tted models. All estimates for
�1 are considered highly signi�cant in all models and Figure 3.1 shows the �tted curves
on a scatter plot with the observations from the data. Note that the curves respective to
the three methods in which observation 46 was classed as in�uential appear above the
rest of the curves, therefore in this particular scenario the boundary observation greatly
a�ects how the regression model �ts in the data. With regards to the models in methods
(4) (replacing obs.46 by the highest observation in (0,1)) and (5) (removing obs. 46), note
that they appear to be very close to the curve of the quasi-likelihood model for lower
values of TTP, but the inclusion of the original observation 46 in the estimation of the
model a�ects the gradient of the curve, making it elevate more than methods (4) and (5) as
TTP increases. This e�ect is better observed in Figure 3.2, which presents a comparison
between the �tted model 7 and a model using the same method without observation 46
in the dataset. Once more, the gradient of the curve of method (7) is greater than when
�tting a model with a removed (or transformed) boundary observation.

Unlike other �tted models where observation 46 remained discrepant thus greatly
a�ecting the estimates of the parameters, the robust beta regression puts less weight on
the outlier thereby maintaining estimates close to the BR model �tted after removing the
boundary observation while not excluding an observation which can provide information
about the situation being studied. Note that when resorting to this type of estimation
process for the regression model, subtracting 0.01 or 0.001 from the boundary observation
hardly impacts the estimates of the parameters, hence any interpretation that can be
made about the response and how the explanatory variable a�ects it remain the same
regardless of the � chosen to transform the boundary observation. Also note that using
the robust estimation method does not impact estimates of models where the observations
are not discrepant, indeed the estimates of the models �tted after replacing or removing
the boundary observations are the same. This is due to the fact that the tuning constant q
remains one in both these situations, whereas its value is 0.94 when subtracting 0.01 from
observation 46 and 0.96 when subtracting 0.001 or when applying the linear transformation.
The adequacy of these methods for this dataset is corroborated by the worm plots in Figures
3.3f, 3.4a and 3.4b, as well as the normal probability plots in Figures A.6f, A.6g and A.6h,
where despite the residual value for obs. 46 being even a higher than when �tting a BR
model, this is not an indicator of a poor �t as the robust estimation method is supposed to
attribute a smaller weight to the discrepant observation, thereby making it so it does not
have great impact on the estimates, which in turn results in an even higher residual value
for obs. 46.

Even though an in�ated-beta regression model was �tted and it provides a good �t, as
per Figure 3.4e, it begs the question of whether it is worth adding an additional parameter
� and changing the interpretation of �i in situations such as the one presented where there
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is only one boundary observation and it does not hold any special meaning either. In this
dataset, an observation equal to one means that in a particular day, all of the �sh that were
caught were tuna, which is a feasible occurrence, even if it is unlikely, given the percentage
of tuna caught in the rest of the �shing trips recorded in the data. Also, catching only
tuna does not have any special meaning, since it does not necessarily mean that there are
not any other �sh species that inhabit the area where the �shing took place. Therefore, I
would argue that it is not worth �tting this type of model in scenarios similar to this one.
Note that Figure 3.4e was created using the correct expression for the rq residual, since
there is an error with the residual calculation in the gamlss package. More details on the
error and the solution to �x it are given in Section 3.2.

An advantage of using the quasi-likelihood method with p = 1 (compared to the
BR models) in this scenario is that it is less a�ected by including observation 46 in the
estimation process than the beta regression model (�tted by maximum likelihood) is
a�ected by transforming the boundary observation to a close number such as when 0.01
or 0.001 is subtracted from it, therefore the method attributes less importance on the
boundary observations when it comes to estimating the parameters. Nevertheless, the
results are still slightly a�ected and the BR models estimated with the robust approach
provide results closer to what they would be if observations 46 was excluded, not to
mention the fact that the estimated standard errors of the estimates are signi�cantly higher
than the standard errors in the robust beta regression models. In the quasi likelihood model
�tted estimating p, the power parameter p was estimated as 2.406 when observation 46
is present in the data, which would indicate that the distribution of this data di�ers to
that of the beta distribution, where this parameter would be equal to one. However, when
the boundary observation is excluded, the estimate of p is 1.071, which is close to one,
resulting in a "variance function" very similar to that of the beta distribution. So even
though the �tted curve is a�ected less than those of the methods which keep observation
46 as discrepant compared to when it is removed, the estimations are o� the mark because
the estimation method considers that the outlier changes the distribution of the response
variable signi�cantly, therefore the robust method is more conservative when dealing with
an observation so di�erent from the rest. Another disadvantage of this method in this
scenario is that due to the estimate of p being so a�ected by the boundary observation,
is that the dispersion is estimated as 1.88, which is larger than one, therefore it is not
comparable to the precision parameter in the beta regression model as this would require
the dispersion to be one at the very most, therefore analytically, it is impossible to put the
dispersion estimate on the same scale as the  shown in the rest of the models, hence why
estimate of  in the QL model is not shown in Table 3.1.

It is important to note that this dataset presents a very speci�c scenario where there is
only one boundary observation and it di�ers greatly from the rest of the data. In order
to prevent this outlier from greatly a�ecting the model estimates, consequently a�ecting
the interpretation of the relationship between the response variable and the explanatory
variable, the robust beta regression model is the best for this scenario, since it does not
discard the information provided by the outlying observation, but bestows less importance
on it compared to the usual beta regression model, thus mitigating its e�ect on the estimates.
Since the boundary observation is so separated from the data, compressing all observations
toward the centre of the unit interval with the linear transformation used in Smithson
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and Verkuilen (2006) is not the most adequate solution, as even when using the robust
estimation method proposed by Ribeiro and Ferrari (2020), the estimates are a�ected,
even if not massively. Therefore, it is more advisable to simply subtract an " > 0 from the
boundary observation before proceeding with the model. As shown in Table 3.1 it does not
matter whether the " chosen is 0.01, 0.001 or perhaps another small value as the estimates
remain approximately the same regardless of the choice.

Figure 3.1: Scatter graph of the data with the �tted curves for the models described in methods (1) to
(7).
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Figure 3.2: Scatter graph of the data with the �tted curves for the quasi-likelihood model and a
quasi-likelihood model �tted without observation 46 in the data.
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Table 3.1: Point estimates for the mean, precision and additional parameters for the �tted models,
along with their respective standard errors (between parentheses), in the tuna application.

Mean Precision Additional
Model �̂0 �̂1 ̂ �̂ p̂
BR after using −4.737 0.135 2.030
linear transformation (0.647) (0.026) (0.161) - -

BR after subtracting −5.039 0.145 2.052
0.01 from obs. 46 (0.654) (0.026) (0.162) - -

BR after subtracting −4.666 0.134 1.723
0.001 from obs. 46 (0.698) (0.028) (0.161) - -

BR after replacing −6.162 0.179 3.239
obs. 46 with (0.480) (0.019) (0.162) - -
highest obs. in (0,1)
BR without −6.223 0.180 3.300
obs. 46 in the dataset (0.473) (0.018) (0.1635) - -

RobBR after using −5.884 0.169 3.413
SV transformation (0.438) (0.017) (0.162) - -

RobBR after subtracting -6.206 0.180 3.330
0.01 from obs. 46 (0.468) (0.018) (0.163) - -

RobBR after subtracting −6.207 0.180 3.313
0.001 from obs. 46 (0.470) (0.018) (0.163) - -

RobBR after replacing −6.162 0.179 3.239
obs. 46 with (0.480) (0.019) (0.162) - -
highest obs. in (0,1)
RobBR without −6.223 0.180 3.300
obs. 46 in the dataset (0.473) (0.018) (0.164) - -

One-in�ated beta −6.223 0.180 3.300 0.013
regression (0.470) (0.018) (0.163) (0.013) -

Quasi-likelihood −6.938 0.213 2.406
regression (0.581) (0.025) * - (0.329)

Quasi-likelihood −6.007 0.175 2.234
regression (p = 1) (0.808) (0.031) (0.722) - -
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(a) BR after linear transformation
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(b) BR after subtracting 0.01 from obs. 46
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(c) BR after subtracting 0.001 from obs. 46
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(d) BR after replacing obs. 46 with largest obs.
in (0,1)
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(e) BR after removing obs. 46
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(f) RobBR after linear transformation

Figure 3.3:Worm plots for the beta regression models and the in�ated beta regression model in the
tuna application.
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(a) RobBR after subtracting 0.01 from obs. 46
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(b) RobBR after subtracting 0.001 from obs. 46
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(c) RobBR after replacing obs. 46 with largest
obs. in (0,1)
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(d) RobBR after removing obs. 46
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(e) In�ated beta regression

Figure 3.4:Worm plots for the beta regression models and the in�ated beta regression model in the
tuna application.
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3.2 CVE application

Morrison et al. (2020) analyse the increase in vaccination exemptions in the United
States. The authors state that the number of exemptions is increasing due to factors
such as an increasing distrust in medical establishments, pervasive misinformation con-
cerning vaccinations and declining health literacy regarding the possible severity of
vaccine-preventable diseases. Declining levels of vaccine coverage are a consequence of
this increase in vaccination exemptions, whether it be due to healthcare-related factors
or vaccine hesitancy, and may result in a reemergence of measles and other vaccine-
preventable diseases. Clusters of vaccination exemptions in a community can compromise
herd immunity as, in general, 96% to 99% of people in that community must be vaccinated
to ensure this type of immunity occurs.

In the United States, all �fty states require vaccination for school attendance, but
exceptions are made, for medical reasons, in all of them, however �fteen states allow parents
to opt out of the vaccination requirements via a conscientious vaccination exemption
(CVE). CVEs on the rise in the US pose a public health threat and with the purpose of better
understanding what can in�uence a higher number of CVEs in a community, Morrison
et al. (2020) analysed the CVE occurrence in the state of Texas, which is the only state that
does not require those who choose to refuse vaccination to be educated on the risks of
doing so. The aim was to evaluate how sociodemographic and �nancial factors in�uence
the amount of CVEs in a particular area. As the data is in the unit interval, the authors
�tted a beta regression model after transforming the response variable using the linear
transformation.

The data presented contains information on the percentage of children in a school
system that have a CVE. Positive correlations have been found between CVE percentages
and the percentage of a population in that area that is white and college educated, and
in line with this correlation, CVE percentage tends to be higher in private schools. The
analysis shown in this work will focus on a condensed version of the data presented by
Morrison et al. (2020), where each observation represents a county in the state of Texas
and the response variable exhibits the median CVE percentage when considering all school
systems in each county. In total, there are 235 counties and in 12 of them, the median CVE
percentage is equal to zero, thus there are 12 boundary observations in the dataset (5% of
the observations). Also, the analysis is made considering data relative to the 2017-2018
time period.

The percentages of people with CVEs in the data are very close to zero as shown in
Table 3.2. Therefore it is necessary to add a smaller � to the boundary observations than in
the previous applications, when using methods that require such a transformation. Note
that there is a large di�erence between the third quartile and the maximum value of the
response variable, which could indicate that there are discrepant observations (in the
response variable) and these may or may not in�uence the estimates of the models. Indeed,
the boxplot in Figure 3.5 shows that there are observations considered to be outliers,
especially the highest value, however it remains to be seen whether these discrepant
observations greatly impact the estimates of the models or not. Although it is possible,
that when taking the covariates into account, these observations may not be discrepant



24

3 | APPLICATIONS

after all.

Table 3.2: Descriptive statistics for the median CVE percentages in all counties.

Minimum 1st quartile Median Mean 3rd quartile Maximum Standard Deviation
0.00000 0.00390 0.00795 0.00996 0.01313 0.09550 0.00990
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Figure 3.5: Boxplot of the median CVE percentages in each county. Note that the boxplot is adjusted
for the skewness of the data.

After analysing the correlation between the response variable and the possible ex-
planatory variables, then �tting some test models, the explanatory variables for the mean
submodel were

• % of the population in the county aged 5 and under who speak a language other than
English at home (ESL)

• % of the population aged 25 and older in the county that have a bachelor’s degree
(Bachelors)

• % of people in that country whose race has been declared as white (White)

• Median household income in the county (dollars) (Income).

The explanatory variables for the precision submodel were

• % of children aged 5 and under in the county that are below the poverty line (Poverty)

• Dummy variable that has value 1 if the county is situated in a metropolitan area and 0
if it is not (Metro)
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The variable Poverty is not included in the mean submodel because it is masked by the
variable Income, therefore when placing both in the model, Poverty is not classed as
signi�cant, however in the precision submodel Poverty is considered more signi�cant than
Income and that is the reason why they do not overlap in the submodels. The variable
Metro, is not considered signi�cant in the mean submodel, but is in the precision submodel,
hence the fact that it is present in only one of the submodels.

The methods used to analyse this dataset were:

(1) Using the linear transformation proposed by Smithson and Verkuilen (2006) and
then �tting a beta regression (BR) model via maximum likelihood

(2) Adding 0.0001 to the boundary observations and then �tting a beta regression (BR)
model via maximum likelihood.

(3) Adding 0.00001 to the boundary observations and then �tting a beta regression (BR)
model via maximum likelihood.

(4) Replacing boundary observations with the lowest observation observed in the (0,1)
interval in the dataset and then �tting a beta regression (BR) model via maximum
likelihood.

(5) Removing boundary observations and then �tting a beta regression (BR) model via
maximum likelihood.

(6) Fitting a zero-in�ated-beta regression model.

(7) Fitting a quasi-likelihood model proposed by Bonat et al. (2019) with an estimated
p and with p �xed as 1.

The regression model used in methods (1) to (5) was �tted assuming that �i , which is
the mean percentage of people that have a CVE certi�cate in the ith county, and �i the
associated precision parameter are

log(
�i

1 − �i)
= �0 + �1 × ESLi + �2 × Bachelorsi + �3 × Whitei + �4 × Incomei (3.5)

and
log(�i) = 0 + 1 × Povertyi + 2 × Metroi , (3.6)

respectively.

The zero-in�ated beta regression assumes that the mean and precision are in the same
form as shown in (3.5) and (3.6), however �i in that case, represents the mean percentage
of people that have a CVE certi�cate in the ith county given that the observation is in
(0,1). Also, the mixture parameter � represents the probability that the median percentage
of children with a CVE in the ith county is zero. One of the test models �tted included an
explanatory variable for � , however no noticeable improvement on the model’s quality of
�t was noticed and in this scenario, there arguably is not much of a di�erence between an
observation equal to zero and an observation very close to zero as it does not indicate that
there is anything peculiar happening in the county if a number close to zero is observed.
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In fact, as explained by Morrison et al. (2020), if only an absolutely tiny percentage of
people have a CVE in a community, there is not a public health threat associated with this
value, therefore any interpretation of such a value would be very similar to an observation
that is exactly zero. The quasi-likelihood model assumes that the mean is given by (3.6),
but since the precision remains constant in that model, only 0 is estimated.

Figure 3.6 presents the worm plots for the �tted models. Note that Figure 3.6e shows
that the model is well �tted when excluding the boundary observations from the dataset.
Figure 3.6d also presents a decent �t when replacing the boundary observations with the
smallest in the (0,1) interval, also note that this worm plot is similar to the worm plot for
the model �tted after adding 0.0001 to the observations equal to zero. When using the
linear transformation, the worm plot seems to indicate a worse �t than the aforementioned
models as there are more observations near the delimited boundary, but the transformation
still enables a better �t than adding 0.00001 to the boundaries (Figure 3.6d), as this value
is very low, the model is being greatly a�ected, which is translated in the worm plot not
indicating a good �t.

In Appendix B, there are more graphs that assist in the diagnostics for the �tted models.
Figures B.1, B.2, B.3, B.4 and B.5 seem to indicate that the models are fairly well �tted.
In the normal probability plots with simulated envelopes in Figure B.6, notice that the
residuals are, mostly, inside the envelopes, however it is possible to see that the models
in which the worm plots indicated were most well �tted (BR after excluding boundary
observations, BR after replacing boundary observation with the smallest obs. in (0,1) and
BR after adding 0.0001 to obs. equal to zero) have easily identi�able points that lie outside
of the envelopes; they are few and close to the area inside the envelopes. However, in the
rest of the models, these same points are not shown, which is due to them being farther
from the boundaries to the point where they do not appear on the graph, indicating a
worse �t. In each of the Figures B.1, B.2, B.3, B.4 and B.5, graph (b) shows Cook’s distance
measure for each of the observations in each of the models, note that observation 79
has a particularly high value. This observation has the highest response (shown in Table
3.2) and the graphs would indicate that it is a very in�uent observation and should be
analysed further, however �tting the exact same models in the absence of this observation
produces very similar estimates to the models already �tted in the presence of county 79.
Therefore, despite its Cook’s distance value, this observation is not a�ecting the estimates.
The fact that it does not a�ect the estimates is also the reason why the robust estimation
method for the beta regression model selects q = 1, thus being equivalent to estimating
the beta regression model via maximum likelihood in this scenario. In other words, the
RobBR model evaluates that it is not worth attributing a di�erent weight to this discrepant
observation.

Table 3.3 presents the estimates for the parameters of the �tted models. Note that, as
was the case in the worm plots, BR after adding 0.0001 to the boundary observations and
BR after replacing observations equal to zero with the smallest obs. in (0,1) provide similar
�ts. This could be due to 0.0001 being close to the smallest obs in (0,1) (0.00025), however
it could be argued that given the magnitude of the data, these values are not that close
given 0.00025 is more than double 0.0001. Either way, the model that adds 0.0001 is not
too a�ected by this di�erence, which is a positive takeaway. The same cannot be said
about adding 0.00001 to the boundary observations, as the estimate of �1 is particularly
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(a) BR after linear transformation
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(b) BR after adding 0.0001 to boundary obs.
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(c) BR after adding 0.00001 to boundary obser-
vations
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(d) BR after replacing boundary obs with
smallest obs. in (0,1)
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(e) BR after removing boundary observations
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(f) In�ated beta regression

Figure 3.6: Worm plots from beta regression models and the in�ated beta regression model �tted for
the CVE data.

a�ected, along with a signi�cant reduction in the precision parameters. It may not seem
to be a signi�cant change in the estimates without taking context into account, but it is
important to recall that the values of the response variable are very low, therefore a change
in the estimates greatly impacts the residuals and the overall quality of the �t, which is
corroborated by Figure 3.6d.

The BR model �tted after using the linear transformation produces estimates that
are very discrepant from the other �tted models. Note that there is an approximate 0.2
di�erence from the intercept estimate when compared to the rest of the �ts. These dis-
crepant parameter estimates paired with the fact that the diagnostics previously discussed
do not indicate a good �t for this model, suggest that this transformation is distorting the
data to the point where the estimates become signi�cantly di�erent to the rest of the �ts.
This could be due to the magnitude of the observations, since they are very small and the
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transformation essentially calculated a weighted average between the observation and 0.5,
thereby making it a fairly aggressive transformation in this particular scenario. Figure 3.7
shows a comparison between the model �tted after using the linear transformation and
other models which the diagnostics showed to be well �tted. Note how using the linear
transformation resulted in �tted values that are systematically higher than those of the
other models (apart from one observation at the end). As the other models are well �tted,
it is worrying that the linear transformation a�ected the response value to the point were
the �tted values alter so much. If the �tted values �uctuated between being higher and
lower to the �tted values for the other models, it would be more acceptable, however the
evidence suggests that the estimates for the BR model after using the linear transformation
are quite distorted. These �ndings are expanded on in the second simulation scenario of
Chapter 4, which is based on this application and the linear transformation also negatively
a�ects the estimation of the BR model.
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Figure 3.7: Scatter plots comparing �tted values from the BR model after using the linear transfor-
mation with (a) the BR model �tted after adding 0.0001 to the boundary obs.; (b) the BR model �tted
after replacing the boundary obs. with smallest in (0,1) and (c) the BR model �tted after excluding the
boundary observations. The diagonal line in each �gure is a line with intercept equal to zero and slope
equal to one where all points would lie if the �tted values were equal in both models.

The quasi-likelihood model while estimating p produces estimates that di�er from the
other models, especially when it comes to the estimate of �1. Not considering the BR model
�tted after using the linear transformation, the QL model’s estimate of �1 is less than
half the estimate of �1 in the rest of the models; given that the ESL variable is considered
highly signi�cant in the model, this very discrepant estimate raises questions about the
estimation accuracy of the quasi-likelihood model in this application. Also, the estimation
of 0 results in a very high standard error estimate, larger even than the point estimate of
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0, this could be due to the fact that this model is limited with regards to modelling the
precision, as it needs to be constant. Note that Figure B.7 does not indicate that this model
provides a bad �t for this data, but there is a surplus of residuals below zero in the left side
of the plot when compared with residuals greater than zero, which could possibly raise
questions as to how well �tted this model really is. The model estimates p as 0.767 with
a standard error of 0.403, therefore if one were to create a 95% con�dence interval for p,
1 would be included in the interval and that would mean the "variance function" in this
model would be equivalent to that of the beta distribution. The QL model with p �xed as
one also yields poor results when compared to well �tted models, the estimate for �1 is
less than half of the estimate in the well �tted models and the other estimates are far o�
as well.

The worm plot in Figure B.8, calculated with the default residuals from the gamlss
package, would seem to suggest that the zero-in�ated beta regression model provides
a poor �t for this dataset. However, notice that the estimates shown in Table 3.3 of the
parameters of the mean submodel of the zero-in�ated BR model are equal to those of
the BR model after excluding the boundary observations, therefore the model is doing
exactly what it is supposed to do, which is estimating �i not considering the boundary
observations. Given this dilemma, it is important to try and understand why the worm plot
is displaying such a poor �t for the model and if the �t is in fact bad. Firstly, analysing the
shape of the deviation points in the worm plot, it is clear that these points take a plunge
in the highest values of the normal quantile, which suggests that in these observations,
the residual value is getting lower and lower from what they should be if the randomized
quantile residual (rq) was distributed according to a normal distribution. Essentially, the
worm plot is suggesting that these residuals are not following a normal distribution, when
it should if the model was correct. To verify that this worm plot does not only suggest a
poor �t in this particular sample, a simulation study was conducted, where nine di�erent
samples were randomly generated, in which each one had the same size as the orginal
sample found in the dataset in analysis and for each sample y′1,… , y′239 it was assumed
that

y′i ∼ BEZI(�̂ , �̂i , �̂i),

where �̂ , �̂i and �̂i refer to the �tted values for the ith observation of the original sample
using the parameter estimates for the zero-in�ated BR model displayed in Table 3.3. The
explanatory variable values for each observation i were the same as in the respective ith
observation in the CVE dataset.

After generating each sample randomly, a zero-in�ated BR model was �tted. Figure
B.9 shows the worm plots of the nine �tted models for their respective generated samples.
Despite every model accurately estimating the pre-de�ned model parameters, note how
the worm plots all show a similar pattern to the one in Figure B.8, where the observations
that are in the highest quantiles of the normal distribution plunge downwards, indicating a
bad �t. Therefore, it is possible to conclude that there is an issue with the residuals in this
scenario that consequently a�ects the usefulness of the worm plot for this speci�c model
in this particular case. In a similar simulation study where the sample size is quadrupled
resulting in 956 observations, and with the explanatory variables being cloned three times
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as to result in the same number of observations as the response variable, then proceeding
in a similar way to the last study, note how the worm plots for the �tted models, shown
in Figure B.10, again display a similar pattern to those previously discussed. Also, Figure
B.11 which is a usual normal probability plot with the residuals of one of the models �tted
in a generated sample of size 956, suggest that despite a large sample, the residuals do not
seem to be converging to a normal distribution in the tails, especially in the upper tail.
This con�rms that the worm plot does not accurately depict whether the model is well
�tted or not in this case, because the residuals themselves are not normally distributed.
When exploring the reason for the residuals not to be normally distributed, it was found
that the rq residual for the in�ated beta regression model is not correctly programmed on
the gamlss package on R. The problem lies in the fact that when calculating the residual,
rather than using the expression in (3.1) for the observations in (0,1), which uses the
cumulative distribution function of the beta distribution, the distribution function of the
zero-in�ated beta distribution is being used instead, hence calculating (1 − �)BI0(y; �̂ , �̂, �̂),
which would equate to

�̂(1 − �̂) + (1 − �̂)2F (yi; �̂, �̂),

where F (⋅) is the distribution function of the beta distribution, thus resulting in a di�erent
expression compared to (3.1). The worm plot in Figure 3.6f was created using the correct
expression for the rq residual in the case of the in�ated beta regression model and it con�rms
that the model is indeed well �tted. Also, with the nine simulated samples which previously
showed incorrect worm plots, the rq residual with the correct expression was calculated and
Figure B.12 shows the worm plots created with the correct residual values, showing a good
�t for the models. As was the case with the nine generated samples with quadruple sample
size, shown in Figure B.13. The implementation of the correct expression for the randomized
quantile residual can be found in h�ps://github.com/danielanobrega/BR_boundaries.

Looking at the estimates of the models’ parameters in Table 3.3, note that the initial
hypothesis from Morrison et al. (2020) that there was a positive correlation between CVE
percentage and being white and college educated is con�rmed by the �tting of the models;
the estimates for �2 and �3 are considered to be signi�cant and are positive, thus as the
percentage of people with these characteristics in the sample increase, the CVE percentage,
on average, also increases. The estimate of �1 is the only one that implies a reduction
on the mean CVE percentage for the county. This is interesting as ESL tends to refer to
immigrants, therefore they either do not share the same views on vaccination as the native
population (especially those who are considered white and have a bachelor’s degree) or
because the immigrants are more likely to follow rules imposed by the government in
order to avoid any sanctions which will a�ect their lives much more than families that
have an American citizenship. Analysing the estimate of 2, one can infer that amongst
metropolitan counties, the precision is around 277 times more precise if the value of
Poverty is �xed, so there tends to be more condensed values for CVE percentages in
counties situated in a metropolitan area.

To analyse this dataset, the BR model after adding 0.0001 to the boundaries and the
zero-in�ated beta regression model seem to be the best alternatives. Although the BR
model after replacing the boundary observations with the smallest observed value in (0,1)
and the BR model �tted without the observations equal to zero provide decent �ts, the
former makes it so observations to zero are the same as observations equal to 0.00025

https://github.com/danielanobrega/BR_boundaries
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which distorts the data. Whereas, adding 0.0001 to the boundary observations results in a
similar �t and this method still di�erentiates the response values equal to zero from all
the others, while still maintaining a decent �t, unlike the method where 0.00001 is added,
which seems to cross a threshold where the model is highly a�ected by such low values.
With regards to excluding the boundary observations, these constitute 5% of the data,
thus a signi�cant proportion of the dataset will be discarded, which is not ideal. However,
the in�ated beta regression model maintains the same estimates for the mean submodel
in (0,1) and does not discard observations that may bring important information to the
analysis, thus being a good alternative for this scenario. Even though it can be argued that
this speci�c data does not have a particular and special reason to separate the boundary
observations, it also does not have a reason that impedes this model’s use in a way that it
would not make sense to separate the data. Therefore, I would argue that it is an option
and one can decide between separating the analysis and choosing to �t the in�ated beta
regression model or not separating and adding 0.0001 to the boundary observations.
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Chapter 4

Simulation

To evaluate the performance of the methods discussed in Chapter 2, Monte Carlo
simulations were conducted considering di�erent scenarios. For each of the scenarios, N
= 10000 replicates were done.

To evaluate the performance of the methods in estimating the parameters, the estimated
bias and the root mean squared error (RMSE) measures were used. Let � represent a
parameter, �̂ the estimator for this parameter and �̂j is the estimate of � in the jth replicate
of the simulation. The estimated bias and estimated RMSE are

B̂ias(�̂) = 1
N

N
∑
j=1
�̂j − �

and

R̂MSE(�̂) =

√
1
N

N
∑
j=1

(�̂j − �)
2
.

4.1 First scenario

The �rst scenario simulated is one where there is a lower detection limit to the response
variable y. In such situations, any observation below a certain value is registered as zero
despite it not being a true zero. The sample sizes considered in each replicate were n =
50, 100. One explanatory variable was considered for this example, which was generated
with random draws from a standard uniform distribution, i.e.

xi ∼ U (0, 1), i = 1,… , n,

where U (⋅) denotes the uniform distribution. The covariate x was set for the sample size of
50 and then cloned to obtain the values corresponding to the sample size of 100, therefore
xi = xi+50, i = 1,… , 50, in that sample. The covariate x was generated once, before the
simulation, and maintained the same across all replicates of the simulation. The logit and
logarithmic functions were used as link functions for the mean and precision, respectively.
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Hence, �i and �i are

log(
�i

1 − �i)
= �0 + �1xi (4.1)

and
log(�i) =  , (4.2)

In every replicate of the simulation, two samples of the response variable were randomly
generated taking random draws from a beta distribution, so that

yi ∼ (�i , �i), i = 1,… , n,

where �i and �i are obtained from applying the inverse logit function and the exponential
function to (4.1) and (4.2), respectively. The parameter values were de�ned as �0 = −3.7,
�1 = 1.6 and � ≡ exp( ) = exp(4.094345) = 60. With these values, the linear correlation
coe�cient between y and x across the 10000 replicates varies from 0.389 to 0.798 with 75%
of the values being higher than 0.604 in the sample size of 100 and in the sample size of 50,
the correlation varies from 0.195 to 0.879 with 75% of the values being higher than 0.595.
These values for the parameters resulted in values for � that varied from 0.024 to 0.108
with the median value being 0.043.

After generating the samples, in order to simulate the detection limit scenario, the
observations that were lower then 0.5% were registered as zero. There will be samples
where no zeros will be present in the sample, so the methods used had to be adapted. If
there was at least one zero in the sample, the �tted models were

(1) Using the linear transformation proposed by Smithson and Verkuilen (2006) and
then �tting a beta regression (BR) model via maximum likelihood.

(2) Adding 0.005 to the boundary observations and then �tting a beta regression (BR)
model via maximum likelihood.

(3) Adding 0.0005 to the boundary observations and then �tting a beta regression (BR)
model via maximum likelihood.

(4) Replacing boundary observations with the lowest observation observed in the (0,1)
interval in the dataset and then �tting a beta regression (BR) model via maximum
likelihood.

(5) Removing boundary observations and then �tting a beta regression (BR) model via
maximum likelihood.

(6) Fitting a zero-in�ated-beta regression (BR) model via maximum likelihood.

(7) Fitting a quasi-likelihood model proposed by Bonat et al. (2019) while estimating p
and with p �xed as 1.

If there were no zeros in the sample, methods (1) to (6) were changed to a beta regression
model without using any transformations to map the data onto (0,1). Therefore, in the
replicates in which there were no zeros in the sample, methods (1) to (6) were equivalent
to each other, thus producing the same estimates. Figure 4.1 presents how many zeros
were in each sample across the 10000 replicates of the simulation. Note that in the sample
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size 100, less than a thousand replicates had samples where there were no zeros and few
replicated had samples with more than 5 zeros. In the sample size of 50, the number of
samples with no zeros increases due to the smaller sample size reducing the amount of
observations lower than 0.5% in the sample and very few replicates had samples with more
than 3 zeros.

In this scenario, the robust estimation in the beta regression model yields the same
results as the maximum likelihood estimation seeing as there are not discrepant obser-
vations that greatly in�uence the estimates. Therefore, this robust method will not be
analysed as any �ndings would be equivalent to the usual estimation in BR models.

The quasi-likelihood model where p is not previously de�ned presented problems
in some of the replicates. Depending on the generated sample, the model’s Cholesky
factorization fails, thus resulting in a failure in the model’s estimation. There does not
seem to be a particular pattern among the samples that resulted in failure. Out of the
10000 replicates, the QL model failed in 3188 for the sample with 50 observations and in
2568 replicates for the sample size of 100. Therefore, the estimates from this model are not
shown in the table.

Table 4.1 presents the results of the estimated bias and estimated RMSE for the models
�tted in the simulation. The BR model �tted after using the linear transformation results
in poor estimates for the parameters when compared to the other methods used prior to
�tting a beta regression model, note that the bias for the estimates is signi�cantly higher
than in the other BR models. This is in accordance with the CVE application where the
observation values were small and the linear transformation a�ected the �tted model.
This reinforces the point stated in the analysis of the CVE application that the use of
this transformation must not be automatic, as it often is. It is necessary to analyse the
circumstances of the data in order to decide what the best method to map the data onto
(0,1) is.

When �tting the QL model with p �xed as one, the results are very good. The advantage
of resorting to this model is that there is no need to transform the data before using it,
therefore it avoids a certain amount of subjectivity when deciding which method to
transform data with boundary observations in order to �t a beta regression model.
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Figure 4.1: Bar plot of the number of zeros in each sample for every replicate of the simulation.
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Table 4.1: Estimated bias and root mean squared error (RMSE) for the estimates of the parameters
when the sample size is 50 and 100 in all replicates of the �rst simulation scenario.

n = 50 n = 100
Model Bias RMSE Bias RMSE
BR after using �0 0.238 0.291 0.155 0.187
linear transformation �1 −0.210 0.312 −0.137 0.215

 0.274 0.351 0.159 0.216

BR after adding �0 0.006 0.163 0.012 0.114
0.005 to �1 −0.018 0.256 −0.024 0.180
boundary obs.  0.102 0.230 0.069 0.160

BR after adding �0 −0.050 0.189 −0.046 0.136
0.0005 to �1 0.074 0.290 0.071 0.210
boundary obs.  −0.035 0.236 −0.073 0.178

BR after replacing �0 0.016 0.164 0.018 0.115
boundary obs. with �1 −0.034 0.258 −0.033 0.182
lowest obs. in (0,1)  0.122 0.242 0.081 0.166

BR without �0 0.068 0.175 0.073 0.134
boundary obs. �1 −0.103 0.275 −0.109 0.210
in the dataset  0.146 0.256 0.111 0.185

Zero-in�ated beta �0 0.068 0.175 0.073 0.134
regression �1 −0.103 0.275 −0.109 0.210

 0.146 0.256 0.111 0.185
� 0.026 0.034 0.026 0.030

Quasi-likelihood �0 −0.015 0.181 −0.011 0.127
regression (p = 1) �1 0.013 0.283 0.011 0.200

 0.067 0.246 0.039 0.171
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4.2 Second scenario

The second simulation scenario was based on the CVE application in Section 3.2. To
generate the data, the covariates from the CVE dataset were used, thus, unlike the previous
scenario, the explanatory variables were not randomly generated.

The logit and logarithmic functions were used as link functions for the mean and
precision, respectively. Hence, �i and �i are as shown in (3.5) and (3.6), respectively.

In every replicate of the simulation, a response variable was randomly generated taking
random draws from a beta distribution, so that

yi ∼ (�i , �i), i = 1,… , n,

where �i and �i are obtained from applying the inverse logit function and the exponential
function to (3.5) and (3.6), respectively. The parameter values were �xed as the parameter
estimates from the BR model �tted after adding 0.0001 to the boundary observation
presented in Table 3.3 as this model was concluded to be well �tted and its use was
recommended for the analysis of that data. Therefore the �xed parameter values were
�0 = −4.771, �1 = −0.418, �2 = 0.209, �3 = 0.113, �4 = 0.149, 0 = 5.115, 1 = 0.487 and
2 = 1.019. With these parameter values, � varies from 0.0012 to 0.0375 with the median
value being 0.0092.

After generating the sample, as was the case in the �rst scenario, a detection limit
value was �xed. In this case, however, any observation of the response variable whose
value was below 0.0001 was changed to zero. In this situation, there were considerably
less replicates in which the generated sample had no zeros than in the �rst scenario. If
there was at least one zero in the sample, the �tted models were

(1) Using the linear transformation proposed by Smithson and Verkuilen (2006) and
then �tting a beta regression (BR) model via maximum likelihood.

(2) Adding 0.0001 to the boundary observations and then �tting a beta regression (BR)
model via maximum likelihood.

(3) Adding 0.00001 to the boundary observations and then �tting a beta regression (BR)
model via maximum likelihood.

(4) Replacing boundary observations with the lowest observation observed in the (0,1)
interval in the dataset and then �tting a beta regression (BR) model via maximum
likelihood.

(5) Removing boundary observations and then �tting a beta regression (BR) model via
maximum likelihood.

(6) Fitting a zero-in�ated-beta regression model.

(7) Fitting a quasi-likelihood model proposed by Bonat et al. (2019).

If there were no zeros in the sample, methods (1) to (6) were changed to a beta regression
model without using any transformations to map the data onto (0,1). Figure 4.2 shows the
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majority of the generated samples had 3-6 zeros in the sample, which would represent
1.26% to 2.5% of the data, thus being a very low percentage of the data. There were no
zeros in the sample in only 46 replicates, therefore in most of the 10000 replicates, methods
(1) to (6) yielded di�erent results.

This scenario is also one in which the robust estimation method for beta regression
model yields the same results as the maximum likelihood estimation therefore the results
do not focus on this robust method of estimation. Note that even in the CVE application,
which this simulation is based on, the robust beta regression model did not consider any
observations to be greatly in�uent on the estimates.

As stated in Section 3.2, this particular QL model is only implemented for a �xed
precision, therefore the model will only estimate 0. As was the case in the previous
scenarios, there were also replicates in which the QL model did not work, however in
this case, this issue did not occur as often as in the previous simulation; the QL model did
not work in 502 replicates in this scenario. Even still, the results for the QL model while
estimating p are not present in this section.
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Figure 4.2: Bar plot of the number of zeros in each generated sample for all 10000 replicates in the
second simulation scenario.

Table 4.2 presents the results of the simulation. In the CVE application’s �ndings,
the poor performance of the BR model �tted after using the linear transformation was
commented on and combined with the �rst simulation scenario, there seems to be an
indication that with very small values of the response variable, the transformation seem
to greatly a�ect the estimates of the subsequently �tted BR model. The results for this
method in this simulation scenario show a very high bias in the estimates of �0, �1 and 0
especially. These biases are particularly alarming when one considers that due to the low
values of the observations, even a small deviation from the correct parameter values result
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in a massive change in the estimated value for the response variable for each observation
in the sample. Therefore, this emphasises that the method of mapping the data onto (0,1)
does not seem to work well when analysing the CVE data, which was the impression when
interpreting the results in Section 3.2.

With regards to the quasi-likelihood model, note that it has satisfactory results when
it comes to the estimated bias, but the variability of the estimates is higher than the other
BR models (aside from the BR model after using the linear transformation). However, this
is a situation where it would be necessary to have covariates in the precision submodel,
thus the use of the QL model is not completely adequate, since the model is limited to a
�xed precision.

The in�ated beta regression model seems to have had a worse performance than
the methods in which an " was added to the boundary observations that preceded the
�tting of a BR model, but this may be due to the fact that the generated data follows
a beta distribution and not a zero-in�ated beta distribution, furthermore the model is
attempting to estimate the parameters with fewer observations than the BR models, since
the estimation is done putting aside the boundary observations. The same logic applies to
the BR model �tted after removing the boundary observations. The two best models in
this scenario, which were the two in which an " was added to the boundary observations,
performed similarly.
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4.3 Third scenario

The third simulation scenario is similar to the �rst one in terms of there only being one
explanatory variable generated by random draws from a standard uniform distribution.
The covariate x was set for the sample size of n=50 and, equivalently to what was done
in the �rst scenario, cloned to form the explanatory variable with n=100 observations
where xi = xi+50, i = 1,… , 50, in that sample. The mean and precision are also given by
the equations in (4.1) and (4.2), respectively. The di�erence in this scenario is that the
data was generated according to a zero-in�ated beta distribution as opposed to the regular
beta distribution, which means that there is a probability � of each observation being
equal to zero. Therefore, for every replicate of the simulation two samples were randomly
generated (one with n = 50 and one with n = 100) such that

yi ∼ BEZI(�, �i , �i), i = 1,… , n,

where �i and �i are obtained from applying the inverse logit function and the exponential
function to (4.1) and (4.2), respectively. The parameter values were set as as �0 = 0.6, �1 =
1.5 and  = log(60) = 4.094, which results in values for the �i’s that range from 0.372 to
0.710 with the median value being 0.538. Thus, the observations will tend to have values
very far from the boundaries. The parameter � was set as 0.025, therefore on average
2.5% of the generated response value will be comprised of observations equal to zero
that will be discrepant from the rest of the observations in the sample and will likely be
highly in�uential on the model estimates. This scenario serves to analyse how the models
discussed in this work fare in a hypothetical type of data where the boundary observations
have a particular meaning and their nature is such that they are outliers. In practice, this
could refer to a dataset where the zeros indicate an absence of something, however when
this "something" is present, it accounts for a proportion of the total that is not too close
to zero, an example of this is discussed in Section 2.2.1 with the proportion of monthly
income spent with mobile phone services. This scenario is a little more extreme than this
example as it is very unlikely that mobile services will cost near half of one’s income, but
the idea is to assess how much the models are a�ected by the boundary observations being
discrepant and in practice these would have a particular meaning. Thus, this situation
di�ers greatly from the previous scenarios which emulated a limit detection problem
when establishing the response variable’s values, so the boundary observations were not
too di�erent to the rest of the observations. Naturally, the zero-in�ated beta regression
model is highly suitable for a situation such as this seeing as the generated data is known
to be from the zero-in�ated beta distribution and the observations equal to zero are, by
de�nition, separate from the observations in (0,1), however when met with a situation
such as this one in practice, where there are but few boundary observations in the dataset,
one might be reluctant to use that model and try one that produces estimates for �i and
�i taking all observations into account. Needless to say, due to the fact that there will
be discrepant observations in the generated samples, the beta regression model with the
robust estimation method will have its performance analysed in this scenario. The models
�tted for this scenario were:

(1) Using the linear transformation proposed by Smithson and Verkuilen (2006) and
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then �tting a beta regression (BR) model via maximum likelihood and the robust
approach (RobBR) proposed by Ribeiro and Ferrari (2020).

(2) Adding 0.01 to the boundary observations and then �tting a beta regression (BR)
model via maximum likelihood and the robust approach (RobBR) proposed by
Ribeiro and Ferrari (2020).

(3) Adding 0.001 to the boundary observations and then �tting a beta regression (BR)
model via maximum likelihood and the robust approach (RobBR) proposed by
Ribeiro and Ferrari (2020).

(4) Replacing boundary observations with the smallest observation observed in the
(0,1) interval in the dataset and and then �tting a beta regression (BR) model via
maximum likelihood and the robust approach (RobBR) proposed by Ribeiro and
Ferrari (2020).

(5) Removing boundary observations and and then �tting a beta regression (BR) model
via maximum likelihood and the robust approach (RobBR) proposed by Ribeiro and
Ferrari (2020).

(6) Fitting a one-in�ated-beta regression model.

(7) Fitting a quasi-likelihood model proposed by Bonat et al. (2019).

With � being small, there was still a distinct probabilty of there being no zeros in the
generated sample. Figure 4.3 shows the frequency of the amount of zeros in each generated
sample. Note that just under 3000 generated samples of size 50 had no zeros present in the
dataset and not many replicates had more than 3 zeros, whereas in the generated samples
with 100 observations, less than a 1000 replicates had no zeros in the sample. As was the
case in the previous simulation scenarios, in the event of an absence of boundary �gures
in the sample, a beta regression model was �tted without prior transformations to the
data and the zero-in�ated beta regression model was also replaced by a BR model.

Table 4.3 shows the results for the �tted models. In this scenario, out of the 10000
replicates, the quasi-likelihood model while estimating a value for p failed in 8087 when
the sample had size 100 and in 7977 when it had size 50, therefore the results for this
model are not shown in the table. Even though the results of the BR model �tted after
replacing the boundary observations with the smallest obs. in (0,1) and the BR model
after excluding the boundary observations are shown in the table, they are not adequate
methods to analyse data in this scenario. These transformations are too aggressive in
situations where the boundary observations are outliers, as they either alter the zeros
drastically or remove them altogether. The results are displayed in order to provide a
comparison between them and the other models that either use less drastic transformations
or do not require any.

The BR models that were �tted after using less aggressive ways of transforming the
data (linear transformation and adding an " to the boundary observations) resulted in a
signi�cant bias to the estimates of the parameters, especially when it comes to the estimate
of  and note how all these biases are negative, therefore they are much lower than they
should be. This is due to how much the beta regression model �t is being in�uenced by
the boundary observations, resulting in a very poor accuracy of the estimates. Usually
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Figure 4.3: Bar plot of the number of zeros in each generated sample for all 10000 replicates in the
third simulation scenario.

when the sample size increases, the accuracy of the estimates tend to increase, in this case
however, as the presence of boundary observations implies that they are in�uent on the
model estimates and a larger sample of 100 greatly decreases the amount of replicates in
which the generated sample has no zeros and when the boundary observations are present,
they tend to be more numerous than when they are present in the sample with size 50, the
estimates are more a�ected in the larger sample.

The zero-in�ated beta regression model naturally provides the best results as was
expected given how the data was generated, but note how the robust beta regression
model massively reduces the bias for the estimates of the parameters. In this scenario, the
linear transformation provides a good alternative to deal with the boundary observations,
provided a RobBr model is �tted, especially in the smaller sample where there are fewer
observations equal to zero. In the larger sample size this method has worse results than
adding an " (0.01 or 0.001) to the boundary observations.

Note that in the smaller sample, the RobBR model �tted after adding 0.001 to the
boundary observations provides better results than the RobBR after adding 0.01 to the zeros.
This occurs due to 0.001 being more discrepant than 0.01 in relation to the observations in
(0,1), henceforth the RobBR model attributes a lower weight to these observations than it
does when they are equal to 0.01, therefore the robust estimation method is working as
expected.

The QL model with p �xed as one seems to be less a�ected by the outliers than the BR
models are, however the biases for the estimates is still very high, particularly when it
comes to the estimation of  .
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In this scenario, aside from the zero-in�ated beta regression model, the robust BR
model �tted after using the linear transformation or after adding an " to the boundary
observations clearly provide the best alternatives for the analysis of these data, in both
sample sizes. This type of method is able to deal well with discrepant observations and
the transformations are not aggressive, therefore they do not alter the dataset too much
and the model yields good results.

Table 4.3: Estimated bias and root mean squared error (RMSE) for the estimates of the parameters in
the third simulation scenario.

n =50 n =100
Model �0 �1  � �0 �1  �
BR after using Bias −0.035 −0.162 −1.368 −0.041 −0.181 −1.712
linear transformation RMSE 0.181 0.395 1.673 - 0.147 0.339 1.848 -

BR after adding Bias −0.043 −0.142 −1.373 −0.041 −0.149 −1.585
0.01 to RMSE 0.184 0.386 1.679 - 0.134 0.299 1.717 -
boundary obs.
BR after adding Bias −0.060 −0.196 −1.669 −0.057 −0.209 −1.954
0.001 to RMSE 0.247 0.515 2.019 - 0.182 0.406 2.096 -
boundary obs.
BR after replacing Bias −0.002 −0.048 −0.271 −0.003 −0.050 −0.358
boundary obs. with RMSE 0.082 0.160 0.458 - 0.059 0.1221 0.459 -
lowest obs. in (0,1)
BR without Bias 0.000 0.000 0.061 0.000 0.001 0.030
boundary obs. RMSE 0.075 0.125 0.216 - 0.053 0.088 0.148 -
in the dataset
Zero-in�ated beta Bias 0.000 0.000 0.061 0.000 0.000 0.000 0.030 0.000
regression RMSE 0.075 0.125 0.216 0.022 0.053 0.088 0.148 0.016

Quasi-likelihood Bias −0.038 −0.043 0.868 −0.035 −0.043 −0.977
regression (p = 1) RMSE 0.119 0.217 1.110 - 0.086 0.157 1.096 -

RobBR after using Bias 0.006 −0.036 0.001 0.005 −0.016 0.021
linear transformation RMSE 0.091 0.181 0.506 - 0.055 0.096 0.226 -

RobBR after adding Bias −0.004 −0.012 −0.032 −0.001 0.000 −0.001
0.01 to RMSE 0.092 0.180 0.505 - 0.054 0.093 0.203 -
boundary obs.
RobBR after adding Bias −0.003 −0.010 −0.011 0.000 −0.002 −0.007
0.001 to RMSE 0.111 0.216 0.482 - 0.056 0.105 0.235 -
boundary obs.
RobBR after replacing Bias −0.013 −0.006 −0.113 −0.014 −0.004 −0.173
boundary obs. with RMSE 0.082 0.144 0.329 - 0.059 0.100 0.281 -
lowest obs. in (0,1)
RobBR without Bias 0.000 0.000 0.061 0.000 0.00 0.030
boundary obs. RMSE 0.075 0.125 0.216 - 0.053 0.088 0.148 -
in the dataset
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Chapter 5

Conclusions

In this work, the performance of di�erent methods to deal with boundary observations
was compared in di�erent scenarios. In the wealth of situations analysed, it is possible
to come to some conclusions as to the performance of the methods and how much sense
each of them makes in each scenario.

When discussing methods to map data onto the (0,1) interval, two of the methods in
particular are, in general, very aggressive: replacing the boundary observations with the
value of the smallest/largest observation in (0,1) and excluding the boundary observations.
Even though these are, theoretically, viable options in order to deal with the obstacle of
having boundary observations, they usually do not make much sense. Excluding some
observations is often not advisable as they can still provide useful information about the
data and what is being studied, unless one possesses the knowledge that these observations
being analysed have been wrongly measured or if there is another problem with it. For
instance, in the tuna application the sole boundary observation is completely discrepant
from all other observations, but unless it is known for certain that the observation is
wrong or does not make sense, excluding it would be discarding a possible outcome of
the data. However this transformation is useful as a way to compare what the model
would be like in the absence of boundary observations and since this work is mainly about
cases with few of these, it is desirable that the estimates are not too altered when �tting a
model with the full data. Replacing by the smallest/largest observation in (0,1) equates
the boundary observation to another which may have completely di�erent characteristics.
One could argue that in situations where the values are all small (such as in the CVE
application), the boundary observations are very close to the observations with smallest
values in (0,1), however the di�erence relative to the magnitude of the data may not
be small at all. Equating the boundary observations to observations that may be close
is not adequate, seeing as it is interesting that any transformations used maintain a
di�erence from observations equal to 0 or to 1 to the rest. In situations where the boundary
observations are discrepant, this method would completely alter the data and is not an
adequate way of dealing with boundaries.

When it comes to mapping the data onto (0,1), the most used method in works published
in recent years has been to use the linear transformation from Smithson and Verkuilen
(2006). However, as seen in some scenarios explored in this work, this transformation is not
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always a good alternative. As seen in the CVE application, when the response variable’s
values are low, the transformation alters the data to a point where the model �tted after
using it yields poor estimates for the parameters. This situation is con�rmed in the second
scenario in Chapter 4, as even with a generated sample, the transformation continues to
provide worse results than other alternative ways to deal with boundary observations.
Therefore, this method cannot be used without taking the context of the data into account;
depending on the characteristics of the response variable, this transformation may greatly
a�ect the model estimates, consequently a�ecting their interpretation. Henceforth, caution
is advised when deciding if this transformation should be used.

Adding or subtracting an " to the boundary observations was shown to be a good
alternative in a variety of scenarios. Choosing an appropriate " allows the boundary
observations to still be di�erent from the rest of the observations, unlike when using the
more aggressive method already discussed, and maintains the structure of the data, which
is not always the case when using the linear transformation. Despite being a degree of
subjectivity when choosing which " is more appropriate for each scenario, a brief analysis
of the data should be enough to better decide on which " to use and more than one option
can be tested to ensure a good choice. In cases where the boundary observations are
discrepant, the method of adding (subtracting) an " worked really well alongside the beta
regression model with the robust estimation method. With this method, the observations
will still be very close to the boundary while the RobBR attributes a smaller weight to these
observations when estimating the parameters. The robust estimation method for the beta
regression model is clearly the best way to deal with discrepant boundary observations if
the use of the in�ated beta regression model is not adequate. The third simulation scenario
shows that this method is the option that is least a�ected by the outliers equal to zero or
one and as previously stated, adding (subtracting) a " to the boundaries and then �tting a
BR model with this robust estimation method works well. In fact, in many cases whatever
the choice of a small " the estimates for the beta regression model with the robust approach
may not be altered too much at all.

The advantage of opting for the traditional quasi-likelihood approach (p = 1) is that it is
less a�ected by the boundary observations than the BR model and no prior transformation
of the data is required. However, in situations where the boundaries are highly in�uent on
the model, the RobBR is without a doubt the best choice. If the boundaries are not in�uent,
the scenarios studied in this paper showed that the QL approach is not as good as the BR
model, except in situations where the assumption of a �xed precision is reasonable, as seen
in the �rst simulation scenario, therefore it may still be useful in such situations. However,
in practice, the assumption of a �xed precision is rarely appropriate in the analysis of
data in the (0,1) interval. When estimating p, the in�uent boundary observations greatly
a�ect the estimation of p itself, thereby causing the estimated dispersion to be completely
distorted to the point where its interpretation will no longer make much sense. Also, due to
the limitation of the implementations of the QL models being restricted to a �xed precision
(or dispersion), in many situation the QL model will not be able to accurately estimate
the precision parameter, which was the case in the CVE application and further explored
in the simulation scenarios. Even without in�uent boundary observations, the QL model
while estimating p failed to work in many simulated situations, which is not ideal given
that theoretically having a non-�xed p would increase the �exibility of the model and
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assist in it providing decent models in more data scenarios. However, the presence of the
non-�xed p seemed to limit the model even more, at least in situations with boundary
observations, henceforth being unreliable. Another disadvantage of opting for the QL
approach is the lack of diagnostic tools normally available.

The in�ated beta regression model is naturally more adept to scenarios where there
is a larger cluster at the boundaries than in the scenarios explored here, however it is
important to note that in situations like the CVE application where there is a reasonable
amount of observations and the boundaries account to 5% of them, this model is a viable
option despite the occurrence of a zero in the data not having a special meaning. Therefore,
this type of model should still be considered and it may be useful in some scenarios, but
one must be careful with the diagnostics; as seen in Section 3.2, the randomized quantile
residual for the in�ated beta regression models is not correctly programmed in the gamlss
package on R, thus it it advisable to calculate the residual separately in order to avoid an
interpretation that the model is not well �tted when it in fact may be.

In summary, adding (subtracting) " to (from) the boundaries seems to be a method that
is adequate in more scenarios, but the linear transformation may also be an option in some
cases. In situations where the boundaries are in�uent, the robust beta regression model is
an excellent choice and the in�ated beta regression may be a viable option depending on
the amount of boundary observations in the sample.

Essentially, there are no methods that can be used indiscriminately without prior
analysis. The most adequate method needs to be carefully analysed and some situations
that boundary observations may arise were discussed in this thesis. Even though the
linear transformation is often used to transform the data, some examples presented here
show that it is not always a good alternative, just like a poor choice of " to be added
(subtracted) to (from) the boundary observation may result in inaccurate estimates for the
parameters.
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Diagnostics - Tuna application
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Figure A.1: Diagnostic graphs for the BR model �tted after using the linear transformation in the
tuna application.



52

APPENDIX A

0 20 40 60 80

−
2

0
2

4
6

Obs. number

R
es

id
ua

l

46

(a)

0 20 40 60 80

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Obs. number

C
oo

k'
s 

di
st

an
ce

(b)

0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

Predicted values

G
en

er
al

iz
ed

 le
ve

ra
ge

46

(c)

−2.5 −2.0 −1.5 −1.0
−

2
0

2
4

6

Linear predictor

R
es

id
ua

l

46

(d)

Figure A.2: Diagnostic plots for the BR model �tted after subtracting 0.01 from the boundary obser-
vation in the tuna application.
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Figure A.3: Diagnostic plots for the BR model �tted after subtracting 0.001 from the boundary
observation in the tuna application.
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Figure A.4: Diagnostic plots for the BR model �tted after replacing boundary observations with largest
obs. in (0,1) in the tuna application.
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Figure A.5: Diagnostic plots for the BR model �tted after removing boundary observations in the
tuna application.
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(a) BR after using linear transformation
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(b) BR after subtracting 0.01 from obs. 46

−2 −1 0 1 2

−
4

−
2

0
2

4

Normal quantiles

R
es

id
ua

ls

(c) BR after subtracting 0.001 from obs. 46
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(d) BR after replacing obs. 46 with largest obs.
in (0,1)
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(f) RobBR after using linear transformation
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(g) RobBR after subtracting 0.01 from obs. 46
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(h) RobBR after subtracting 0.001 from obs. 46

Figure A.6: Normal probability plots with simulated envelopes for the models �tted in the tuna
application, where the residuals used are the standardized weighted residual type 2.
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Figure A.7: Scatter plot of the Pearson residuals vs. the �tted values of the quasi-likelihood model
with an estimated p �tted for the analysis of the tuna application.
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Figure A.8: Scatter plot of the Pearson residuals vs. the �tted values of the quasi-likelihood model
with p=1 �tted for the analysis of the tuna application.
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Diagnostics - CVE application
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Figure B.1: Diagnostic graphs for the BR model �tted after using the linear transformation in the
CVE application.
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Figure B.2: Diagnostic graphs for the BR model �tted after adding 0.0001 to the boundary observations
in the CVE application.
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Figure B.3: Diagnostic plots for the BR model �tted after adding 0.00001 to the boundary observations
in the CVE application.
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Figure B.4: Diagnostic plots for the BR model �tted after replacing boundary observations with
smallest in (0,1) in the CVE application.
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Figure B.5: Diagnostic plots for the BR model �tted after removing boundary observations in the CVE
application.
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(a) BR after using linear transformation
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(b) BR after subtracting 0.0001 from obs. 46
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(c) BR after subtracting 0.00001 from obs. 46
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(d) BR after replacing obs. 46 with smallest
obs. in (0,1)
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(e) BR after excluding boundary observations.

Figure B.6: Normal probability plots with simulates envelopes for the �ve beta regression models
�tted via maximum likelihood in the CVE application. Each �gure is captioned according to what
method was �tted.
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Figure B.7: Scatter plot of the Pearson residuals vs. the �tted values of the quasi-likelihood model
�tted in the CVE application.
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Figure B.8:Worm plot for the in�ated beta regression model �tted for the CVE data using the residual
calculated with the gamlss package on R.
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Figure B.9: Worm plots of the �tted models for the nine generated samples.
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Figure B.10: Worm plots of the �tted models for the nine generated samples with the quadruple
sample size.
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Figure B.11: Normal probability plot of a generated data with quadruple sample size, where the
randomized quantile residuals were used in comparison to the normal quantiles.
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Figure B.12:Worm plots of the �ttedmodels for the nine generated samples using the correct expression
for the rq residual.
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Figure B.13: Worm plots of the �tted models for the nine generated samples with the quadruple
sample size using the correct expression for the rq residual.
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