• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2015.tde-27082015-181850
Document
Auteur
Nom complet
Helton Graziadei de Carvalho
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2015
Directeur
Jury
Esteves, Luís Gustavo (Président)
Izbicki, Rafael
Pereira, Carlos Alberto de Braganca
Titre en portugais
Testes bayesianos para homogeneidade marginal em tabelas de contingência
Mots-clés en portugais
Full Bayesian Significance Test (FBST)
Tabelas de contingência
Teste de homogeneidade marginal
Resumé en portugais
O problema de testar hipóteses sobre proporções marginais de uma tabela de contingência assume papel fundamental, por exemplo, na investigação da mudança de opinião e comportamento. Apesar disso, a maioria dos textos na literatura abordam procedimentos para populações independentes, como o teste de homogeneidade de proporções. Existem alguns trabalhos que exploram testes de hipóteses em caso de respostas dependentes como, por exemplo, o teste de McNemar para tabelas 2 x 2. A extensão desse teste para tabelas k x k, denominado teste de homogeneidade marginal, usualmente requer, sob a abordagem clássica, a utilização de aproximações assintóticas. Contudo, quando o tamanho amostral é pequeno ou os dados esparsos, tais métodos podem eventualmente produzir resultados imprecisos. Neste trabalho, revisamos medidas de evidência clássicas e bayesianas comumente empregadas para comparar duas proporções marginais. Além disso, desenvolvemos o Full Bayesian Significance Test (FBST) para testar a homogeneidade marginal em tabelas de contingência bidimensionais e multidimensionais. O FBST é baseado em uma medida de evidência, denominada e-valor, que não depende de resultados assintóticos, não viola o princípio da verossimilhança e respeita a várias propriedades lógicas esperadas para testes de hipóteses. Consequentemente, a abordagem ao problema de teste de homogeneidade marginal pelo FBST soluciona diversas limitações geralmente enfrentadas por outros procedimentos.
Titre en anglais
Bayesian tests for marginal homogeneity in contingency tables
Mots-clés en anglais
Contingency tables
Full Bayesian Significance Test (FBST)
Test of marginal homogeneity
Resumé en anglais
Tests of hypotheses for marginal proportions in contingency tables play a fundamental role, for instance, in the investigation of behaviour (or opinion) change. However, most texts in the literature are concerned with tests that assume independent populations (e.g: homogeneity tests). There are some works that explore hypotheses tests for dependent proportions such as the McNemar Test for 2 x 2 contingency tables. The generalization of McNemar test for k x k contingency tables, called marginal homogeneity test, usually requires asymptotic approximations. Nevertheless, for small sample sizes or sparse tables, such methods may occasionally produce imprecise results. In this work, we review some classical and Bayesian measures of evidence commonly applied to compare two marginal proportions. We propose the Full Bayesian Significance Test (FBST) to investigate marginal homogeneity in two-way and multidimensional contingency tables. The FBST is based on a measure of evidence, called e-value, which does not depend on asymptotic results, does not violate the likelihood principle and satisfies logical properties that are expected from hypothesis testing. Consequently, the FBST approach to test marginal homogeneity overcomes several limitations usually met by other procedures.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2015-09-18
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.