• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2022.tde-27102022-204201
Document
Author
Full name
Luís Antonio Fantozzi Alvarez
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2022
Supervisor
Committee
Chiann, Chang (President)
Fernandes, Marcelo
Ferrari, Silvia Lopes de Paula
Masini, Ricardo Pereira
Pinto, Cristine Campos de Xavier
Title in English
Inference in parametric models with many L-moments
Keywords in English
Generalised method of moments
L-moments
Semiparametric models
Tuning parameter selection methods
Abstract in English
L-moments are expected values of linear combinations of order statistics that provide robust alternatives to traditional moments. The estimation of parametric models by matching sample L-moments -- a procedure known as "method of L-moments'' -- has been shown to outperform maximum likelihood estimation in small samples from popular distributions. The choice of the number of L-moments to be used in estimation remains ad-hoc, though: researchers typically set the number of L-moments equal to the number of parameters, as to achieve an order condition for identification. In this thesis, we show that, by properly choosing the number of L-moments and weighting these accordingly, we are able to construct an estimator that outperforms both MLE and the traditional L-moment approach in finite samples, and yet does not suffer from efficiency losses asymptotically. We do so by considering a "generalised'' method of L-moments estimator and deriving its asymptotic properties in a framework where the number of L-moments varies with sample size. We then propose methods to automatically select the number of L-moments in a given sample. As an extension, we show that a modification of our approach can be be used in the estimation of semiparametric models of treatment effects in randomised controlled trials (RCTs). This extension produces an efficient estimator with attractive computational properties. We illustrate the usefulness of our approach by applying it to data on an RCT conducted in São Paulo, Brazil. With such extension, we hope more generally to introduce L-moment-based estimation as an attractive procedure in settings where semi- and nonparametric maximum likelihood estimation is computationally complicated.
Title in Portuguese
Inferência em modelos paramétricos com muitos L-momentos
Keywords in Portuguese
L-momentos
Método generalizado dos momentos
Métodos de seleção de hiperparâmetros
Modelos semiparamétricos
Abstract in Portuguese
L-momentos são valores esperados de combinações lineares de estatísticas de ordem que proveem alternativas robustas aos momentos tradicionais. A estimação de modelos paramétricos por meio da minimização da distância entre L-momentos amostrais e teóricos -- um procedimento conhecido na literatura como "método dos L-momentos'' -- produz estimadores de menor erro quadrático médio que aqueles de máxima verossimilhança em pequenas amostras de diversas distribuições conhecidas. Não obstante, a escolha do número de L-momentos usados na estimação é tipicamente ad-hoc: pesquisadores costumeiramente usam o mesmo número de L-momentos que parâmetros, de modo a satisfazer uma condição de ordem para identificação do modelo. Nesta tese, mostra-se que, ao escolher o número de L-momentos apropriadamente e ponderando-os corretamente, é possível construir um estimador que se mostra de menor risco que a abordagem tradicional de L-momentos e que máxima verossimilhança em amostras finitas, e ainda assim se mantém assintoticamente eficiente. Esse resultado é obtido propondo-se um estimador de método "generalizado'' de L-momentos e derivando suas propriedades estatísticas num ambiente em que o número de L-momentos varia com o tamanho amostral. Em seguida, propõem-se métodos para selecionar automaticamente o número ótimo de L-momentos em uma dada amostra. Como extensão, mostra-se que uma modificação da abordagem proposta pode ser usada na estimação de modelos semiparamétricos de efeitos de tratamento em experimentos aleatorizados controlados. Essa extensão produz um estimador eficiente e com propriedades computacionais atraentes. Os ganhos associados a essa nova abordagem são ilustrados aplicando a metodologia proposta no contexto de um experimento aleatório conduzido em São Paulo, Brasil. De maneira mais geral, com essa extensão, espera-se introduzir a abordagem baseada em L-momentos como um procedimento atrativo em ambientes em que estimadores de máxima verossimilhança semi/não paramétricos são computacionalmente complicados.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
l_moments_redux.pdf (1.10 Mbytes)
Publishing Date
2023-01-24
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2023. All rights reserved.