• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.45.2011.tde-27062011-122630
Document
Auteur
Nom complet
João Vinícius de França Carvalho
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2011
Directeur
Jury
Chiann, Chang (Président)
Afonso, Luis Eduardo
Morettin, Pedro Alberto
Titre en portugais
Redes Bayesianas: um método para avaliação de interdependência e contágio em séries temporais multivariadas
Mots-clés en portugais
contágio financeiro
cópulas
GARCH multivariado
interdependência
Redes Bayesianas
Resumé en portugais
O objetivo deste trabalho consiste em identificar a existência de contágio financeiro utilizando a metodologia de redes bayesianas. Além da rede bayesiana, a análise da interdependência de mercados internacionais em períodos de crises financeiras, ocorridas entre os anos 1996 e 2009, foi modelada com outras duas técnicas - modelos GARCH multivariados e de Cópulas, envolvendo países nos quais foi possível avaliar seus efeitos e que foram objetos de estudos similares na literatura. Com os períodos de crise bem definidos e metodologia calcada na teoria de grafos e na inferência bayesiana, executou-se uma análise sequencial, em que as realidades que precediam períodos de crise foram consideradas situações a priori para os eventos (verossimilhanças). Desta combinação resulta a nova realidade (a posteriori), que serve como priori para o período subsequente e assim por diante. Os resultados apontaram para grande interligação entre os mercados e diversas evidências de contágio em períodos de crise financeira, com causadores bem definidos e com grande respaldo na literatura. Ademais, os pares de países que apresentaram evidências de contágio financeiro pelas redes bayesianas em mais períodos de crises foram os mesmos que apresentaram os mais altos valores dos parâmetros estimados pelas cópulas e também aqueles cujos parâmetros foram mais fortemente significantes no modelo GARCH multivariado. Assim, os resultados obtidos pelas redes bayesianas tornam-se mais relevantes, o que sugere boa aderência deste modelo ao conjunto de dados utilizados neste estudo. Por fim, verificou-se que, após as diversas crises, os mercados estavam muito mais interligados do que no período inicialmente adotado.
Titre en anglais
Bayesian Networks: a method for evaluation of interdependence and contagion in multivariate time series
Mots-clés en anglais
Bayesian Networks
copulas
financial contagion
interdependence
multivariate GARCH
Resumé en anglais
This work aims to identify the existence of financial contagion using a metodology of Bayesian networks. Besides Bayesian networks, the analysis of the international markets' interdependence in times of financial crises, occurred between 1996 and 2009, was modeled using two other techniques - multivariate GARCH models and Copulas models, involving countries in which its effects were possible to assess and which were subject to similar studies in the literature. With well-defined crisis periods and a metodology based on graph theory and Bayesian inference, a sequential analysis was executed, in which the realities preceding periods of crisis were considered to be prior situations to the events (likelihood). From this combination results the new posterior reality, which serves as a prior to the subsequent period and so on. The results pointed to a large interconnection between markets and several evidences of contagion in times of financial crises, with well-defined responsibles and highly supported by the literature. Moreover, the pairs of countries that show evidence of financial contagion by Bayesian networks in over periods of crises were the same as that presented the highest values of the parameters estimated by copulas and the most strongly significant parameters in the multivariate GARCH model. Thus, the results obtained by Bayesian networks become more relevant, suggesting good adherence of the model to the data set used in this study. Finally, it was found that after the various crises, the markets were much more connected.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
CarvalhoJVF.pdf (3.19 Mbytes)
Date de Publication
2011-07-20
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.