• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2007.tde-26082007-225003
Document
Author
Full name
Marcelo Hiroshi Ogava
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2007
Supervisor
Committee
Lima, Antonio Carlos Pedroso de (President)
Barroso, Lucia Pereira
Sena Junior, Manoel Raimundo de
Title in Portuguese
Redes neurais em análise de sobrevivência: Uma aplicação na área de relacionamento com clientes
Keywords in Portuguese
Análise de sobrevivência
Redes neurais
Relacionamento com clientes
Abstract in Portuguese
A medida que as economias modernas tornam-se predominantemente baseadas na prestação de serviços, as companhias aumentam seu valor na criação e na sustentabilidade do relacionamento a longo prazo com seus clientes. O "Customer Lifetime Value (LTV)", que é uma medida de potencial de geração de lucro, ou valor de um cliente, vem sendo considerado um ponto fundamental para o gerenciamento da relação com os clientes. O principal desafio em prever o LTV é a produção de estimativas para o tempo de duração do contrato de um cliente com um dado provedor de serviços, baseado nas informações contidas no banco de dados da companhia. Neste trabalho, apresentaremos uma alternativa aos modelos estatísticos clássicos, utilizando um modelo de redes neurais para a previsão da taxa de cancelamento a partir do banco de dados de uma empresa de TV por assinatura.
Title in Portuguese
Redes neurais em análise de sobrevivência: Uma aplicação na área de relacionamento com clientes
Keywords in Portuguese
Análise de sobrevivência
Redes neurais
Relacionamento com clientes
Abstract in Portuguese
A medida que as economias modernas tornam-se predominantemente baseadas na prestação de serviços, as companhias aumentam seu valor na criação e na sustentabilidade do relacionamento a longo prazo com seus clientes. O "Customer Lifetime Value (LTV)", que é uma medida de potencial de geração de lucro, ou valor de um cliente, vem sendo considerado um ponto fundamental para o gerenciamento da relação com os clientes. O principal desafio em prever o LTV é a produção de estimativas para o tempo de duração do contrato de um cliente com um dado provedor de serviços, baseado nas informações contidas no banco de dados da companhia. Neste trabalho, apresentaremos uma alternativa aos modelos estatísticos clássicos, utilizando um modelo de redes neurais para a previsão da taxa de cancelamento a partir do banco de dados de uma empresa de TV por assinatura.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2007-10-09
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.