• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2013.tde-28052013-182956
Documento
Autor
Nome completo
Carlos Eduardo Martins Relvas
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2013
Orientador
Banca examinadora
Paula, Gilberto Alvarenga (Presidente)
Cysneiros, Francisco José de Azevêdo
Pulgar, Germán Mauricio Ibacache
Título em português
Modelos parcialmente lineares com erros simétricos autoregressivos de primeira ordem
Palavras-chave em português
algoritmo back-fitting
análise de resíduos
erros autoregressivos
estimação robusta
influência local.
modelos não paramétricos
modelos semiparamétricos
modelos simétricos
modelos t de Student
pontos de alavanca
splines naturais cúbicos
Resumo em português
Neste trabalho, apresentamos os modelos simétricos parcialmente lineares AR(1), que generalizam os modelos parcialmente lineares para a presença de erros autocorrelacionados seguindo uma estrutura de autocorrelação AR(1) e erros seguindo uma distribuição simétrica ao invés da distribuição normal. Dentre as distribuições simétricas, podemos considerar distribuições com caudas mais pesadas do que a normal, controlando a curtose e ponderando as observações aberrantes no processo de estimação. A estimação dos parâmetros do modelo é realizada por meio do critério de verossimilhança penalizada, que utiliza as funções escore e a matriz de informação de Fisher, sendo todas essas quantidades derivadas neste trabalho. O número efetivo de graus de liberdade e resultados assintóticos também são apresentados, assim como procedimentos de diagnóstico, destacando-se a obtenção da curvatura normal de influência local sob diferentes esquemas de perturbação e análise de resíduos. Uma aplicação com dados reais é apresentada como ilustração.
Título em inglês
Symmetric partially linear models with first-order autoregressive errors.
Palavras-chave em inglês
autoregressive errors
back-fitting algorithm
leverage
local influence.
natural cubic splines
non-parametric models
residual analysis
robust estimation
semi-parametric models
Student-t models
symmetric models
Resumo em inglês
In this master dissertation, we present the symmetric partially linear models with AR(1) errors that generalize the normal partially linear models to contain autocorrelated errors AR(1) following a symmetric distribution instead of the normal distribution. Among the symmetric distributions, we can consider heavier tails than the normal ones, controlling the kurtosis and down-weighting outlying observations in the estimation process. The parameter estimation is made through the penalized likelihood by using score functions and the expected Fisher information. We derive these functions in this work. The effective degrees of freedom and asymptotic results are also presented as well as the residual analysis, highlighting the normal curvature of local influence under different perturbation schemes. An application with real data is given for illustration.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2013-05-29
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.