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SÃO PAULO, 2023



2

Spatio-Temporal Models by Wavelets

This version of the thesis includes the corrections and modifications

suggested by the Examining Committee during the defense of the

original version of the work, which took place on April 26, 2023.

A copy of the original version is available at the Institute of

Mathematics and Statistics of the University of São Paulo.

Examining Committee:

• Prof. Dr. Pedro Alberto Morettin (orientador) - IME-USP

• Profa. Dra. Chang Chiann - IME-USP

• Prof. Dr. João Ricardo Sato - UFABC

• Prof. Dr. Reinaldo Castro Souza - PUC-RJ

• Profa. Dra. Telma Safadi - UFLA



Acknowledgements

First of all, I would like to give my heartfelt thanks to my advisors, Prof. Pedro and Prof. Ronaldo,

for their patience, support and kindness. Besides my advisors, I must express my sincere thanks to

Prof. Chang, not only for professional help, but also for the friendship. Also, I am very thankful to

all the people who have ever helped me in this thesis.

I am grateful to my parents and Tudou, for supporting me spiritually and encouragement. I also

would like to thank my friends who gave me their help and time to listening to me.

I would like to thank the professors and staff of the Department of Statistic, Institute of Mathe-

matics and Statistics, University of São Paulo, for their guidance and support during my university

years. Finally, my acknowledgement go to FAPESP, for financial support through grant 2019/05917-6.



4



Abstract

The space-time autoregressive moving average model is one of the models that is frequently used in

several studies of multivariate time series data. In time series analysis, the assumption of stationarity

is important, but it is not always guaranteed in practice and one way to proceed is to consider the

locally stationary process. In this thesis we propose a time-varying spatio-temporal model based on

the local stationarity assumption. The time-varying parameters are expanded as a linear combination

of the wavelet bases and some estimation procedures are used to estimate the coefficients. Some

simulations were realized to study the performance of the algorithm and the effects of different types

of the spatial weights matrices. And then, an application to historical daily precipitation records of

Midwestern states of the USA is illustrated.

For the non stationary case, a procedure for estimating the non stationary spatial covariance

function for spatio-temporal deformation was proposed. The procedure is based on a monotonic

function approach and the functions are expanded using wavelet bases. The deformation proposed

guarantees a injective transformation. That is, two distinct locations in the geographic plane are not

mapped into the same point in the deformation plane. Finally, some simulations and an application

to historical daily maximum temperature records are illustrated.

Keywords: Kalman filter, Locally stationary processes, Spatial covariance function, Spatio-

temporal, Non stationary processes, Time-varying, Wavelets.
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Resumo

O modelo autoregressivo e média móvel espaço-temporal é um dos modelos frequentemente utiliza-

dos em diversos estudos de séries temporais multivariadas. Nesta análise, a suposição de estacionar-

iedade é importante, mas nem sempre é garantida na prática e uma forma de proceder é considerar

o processo localmente estacionário. Nesta tese propomos um modelo espaço-temporal variando no

tempo, baseado na suposição de estacionariedade local. Os parâmetros variando no tempo são ex-

pandidos como uma combinação linear de ondaletas e alguns procedimentos de estimação são usados

para estimar os coeficientes. Simulações são realizadas para estudar o desempenho do algoritmo e os

efeitos dos diferentes tipos de matrizes de pesos espaciais. Em seguida, é ilustrada uma aplicação aos

registros históricos diários de precipitação dos estados do meio-oeste dos EUA.

Para o caso não estacionário, propomos um procedimento para estimar a função de covariância

espacial não estacionária e estudamos o problema de deformação no espaço e tempo. O procedimento

é baseado em uma abordagem de função monótona e as funções são expandidas usando bases de

ondaletas. A deformação proposta garante uma transformação injetiva. Ou seja, duas localizações

distintas no plano geográfico não são mapeadas no mesmo ponto no plano deformado. Por fim,

simulações e uma aplicação aos registros históricos diários de temperatura máxima são ilustradas.

Palavras-chave: Filtro de Kalman, Processos localmente estacionários, Função de covariância

espacial, Espaço-temporal, Processos não estacionários, Variante no tempo, Ondaletas.
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Chapter 1

Introduction

Since Box and Jenkins (1970) introduced the class of seasonal autoregressive integrated moving

average (SARIMA) model as a procedure for identifying, estimating, and checking models for a

specific time series dataset, the method became standard for analyzing stationary and homogeneous

non stationary time series with constant coefficients and variance. The models are fitted to time series

data either to better understand the data or to predict future points in the series (forecasting). In the

case of multivariate time series that are stationary, models of the vector autoregressive and moving

average (VARMA) family are often used.

The space-time autoregressive and moving average (STARMA) model is a special case of the

VARMA model. Cliff and Ord (1975) and Martin and Oeppen (1975) were the first to use models

of the class STARMA and then, several methods were developed by Pfeifer and Deutsch (1980a,

1980b, 1981a, 1981b, 1981c) at the early eighties. The models are characterized by linear dependence

lagged in both space and time, that is, the modeling processes are characterized by a random variable

observed at n geographic locations and, at each location, T observations over time. In this case, in

addition to recent past values have more influence, close locations also influence more than distant

locations, through the specification of spatial weight matrices which give the highest weights to the

nearest neighbors. The STARMA model has already been widely for different types of spatio-temporal

data for example, real estate price (Pace et al. (2000)), traffic flow data (Kamarianakis and Prastacos

(2005)), damage detection (Hu et al. (2011)), regional bank deposits (Kurt and Tunay (2015)), wind

power (Zou et al. (2018)), etc.

As the models of class SARIMA, the STARMA models also have the assumption of stationarity,

that is, the distribution does not change when shifted in the origin of the index set, however, in

practice, this assumption is not warranted. There are many well known techniques that convert non

stationary time series into stationary ones, such as differencing, log transformation, detrending, etc.

An attractive alternative is the idea of locally stationary process which the process is approximately

stationary over small periods of time, but whose characteristics (covariances, parameters, etc.) are

1
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gradually changing throughout the time period. Many estimators and asymptotic results were devel-

oped by Dahlhaus (1996a, 1996b, 1996c, 1997, 2000) and Dahlhaus et al. (1999) and an overview of

locally stationary process can be found in Dalhaus (2012).

Time-varying models based on the locally stationary process introduced by Dahlhaus have been

used over the years in many different cases, for example, Chiann and Morettin (1999, 2005) investi-

gated the estimation of time varying coefficients of a linear system, Sato et al. (2007) proposed an

estimation procedure for time-varying vector autoregressive (tvVAR) models and applied to functional

magnetic resonance imaging dates, Rohan and Ramanathan (2013) introduced a nonparametric esti-

mation to time-varying Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model

and Yousuf and Ng (2021) proposed two algorithm for estimating high dimensional linear time-varying

parameter (TVP) model. In this paper, we propose a time-varying STARMA (tvSTARMA) modelling,

based on the wavelet expansion of coefficients.

On the other hand, the estimation of spatial covariance structures is an important problem in

many fields. In addition to stationarity, isotropicity is a common assumption, which means that the

process is invariant under rotations around the origin. But in practice, the assumption of stationarity

and isotropicity are often difficult to hold in real applications; see for instance Guttorp et al. (1994),

Schmidt and O’Hagan (2003) and Finley (2011).

If a function f that maps the sampling locations at a geographic domain (G plane) into space

representations of the deformation domain (D plane) is built, the spatial correlation can be considered

isotropic in the D plane. The injectivity of transformation is one of the most important requirements

to guarantee that two distinct locations in the G plane are not mapped into the same point in the D

plane. A sufficient condition for f being injective is that the Jacobian determinant of f be non-zero.

To guarantee the injectivity of the mapping function, Choi and Lee (2000) suggested the box

constraints for uniform cubic B-spline deformation coefficients. Musse et al. (2001) enforced Jacobian

positivity by a novel constrained hierarchical parametric model. Chun and Fessler (2009) provided

sufficient conditions that restrict B-splines based deformation coefficients to ensure that the Jacobian

of such transformation is positive which extended the conditions of Kim (2004).

Although these methods ensure the positivity of Jacobian, deterministic models were used. Samp-

son and Guttorp (1992) introduced the topic with a stochastic model but no guarantee that the

transformation based on thin plate splines is injective. Damian et al. (2001) suggested a solution to

guarantee the injectivity of the transformation in stochastic model using a Bayesian approach.

1.1 Objective

In this thesis, we propose a time-varying space-time autoregressive and moving average modeling

based on the multivariate locally stationary process, the time-varying parameters are expanded as a
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linear combination of wavelet bases. And then, a method for nonstationary and isotropicity covariance

function modeling, the deformation guarantees the injectivity of the transformation and is based on

the monotonic function approach. Note that the wavelet expansion is also used for the deformation.

The organization of this thesis is as follows. Chapter 2 provides some basis backgrounds on spatio-

temporal data, STARMA model, locally stationary processes, functional data analysis and wavelet

analysis. In Chapter 3, the tvSTARMA model proposed with some simulations and an application

to historical daily precipitation records are presented. The deformation proposed that guarantees the

injectivity of transformation is in Chapter 4 and several simulations and an application to historical

daily maximum temperature records are performed in the same Chapter. Conclusions and some

further comments are presented in Chapter 5.
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Chapter 2

Preliminaries

In this chapter, some basic concepts related to this thesis are presented. They are organized

as follows: spatio-temporal process (2.1), STARMA models (2.2), locally stationary processes (2.3),

functional data analysis (2.4) and wavelet analysis (2.5).

2.1 Spatio-Temporal Data

As the name suggests, spatio-temporal data are collected across space and time. An example would

be that of the daily maximum temperature at 138 weather stations in the central USA recorded

between the years 1990 and 1993 (inclusive), where the spatial property is the location where the

object (maximum temperature) was collected, and the temporal property is the timestamp for which

the spatial object is valid. Many fields including geoscience, meteorology, neuroscience, and climate

science generate data that have both spatial and temporal components.

Let {Z(x, t) : x ∈ R2, t ∈ R} a space-time random field. In most cases, the time index t is

considered to be a subset of Z+, the set of positive integers and the spatial locations are typically

either a subset of Z2, the two-dimensional integer lattice, or of R2. In general, spatio-temporal data

is denoted by Zi(t) = Z(xi, t) for i = 1, 2, .., n, t = 1, ..., T , and usually, there is a large number of

temporal observations, with relatively few spatial locations.

Stationary process do not change with time and space, while a nonstationary process is inconsistent

with these components. Let µ(x, t) the mean of Z(x, t) and the covariance between two space–time

variables is

Cov[Z(x, t), Z(y, v)] = E{[Z(x, t)− µ(x, t)][Z(y, v)− µ(y, v)]}. (2.1.1)

Process Z(x, t) is called Second-order stationarity (SOS) if and only if for any locations x and times t

i. E[Z(x,t)] = µ, where µ is a constant;

5
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ii. Cov[Z(x + h, t+ τ), Z(x, t)] = Cov[Z(h,τ), Z(0, 0)] can be expressed in terms of h and τ for

all spatial shifts h, and temporal shifts τ .

Sometimes, the assumption of isotropic on the spatial correlation is made out of convenience. This

means that the correlation between any two observations depends merely on the distance between

those locations while anisotropic is directional dependence.

2.1.1 Exploratory Analysis of Spatio-Temporal Data

Examining the empirical means and empirical covariances can be helpful to explore spatio-temporal

data. The empirical spatial mean for location xi, µ̂(xi), is calculated with the following formula:

µ̂(xi) =
1

T

T∑
t=1

Z(xi, t), i = 1, ..., n. (2.1.2)

The spatial mean of all locations is an n-dimensional vector, µ̂x = [µ̂(x1), ..., µ̂(xn)]
′. Similarly, the

empirical temporal mean for time t, µ̂(t), is given by

µ̂(t) =
1

n

n∑
i=1

Z(xi, t). (2.1.3)

The empirical τ lag covariance between locations xi and xj is defined by

Ĉov(xi,xj , τ) = E[[Z(xi, t)− µ̂(xi)][Z(xj , t− τ)− µ̂(xj)]], (2.1.4)

where τ = 0, 1, ..., T − 1. Then, the n × n empirical τ lag covariance matrix is obtained, denoted by

Ĉov(τ), where the (i, j)th element is provided by (2.1.4). Alternatively, it can be calculated directly

by

Ĉov(τ) = E[(Zt − µ̂x)(Zt−τ − µ̂x)
′], (2.1.5)

where τ = 0, 1, ..., T − 1 and Zt = [Z(x1, t), Z(x2, t), ..., Z(xn, t)]
′.

According to Wikle et al. (2019), since locations in a two-dimensional space do not have any

natural sort order, it can be difficult to obtain any intuitive information from these matrices. In some

situations, splitting the domain into “strips” can be helpful, for example, world map can be split in

some longitudinal strips and then calculate empirical covariance matrices for those strips.

Compared with the estimated spatial covariance above (2.1.4), covariograms and semivariograms

are useful for measure the joint spatio-temporal dependence, then the covariability of the spatio-

temporal data can be explored.

The empirical covariogram is a function of specific lags in time and in space, for time lag τ and

spatial lag h, it is given by

Ĉ(h, τ) =
1

|Nx(h)|
1

|Nt(τ)|
∑

(xi,xj)∈Nx(h)

∑
(tk,tl)∈Nt(τ)

[Z(xi, tk)− µ̂(xi)][Z(xj , tl)− µ̂(xj)], (2.1.6)
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where

Nx(h) = {(xi,xj) : |xi,xj | = h, i, j = 1, ..., n}

and

Nt(τ) = {(tk, tl) : tk − tl = ±τ, k, l = 1, ..., T}.

Under isotropy, the spatial lag as a function of distance is usually considered, h = ||h||, where || · || is

the Euclidean norm.

And the semivariogram is defined as

γ̂(xi,xk, tj , tl) =
1

2
Var[Z(xi, tj)− Z(xk, tl)]. (2.1.7)

Note that the empirical covariogram of Z(xi, tk) and Z(xj , tl) can be expressed by 2γ̂(xi,xk, tj , tl).

2.1.2 Spatio-Temporal Covariance Models

The spatio-temporal covariance function plays an important role in analyzing data, it describes the

second-order dependence of random processes. Many studies have been developed for spatio–temporal

covariance functions as models for dependence, such as Kyriakidis and Journel (1999), Jun and Stein

(2008), Reich et al. (2011), Gneiting and Schlather (2013), Ma (2003), Guinness and Fuentes (2016)

and De Iaco et al. (2019).

Due to the large size of spatio-temporal data, it is usually computationally expensive and some-

times infeasible to implement traditional techniques. Simplifying structures are often used, such as

stationarity, spatial isotropy, full symmetry and separability. Stationarity and spatial isotropy have

been defined in the previous section, denoting covariance function (2.1.1) in C(h, τ), we can say that

for all h ∈ Rd and τ ∈ R, a covariance function C is called fully symmetric if

C(h, τ) = C(h,−τ) (2.1.8)

and is called separable if

C(h, τ) = Cs(h)Ct(τ), (2.1.9)

where Cs and Ct are purely spatial and purely temporal covariance functions, respectively. The

relationships among several spatio-temporal covariance structures can be found in Gneiting et al.

(2006).

The model proposed by Gneiting (2002) is one example of stationary and fully symmetric covari-

ance models and it is given by

C(h, τ) =
σ2

β(|τ |2)d/2
ω

{
||h||2

β(|τ |2)

}
, (h; τ) ∈ Rd × R, (2.1.10)

where σ2 = C(0, 0), ω(·) ≥ 0 is a completely monotone function and β(·) is a Bernstein function, that

is, it has a completely monotone derivative.
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Under separability, an easy way to build a spatio–temporal covariance function is through the

product of a spatial and a temporal covariance function. Separable spatio-temporal covariance func-

tion with the well known exponential model is given by

C(h, τ) = σ2 exp(−νs||h||) exp(−νt|τ |), (2.1.11)

where σ2 = C(0, 0) is scale parameter, νs > 0 is decay parameter and the temporal correlation is from

an autoregressive process of order 1 with parameter ρ = exp(−νt).

2.2 STARMA Models

A time series is a sequence of data points generated in successive order over some period of time.

To describe and forecast several time series simultaneously, vector autoregressive and moving average

(VARMA) models are often used.

In this section, we briefly review the models of ARIMA class and introduce STARMA models,

which are special cases of the VARMA models, with their procedure of identification, estimation,

diagnostic and forecast.

2.2.1 ARIMA Models

In time series analysis, stationarity is a common assumption. Let {Zt : t ∈ T } a stochastic

process, such that T = [0,∞) and {t1, t2, ..., tn} is a collection of values of T . Zt is called strictly

stationary if

P (Zt1 ≤ z1, ...Ztn ≤ zn) = P (Zt1+τ ≤ z1, ...Ztn+τ ≤ zn) (2.2.1)

for all n = 1, 2, ..., time points t1, ..., tn, numbers z1, ..., zn and τ ∈ T . That is, all distributions are

invariant under time translations.

However, it is very difficult to use the strict stationary definition, as we do not know these

distribution functions in practice, thus, a milder version that imposes conditions only on the first two

moments of the series is considered. Zt is called weakly stationary or SOS if and only if

• E[Zt] is constant for all t ∈ T ;

• E[Z2
t ] <∞ for all t ∈ T ;

• Cov[Zt1 , Zt2 ] depends on |t1 − t2| only.

2.2.1.1 The Models
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The Autoregressive and moving average (ARMA) models are characterized by two polynomials,

one for the autoregressive (AR) and the second for the moving average (MA) that depend on their

own past values and past error terms, respectively. An ARMA process with order p in the AR part

and order q in the MA part, denoted by ARMA(p, q), is given by

Zt = ϕ1Zt−1 + · · ·+ ϕpZt−p + at − θ1at−1 − · · · − θqat−q, (2.2.2)

where ϕ = (ϕ1, ...ϕp) are parameters of autoregressive term, θ = (θ1, ..., θq) are parameters of moving

average term and at is white noise. Using the backward shift operator B which defined as BZt = Zt−1,

BkZt = Zt−k, (2.2.2) can be written as

(1− ϕ1B − · · · − ϕpB
p)Zt = (1− θ1B − · · · − θqB

q)at (2.2.3)

ϕ(B)Zt = θ(B)at, (2.2.4)

where ϕ(B) and θ(B) are the autoregressive operator and the moving average operator of orders p

and q, respectively.

Within the ARMA (p, q) model, there are two particular cases, when p = 0 or q = 0. When q =

0, it has the AR(p) model with the following form:

Zt = ϕ1Zt−1 + ϕ2Zt−2 + · · ·+ ϕpZt−p + at. (2.2.5)

And when p = 0, the MA(q) model is defined by

Zt = at − θ1at−1 − θ2at−2 − · · · − θqat−q. (2.2.6)

Generalization of the ARMA models, the ARIMA models are applied in some cases where the

data show evidence of non stationarity, where an initial differencing step can be applied one or more

times to eliminate the non stationarity. Thus, the ARIMA(p, d, q) model can be expressed as

(1− ϕ1B − · · · − ϕpB
p)∆dZt = (1− θ1B − · · · − θqB

q)at, (2.2.7)

where ∆ = 1−B is the differencing operator and d is a non-negative integer.

2.2.1.2 SARIMA Models

In practice, many time series exhibit cyclical and periodic behavior, the seasonal autoregres-

sive integrated moving average (SARIMA) model can be used to capture the seasonality of a se-

ries. Incorporating seasonal AR and/or MA polynomials into an ARIMA model multiplicatively, a

SARIMA(p, d, q)× (P,D,Q)k model is obtained and written as

ϕ(B)Φ(Bk)∆d∆D
k Zt = θ(B)Θ(Bk)at, (2.2.8)



10 CHAPTER 2. PRELIMINARIES

where

ϕ(B) = 1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p,

Φ(Bk) = 1− Φ1B
k − Φ2B

2k − · · · − ΦPB
Pk,

θ(B) = 1− θ1B − θ2B
2 − · · · − θqB

q,

Θ(Bk) = 1−Θ1B
k −Θ2B

2k − · · · −ΘQB
Qk,

Φ(Bk) and Θ(Bk) are the k period seasonal autoregressive operator and the seasonal moving average

operator of orders P and Q, respectively, ∆D
k = (1 − Bk)D is seasonal differencing operator with

seasonal period k and non-negative integer D.

2.2.2 Spatial Weight Matrix

In the construction of the STARMA models, the definition of the spatial lag operator is necessary.

Let Zi(t) be a random variable at location i and time t and L(l), the spatial lag operator with spatial

order l is defined as

L(l)Zi(t) =

 Zi(t), if l = 0,∑n
j=1w

(l)
ij Zj(t), if l > 0,

(2.2.9)

where w
(l)
ij are weights of order l with

n∑
j=1

ω
(l)
ij = 1. (2.2.10)

Each element of the matrix reflects the spatial relationship between two regions, i and j and w
(l)
ij = 0

when i = j, that is, the matrix has zeros on its main diagonal and the other elements will consist of

positive numbers. Let Z(t) = [Z1(t), ..., Zn(t)]
′ a vector of n observations,

L(l)Z(t) =

 W (0)Z(t) = InZ(t), if l = 0,

W (l)Z(t), if l > 0,
(2.2.11)

where W (l) is an n× n square matrix consist of weights w
(l)
ij and the sum of items in each row is 1.

According to Pfeifer and Deutsch (1980a), the weights must depict a hierarchical ordering of spatial

neighbors, that is, first-order neighbors are locations closest to the location of interest; second-order

neighbors are neighbors that are further away than first-order neighbors and closer than third-order

neighbors and so on. Figure 2.1 shows the first four spatial order neighbors of a location X in

bidimensional grid.

There are many way to define the weights, according to a priori information, the specification of

w
(l)
ij is chosen by the researcher. A simple way proposed by Rao and Antunes (2004) can be written

as

w
(l)
ij =


1

n
(l)
i

, if i and j are neighbors of order l,

0, otherwise,
(2.2.12)
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Figure 2.1: Spatial order in bidimensional grid.

where n
(l)
i is the number of neighbors of order l of location i. Another alternative to calculate the

matrix proposed by Rao and Antunes (2004) is to use the inverse of the distance between the locations,

as the spatial effect decreases with distance, only one spatial weight matrix is used, different from the

weights calculated by the method presented above (2.2.12), where each spatial order is represented

by a matrix. The distance inverse weights are defined as

wij =


d−α
ij∑

k ̸=i d
−α
ik

, i ̸= j,

0, i = j,
(2.2.13)

where α > 0 is the changing rate of weights over distance dij and dij is the orthodromic distance

(great-circle or spherical distance) between two locals xi and xj . It is the shortest distance between

two points on the surface of a sphere. Let xi = (ξi, κi) and xj = (ξj , κj) be the geographical locations,

where ξη and κη, η = i, j, are the latitude and longitude, respectively. The distance dij is given by

dij = Rσ, (2.2.14)

where R is radius of the Earth and

σ = arccos[sin ξi sin ξj + cos ξi cos ξj cos(|κi − κj |)]. (2.2.15)

Zhou and Lin (2008) proposed a matrix in which the weights are negative exponential distance
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functions and are given by

wij =


exp{−αdij}∑
k ̸=i exp{−αdik} , i ̸= j,

0, i = j,
(2.2.16)

where dij can be euclidean distance or orthodromic distance and α is coefficient of friction, generally,

α = 1 or 2.

2.2.3 STARMA Model

The STARMA(pλ1,...,λp , qm1,...,mq) model can be defined as

Zi(t) =

p∑
k=1

λk∑
l=0

ϕklL
(l)Zi(t− k)−

q∑
k=1

mk∑
l=0

θklL
(l)ϵi(t− k) + ϵi(t), i = 1, ..., n, t = 1, ..., T, (2.2.17)

where p is the autoregressive order, q is the moving average order, λk is the spatial order of the kth

AR term and mk is the spatial order of the kth MA term. ϕkl and θkl are parameters at time lag k

and space lag l for the AR and MA parameters, respectively. ϵi(t) is random error follows a normal

distribution with mean zero and covariance σ2.

Rewriting (2.2.17) in matrix form, we have

Z(t) =

p∑
k=1

λk∑
l=0

ϕklW
(l)Z(t− k)−

q∑
k=1

mk∑
l=0

θklW
(l)ϵ(t− k) + ϵ(t), (2.2.18)

where ϵ(t) are random errors follow a multivariate normal distribution with E[ϵ(t)] = 0 and

E[ϵ(t)ϵ(t+ s)′] =

 Inσ
2, if s = 0,

0, otherwise.
(2.2.19)

There are two particular cases of STARMA model, when p = 0 or q = 0. When q = 0, only

autoregressive terms remain, there is a space-time autoregressive (STAR) model. The STAR(pλ1,...,λp)

model is given by

Z(t) =

p∑
k=1

λk∑
l=0

ϕklW
(l)Z(t− k) + ϵ(t) (2.2.20)

and when p = 0, it called space-time moving average (STMA) model, the STMA(qm1,...,mq) is written

as

Z(t) = ϵ(t)−
q∑

k=1

mk∑
l=0

θklW
(l)ϵ(t− k). (2.2.21)

The condition to ensure stationarity of STARMA model is that every root (xu) that solve

det

[
xpuI−

p∑
k=1

λk∑
l=0

ϕklW
(l)xp−k

u

]
= 0 (2.2.22)

must lie inside the unit circle, equivalently, |xu| < 1, this requirement is to determine a region of

possible values of ϕkl that will result in a stationary process.
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The invertibility condition is independent of the sationarity condition, it is applied in MA terms,

then the STARMA process is called invertible if all possible roots of

det

[
xquI−

q∑
k=1

mk∑
l=0

θklW
(l)xq−k

u

]
= 0, (2.2.23)

lie inside the unit circle (|xu| < 1). Note that pure STAR models are always invertible (since they

contain no MA terms) and pure STMA models are always stationary (since they contain no AR

terms).

Similar to the models of ARIMA class, when the stationarity condition is not met due to having

a trend, it is enough to take the necessary order of differencing in the series and later incorporate it

to the STARMA model. Thus, the space-time autoregressive integrated moving average (STARIMA)

model is obtained as

∆dZ(t) =

p∑
k=1

λk∑
l=0

ϕklW
(l)∆dZ(t− k)−

q∑
k=1

mk∑
l=0

θklW
(l)ϵ(t− k) + ϵ(t), (2.2.24)

where ∆d are differencing operators and defined by ∆dZ(t) = (1 − B)dZ(t) with d non-negative.

Analogous to STARIMA model, there is also the seasonal STARMA model that incorporates the

seasonal component, see Biz (2014) for details.

The methodology introduced by Box and Jenkins (1970) is widely used in the analysis of parametric

models. The method is an iterative three-stage modeling approach. According to Morettin and Toloi

(2018), the process of model construction is based on an interactive cycle, consists of a sequence of

procedures:

• Identification: select a class of models that is considered for analysis and determine one or more

candidate models through the analysis of the autorelation and partial autocorrelation functions;

• Estimation: estimate the parameters of the identified models;

• Verification or diagnosis: through residual analysis and forecasting to check if the fitted model

is suitable.

If the model is not suitable, the cycle is repeated from the identification phase. Basic reference books

are Box et al. (2015), Brockwell and Davis (2016), Shumway and Stoffer (2017) and Morettin and

Toloi (2018).

We mention below a brief summary of construction of STARMA models.

2.2.3.1 Identification

Different from ARIMA models, the STARMA models have a space-time autocovariance function,

the covariance between points lagged both in space and time by combining the covariance between
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all possible pairs of locations. The space-time autocovariance between lth and kth neighbors at time

lag s is defined by

γlk(s) = E

{
n∑

i=1

L(l)Zi(t)L
(k)Zi(t+ s)

n

}
. (2.2.25)

Rewriting (2.2.25) in matrix form, we have

γlk(s) = E

{
[W (l)Z(t)]′[W (k)Z(t+ s)]

n

}

= tr

{
W (k)′W (l)Γ(s)

n

}
, (2.2.26)

where tr[A] is the trace of A and Γ(s) = E[Z(t)Z(t+ s)′]. The estimator of Γ(s) is

Γ̂(s) =
T−s∑
t=1

z(t)z(t+ s)′

T − s
, (2.2.27)

where z are the observations of Z, replacing (2.2.26) by (2.2.27), the estimator of γlk(s),

γ̂lk(s) =
1

n
tr

{
W (k)′W (l)

T−s∑
t=1

z(t)z(t+ s)′

T − s

}
, (2.2.28)

is obtained.

In particular, when l = k = 0,

γ00(s) =
1

n
tr[Γ(s)] (2.2.29)

is the average of the τ lag autocovariance for all n locations. And when l = 0, k = 1,

γ01(s) =
1

n
tr[W (1)Γ(s)] (2.2.30)

presents the average over all locations of the s lag covariance between each location and their spatial

weight matrix of order 1.

Note that a important property of the space-time autocovariance is

γlk(s) = γlk(−s), (2.2.31)

which can be proved using tr[AB] = tr[BA] and Γ(s) = Γ(−s)′.

According to Martin and Oeppen (1975), the definition of space-time autocorrelation is different

from the autocorrelation of univariate models, due to the fact that space-time autocorrelation has

several combinations that can be used. In that case, an autocorrelation function that has constant

variance for all spatial lags is a good choice to be defined. Then, a space-time autocorrelation function

(STACF) between lth and kth order neighbors in time lag s is given by

ρlk(s) =
γlk(s)√

γll(0)γkk(0)
. (2.2.32)

And an estimator of this correlation is obtained using (2.2.28).
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Another important function is the space-time partial autocorrelation function (STPACF) which

finds the correlation between two values of the process, eliminating the intermediate values. Mar-

tin and Oeppen (1975) proposed an extension of the Yule-walker equations of univariate models to

calculate STPACF. Multiplying both sides of the STAR (k0,...,λ) by [W (h)Z(t− s)]′,

Z(t− s)′W (h)′Z(t) =

k∑
j=1

λ∑
l=0

ϕjlZ(t− s)′W (h)′W (l)Z(t− j) + Z(t− s)′W (h)′ϵ(t). (2.2.33)

Calculating the expected value and dividing both sides by N , since E[Z(t− s)′ϵ(t)] = 0, for s > 0,

γh0(s) =

k∑
j=1

λ∑
l=0

ϕjlγhl(s− j). (2.2.34)

Hence, the system of equations can be written as the Yule-Walker equations shown in Figure 2.2 for

s = 1, ..., k and h = 0, 1, ..., λ. The last coefficient, ϕkl, obtained by solving the system of equations as

l = 1, ..., k for k = 1, .., λ is called STPACF of spatial order λ, note that the value of λ is determined

by researcher.

Figure 2.2: System of Yule-Walker, Pfeifer and Deutsch (1980a).

Since the γlk(s) can be estimated by solving Yule-Walker equations using a recursive procedure for

l = 0, 1, ..., λ, for each k = 1, 2, ..., STACF and STFACP are estimated. Analogous to univariate time

series models, STACF and STFACP plots of series can be use to determine the order of AR and/or

MA terms of STARMA models. Table 2.1 shows a general behavior of the STACF and STPACF for

STAR, STMA and STARMA models. Note that the functions decay with both time and space.
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Table 2.1: General behavior of the STACF and STPACF.

Modelo STFAC STFACP

STAR(pλ1,...,λp) gradual decreasing ϕkl = 0, for k > p and l > λp

STMA(qm1,...,mq) ρl0(s) = 0, for s > q and l > mq gradual decreasing

STARMA(pλ1,...,λp , qm1,...,mq) gradual decreasing gradual decreasing

2.2.3.2 Estimation

When the errors ϵ(t) are white noise, that is, follow a multivariate normal distribution with

mean 0 and covariance matrix InTσ
2, the maximum likelihood estimation can be used to estimate the

parameters Φ = (ϕ10, ϕ11, ..., ϕ1λ1 , ..., ϕp0, ..., ϕpλp), Θ = (θ10, ..., θ1m1 , ...θq0, θqmq) and σ
2. Then, the

conditional joint probability density function is written as

f(ϵ|Φ,Θ, σ2) = (2π)−
NT
2 |InTσ2|−

1
2 exp{− 1

2σ2
ϵ′Iϵ}

= (2π)−
nT
2 (σ2)−

nT
2 exp{−S∗(Φ,Θ)

2σ2
},

where S∗(Φ,Θ) = ϵ′Iϵ =
∑n

i=1

∑T
t=1 ϵ

2
i (t). Note that the errors are unknown and one way to obtain

them is to calculate by a recursive method using the STARMA model from the observations z(t), that

is,

ϵ(t) = z(t)−
p∑

k=1

λk∑
l=0

ϕklW
(l)z(t− k)−

q∑
k=1

mk∑
l=0

θklW
(l)ϵ(t− k) (2.2.35)

with the initial values of z(t) and ϵ(t) equal to zero for t = 1, ..., T .

The conditional likelihood function is given by

L(Φ,Θ, σ2|z) = (2π)−
nT
2 (σ2)−

nT
2 exp{−S∗(Φ,Θ)

2σ2
}, (2.2.36)

where S∗(Φ,Θ) = ϵ̂′ϵ̂ and ϵ̂ are obtained by equation (2.2.35). Then, the conditional maximum

likelihood estimators of (Φ,Θ, σ2) are (Φ̂, Θ̂) that minimize S∗(Φ,Θ) and σ̂2 = S∗(
ˆΦ,

ˆΘ)
nT .

The Kalman filter is a good alternative to estimate the parameters of STARMA model. Consider

the system

xt+1 = Ftxt + Γtwt+1, (2.2.37)

zt = Mtxt + vt, (2.2.38)

where (2.2.37) is the state equation and (2.2.38) is the observation equation of the system. Here, xt

is the state variable at time t, zt is the observation at t, Ft,Γt and Mt are the state transition matrix,

control input matrix and observation matrix, respectively. The vectors wt and vt have mean zero and

covariance matrices Qt and Rt, respectively, that fulfill

Cov(ws,wt) = 0, Cov(vs,vt) = 0, for s ̸= t,
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Cov(ws,vt) = 0.

The algorithm provides recursive estimation formulas to estimate the state of a process, in the sense

of minimizing the squared error. The filter can be written in the form

x̂t+1 = Ftx̂t +Kt+1(zt+1 −Mt+1Ftx̂t), (2.2.39)

Pt+1 = (I −Kt+1Mt+1)(FtPtF
′
t + ΓtQt+1Γ

′
t), (2.2.40)

Kt+1 = Pt+1M
′
t+1R

−1
t+1. (2.2.41)

For the STARMA model, (2.2.18) can be rewritten in linear form:

zt =

λ1∑
l=0

ϕ1lW
(l)zt−1 + ...+

λp∑
l=0

ϕplW
(l)zt−p −

m1∑
l=0

θ1lW
(l)ϵt−1 − ...−

mq∑
l=0

θqlW
(l)ϵt−q + ϵt

= Φ1zt−1 + ...+Φpzt−p +Θ1ϵt−1 + ...+Θqϵt−q + ϵt

= xtb+ ϵt,

where

bn2(p+q)×1 =



vec Φ1

...

vec Φp

vec Θ1

...

vec Θq


,

xt n×n2(p+q) = [yt et],

yt n×n2p = [diagn ⊗ z′t−1 . . . diagn ⊗ z′t−p],

et n×n2q = [diagn ⊗ ϵ′t−1 . . . diagn ⊗ ϵ′t−q].

According to Cipra and Motykova (1987), the state space representation (2.2.37) and (2.2.38) for

the estimation of the parameters b can be written as

bt+1 = bt, (2.2.42)

zt = xtbt + ϵt, (2.2.43)

where Ft = In2(p+q), Γt = 0n2(p+q)×n2(p+q), Mt = xt, vt = ϵt. And the recursive equations have the

following form:

b̂t+1 = b̂t +Pt+1z
′
t+1Σ̂

−1
t (zt+1 − zt+1b̂t), (2.2.44)

Pt+1 = Pt −Ptz
′
t+1(zt+1Ptz

′
t+1 + Σ̂t)

−1z′t+1Pt, (2.2.45)

Σ̂t+1 =
1

t+ 1− n2(p+ q)

{
[t− n2(p+ q)]Σ̂t + (zt+1 − zt+1b̂t+1)(zt+1 − zt+1b̂t+1)

′
}
,(2.2.46)



18 CHAPTER 2. PRELIMINARIES

ϵ̂t+1 = zt+1 − zt+1b̂t+1. (2.2.47)

With the linear form, the confidence intervals can be obtained from the result of linear regres-

sion theory. Another alternative is calculate approximate confidence regions, using the approximate

likelihood function of S∗(Φ,Θ), see Pfeifer and Deutsch (1980a) for details.

2.2.3.3 Diagnostic

In the diagnostic checking, the object is to verify if the selected models are adequate. For this, a

residual analysis will be carried out and observe if the residuals are in accordance with the assumptions

of the model. In the case of the STARMA model, the residuals of the fitted model should be white

noise, that is, they are multivariate normal distribution with zero mean, covariance matrix σ2 and all

autocovariances at non-zero lags equal to 0.

For the residual analysis, the usual way is to calculate the STACF and STPACF of the residuals

and construct a confidence interval using theoretically variance

Var(ρ̂l0(s)) ≈
1

n(T − s)
, (2.2.48)

where ρ̂l0(s) is sample STACF of the residuals of the fitted model. If the STACF and the STPACF are

inside the confidence interval, the residuals are approximately white noise, otherwise, the dependent

term is identified and the model is updated.

2.2.3.4 Forecasting

For STARMA models, the forecasting is performed in a similar way as SARIMA models. Ac-

cording to Biz (2014), the predictions from time t and horizon h for STARMA(pλ1,...,λp , qm1,...,mq) are

given by

Ẑt(h) = E

{
p∑

k=1

λk∑
l=0

ϕ̂klW
(l)Z(t+ h− k)−

q∑
k=1

mk∑
l=0

θ̂klW
(l)ϵ(t+ h− k) + ϵ(t+ h)

}
(2.2.49)

whereas

E[Z(t+ k)] = Ẑt(k), k > 0,

E[Z(t+ k)] = Z(t+ k), k ≤ 0,

E[ϵ(t+ k)] = 0, k > 0,

E[ϵ(t+ k)] = ϵ(t+ k), k ≤ 0.

2.3 Locally Stationary Processes

As mentioned in Section 1, stationarity is basis assumption for time series analysis, however,

many phenomena in the practical applications show a non stationary behavior. The disadvantage of



2.3. LOCALLY STATIONARY PROCESSES 19

non-stationary data is that for most of the time series models, the model assumptions are violated

when non-stationary data are used. This leads to the estimators no longer having the nice properties

such as asymptotic normality and sometimes even consistency and hence poor forecasts. One way to

proceed is to assume that the processes involved are locally stationary processes.

The idea of having locally approximately a stationary process was considered by Priestlety (1965),

who generalized the usual definition of spectra for stationary processes with the concept of evolutionary

spectra. According to Priestley (1965), the process Xt with var(Xt) <∞ for each t has a time varying

spectral representation:

Xt =

∫ π

−π
exp{iπt}At(λ)dξ(λ), t ∈ Z, (2.3.1)

where At(λ) =
∫∞
−∞ exp{itθ}dHλ(θ) with |Hλ(θ)|, which has an absolute maximum at θ = 0 is a

time varying transfer function and ξ(λ) an orthogonal increment process with E[dξ(λ)]2 = dµ(λ), the

measure dµ(λ) is analogous to the spectrum in the case of stationary processes.

There is a lack of asymptotic considerations in the approach introduced by Priestley (1965). Many

estimators and asymptotic results were developed by Dahlhaus and his coworkers, thus, the locally

stationary processes used in this thesis is in the sense of the Dahlhaus’s theory of locally stationary

processes which is based on the infill asymptotic approach.

2.3.1 The General Definition

Let

Xt + αtXt−1 = σtϵt (2.3.2)

a time varying AR(1) process where ϵt is an independent and identically distributed standard normal.

Infill asymptotics is applied by rescaling the parameter curves αt and σt to the unit interval. That

is, them are replaced by α( t
T ) and σ(

t
T ) with curves α(·) : [0, 1] → (−1, 1) and σ(·) : [0, 1] → (0,∞),

respectively. And then, Xt is replaced by a triangular array of observations, Xt,T , t = 1, ..., T , where

T is the sample size.

Under the model (2.3.2), there are many way to construct estimators for the parameter curves,

but it is nearly impossible to derive the finite sample properties of theses estimators. This problem

can be overcomed by rescaling the parameter curves as described above. As T → ∞, more and

more observations of each local structure are available and many results of asymptotic analysis for

non-stationary processes can be retained.

Formally, the class of locally stationary process is defined as follows.

Definition 2.3.1 (Dahlhaus(1996a)) A sequence of stochastic processes Xt,T , t = 1, ..., T , is called

locally stationary with transfer function A0 and trend µ if there exists a representation

Xt,T = µ

(
t

T

)
+

∫ π

−π
exp(iλt)A0

t,T (λ)dξ(λ), (2.3.3)
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where the following hold:

(i) ξ(λ) is a stochastic process on [−π, π] with ξ(λ) = ξ(−λ) and

cum{dξ(λ1), ..., dξ(λk)} = η

 k∑
j=1

λj

 gk(λ1, ..., λk−1)dλ1...dλk, (2.3.4)

where cum(·) denotes the cumulant of kth order, g1 = 0, g2(λ) = 1, |gk(λ1, ..., λk−1)| ≤ contk

for all k and η(λ) =
∑∞

j=−∞ δ(λ+ 2πj) is the period 2π extension of the Dirac delta function.

(ii) There exists a constantK and a 2π-periodic function A : [0, 1]×R → C with A(µ,−λ) = A(µ, λ)

and

sup
t,λ

∣∣∣∣A0
t,T (λ)−A

(
t

T
, λ

)∣∣∣∣ ≤ KT−1 (2.3.5)

for all T ; A(µ, λ) and µ(u) are assumed to be continuous in µ.

The smoothness of A in µ guarantees that the process has locally stationary behavior. In Dahlhaus

and Polonik (2006), locally stationary process was introduced by using a time-varying MA(∞) rep-

resentation, the definition is more general since the parameter curves are assumed to be of bounded

variation instead of continuity in the time direction. Let

V (g) = sup

{
m∑
k=1

|g(xk)− g(xk−1)| : 0 ≤ x0 < ... < xm ≤ 1,m ∈ N

}
(2.3.6)

be the total variation of a function g on [0, 1], and let

l(j) =

 1, if |j| ≤ 1,

|j| log1+k |j|, if |j| > 1
(2.3.7)

for some k > 0.

Definition 2.3.2 (Dahlahus and Polonik (2006)) The sequence Xt,T , t = 1, ..., T , is a locally station-

ary process if it has the representation

Xt,T =

∞∑
j=−∞

at,T (j)ϵt−j , (2.3.8)

where the ϵt are identically distributed with E(ϵt) = 0, E(ϵsϵt) = 0 for s ̸= t, E(ϵ2t ) = 1 and where

the following condition holds:

sup
t
|at,T (j)| ≤

K

l(j)
(with K not depending on T ) (2.3.9)

and there exist functions a(·, j) : (0, 1] → R with

sup
u
|a(u, j)| ≤ K

l(j)
, (2.3.10)

sup
j

T∑
t=1

∣∣∣∣at,T (j)− a

(
t

T
, j

)∣∣∣∣ ≤ K, (2.3.11)

V (a(·, j)) ≤ K

l(j)
. (2.3.12)
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Dahlhaus and Polonik (2009) have shown that time-varying ARMA model fulfills the above con-

ditions (2.3.10-2.3.12). Dahlahus (2012) mentioned that the above conditions are weak since the

definition only require bounded variation. For local results some further conditions have to be im-

posed, namely

sup
u

∣∣∣∣∂iµ(u)∂µi

∣∣∣∣ ≤ K, for some i, (2.3.13)

sup
u

∣∣∣∣∂ia(u, j)∂ui

∣∣∣∣ ≤ K

l(j)
for j = 0, 1, ..., (2.3.14)

sup
t,T

∣∣∣∣at,T (j)− a

(
t

T
, j

)∣∣∣∣ ≤ K

Tl(j)
. (2.3.15)

The process Xt,T can be approximated by the stationary processes

X̃t(u) = µ(u) +

∞∑
j=−∞

a(u, j)ϵt−j (2.3.16)

and the derivative processes is given by

∂iX̃t(u)

∂ui
=
∂iµ(u)

∂ui
+

∞∑
j=−∞

∂ia(u, j)

∂ui
ϵt−j . (2.3.17)

The time varying spectral density and the time-varying covariance of lag k at rescaled time u of

the stationary approximation X̃t(u) are defined by

f(u, λ) =
1

2π
|A(u, λ)|2 (2.3.18)

where

A(u, λ) =

∞∑
j=−∞

a(u, j) exp(−iλj) (2.3.19)

and

c(u, k) =

∫ π

−π
f(u, λ) exp(iλk)dλ =

∞∑
j=−∞

a(u, k + j)a(u, j), (2.3.20)

respectively.

Under the Definition 2.3.2 and assumption (2.3.15), it can be shown that

Cov(X[uT ],TX[ut+k],T ) = C(u, k) +O(T−1) (2.3.21)

uniformly in u and k, thus, C(u, k) also is the time-varying covariance of the processes Xt,T and

f(u, k) is the uniquely defined time-varying spectral density of Xt,T under the same conditions, the

proof can be found in Dahlahus (1996a).

There are many results such as local estimation for the parameter curves and covariance, Kullback-

Leibler information divergence, Parametric Whittle-type estimates, Gaussian likelihood theory, em-

pirical spectral processes, etc. These can be found in Dahlhaus (2012) which provides an overview of

the locally stationary processes.
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2.3.2 Multivariate Locally Stationary Processes

For multivariate processes, the definition is analogous to the univariate case, formally, the defini-

tion of multivariate locally stationary processes is as follows.

Definition 2.3.3 (Dahlhaus (2000)) A sequence of Gaussian multivariate stochastic processesXt,T =

(X
(1)
t,T , ..., X

(d)
t,T )

′, t = 1, ..., T , is called locally stationary with transfer function matrix A0 and mean

function vector µ if there exists a representation

Xt,T = µ(
t

T
) +

∫ π

−π
exp(iλt)A0

t,T (λ)dξ(λ) (2.3.22)

with the following properties:

(i) ξ(λ) is a complex valued Gaussian vector process on [−π, π] with ξa(λ) = ξa(−λ), E[ξa(λ)] = 0

and

E[dξa(λ)dξb(λ)] = δabη(λ+ µ)dλdµ, (2.3.23)

where η(λ) =
∑∞

j=−∞ δ(λ+ 2πj) is the period 2π extension of the Dirac delta function.

(ii) There exists a constant K and a 2π-periodic matrix valued function A:[0, 1]× R → Cd×d with

A(u, λ) = A(u,−λ) and

sup
t,λ

∣∣∣∣A0
t,T (λ)ab −A

(
t

T
, λ

)
ab

∣∣∣∣ ≤ K

T
(2.3.24)

for all a, b = 1, ..., d and T ∈ N. A(u, λ) and µ(u) are assumed to be continuous in µ.

f(u, λ) := A(u, λ)A(u, λ)
′
is the time varying spectral density matrix of the process.

Suppose Xt,T is a time-varying VARMA model, the difference equations is defined by

p∑
j=0

Φj

(
t

T

)[
Xt−j,T − µ

(
t− j

T

)]
=

q∑
j=0

Ψj

(
t

T

)
ϵt−j , (2.3.25)

where ϵt are independent, identically distributed with mean zero and covariance matrix Id and Φ0(u) ≡

Ψ0(u) ≡ Id. For z ∈ C, let Φ(u, z) =
∑p

j=0Φj(u)z
j and Ψ(u, z) =

∑q
j=0Ψj(u)z

j . If det[Φ(u, z)] ̸= 0

for all |z| ≤ 1 + c with c > 0 uniformly in u and all entries of Φj(u) and Ψj(u) are continuous in u,

then the solution of these difference equations has an infinite time-varying MA presentation, that is,

the solution is locally stationary of the form (2.3.22). The time-varying spectral density of the process

is

f(u, λ) =
1

2π

Ψ(u, eiλ)Ψ(u, e−iλ)′

Φ(u, eiλ)Φ(u, e−iλ)′
. (2.3.26)

Since STARMA models are special cases of VARMA models, the time-varying STARMA model

proposed in this thesis is a locally stationary process and for simplicity, in the sequel we assume that

µ(·) = 0.
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2.4 Functional Data Analysis

While the term “Functional Data Analysis (FDA)” was introduced by Ramsay (1982), the history

of this area is much older. FDA is a topic in growing development as it has sparked great interest from

the global statistical community. Most of the initial techniques have been developed for FDA were

introduced by Ramsay and Dalzell (1991) and Ramsay and Silverman (1997). Generally, FDA deals

with data that are in the form of functions, that is, the ith observation is a real-valued function, fi(t),

i = 1, ..., n, t ∈ T , where T is a real interval. Functional data are being observed and investigated

with increasing frequency in several areas.

In practice, the functional observation f consists of n pairs (ti, yi), where yi is an observation of

f(ti), that is,

yi = f(ti) + ϵi, (2.4.1)

where ϵi denotes measurement error.

A function f can be expressed as a weighted sum or linear combination of elementary functional

building blocks called basis functions. Therefore, the conversion of the data to functional form requires

two steps: 1) Choosing and defining a set of basis functions. 2) Computing the best linear combination.

If the observation has an observational error, some techniques will be used to filter out this noise as

efficiently as possible. In some cases, the alternative strategy of leaving the noise in the estimated

function is used.

2.4.1 Basis Expansions

A common smoothing method is employed to represent the function as a linear combination of

a sufficiently large number K of known basis functions ϕk, k = 1, ...,K, that are mathematically

independent of each other and have the property that any function can be approximated arbitrarily

well. A function f by a linear combination of known basis functions is defined by

f(t) =

K∑
k=1

ckϕk(t), (2.4.2)

where c = (c1, ..., cK)′ is the coefficients vector and it is determined by minimizing the sum of squared

of errors (SSE). The criterion in matrix terms is expressed as

SSE = [y−Φc]′W[y−Φc],

where y = (y1, ..., yn)
′, Φ = [ϕk(ti)] is a n×K matrix and W is a weight matrix. Then, the weighted

least squares estimate of the coefficient vector c is

ĉ = (Φ′WΦ)−1Φ′Wy. (2.4.3)
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It is important that the basis functions have characteristics similar to those of the functions to be

estimates. For periodic data, the Fourier series is well known, function f can be expressed as a linear

combination of sine and cosine functions, that is,

f(t) = c0 + c1 sinωt+ c2 cosωt+ c3 sin 2ωt+ c4 cos 2ωt+ . . . (2.4.4)

This basis is periodic and defined by the basis ϕ0(t) = 1, ϕ2r−1(t) = sin rωt and ϕ2r(t) = cos rωt,

for r ≥ 1. The parameter ω determines the period 2π/ω which is equal to the length of interval T .

As the number of observations is finite, the first K basis functions of the expansion above (2.4.4) can

be considered, thereby, the smooth estimate of f(t) is given by

f̂(t) =
K∑
k=1

ĉkϕk(t). (2.4.5)

For non-periodic data, although there are many ways that such systems can be constructed, the

B-splines basis system developed by de Boor (2001) is the most popular, due to its advantage of

flexibility and computational speed. The B-splines are piecewise polynomials functions joined at

certain values called knots. The notation Bi,m(t) indicates the value at t of the ith B-spline basis

function of degree m defined by the knot sequence τ = {τi}. By the de Boor’s algorithm, B-splines

of any degree can be computed from B-splines of lower degree, the recursion formula is:

Bi,m(t) =
t− τi

τi+m−1 − τi
Bi,m−1 +

τi+m − t

τi+m − τi+1
Bi+1,m−1, (2.4.6)

where

Bi,1(t) =

 1, if τi ≤ t ≤ τi+1,

0, otherwise.

Thus, the smoothed estimate of f(t) is given by

f̂(t) =

K∑
i=1

ĉiBi,m(t). (2.4.7)

Note that the number of B-spline basis functions is equal the number of interior knots plus the

order of the polynomial segments.

There are other basis which are well known as well, they are:

• Exponential basis systems, consist of exponential functions eλkt, k = 1, ...,K.

• Power bases, tλk , k = 1, ...,K.

• Polynomial bases, the bases are constructed by the monomial basis ϕk(t) = (t − ω)k, k =

0, 1, ...,K.

• Wavelets which consist of functions ψj,k(t) and/or ϕj,k(t), j, k ∈ Z.
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2.4.2 Roughness Penalty

Similar to the least squares methods of the previous section, roughness penalty methods are based

on optimizing a fitting criterion that we define a smooth of the data in ways that are appropriate to

our problems.

The square of the second derivative of a function at t measures the curvature in f at t, thus, the

penalty that measures function’s roughness is defined as

PEN2(f) =

∫
[D2f(s)]2ds, (2.4.8)

where D2 refer to the second derivative.

The roughness penalty above can be generalized by allowing a derivative Dmx of arbitrary order,

then, the penalty is given by

PENm(f) =

∫
[Dmf(s)]2ds. (2.4.9)

Adding the roughness penalty to the last squares criterion of section previous, the penalized least

squares is defined by

PENSSEλ = [y− f(t)]′W[y− f(t)] + λPEN2(f), (2.4.10)

where λ is a smoothing parameter that controls the trade-off between fidelity to the data and roughness

of the function estimate. As the smoothing parameter varies from zero to infinity, functions vary from

being rough to being very smooth. The smoothing parameter λ can be obtained by a procedure such

as cross-validation method.

2.4.3 Strictly Monotonic Functions

In practical applications, the estimated function has to satisfy some condition, for example, be

non-decreasing and the use of a basis expansion may not be suitable. In this section we consider the

case where a monotonic function is of interest.

A monotonic function is a function which is either entirely non-increasing or non-decreasing. An

important property of this kind of function is that if a function is a strictly monotonic function,

then it is injective on its domain. There are many techniques developed. In this thesis, we use

the monotonic function introduced by Ramsay (1998). It is an arbitrary twice differentiable strictly

monotonic function defined on an interval closed on the left.

The strictly monotonic function f satisfies the conditions: ln(Df) is differentiable andD{ln(Df)} =

D2f/Df is squared Lebesgue integrable and D refers to the operation of taking the derivative and

D−1 means the integration operator. These conditions guarantee that the function’s first derivative

is smooth and bounded almost everywhere. By the following theorem, we can see that f is a general

solution of differential equation.
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Theorem 2.4.1 (Ramsay (1998)) Every monotonic function f is representable as either

f(x) = C0 + C1D
−1{exp

(
D−1w(x)

)
} (2.4.11)

or as a solution of the homogeneous linear differential equation

D2f(x) = w(x)Df(x), (2.4.12)

where w(x) is a Lebesgue square integrable function and C0 and C1 are arbitrary constants.

Note that to guarantee that the function f is strictly monotone increasing, Df = eW , where

W = D−1w + logC1 was assumed, for more details see Ramsay and Silverman (2006).

2.5 Wavelets Analysis

The Fourier transform (FT) decomposes a function into simple sines and cosines, that is, any

function can be represented as a sum of sine and cosine functions of different amplitudes and frequen-

cies. The FT is suitable to analyze stationary processes but is not appropriate for studying the local

behavior of a signal, for example electrocardiography (ECG) signal, where signals have short intervals

of characteristic oscillation. Then, the wavelet transform is a good alternative.

According to Morettin (2014), wavelets are used in many areas of statistics, like estimation of

a density function, non-parametric regression, estimation of the spectrum of a stationary or non-

stationary process etc. In this thesis, we consider wavelets as an alternative of basis functions for the

representation of a function of interest, in general, time-varying.

In the case of wavelets, a function f ∈ L2(R) can be approximated by a linear combination of

binary dilations 2j and dyadic translations k2−j of a function ϕ(t), called scaling function or father

wavelet (which is used for capturing the smooth and the low-frequency of the data) and/or of a

function ψ(t), called mother wavelet (which is used for capturing the details and the high-frequency

of the data). Note that ϕ(t) and ψ(t) have to satisfy the following conditions:

•
∫∞
−∞ tjϕ(t)dt = 1;

•
∫∞
−∞ ψ(t)dt = 0;

•
∫∞
−∞ |ψ(t)|dt <∞;

• |Ψ(ω)|2
|ω| dω <∞, where Ψ(ω) is the FT of ψ(t);

•
∫∞
−∞ |ψ(t)|2dt = 1 or

∫∞
−∞ |Ψ(ω)|dω = 2π;

•
∫∞
−∞ tjψ(t)dt = 0, j = 0, 1, ..., r − 1, for at least a r ≥ 1 and

∫∞
−∞ |trψ(t)|dt <∞.
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Thus, a wavelet basis is composed of functions {ϕj,k(t) ∪ ψj,k(t), j, k ∈ Z} ∈ L2(R), where

ϕj,k(t) = 2j/2ϕ(2jt− k), (2.5.1)

ψj,k(t) = 2j/2ψ(2jt− k). (2.5.2)

And the function f(t) ∈ L2(R) can be written as

f(t) =

∞∑
k=−∞

cj0,kϕj0,k(t) +
∑
j≥j0

∞∑
k=−∞

dj,kψj,k(t), (2.5.3)

where

cj0,k =

∫ ∞

−∞
f(t)ϕj0,k(t)dt, (2.5.4)

dj,k =

∫ ∞

−∞
f(t)ψj,k(t)dt (2.5.5)

for some coarse scale j0, see Section 2.5.3.

Sometimes, the function can be expanded only through mother wavelet, that is,

f(t) =

∞∑
j=−∞

∞∑
k=−∞

cj,kψj,k(t), (2.5.6)

where the wavelet coefficients cj,k can be obtained by the following scalar product

cj,k =< g, ψj,k >=

∫ ∞

−∞
f(t)ψj,k(t)dt. (2.5.7)

The scaling function ϕ(t) can be obtained by solving the equation

ϕ(t) =
√
2
∑
k

lkϕ(2t− k), (2.5.8)

and ψ(t) is obtained from ϕ(t) by

ψ(t) =
√
2
∑
k

hkϕ(2t− k), (2.5.9)

where

hk = (−1)kl1−k. (2.5.10)

In fact, lk and hk are the low-pass and high-pass filter coefficients, respectively, the coefficients

are given by

lk =
√
2

∫ ∞

−∞
ϕ(t)ϕ(2t− k)dt, (2.5.11)

hk =
√
2

∫ ∞

−∞
ψ(t)ϕ(2t− k)dt. (2.5.12)
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2.5.1 Wavelet Families

There are many different families of wavelets in the literature, see Ogden (1997), Misiti et al.

(2007), Stéphane (2009), Morettin (2014), etc. Some type of wavelet families are presented in this

section.

The oldest and the simplest possible wavelet, Haar wavelet, was proposed by Haar (1910). The

Haar wavelet is not continuous, and therefore not differentiable, it is usually used to the analysis of

signals with sudden sharp transitions. The scaling and wavelet functions can be described as

ψ(t) =


1, if 0 ≤ t < 1

2 ,

−1, if 1
2 ≤ t < 1,

0, otherwise

(2.5.13)

and

ϕ(t) =

 1, if 0 ≤ t < 1,

0, otherwise.
(2.5.14)

Under binary dilations and dyadic translations, we obtain

ψj,k(t) =


2

j
2 , if 2−jk ≤ t < 2−j(k + 1

2),

−2
j
2 , if 2−j(k + 1

2) ≤ t < 2−j(k + 1),

0, otherwise

(2.5.15)

and

ϕj,k(t) =

 2
j
2 , if 2−jk ≤ t < 2−j(k + 1),

0, otherwise,
(2.5.16)

respectively.

Daublets and Symmlets are wavelets from Daubechies’ family (Daubechies (1988) and Daubechies

(1992)). If a Daubechies wavelet has N vanishing moments, the support of the corresponding scaling

function is [0, 2N − 1] and is [−N + 1, N ] for wavelet function. As a special case of the Daubechies

wavelet, the Haar wavelet is also known as Daublet wavelet with 1 vanishing moment.

Different from the wavelets described above, the Mexican hat and Shannon wavelets are continuous

wavelets with closed form expression. We have

• Mexican hat wavelet:

ψ(t) =
2√
3π1/4

(1− t2)e−t2/2 (2.5.17)

and in bivariate case:

ψ(t1, t2) =
1

π
(1− t21 + t22

2
)e−

t21+t22
2 . (2.5.18)

• Shannon wavelet:

ψ(t) = sinc(
t

2
) cos

(
3πt

2

)
= 2sinc(2t)− sinc(t), (2.5.19)
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where sinc(t) = sinπt
πt . And scaling function is

ϕ(t) = sinc(t). (2.5.20)

Figures 2.3-2.5 present the scaling (ϕ(t)) and/or wavelet (ψ(t)) functions of Haar wavelet, Daubechies

wavelets with different vanishing moments, Mexican hat wavelet and Shannon wavelet.

(a) Haar wavelet (b) Mexican hat wavelet

(c) Shannon wavelet (d) Shannon wavelet

Figure 2.3: Haar, Mexican hat and Shannon wavelets.

2.5.2 Daubechies-Lagarias Algorithm

The wavelets with compact support only have a finite amount of their non-zero filter coefficients

and for all compactly supported orthonormal families of wavelet, except of the Haar wavelet, the

scaling and wavelet functions have no explicit expression. However, it is always necessary to find their

values at given points.

Base on Daubechies and Lagarias (1991 and 1992) local pyramidal algorithm, the functions ϕ(t)

and ψ(t) can be calculated directly at a point with preassigned precision. Suppose the support of ϕ is
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Figure 2.4: Scaling functions (left) and wavelet functions (right) from Daublet with vanishing moments

N = 2 (top), 6 (bottom).

[0, 2N -1], let x ∈ (0, 1) and dyad(x) = d1, d2, ..., dn, ... be the set of 0/1 digits in dyadic representation

of x, that is, x =
∑∞

j=1 dj2
−j . The subset of the first n digits from dyad(x) is denoted by dyad(x, n).

Let h = (h0, h1, ..., h2N−1) be the wavelet filter coefficients, two (2N − 1)× (2N − 1) matrices are

defined as

T0 = (
√
2h2i−j−1)1≤i,j≤2N−1, (2.5.21)

T1 = (
√
2h2i−j)1≤i,j≤2N−1. (2.5.22)

The algorithm can be obtained from

lim
n→∞

Td1 · Td2 . . . Tdn =


ϕ(x) ϕ(x) . . . ϕ(x)

ϕ(x+ 1) ϕ(x+ 1) . . . ϕ(x+ 1)
...

... . . .
...

ϕ(x+ 2N − 2) ϕ(x+ 2N − 2) . . . ϕ(x+ 2N − 2)

 . (2.5.23)

The Daubechies-Lagarias algorithm gives only the values of the scaling function, for the wavelet

function, Pinheiro and Vidakovic (1997) proposed the following theorem
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Figure 2.5: Scaling functions (left) and wavelet functions (right) from Symmlet with vanishing mo-

ments N, for N = 4 (top), 8 (bottom).

Theorem 2.5.1 (Pinheiro and Vidakovic (1997)) Let x be an arbitrary real number, let the wavelet

be given by its filter coefficients, and let u with 2N -1 be a vector defined as

u(x) = {(−1)1−[2x]hi+1−[2x], i = 0, ..., 2N − 2}. (2.5.24)

If for some i the index i+1− [2x] is negative or larger than 2N−1, then the corresponding component

of u is equal to 0.

Let the vector v be

v(x, n) =
1

2N − 1
1′

∏
i∈dyad(2x,n)

Ti, (2.5.25)

where 1’ is the row-vector of ones. Then

ψ(x) = lim
n→∞

u(x)′v(x, n), (2.5.26)

and the limit is constructive.

An alternative to calculate ψ(t) is using equation (2.5.9), with ϕ(t) obtained by equation (2.5.23).
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2.5.3 A Multiresolution Analysis

A Multiresolution analysis (MRA) allows us to analysis the data at different levels of resolution.

The data with coarse resolution contain information about lower-frequency components and retain

the main features of the original signal and the data with finer resolution retain information about

the higher-frequency components.

Formally, a MRA can be viewed as a sequence of approximations of a given function f(t) of L2(R)

at different resolutions. Let Vj and Wj be closed subspaces generated by {ϕj,k, k = 0, ..., 2j − 1} and

{ψj,k, k = 0, ..., 2j − 1}, respectively, then the MRA have the following properties:

• ... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ ...

• L2(R) =
⋃

j Vj

•
⋂

j Vj = {0}

• x(t) ∈ Vj ⇔ x(2t) ∈ Vj+1, ∀j

• Vj+1 = Vj ⊕Wj , Wj ⊥ Vj .

The above properties imply Wj = Vj+1 ⊖ Vj , and then,

L2(R) =
∞⊕

j=−∞
Wj . (2.5.27)

Let f ∈ L2(R), there is J that fJ ∈ VJ approximates f . If gi ∈ Wi, fi ∈ Vi, by the last property,

we have

fJ = fJ−1 + gJ−1, (2.5.28)

repeating the argument,

f ≃ fJ = gJ−1 + gJ−2 + ...+ gJ−M + fJ−M , M = 1, ..., J − 1. (2.5.29)

Observe that fJ−M is a linear combination of ϕJ−M,k and gj are linear combinations of ψj,k, j =

J −M, ..., J − 1. And,

L2(R) =
⊕
j∈Z

Wj = V0 ⊕
⊕
j≥0

Wj = Vj0 ⊕
⊕
j≥j0

Wj , (2.5.30)

for some coarse scale j0, any f(t) ∈ L2(R) can be expressed as

f(t) =
∑
j,k

dj,kψj,k(t)

=
∑
k

cJ0,kϕj0,k(t) +
∑
j≥j0

∑
k

dj,kψj,k(t)

=
∑
k

c0,kϕ0,k(t) +
∑
j≥0

∑
k

dj,kψj,k(t) (2.5.31)
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where j0 = 0 and

cj,k =

∫ ∞

−∞
f(t)ϕj,k(t)dt,

dj,k =

∫ ∞

−∞
f(t)ψj,k(t)dt.

Note that in wavelet analysis, the number of observations n has to be power of 2 and the number of

basis functions depends on the value of J and/or J0, where n = 2J , J > 0 integer and J0 = 0, 1, ..., J−1

represent the level associated with the scale 2J0 , the finest scale corresponds to the J − 1 level and

the most coarse scale corresponds to the zero level.
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Chapter 3

Time-varying Space-time

Autoregressive and Moving Average

Models

3.1 Wavelet Based Time-varying STAR Model

Let Z( t
T ) = [Z1(

t
T ), ..., Zn(

t
T )]

′ be a n-dimensional time series with T observations. The time-

varying STAR (tvSTAR) model is defined by

Z

(
t

T

)
=

p∑
s=1

λs∑
l=0

ϕsl

(
t

T

)
W (l)Z

(
t− s

T

)
+ ϵ

(
t

T

)
, t = 1, ..., T, (3.1.1)

where ϵ( t
T ) is an independent, identically distributed gaussian vector with mean zero, ϕsl(

t
T ) is time-

varying parameter at time lag s and space lag l and W (l) is spatial weight matrix of the order l.

Wavelet bases, despite having irregular shapes, are able to perfectly reconstruct functions with

linear and higher-order polynomial shapes. The idea is to expand the time-varying parameters ϕsl(
t
T )

in wavelet expansions as

ϕsl

(
t

T

)
=

∞∑
j=−1

2j−1∑
k=0

βslj,kψj,k

(
t

T

)
. (3.1.2)

Notice that, for simplification, we define ψ−1,0(
t
T ) = ϕ0,0(

t
T ), the scaling function with j, k = 0.

Then, the wavelet based tvSTAR model is given by

Z

(
t

T

)
=

p∑
s=1

λs∑
l=0

∞∑
j=−1

2j−1∑
k=0

βslj,kψj,k

(
t

T

)
W (l)Z

(
t− s

T

)
+ ϵ

(
t

T

)

=

p∑
s=1

λs∑
l=0

J−1∑
j=−1

2j−1∑
k=0

βslj,kψj,k

(
t

T

)
W (l)Z

(
t− s

T

)

+

p∑
s=1

λs∑
l=0

∞∑
j≥J

2j−1∑
k=0

βslj,kψj,k

(
t

T

)
W (l)Z

(
t− s

T

)
+ ϵ

(
t

T

)

35
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=

p∑
s=1

λs∑
l=0

J−1∑
j=−1

2j−1∑
k=0

βslj,kψj,k

(
t

T

)
W (l)Z

(
t− s

T

)
+ ν

(
t

T

)
, (3.1.3)

where

ν

(
t

T

)
=

p∑
s=1

λs∑
l=0

∞∑
j≥J

2j−1∑
k=0

βslj,kψj,k

(
t

T

)
W (l)Z

(
t− s

T

)
+ ϵ

(
t

T

)
(3.1.4)

and W (l) is n× n matrix of weights with each row having sum one. Note that J − 1 is the the finest

resolution level such that 2J−1 ≤
√
T ≤ 2J , and then,

√
n2J/2 ≤

√
nT ≤

√
n2J with n ≥ 2.

The linear form of (3.1.3) can be written as

Z = Ψβ + ν, (3.1.5)

where

Z =

[
vec

(
Z

(
p+ 1

T

))′
, ..., vec

(
Z

(
T

T

))′]′
, (3.1.6)

ν =

[
vec

(
ν

(
p+ 1

T

))′
, ..., vec

(
ν

(
T

T

))′]′
, (3.1.7)

Ψ =
[
Ψ−1,0,Ψ0,0, ...,ΨJ−1,2J−1−1

]
(3.1.8)

and

Ψj,k =



ψj,k

(
p+1
T

)∑n
m=1w

(0)
1,mZm

( p
T

)
. . . ψj,k

(
p+1
T

)∑n
m=1w

(λp)
1,m Zm

(
1
T

)
...

...

ψj,k

(
T
T

)∑n
m=1w

(0)
1,mZm

(
T−1
T

)
. . . ψj,k

(
T
T

)∑n
m=1w

(λp)
1,m Zm

(
T−p
T

)
ψj,k

(
p+1
T

)∑n
m=1w

(0)
2,mZm

( p
T

)
. . . ψj,k

(
p+1
T

)∑n
m=1w

(λp)
2,m Zm

(
1
T

)
...

...

ψj,k

(
T
T

)∑n
m=1w

(0)
n,mZm

(
T−1
T

)
. . . ψj,k

(
T
T

)∑n
m=1w

(λp)
n,mZm

(
T−p
T

)


, (3.1.9)

for j = −1, ..., J − 1, k = 0, ..., 2j − 1.

β is a sa(2
J)× 1 vector containing the wavelet coefficients, where sa =

∑p
k=1(1 + λk).

3.1.1 Estimation

The number of parameters depends on the spatial order, λs, for s = 1, .., p and the resolution level

J . For really large datasets, there are many parameters to be estimated, the method of least squares

is a computationally efficiency estimation method in this case.

Assume that the matrix Ψ′Ψ is positive definite, the least squares estimator of β is given by

β̂ = (Ψ′Ψ)−1Ψ′Z. (3.1.10)

Consider the following assumptions:
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A.1 (Dahlhaus et al. (1999)) The functions ϕkl are real, bounded and belong to the following set of

functions:

F =

f(x) : f(x) =
∞∑

j=−1

∞∑
k=0

βj,kψj,k(x)

∣∣∣∣∣∣ ∥β..∥d,p,q <∞

 , (3.1.11)

where

∥β..∥d,p,q =

∑
j≥−1

2jup
2j−1∑
k=0

|βj,k|p
q/p


1/q

, (3.1.12)

u = d + 1/2 − 1/p̃ > 1 with p̃ = min{p, 2}. Note that d is the degree of smoothness and

1 < p, q ≤ ∞ specify the norm in which smoothness is measured.

A.2 The functions ϕ(t) and ψ(t) belong to Cr[0, 1], with degree of regularity r > d and they have

compact support. In addition,
∫
ϕ(t)dt = 1 and

∫
ψ(t)kdt = 0 for 0 ≤ k ≤ r.

A.3 There exists some γ ≥ 0 with |cumn(νt)| ≤ An(n!)1+γ for all n, t, where A is a positive constant

and νt = ν( t
T ).

A.4 Z( t
T ) are locally stationary processes.

Proposition 1 Suppose the assumptions A.1-A.4 hold, then

(i.) E(β̂) = β +O((nT )−1/2).

(ii.) E[(β̂ − β)(β̂ − β)′] = O((nT )−1).

Proof. See Appendix.

Proposition 2 Suppose the assumptions A.1-A.4 hold, then we have

√
NH(β̂ − β)

D→NK(0,Γ), (3.1.13)

where D means convergence in distribution and covariance matrix

Γ = lim
N→∞

NHE[Ψ′Ψ]−1H′, (3.1.14)

where N = n(T − p) and H is a matrix with K rows.

Proof. See Appendix.
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3.2 Wavelet Based Time-varying STARMA Model

3.2.1 The Model

Let Z
(
t
T

)
= [Z1(

t
T ), Z2(

t
T ), ..., Zn(

t
T )]

′ be a multivariate locally stationary of n-dimensional time-

varying STARMA (tvSTARMA) model, defined by

Z

(
t

T

)
=

p∑
s=1

λs∑
l=0

ϕsl

(
t

T

)
W (l)Z

(
t− s

T

)
−

q∑
s=1

ms∑
l=0

θsl

(
t

T

)
W (l)ϵ

(
t− s

T

)
+ ϵ

(
t

T

)
, t = 1, ..., T,

(3.2.1)

where ϵ( t
T ) is independent, identically distributed gaussian vector with mean zero, ϕsl(

t
T ) and θsl(

t
T )

are time-varying parameters at time lag s and space lag l and W (l) is a spatial weight matrix of the

order l.

The time-varying parameters ϕsl(
t
T ) and θsl(

t
T ) can be written in wavelet expansions as

ϕsl

(
t

T

)
=

∞∑
j=−1

2j−1∑
k=0

aslj,kψj,k

(
t

T

)
, (3.2.2)

θsl

(
t

T

)
=

∞∑
j=−1

2j−1∑
k=0

bslj,kψj,k

(
t

T

)
. (3.2.3)

Replacing equations (3.2.2), (3.2.3) into (3.2.1), the wavelet based tvSTARMA model is given by

Z

(
t

T

)
=

p∑
s=1

λs∑
l=0

∞∑
j=−1

2j−1∑
k=0

aslj,kψj,k

(
t

T

)
W (l)Z

(
t− s

T

)

−
q∑

s=1

ms∑
l=0

∞∑
j=−1

2j−1∑
k=0

bslj,kψj,k

(
t

T

)
W (l)ϵ

(
t− s

T

)
+ ϵ

(
t

T

)

=

p∑
s=1

λs∑
l=0

J−1∑
j=−1

2j−1∑
k=0

aslj,kψj,k

(
t

T

)
W (l)Z

(
t− s

T

)

−
q∑

s=1

ms∑
l=0

J−1∑
j=−1

2j−1∑
k=0

bslj,kψj,k

(
t

T

)
W (l)ϵ

(
t− s

T

)

+

p∑
s=1

λs∑
l=0

∞∑
j≥J

2j−1∑
k=0

aslj,kψj,k

(
t

T

)
W (l)Z

(
t− s

T

)

−
q∑

s=1

ms∑
l=0

∞∑
j≥J

2j−1∑
k=0

bslj,kψj,k

(
t

T

)
W (l)ϵ

(
t− s

T

)
+ ϵ

(
t

T

)

=

p∑
s=1

λs∑
l=0

J−1∑
j=−1

2j−1∑
k=0

aslj,kψj,k

(
t

T

)
W (l)Z

(
t− s

T

)

−
q∑

s=1

ms∑
l=0

J−1∑
j=−1

2j−1∑
k=0

bslj,kψj,k

(
t

T

)
W (l)ϵ

(
t− s

T

)
+ ν

(
t

T

)
, (3.2.4)
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where

ν

(
t

T

)
=

p∑
s=1

λs∑
l=0

∞∑
j≥J

2j−1∑
k=0

aslj,kψj,k

(
t

T

)
W (l)Z

(
t− s

T

)

−
q∑

s=1

ms∑
l=0

∞∑
j≥J

2j−1∑
k=0

bslj,kψj,k

(
t

T

)
W (l)ϵ

(
t− s

T

)
+ ϵ

(
t

T

)
. (3.2.5)

3.2.2 Estimation

As in the case of STARMA model, linear and non-linear estimators can be used to tvSTARMA

model’s estimation. Maximum likelihood estimation is a widely used technique, but it is computa-

tionally expensive when there is a large number of parameters to be estimated and can be sensitive to

the choice of starting values and then the optimization algorithms may converge to a local minimum

or even not converge.

An alternative is the Kalman filter (Kalman (1960)), associated with the state space model

xt+1 = Ftxt + Γtwt+1, (3.2.6)

zt = Mtxt + vt, (3.2.7)

where (3.2.6) is the state equation and (3.2.7) is the observation equation of the system, xt is the

state variable at time t, zt is the observation at t, Ft,Γt and Mt are state transition matrix, control

input matrix and observation matrix, respectively. The vectors vt and wt are errors assumed to be

Gaussian. The algorithm provides recursive estimation formulas to estimate the state of a process, in

the sense of minimizing the squared error.

For adaptive parameter estimation in tvSTARMA model by Kalman filter, first we rewrite (3.2.4)

in linear form

Z

(
t

T

)
= Y

(
t

T

)
c+ ν

(
t

T

)
, (3.2.8)

where ν
(
t
T

)
is assume do have a multivariate normal distribution with mean zero and covariance

matrix Σ,

sa =

p∑
s=1

(1 + λs),

sm =

q∑
s=1

(1 +ms),

c2J [sa+sm]×1 =

a
b

 ,
a′2J [sa]×1 = [a10−1,0 a

10
0,0 ... a

10
J−1,2J−1−1 ... a

pλp

J−1,2J−1−1
],

b′
2J [sm]×1 = [b10−1,0 b

10
0,0 ... b

10
J−1,2J−1−1 ... b

qmq

J−1,2J−1−1
],
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Y

(
t

T

)
n×2J [sa+sm]

=

[
diagn ⊗ 11×[sa+sm]WD

(
t

T

)]
⊗Ψ

(
t

T

)
, where,

Ψ

(
t

T

)′

2J×1

=

[
ψ−1,0

(
t

T

)
ψ0,0

(
t

T

)
... ψJ−1,2J−1−1

(
t

T

)]
,

Wn[sa+sm]×n[sa+sm] =

War

Wma

,

War
n×n[sa]

=



W (0)

. . .

W (λ1)

W (0)

. . .

W (λ2)

. . .

W (λp)



,

Wma
n×n[sm] =



W (0)

. . .

W (m1)

W (0)

. . .

W (m2)

. . .

W (mq)



,

D

(
t

T

)
n[sa+sm]×[sa+sm]

=

X ( t
T

)
E
(
t
T

)
 ,

X

(
t

T

)
n[sa]×sa

=



diag(1+λ1) ⊗ Z( t−1
T )

diag(1+λ2) ⊗ Z( t−2
T )

. . .

diag(1+λp) ⊗ Z( t−p
T )


,

E

(
t

T

)
n[sm]×sm

=



diag(1+m1) ⊗ ϵ( t−1
T )

diag(1+m2) ⊗ ϵ( t−2
T )

. . .

diag(1+mq) ⊗ ϵ( t−q
T )


.

According to Cipra and Motykova (1987), the state space representation (3.2.6) and (3.2.7) for
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the estimation of the parameters c can be written as

ct+1 = ct, (3.2.9)

zt = ytct + ϵt, (3.2.10)

where Ft = I2J [sa+sm], Γt = 02J [sa+sm], zt = Z( t
T ), Mt = yt = Y( t

T ), vt = νt = ν( t
T ). Then, the

recursive equations have the following form:

ĉt+1 = ĉt +Pt+1y
′
t+1Σ̂

−1
t (zt+1 − yt+1ĉt), (3.2.11)

Pt+1 = Pt −Pty
′
t+1(yt+1Pty

′
t+1 + Σ̂t)

−1y′
t+1Pt, (3.2.12)

Σ̂t+1 =
1

t+ 1− (sa + sm)
{[t− (sa + sm)]Σ̂t + (zt+1 − yt+1ĉt+1)(zt+1 − yt+1ĉt+1)

′},(3.2.13)

ν̂t+1 = zt+1 − yt+1ĉt+1. (3.2.14)

Note that if there is no a priori information on the parameters, the initial values of the estimates

at time t0 can be chosen as

ĉt0 = 02J [sa+sm]×1, Pt0 = I2J [sa+sm]×1, Σ̂t0 = hIn×n, (3.2.15)

where h is a small positive constant.

3.3 Simulations

This section presents some simulation examples in order to evaluate the performance of the pro-

posed estimation procedure.

3.3.1 Simulation Procedure

The simulations consist of the following steps:

[1. ] Let n = 15 sample locations generated (as shown in Figure 3.1), and then, M = 1000 experi-

ments of n time series with length T = 1024 are simulated.

[2. ] Each sample data z = [z( 1
T ), ..., z(

T
T )] is simulated from a tvSTAR(11) process

z

(
t

T

)
= ϕ10(t)W

(0)z

(
t− 1

T

)
+ ϕ11(t)W

(1)z

(
t− 1

T

)
+ ϵ

(
t

T

)
(3.3.1)

or a tvSTARMA(11, 11) process

z

(
t

T

)
= ϕ10(t)W

(0)z

(
t− 1

T

)
+ ϕ11(t)W

(1)z

(
t− 1

T

)
+ θ10(t)W

(0)ϵ

(
t− 1

T

)
+ θ11(t)W

(1)ϵ

(
t− 1

T

)
+ ϵ

(
t

T

)
, (3.3.2)
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where ϵ(t) is a multivariate normal process with mean zero and covariance matrix InTσ
2, with

σ2 = 1. The elements of the spatial weight matrix W are defined by

wij =
d−0.5
ij∑

k ̸=i d
−0.5
ik

, (3.3.3)

dij is great-circle distance between locals xi and xj and it is the same as (2.2.14).

[3. ] Calculate the estimates of ϕ10(t), ϕ11(t) and/or θ10(t), θ11(t) using the estimation procedure

described in Sections 3.1.2 and 3.2.2.

[4. ] Calculate mean squared error (MSE) of the predictors ẑ,

MSE =
1

nT

n∑
i=1

T∑
t=1

[zi

(
t

T

)
− ẑi

(
t

T

)
]2, (3.3.4)

where ẑi
(
t
T

)
is the estimator of zi

(
t
T

)
, the observation at location i and time t.

Figure 3.1: Simulated locations.

3.3.2 Formulation of Time-varying Parameter

Four groups of parameters will be used to generate the sample data, they are

• Group 1:

ϕ10(t) = 0.4I( t
T
≤0.5) − 0.8I( t

T
>0.5), (3.3.5)

ϕ11(t) = −0.6I( t
T
≤0.5) + 0.2I( t

T
>0.5); (3.3.6)

• Group 2:

ϕ10(t) = 0.138 +

(
0.316 + 0.982

t

T

)
exp

(
−3.89

(
t

T

)2
)
, (3.3.7)

ϕ11(t) = −0.437−
(
0.659 + 1.26

t

T

)
exp

(
−3.89

(
t

T

)2
)
; (3.3.8)
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• Group 3:

ϕ10(t) = 0.5−
sin
(
2πt
T

)
4

, (3.3.9)

ϕ11(t) = −0.5−
cos
(
2πt
T

)
4

; (3.3.10)

• Group 4:

ϕ10(t) = 0.5

(
1− t

T

)2

, (3.3.11)

ϕ11(t) = −0.5

(
1− t

T

)2

, (3.3.12)

θ10(t) = 0.5

(
t

T

)2

, (3.3.13)

θ11(t) = −0.5

(
t

T

)2

. (3.3.14)

The series of one location of the sampling tvSTAR(11) and tvSTARMA(11, 11) processes simulated

are presented in Figure 3.2.

(a) Group 1 (b) Group 2

(c) Group 3 (d) Group 4

Figure 3.2: Simulated series for one location.
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3.3.3 Results

Since the true parameters of Group 1 are discontinuous functions, Haar wavelet was used. In

other groups, the true parameters are smooth functions, then, Mexican hat wavelet was chosen. Note

that all estimates were calculated with J = 2.

Figures 3.3-3.4 show the boxplots of MSEs of the estimates of z, we can see that the MSEs of

Group 1 are a little larger than others which the parameters were calculated using the Mexican hat

wavelets. Figures 3.5, 3.6, 3.7 and 3.8 show the comparison of the true parameters versus the average

of estimates over 1000 experiments of Groups 1, 2, 3 and 4, respectively. The comparisons present a

high similarity between the parameters estimated and the true parameters, that is, all groups show a

satisfactory performance of the estimation proposed.

Figures B.1-B.6 of Appendix B present the histograms of estimated coefficients of ϕ10 and ϕ11

of Groups 1-3 which were obtained by the least squares estimation. Independent of the wavelet

basis selected, the estimates look like asymptotic normality. Although the coefficients of Group 4

are estimated by Kalman filter, the histograms of Figures B.7-B.10 of Appendix B show the same

conclusion.

Figure 3.3: Boxplots of MSEs of 1000 experiment for Groups 1-3.
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Figure 3.4: Boxplot of MSEs of each experiment for Groups 4.

Figure 3.5: Comparison of the true parameters (in black) versus the averages of estimates obtained

by Haar wavelet (in red) of Group 1.
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Figure 3.6: Comparison of the true parameters (in black) versus the averages of estimates obtained

by Mexican hat wavelet (in red) of Group 2.

Figure 3.7: Comparison of the true parameters (in black) versus the averages of estimates obtained

by Mexican hat wavelet (in red) of Group 3.
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Figure 3.8: Comparison of the true parameters (in black) versus the averages of estimates obtained

by Mexican hat wavelet (in red) of Group 4.
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3.4 Comparisons of Spatial Weight Matrix via Simula-

tion

Inspired by Jin (2017), this section presents some simulation examples in order to compare different

types of spatial weights matrices.

3.4.1 Spatial Weight Matrix

As mentioned in Section 2.2.2, the main characteristic of the STARMA model is the spatial weight

matrix,

W (l) = (w
(l)
ij ), i, j = 1, ..., n, (3.4.1)

where
n∑

j=1

w
(l)
ij = 1 (3.4.2)

and l is the spatial order. Each element of the matrix reflects the spatial relationship between two

regions, xi and xj and w
(l)
ij = 0 when i = j, that is, the matrix has zeros on its main diagonal and

the other elements will consist of positive numbers.

In the tvSTARMA models, let Z(t) = [Z1(t), ..., Zn(t)],

W (l)Z(t) =

 InZ(t), if l = 0,

L(l)Z(t), if l > 0.
(3.4.3)

The spatial lag operator L(l) is defined by

L(l)Zi(t) =

 Zi(t), if l = 0,∑n
j=1w

(l)
ij Zj(t), if l > 0.

(3.4.4)

There are many choices to the matrix W , such as inverse distance, negative exponential model,

k-nearest neighbors, etc. The distance inverse weight and negative exponential weight are selected in

our simulations. They are defined by

wdi
ij =


d−α
ij∑

k ̸=i d
−α
ik

, i ̸= j,

0, i = j
(3.4.5)

and

wne
ij =


exp{−αdij}∑
k ̸=i exp{−αdik} , i ̸= j,

0, i = j,
(3.4.6)

where dij is great-circle distance and the changing rate of weights over distance dij is determined by

the parameter α, a positive number.
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3.4.2 Simulation Procedure

The simulations consist of the following steps:

[1. ] Let n= 15 sample locations generated (the same as Figure 3.1), and then,M = 500 experiments

of n time series with length T = 1024 are simulated.

[2. ] The sample data z = [z( 1
T ), ..., z(

T
T )] are simulated from a Gaussian random field with mean

function µ(z) = 0 and covariance function

Cov(zx+h(t+τ), zx(t)) =
σ2

β(|τ |)d/2
ω

{
||h||√
β(|τ |)

}
+σ2ϵ I(zx+h(t+τ)=zx(t)), (h; τ) ∈ Rd×R, (3.4.7)

where h and τ are spatial and temporal shifts, respectively, σ2 = Var(zx(t)), d = 2 and

σ2ϵ = 0.05; ω(·) ≥ 0 is a completely monotone function and β(·) is a positive function with a

completely monotone derivative. And then,

β(f) = (f ζ + 1)δ/ζ , (3.4.8)

ω(f) = exp{−f/γ}, (3.4.9)

where ζ = 1, δ = 0.5, 1, 1.5 and γ = 0.25, 0.5, 1 are selected.

[3. ] Fit tvSTAR(11) and tvSTARMA(11, 11) models using the estimation procedure described in

Sections 3.1.2 and 3.2.2 with different spatial weight matrices described in Section 3.4.1, we set

α = 0.5, 1 for distance inverse weight and α = 0.5, 1, 2 for negative exponential weight.

[4. ] Calculate mean squared error (MSE) of the predictors ẑ,

MSE =
1

MnT

M∑
m=1

n∑
i=1

T∑
t=1

[zmi

(
t

T

)
− ẑmi

(
t

T

)
]2, (3.4.10)

where ẑmi
(
t
T

)
is the estimator of zmi

(
t
T

)
, the observation at location i and time t of the mth

experiment.

3.4.3 Results

From tables 3.1-3.6, we can say that under same spatial weight matrix, Haar wavelet is better

and MSEs decrease as J increases. The MSEs of tvSTARMA(11, 11) models are smaller for almost

every fitted model. For both Haar and Mexican hat wavelets, the MSEs are better when the distance

inverse weight with α = 1 was used and the negative exponential weight with α = 0.5 always obtains

the largest MSE.

Note that only in the case tvSTAR(11) model with Haar wavelet, tvSTAR(11) model with Mexican

hat wavelet and J = 2 and tvSTARMA(11, 11) model with Haar wavelet and J = 2, the negative
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exponential weight with α = 2 has the lowest MSE and it presents the second best MSE in other

cases.

Figures B.11-B.37 of Appendix B show the boxplots of MSEs of different simulated datasets

obtained by several models. Similar as the results of the tables, the effects of spatial weights matrices

don’t change in models used, that is, for both tvSTAR(11) and tvSTARMA(11, 11) models, Haar and

Mexican hat wavelets, J = 2, 3, MSEs of the models with the distance inverse weight with α = 1 are

always better. Note that there are some outliers when tvSTARMA(11, 11) models with Mexican hat

wavelet were used with the negative exponential weight.

Table 3.1: MSEs of different datasets from fitted tvSTAR(11) model with Haar wavelet and J = 2.

Spatial weight matrix
wdi

ij wne
ij

α = 0.5 α = 1 α = 0.5 α = 1 α = 2

γ = 0.25 δ = 0.5 0.5718754 0.5718671 0.5718751 0.5718726 0.5718640

γ = 0.25 δ = 1 0.8098079 0.8097984 0.8098102 0.8098068 0.8098007

γ = 0.25 δ = 1.5 0.9288534 0.9288364 0.9288597 0.9288551 0.9288474

γ = 0.5 δ = 0.5 0.5718170 0.5717461 0.5718260 0.5718180 0.5717843

γ = 0.5 δ = 1 0.8096359 0.8094605 0.8096958 0.8096638 0.8095814

γ = 0.5 δ = 1.5 0.9285955 0.9283395 0.9286984 0.9286436 0.9285171

γ = 1 δ = 0.5 0.5711949 0.5707646 0.5713536 0.5712403 0.5709691

γ = 1 δ = 1 0.8082413 0.8073662 0.8086525 0.8083505 0.8077541

γ = 1 δ = 1.5 0.9266655 0.9256044 0.9272141 0.9267818 0.9260058
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Table 3.2: MSEs of different datasets from fitted tvSTAR(11) model with Haar wavelet and J = 3.

Spatial weight matrix
wdi

ij wne
ij

α = 0.5 α = 1 α = 0.5 α = 1 α = 2

γ = 0.25 δ = 0.5 0.5707591 0.5707378 0.5707555 0.5707495 0.5707273

γ = 0.25 δ = 1 0.8086490 0.8086369 0.8086449 0.8086422 0.8086318

γ = 0.25 δ = 1.5 0.9277130 0.9276963 0.9277128 0.9277093 0.9277001

γ = 0.5 δ = 0.5 0.5707055 0.5706292 0.5706956 0.5706897 0.5706473

γ = 0.5 δ = 1 0.8084639 0.8082959 0.8085023 0.8084771 0.8083968

γ = 0.5 δ = 1.5 0.9274310 0.9271860 0.9275153 0.9274675 0.9273463

γ = 1 δ = 0.5 0.5700613 0.5696411 0.5701736 0.5700780 0.5698094

γ = 1 δ = 1 0.8069982 0.8061549 0.8073586 0.8070843 0.8065077

γ = 1 δ = 1.5 0.9254121 0.9243868 0.9259187 0.9255126 0.9247610

Table 3.3: MSEs of different datasets from fitted tvSTAR(11) model with Mexican hat wavelet and

J = 2.

Spatial weight matrix
wdi

ij wne
ij

α = 0.5 α = 1 α = 0.5 α = 1 α = 2

γ = 0.25 δ = 0.5 0.5720284 0.5720198 0.5720292 0.5720263 0.5720187

γ = 0.25 δ = 1 0.8099595 0.8099531 0.8099612 0.8099605 0.8099591

γ = 0.25 δ = 1.5 0.9289999 0.9289853 0.9290054 0.9290036 0.9290000

γ = 0.5 δ = 0.5 0.5719711 0.5718976 0.5719838 0.5719739 0.5719395

γ = 0.5 δ = 1 0.8097927 0.8096183 0.8098543 0.8098237 0.8097445

γ = 0.5 δ = 1.5 0.9287466 0.9284917 0.9288502 0.9287975 0.9286744

γ = 1 δ = 0.5 0.5713549 0.5709173 0.5715235 0.5714033 0.5711274

γ = 1 δ = 1 0.8084149 0.8075349 0.8088334 0.8085280 0.8079301

γ = 1 δ = 1.5 0.9267936 0.9256779 0.9272953 0.9268617 0.9260850
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Table 3.4: MSEs of different datasets from fitted tvSTAR(11) model with Mexican hat wavelet and

J = 3.

Spatial weight matrix
wdi

ij wne
ij

α = 0.5 α = 1 α = 0.5 α = 1 α = 2

γ = 0.25 δ = 0.5 0.5713301 0.5713054 0.5713330 0.5713241 0.5713024

γ = 0.25 δ = 1 0.8092726 0.8092524 0.8092760 0.8092697 0.8092562

γ = 0.25 δ = 1.5 0.9283331 0.9283079 0.9283398 0.9283333 0.9283203

γ = 0.5 δ = 0.5 0.5712721 0.5711897 0.5712766 0.5712649 0.5712213

γ = 0.5 δ = 1 0.8090920 0.8089110 0.8091462 0.8091135 0.8090265

γ = 0.5 δ = 1.5 0.9280607 0.9278012 0.9281587 0.9281040 0.9279749

γ = 1 δ = 0.5 0.5706313 0.5702010 0.5707714 0.5706620 0.5703890

γ = 1 δ = 1 0.8076571 0.8067883 0.8080496 0.8077554 0.8071624

γ = 1 δ = 1.5 0.9259958 0.9249419 0.9265289 0.9261045 0.9253332

Table 3.5: MSEs of different datasets from fitted tvSTARMA(11, 11) model with Haar wavelet and

J = 2.

Spatial weight matrix
wdi

ij wne
ij

α = 0.5 α = 1 α = 0.5 α = 1 α = 2

γ = 0.25 δ = 0.5 0.5490047 0.5489930 0.5490053 0.5490008 0.5489899

γ = 0.25 δ = 1 0.7955578 0.7955132 0.7955640 0.7955502 0.7955169

γ = 0.25 δ = 1.5 0.9214984 0.9214105 0.9215132 0.9214881 0.9214192

γ = 0.5 δ = 0.5 0.5489881 0.5489317 0.5489881 0.5489827 0.5489529

γ = 0.5 δ = 1 0.7954177 0.7952247 0.7954742 0.7954330 0.7953230

γ = 0.5 δ = 1.5 0.9212156 0.9208820 0.9213314 0.9212477 0.9210446

γ = 1 δ = 0.5 0.5486359 0.5483734 0.5487187 0.5486533 0.5484805

γ = 1 δ = 1 0.7942841 0.7935768 0.7945893 0.7943409 0.7938358

γ = 1 δ = 1.5 0.9193444 0.9183398 0.9198217 0.9194045 0.9186393
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Table 3.6: MSEs of different datasets from fitted tvSTARMA(11, 11) model with Mexican hat wavelet

and J = 2.

Spatial weight matrix
wdi

ij wne
ij

α = 0.5 α = 1 α = 0.5 α = 1 α = 2

γ = 0.25 δ = 0.5 0.5493941 0.5493536 0.5494022 0.5493865 0.5493567

γ = 0.25 δ = 1 0.7960634 0.7960057 0.7960567 0.7960479 0.7960121

γ = 0.25 δ = 1.5 0.9221163 0.9220534 0.9221938 0.9223765 0.9221010

γ = 0.5 δ = 0.5 0.5493746 0.5492904 0.5493905 0.5493671 0.5493187

γ = 0.5 δ = 1 0.7960146 0.7957764 0.7963313 0.7960042 0.7958850

γ = 0.5 δ = 1.5 0.9217563 0.9214193 0.9218807 0.9217912 0.9215954

γ = 1 δ = 0.5 0.5490224 0.5487275 0.5491266 0.5490394 0.5488448

γ = 1 δ = 1 0.7948874 0.7941313 0.7952156 0.7949564 0.7944082

γ = 1 δ = 1.5 0.9200001 0.9189014 0.9204669 0.9200260 0.9192314
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3.5 Application

Precipitation is one of the most important variables for climate and hydro-meteorology. All plants

need at least some water to survive, therefore precipitation, especially rain, is an important guiding

standard for agricultural production. The annual amount of precipitation can be conducted as an

important index degree for drought which presents more differences. There are many studies of

precipitation in different regions using time series models, such as Dalezios and Adamowski (1995),

Wang et al. (2013) and Wu et al. (2021). In this paper, we use historical daily precipitation records,

the data can be obtained directly from GHCN (Global Historical Climatology Network)-Daily, an

integrated public database of NOAA (National Oceanic and Atmospheric Administration) using R

package rnoaa.

The data selected are daily precipitation records (in tenths of millimeters) from Midwestern states

of the USA. The region consists of 11 states: North Dakota, South Dakota, Illinois, Iowa, Kansas,

Michigan, Minnesota, Missouri, Nebraska, Ohio and Wisconsin. We use only climate monitoring sta-

tions which contains no missing data during the period between 1990-01-01 and 2009-12-30 (inclusive).

The 30 stations selected are showed in Figure 3.9 and Figure 3.10 shown precipitation recorded of the

2 weather stations.

Figure 3.9: Locations of the stations selected from Midwestern states of the USA.
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Figure 3.10: Precipitation recorded of 2 weather stations.

As precipitation data may have heavy tail distribution due to very large values with finite proba-

bilities, we apply the transformation

Zi

(
t

T

)
= log10

(
Yi

(
t

T

)
+ 1

)
, (3.5.1)

where Yi
(
t
T

)
is the original records at location xi and time t before applying the estimation proposed

to remove the effects.

To define the weights, the distance inverse weight and negative exponential weight are selected in

this application. The weights are defined as (3.4.5) and (3.4.6). In this application, we set α = 0.5, 1

and 0.5, 1, 2 for distance inverse weight and negative exponential weight, respectively.

The results were obtained from the estimation described in Sections 3.1.2 and 3.2.2 using tvSTAR(11)

and tvSTARMA(11, 11) models. The wavelet expansion of time-varying parameters is built using Haar

and Mexican hat wavelets with J = 2, 3, 4 (tvSTAR models only).

Tables 3.7 and 3.8 show the MSEs of the estimates of different models with different selected

wavelets. We can see that MSEs are better for both Haar and Mexican hat wavelets when the spatial

weight matrix is distance inverse weight with α = 1. Under same weight matrix, MSEs decrease as

the number of J increases, however the MSEs are similar, therefore J = 2 may be satisfactory to fit

the data since it has less coefficients. Note that Mexican hat is better only in case tvSTAR(11) and

tvSTARMA(11, 11) with J = 2.
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Table 3.7: MSEs of different models where Haar wavelet were used.

Spatial weight matrix
wdi

ij wne
ij

α = 0.5 α = 1 α = 0.5 α = 1 α = 2

tvSTAR(11) J = 2 0.54997 0.54881 0.55414 0.55057 0.54972

tvSTAR(11) J = 3 0.54974 0.54855 0.55392 0.55036 0.54949

tvSTAR(11) J = 4 0.54938 0.54822 0.55354 0.54999 0.54913

tvSTARMA(11, 11) J = 2 0.54905 0.54809 0.55348 0.54967 0.54878

tvSTARMA(11, 11) J = 3 0.54847 0.54757 0.55288 0.54907 0.54824

Table 3.8: MSEs of different models where Mexican hat wavelet were used.

Spatial weight matrix
wdi

ij wne
ij

α = 0.5 α = 1 α = 0.5 α = 1 α = 2

tvSTAR(11) J = 2 0.54996 0.54880 0.55414 0.55057 0.54972

tvSTAR(11) J = 3 0.54983 0.54866 0.55401 0.55044 0.54959

tvSTAR(11) J = 4 0.54966 0.54851 0.55383 0.55028 0.54944

tvSTARMA(11, 11) J = 2 0.54909 0.54816 0.55355 0.54972 0.54886

tvSTARMA(11, 11) J = 3 0.54901 0.54789 0.55349 0.54963 0.54861



Chapter 4

Deformation Based on Monotonic

Functions

4.1 Introduction

By the Theorem 2.4.1, instead of estimating the constrained function g, the problem becomes

computing the unconstrained function w. Since w can be positive or negative, we expand it as a

linear combination of a set of wavelet basis functions.

As previously mentioned, two types of wavelets will be used:

• Mexican hat, given by

ψMex(x) =
2√
3π1/4

(1− x2)e−x2/2. (4.1.1)

Then we can expand ω as

wMex(x) =

J∑
j=0

2j−1∑
k=0

cj,kψ
Mex
j,k (x). (4.1.2)

• Shannon wavelet, given by

ψShan(x) = sinc(
x

2
) cos

(
3πx

2

)
= 2sinc(2x)− sinc(x), (4.1.3)

ϕShan(x) = sinc(x), (4.1.4)

where sinc(x) = sinπx
πx . And ω can be expressed by

wShan(x) = c0ϕ
Shan(x) +

J∑
j=0

2j−1∑
k=0

cj,kψ
Shan
j,k (x). (4.1.5)

4.2 Deformation Based on Monotonic Functions

Let xi = (xi1, xi2), location i in a G plane and yi = (yi1, yi2), its deformed location in a D

plane, i = 1, ..., n. As there is no natural sort order in R2, it’s very difficult to get a bidimensional

57



58 CHAPTER 4. DEFORMATION BASED ON MONOTONIC FUNCTIONS

monotonic function. Adapting the generalized additive model introduced by Hastie e Tibshirani

(1990) to estimate the deformation, we can consider each coordinate of the representation of the D

plane as the response variable and the coordinates of the location in the G plane as predictor variables

and thus we have an additive model as

yil = β0 +
2∑

j=1

glj(xij) + ϵil, l = 1, 2, (4.2.1)

where β0 represent intercept and ϵil indicates random effect.

Suppose that β0 = 0 and random effect is null. Therefore, the representation in the D plane,

yi = (yi1, yi2), can be written as

yi =

 yi1

yi2

 =

 g11(xi1) + g12(xi2)

g21(xi1) + g22(xi2)

 , (4.2.2)

where gl1(xi1) and gl2(xi2) are monotonic functions given by (2.4.11). Since gl1(xi1) and gl2(xi2) are

strictly monotonic on the range [0,∞), yik is also strictly monotonic in this range. Then, yil is a

injective function. And we can write

yil = C l
10 + C l

11D
−1 exp{D−1ωl1(xi1)}+ C l

20 + C l
21D

−1 exp{D−1ωl2(xi2)}. (4.2.3)

According to Theorem 2.4.1, C0 and C1 are arbitrary constants, suppose that C l
10 = C l

20 = 0 and

C l
11 = C l

21 = 1. Therefore, (4.2.3) can be simplified to

yil = D−1 exp{D−1ωl1(xi1)}+D−1 exp{D−1ωl2(xi2)}. (4.2.4)

Note that ωl1(xi1) and ω
l2(xi2) can be written in the form (4.1.2) or (4.1.5). Thus, the estimated

deformations using Mexican hat and Shannon wavelets can be written as

ŷMex
il = D−1 exp{ωk1

Mex(xi1)}+D−1 exp{ωl2
Mex(xi2)}, (4.2.5)

ŷShanil = D−1 exp{ωk1
Shan(xi1)}+D−1 exp{ωl2

Shan(xi2)}, (4.2.6)

for i = 1, ..., n, l = 1, 2.

4.3 Process Optimization

Let xi = (xi1, xi2) ∈ G ⊂ R2 coordinates of location i in a G plane and suppose that a collection

of n locations [(x11, x12), ..., (xn1, xn2)] was obtained. The optimization procedure is used to estimate

the deformation y, the spatial variance ν = ν(x) and the parameters θ of the correlation function ρ,

maximizing the likelihood function of the samples zit = Z(xi, t), i = 1, .., n, t = 1, .., T .

Assuming zt = (z1t, ..., znt)
′ ∼ Nn(µ,Ση), the likelihood function is

L(µ,Ση|z) = (2π)−nT/2 × det(Ση)
−T/2 × exp{−1

2

T∑
t=1

(zt − µ)TΣ−1
η (zt − µ)}
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= (2π)−nT/2 × det(Ση)
−T/2 × exp{−1

2
tr[Σ−1

η (
T∑
t=1

(zt − z̄)(zt − z̄)T + T (z̄− µ)(z̄− µ)T )]}

= (2π)−nT/2 × det(Ση)
−T/2 × exp{−T

2
tr[Σ−1

η S]− T

2
(z̄− µ)TΣ−1

η (z̄− µ)}, (4.3.1)

where z̄ is the vector of means at each location, S is sample spatial covariance matrix whose element

Sij =
∑T

t=1(zit − z̄i.)(zjt − z̄j.) and the covariance matrix

Ση=(c,ν,θ) = (σij), (4.3.2)

where

σij =
√
vivjρθ(|yi − yj |), (4.3.3)

with the coordinates yi and yj of the representation of the D plane, the spatial variance νi and νj at

locations i and j, respectively, and the parameters θ of the correlation function ρ.

Without loss of generality, set µ = 0, the optimization problem becomes

max
η

L(Ση|z). (4.3.4)

The optimization procedure to estimate the covariance matrix (4.3.2) consists of the following

steps:

1. Let c0 be the initial values of c, coefficients of ω and calculate γ0 = (ν0,θ0) such that

γ0 = arg max l(Σν,θ|z, c
0), (4.3.5)

where l(Σν,θ|z, c
0) = logL(Σν,θ|z, c

0).

2. Given γ0 obtained in Step 1, calculate

c1 = arg max l(c|z,Σ
ν0,θ0), (4.3.6)

where l(c|z,Σ
ν0,θ0) = logL(c|z,Σ

ν0,θ0).

3. Replace c0 by c1, return to Step 1.

4. Repeat Step (2) - (3) until convergence.

4.4 Simulations

This section presents some simulations in order to assess the performance of the algorithm. These

simulations are carried out in the cases that the deformations are generated by functions linear,

quadratic, non-linear and wavelet.
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4.4.1 Formulation of Deformation

The deformed coordinates yi’s, i.e. representations of D plane at location i, i = 1, .., n, are

generated as follows:

• Linear case:

yi1 = 0.75xi1 + xi2, (4.4.1)

yi2 = xi1 + 0.25xi2. (4.4.2)

• Quadratic case:

yi1 = −0.5(xi1 − 0.5)2 + (xi2 − 0.5) + 0.6, (4.4.3)

yi2 = (xi1 − 0.5)− 0.5(xi2 − 0.5)2 + 0.6. (4.4.4)

• Non-linear case:

yi1 = cos(angle)(xi1 − 0.5) + sin(angle)(xi2 − 0.5) + 0.5, (4.4.5)

yi2 = − sin(angle)(xi1 − 0.5) + cos(angle)(xi2 − 0.5) + 0.5, (4.4.6)

where angle = 2.5 exp{−(xi1 − 0.5)2 − (xi2 − 0.5)2}+ 3π/2.

• Wavelet case:

yi1 = D−1 exp{
1∑

j=0

2j−1∑
k=0

c11j,kψj,k(xi1)}+D−1 exp{
1∑

j=0

2j−1∑
k=0

c12j,kψj,k(xi2)}, (4.4.7)

yi2 = D−1 exp{
1∑

j=0

2j−1∑
k=0

c21j,kψj,k(xi1)}+D−1 exp{
1∑

j=0

2j−1∑
k=0

c22j,kψj,k(xi2)}, (4.4.8)

where ψ(t) are Mexican hat wavelets and c110,0 = 0.25, c111,0 = 0.01, c111,1 = −0.036, c120,0 = −0.37,

c121,0 = 0.065, c121,1 = −1.2, c210,0 = −0.032, c211,0 = −0.043, c211,1 = −1, c220,0 = −0.031, c221,0 = 0.11,

c221,1 = 0.19.

4.4.2 Simulation Procedure

The simulations consists of the following steps:

1. Let n = 50 sample locations generated in the geographical domain G = [0, 1] × [0, 1], the

coordinates (longitude and latitude) are generated following a uniform dispersion in (0, 1).

Figure 4.1 shows the sampling locations and the deformed locations are presented in Figure 4.2.
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2. The sample data (z = (z1, ..., zT )) are simulated from a Gaussian random field with mean

function µ(z) = 0 and covariance function

Cov(zi, zj) = νρθ(|yi − yj |) + σ2ϵ I(zi=zj) = ν exp{−|yi − yj |/θ}+ σ2ϵ I(zi=zj) (4.4.9)

with parameters ν = 1, θ = 0.25 and σ2ϵ = 0.05. The length of each series was fixed at T = 2048.

3. Calculate the estimates of yi, ŷi = (ŷi1, ŷi2) for i = 1, ..., n = 50 and the parameters of the

covariance function using the optimization procedure described in Section 4.3 with Mexican hat

and Shannon wavelets.

4. Calculate the MSE of the estimates of the correlation matrix,

MSE =
1

n2

n∑
i=1

n∑
j=1

(corrij − exp{−|ŷi − ŷj |/θ̂})2, (4.4.10)

where corrij is the element of the ith row and jth column in the correlation matrix of z, i.e. is

the correlation between zi and zj .

Figure 4.1: Sampling locations.
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(a) Linear Deformation (b) Quadratic Deformation

(c) Non-linear Deformation (d) Wavelet Deformation

Figure 4.2: Sampling locations (and regular grid) in G plane, in black, and deformed locations (and

deformed grid) in plane D, in red.

4.4.3 Results

Table 4.1 shows the estimated parameters of the covariance function and the MSEs of the estimates

of the correlation matrix in several fits. Observe that in the linear, non-linear and wavelet case, the

estimates that used J = 3 and Shannon wavelet were closer to the true values of the parameters,

whereas in the quadratic case, they were closer when using Mexican hat wavelet. Note that in three

cases the lowest MSE was obtained using the Mexican hat wavelet, however with J = 2 in the linear

case and J = 3 in the non-linear and wavelet case. Only in the quadratic case the smallest MSE was

obtained using Shannon wavelet and J = 4.
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Figures 4.3-4.10 show the estimated deformation and the scatter plots of the upper-diagonal entries

of the estimated correlation matrices for the sample data, versus the true correlation matrices. The

comparison of estimated correlation matrices provides great convenience to evaluate the estimation

results. According to the MSEs in Table 4.1, the scatter plot is more accurate for smaller MSE. Note

that in the linear and wavelet case, the estimated deformations are very close to the true one.

Table 4.1: Estimated parameters of the covariance function and MSEs of the correlation matrix of

different fits.

True value of the parameters: ν = 1 θ = 0.25 σ2ϵ = 0.05

Mexican hat Shannon

Linear Deformation

J = 2 J = 3 J = 4 J = 2 J = 3 J = 4

ν 1.03540 1.04229 1.03757 1.03493 1.02579 1.03192

θ 0.19197 0.18178 0.20000 0.20204 0.23975 0.21140

σ2ϵ 0.04117 0.03905 0.03771 0.04380 0.06739 0.04512

MSE 0.00173 0.00505 0.00290 0.00196 0.00409 0.00708

Quadratic Deformation

J = 3 J = 4 J = 5 J = 3 J = 4 J = 5

ν 1.01631 1.03535 1.01537 1.04410 1.04491 1.00799

θ 0.25529 0.26601 0.25003 0.26182 0.25878 0.25973

σ2ϵ 0.04272 0.04371 0.04082 0.04140 0.04032 0.04690

MSE 0.00309 0.00165 0.00195 0.00220 0.00124 0.00205

Non-linear Deformation

J = 3 J = 4 J = 5 J = 3 J = 4 J = 5

ν 1.04400 1.04378 1.02342 1.02903 0.99906 1.04291

θ 0.22920 0.21801 0.23132 0.25214 0.24048 0.23826

σ2ϵ 0.04117 0.03905 0.03771 0.04183 0.03259 0.03297

MSE 0.00387 0.00539 0.00485 0.00409 0.00436 0.00451

Wavelet Deformation

J = 3 J = 4 J = 5 J = 3 J = 4 J = 5

ν 1.00827 1.02275 1.01732 1.02485 1.00019 1.00496

θ 0.19449 0.19605 0.20986 0.22260 0.20877 0.21827

σ2ϵ 0.05629 0.04681 0.05375 0.06022 0.06107 0.06728

MSE 0.00179 0.00279 0.00218 0.00296 0.00222 0.00226
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Figure 4.3: Estimated deformation (in blue) when J = 2, 3, 4 (from left to right) for linear deformation

case using Mexican hat (upper) and Shannon (bottom) wavelets.

Figure 4.4: Comparison of the estimated correlation matrix versus the true correlation matrix when

J = 2, 3, 4 (from left to right) for linear deformation case using Mexican hat (upper) and Shannon

(bottom) wavelets.
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Figure 4.5: Estimated deformation (in blue) when J = 3, 4, 5 (from left to right) for quadratic

deformation case using Mexican hat (upper) and Shannon (bottom) wavelets.

Figure 4.6: Comparison of the estimated correlation matrix versus the true correlation matrix when

J = 3, 4, 5 (from left to right) for quadratic deformation case using Mexican hat (upper) and Shannon

(bottom) wavelets.
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Figure 4.7: Estimated deformation (in blue) when J = 3, 4, 5 (from left to right) for non-linear

deformation case using Mexican hat (upper) and Shannon (bottom) wavelets.

Figure 4.8: Comparison of the estimated correlation matrix versus the true correlation matrix when

J = 3, 4, 5 (from left to right) for non-linear deformation case using Mexican hat (upper) and Shannon

(bottom) wavelets.



4.4. SIMULATIONS 67

Figure 4.9: Estimated deformation (in blue) when J = 3, 4, 5 (from left to right) for wavelet defor-

mation case using Mexican hat (upper) and Shannon (bottom) wavelets.

Figure 4.10: Comparison of the estimated correlation matrix versus the true correlation matrix when

J = 3, 4, 5 (from left to right) for wavelet deformation case using Mexican hat (upper) and Shannon

(bottom) wavelets.
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4.5 Application

The dataset we use to illustrate the optimization procedure described in Section 4.3 is composed

of historical daily maximum temperature records. The data can be obtained directly from GHCN

(Global Historical Climatology Network)-Daily, an integrated public database of NOAA (National

Oceanic and Atmospheric Administration) using R package rnoaa.

The data selected are daily maximum temperature records (in tenths of degrees Celsius) from

Midwestern states of the USA. The region consists of 12 states: North Dakota, South Dakota, Illinois,

Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, Ohio and Wisconsin. We use only

climate monitoring stations which contains no missing data during the period between 1980 and 1999

(inclusive). The 51 stations selected are showed in Figure 4.11 and Figure 4.12 shown maximum

temperature recorded at the 4 sampling stations.

Figure 4.11: Locations of the stations selected from Midwestern states of the USA.

The results were obtained from the optimization procedure described in Section 4.3 and deforma-

tion (4.2.5), (4.2.6) with J = 2, 3, 4 using Mexican hat and Shannon wavelets. And the covariance

function used has the formula of equation (4.4.9). Figure 4.13 presents the estimated deformation and

Table 4.2 shows the MSEs of the correlation matrix for the several fits. We can see that MSEs are

better for both Mexican hat and Shannon when J = 3. Same conclusions can be seen in the scatter

plots (Figure 4.14). Note that the correlations are strong, maybe because the stations are from the

same region.
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Figure 4.12: Maximum temperature recorded at the 4 sampling stations.

Table 4.2: Estimated parameters and MSEs of the correlation matrix for the several fits.

Mexican hat Shannon

J = 2 J = 3 J = 4 J = 2 J = 3 J = 4

ν 0,06438 0,06299 0,07400 0,06826 0,06871 0,06746

θ 5,11259 4,24264 5,86402 4,04539 4,11567 4,98565

σ2
ϵ 0,00024 0,00016 0,00022 0,00015 0,00011 0,00019

MSE 0,00106 0,00103 0,00174 0,00146 0,00109 0,00122



70 CHAPTER 4. DEFORMATION BASED ON MONOTONIC FUNCTIONS

Figure 4.13: Estimated deformation (in red) when J = 2, 3, 4 (from left to right) using Mexican Hat

(upper) and Shannon (bottom) wavelets.

Figure 4.14: Comparison of the estimated correlation matrix versus the true correlation matrix when

J = 2, 3, 4 (from left to right) using Mexican Hat (upper) and Shannon (bottom) wavelets.



Chapter 5

Conclusions

In this thesis, we studied two topics about spatio-temporal data analysis. First, a time-varying

STARMA models based on locally stationary process in the sense of Dahlhaus was proposed. The

STARMA models have been used in different fields of studies, but stationarity is a basic assumption

for the models of STARMA class and is difficult to guarantee it in practice. Then, a multivariate

locally stationary process is considered and we defined the time-varying STARMA model, where the

time-varying parameters are expanded in wavelets. Two estimation methods were used, the least

squares method when the tvSTAR models were selected and the Kalman filter when the terms of MA

part were included. Some simulations examples in order to evaluate the performance of the proposed

estimation procedure and an application were realized using Haar and Mexican hat wavelets. Since

the models are characterized by the spatial weight matrixW and there are many choices to the matrix

W , some simulation were done to compare the effects of different types of the matrices in the datasets

which have non-separable covariance function.

And then, we have presented a method for non-stationary covariance function modeling, based on

the monotonic functions. The mapping function f that maps the sampling locations in a geostatistical

domain into space representations at a deformation domain guarantee the isotropicity of the spatial

correlation of the deformation plane. Furthermore, the function f should be injective, then we used

the strictly monotonic function with wavelet expansion to construct f . The maximum likelihood

estimation was used for the process optimization and the results of the simulations showed that the

performance of the algorithm is satisfactory when the deformation is simple. Note that the Mexican

hat and Shannon wavelets were used in the simulations and application.

For the time-varying STARMA models, there are many interesting studies that can be explored

in the future research, for examples:

• incorporate seasonal factors;

• explore innovation covariance function heterogeneity;

71



72 CHAPTER 5. CONCLUSIONS

• consider the case when the spatial weight matrix is time-varying;

• compare the proposed model and other spatio-temporal models, such as spatial dynamic models

and hierarchical spatio-temporal models.

By the inverse function theorem, if the Jacobian determinant of f , denoted by det(J(f)), is non-

zero, the f is an injective function. The deformation proposed in this thesis satisfies the condition

that the Jacobian determinant is invertible. When det(J(f)) > 0, the f is considered as a bijective

function, that is, the orientation preserving of the function f is guaranteed. Then, some methods

that guarantee the bijectivity of the transformation under the stochastic model considered could be

explored in future studies.



Appendix A

Proofs

A.1 Proof of Proposition 1

Equation (3.1.4) can be written as

ν

(
t

T

)
=

p∑
s=1

λs∑
l=0

Rsl

(
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T

)
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(
t− s
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)
+ ϵ

(
t
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)
, (A.1.1)

where
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(
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T

)
=
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j≥J
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βslj,mψj,m

(
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)
. (A.1.2)

Define
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[
p∑
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(A.1.3)

and

ϵ =

[
vec

(
ϵ

(
p+ 1

T

))′
, ..., vec

(
ϵ

(
T − p

T

))′]′
, (A.1.4)

equation (3.1.10) can be decomposed as

β̂ = (Ψ′Ψ)−1Ψ′(Ψβ + S + ϵ)

= β + (EΨ′Ψ)−1Ψ′ϵ+ [(Ψ′Ψ)−1 − (EΨ′Ψ)−1]Ψ′ϵ+ (Ψ′Ψ)−1Ψ′S

= β + T1 + T2 + T3. (A.1.5)

Since T1 = (EΨ′Ψ)−1Ψ′ϵ, we have E[T1] = 0 and by Taylor expansion of the matrix (Ψ′Ψ)−1,

T2 = T21 + T22, where

T21 = (EΨ′Ψ)−1(EΨ′Ψ−Ψ′Ψ)(EΨ′Ψ)−1Ψ′ϵ (A.1.6)

and

T22 = (EΨ′Ψ)−1(EΨ′Ψ−Ψ′Ψ)(EΨ′Ψ)−1(EΨ′Ψ−Ψ′Ψ)(EΨ′Ψ)−1Ψ′ϵ. (A.1.7)

73



74 APPENDIX A. PROOFS

Analogously to Chang and Morettin (2005), we obtain

∥T21∥2 ≤
∥∥(EΨ′Ψ)−1

∥∥2
2

∥∥Cov(Ψ′Ψ)
∥∥1/2
2

∥∥Cov(Ψ′ϵ)
∥∥1/2
2

= O((nT )−2)O(22J(nT )1/2)O((nT )1/2)

= O(2J(nT )−1) (A.1.8)

and

∥T22∥2 ≤
∥∥(EΨ′Ψ)−1

∥∥3
2

∥∥Cov(Ψ′Ψ)
∥∥2
2

∥∥Cov(Ψ′ϵ)
∥∥
2

= O((nT )−3)O(22JnT )O((nT )1/2)

= O(22J(nT )−3/2). (A.1.9)

From Donoho et al. (1995), we have

sup


∞∑
j≥J

2j−1∑
k=0

|βslj,k|2
 = O(2−2Ju), (A.1.10)

where u = d+ 1/2− 1/p̃ with p̃ = min{p, 2} and similarly to Dahlhaus et al. (1999),

∥T3∥2 ≤ (
∥∥(EΨ′Ψ)−1

∥∥
2
+
∥∥(Ψ′Ψ)−1 − (EΨ′Ψ)−1
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2
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2
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∥∥Ψ′S

∥∥
2

= O((nT )−1)O(nT (2−Ju + (nT )−1/22−J(d−1/2−1/(2p̃)))
√
log (nT )))

= O((2−Ju + (nT )−1/22−J(d−1/2−1/(2p̃)))
√
log (nT )))

= O((nT )−1/2−τ ), (A.1.11)

for some τ > 0. Then, ∥T3∥2 ≤ O((nT )−1/2).

The result (i.) follows.

For (ii.), we have

E[T1T
′
1] = (EΨ′Ψ)−1Cov(Ψ′ϵ)(EΨ′Ψ)−1

≤
∥∥(EΨ′Ψ)−1

∥∥2
2
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∥∥
2

= O((nT )2)O(nT )

= O((nT )−1). (A.1.12)

Analogously,

E[T2T
′
2] = O(22J(nT )−2) +O(24J(nT )−3), (A.1.13)

E[T3T
′
3] = O((nT )−1), (A.1.14)

E[T1T
′
2] = E[T ′

1T2] = E[T2T
′
3] = E[T ′

2T3] = O(2J(nT )−3/2) +O(22J(nT )−2), (A.1.15)

E[T1T
′
3] = E[T ′

1T3] = O((nT )−1), (A.1.16)

and then the result (ii.) follows.
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A.2 Proof of Proposition 2

Lemma 1 Suppose the assumptions A.1-A.4 hold, then

NH(Ψ′Ψ)−1H′ P→Γ, (A.2.1)

where Ψ is as in (3.1.8) and

Γ = lim
N→∞

NHE[Ψ′Ψ]−1H′. (A.2.2)

Proof. Let ψgl the gth row and lth column cell of Ψ, we have

ψgl =
n∑

i=1

f iglZ
i
gl, (A.2.3)

where f igl is obtained by the product of a wavelet function and a weight function up to one and Zi
gl

is a locally stationary process, both are elements of (g, l)th cell of Ψ at location i.

Let (ψψ)lm the lth row and mth column cell of any subpartition of Ψ′Ψ, (ψψ)lm can be expressed

as
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n
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The proof of (ψ′ψ)lm is similar to that of Sato et al. (2007) and the result follows from the Weak

Law for L1 −Maxingales of Andrews (1988).

Lemma 2 Suppose the assumptions A.1-A.4 hold, then

1√
N

G(Ψ′ϵ)
D→NK(0,Γ−1), (A.2.4)

where ϵ is as in (A.1.4) and covariance matrix

Γ−1 = lim
N→∞

G
E[Ψ′Ψ]

N
G′, (A.2.5)

where N = n(T − p), G is a matrix with the same number of columns of Ψ and K rows.

Proof. Let (ψe)l the lth element of Ψ′ϵ,

(ψe)l =

N∑
g=1

(ψe)gl

=
N∑
g=1

fglZ̃glϵg,
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where fgl is a wavelet function and Z̃gl is a weighted arithmetic mean of n locally stationary processes

with weights sum to one, both are of (g, l)th cell ofΨ and ϵg, gth element of ϵ, is independent Gaussian

process.

Let Ψ′ϵ =
∑N

g=1 bg, where bg is a vector consist of (ψe)gl and define Fg as a σ-algebra containing

all the information up to moment g. Since

E[bg | Fg−1] = 0, (A.2.6)

{bg}∞g=1 is a martingale difference sequence. Then
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Analogously,
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where
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E[Ψ′Ψ]

N
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and similar to Lemma 1,

G

∑N
g=1 bgb

′
g

N
G′ P→Γ−1. (A.2.9)

The result follows the central limit theorem for martingale difference sequence of White (2000).

From equation (A.1.11),
√
N∥T3∥2 = O((nT )−τ ) = op(1), applying Lemma 1, Lemma 2 and

Slutsky theorem, we have

√
NH(β̂ − β) =

√
NH(T1 + T2 + T3) (A.2.10)

=
√
NH(T1 + T2) + op(1) (A.2.11)

=
√
NH(Ψ′Ψ)−1Ψ′ϵ+ op(1) (A.2.12)

= N + op(1), (A.2.13)

where N has a K-dimensional normal distribution with mean zero and covariance matrix Γ as in

(A.2.2). The result follows the Slutsky’s theorem.
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Figures of Simulations

B.1 Histograms of Estimated Coefficients
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Figure B.1: Histograms of estimated coefficients of ϕ10 of Group 1 obtained by Haar wavelet and least

squares estimation.
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Figure B.2: Histograms of estimated coefficients of ϕ11 of Group 1 obtained by Haar wavelet and least

squares estimation.
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Figure B.3: Histograms of estimated coefficients of ϕ10 of Group 2 obtained by Mexican hat wavelet

and least squares estimation.
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Figure B.4: Histograms of estimated coefficients of ϕ11 of Group 2 obtained by Mexican hat wavelet

and least squares estimation.
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Figure B.5: Histograms of estimated coefficients of ϕ10 of Group 3 obtained by Mexican hat wavelet

and least squares estimation.
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Figure B.6: Histograms of estimated coefficients of ϕ11 of Group 3 obtained by Mexican hat wavelet

and least squares estimation.
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Figure B.7: Histograms of estimated coefficients of ϕ10 of Group 4 obtained by Mexican hat wavelet

and Kalman filter estimation.
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Figure B.8: Histograms of estimated coefficients of ϕ11 of Group 4 obtained by Mexican hat wavelet

and Kalman filter estimation.
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Figure B.9: Histograms of estimated coefficients of θ10 of Group 4 obtained by Mexican hat wavelet

and Kalman filter estimation.
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Figure B.10: Histograms of estimated coefficients of θ11 of Group 4 obtained by Mexican hat wavelet

and Kalman filter estimation.
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B.2 Boxplots of MSEs

Figure B.11: Boxplots of MSEs obtained by tvSTAR(11) model with Haar wavelet and different spatial

weights matrices, which the dataset was simulated using γ = 0.25 and δ = 0.5.

Figure B.12: Boxplots of MSEs obtained by tvSTAR(11) model with Mexican hat wavelet and different

spatial weights matrices, which the dataset was simulated using γ = 0.25 and δ = 0.5.

Figure B.13: Boxplots of MSEs obtained by tvSTAR(11) model with Haar wavelet and different spatial

weights matrices, which the dataset was simulated using γ = 0.25 and δ = 1.
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Figure B.14: Boxplots of MSEs obtained by tvSTAR(11) model with Mexican hat wavelet and different

spatial weights matrices, which the dataset was simulated using γ = 0.25 and δ = 1.

Figure B.15: Boxplots of MSEs obtained by tvSTAR(11) model with Haar wavelet and different spatial

weights matrices, which the dataset was simulated using γ = 0.25 and δ = 1.5.

Figure B.16: Boxplots of MSEs obtained by tvSTAR(11) model with Mexican hat wavelet and different

spatial weights matrices, which the dataset was simulated using γ = 0.25 and δ = 1.5.
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Figure B.17: Boxplots of MSEs obtained by tvSTAR(11) model with Haar wavelet and different spatial

weights matrices, which the dataset was simulated using γ = 0.5 and δ = 0.5.

Figure B.18: Boxplots of MSEs obtained by tvSTAR(11) model with Mexican hat wavelet and different

spatial weights matrices, which the dataset was simulated using γ = 0.5 and δ = 0.5.

Figure B.19: Boxplots of MSEs obtained by tvSTAR(11) model with Haar wavelet and different spatial

weights matrices, which the dataset was simulated using γ = 0.5 and δ = 1.
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Figure B.20: Boxplots of MSEs obtained by tvSTAR(11) model with Mexican hat wavelet and different

spatial weights matrices, which the dataset was simulated using γ = 0.5 and δ = 1.

Figure B.21: Boxplots of MSEs obtained by tvSTAR(11) model with Haar wavelet and different spatial

weights matrices, which the dataset was simulated using γ = 0.5 and δ = 1.5.

Figure B.22: Boxplots of MSEs obtained by tvSTAR(11) model with Mexican hat wavelet and different

spatial weights matrices, which the dataset was simulated using γ = 0.5 and δ = 1.5.
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Figure B.23: Boxplots of MSEs obtained by tvSTAR(11) model with Haar wavelet and different spatial

weights matrices, which the dataset was simulated using γ = 1 and δ = 0.5.

Figure B.24: Boxplots of MSEs obtained by tvSTAR(11) model with Mexican hat wavelet and different

spatial weights matrices, which the dataset was simulated using γ = 1 and δ = 0.5.

Figure B.25: Boxplots of MSEs obtained by tvSTAR(11) model with Haar wavelet and different spatial

weights matrices, which the dataset was simulated using γ = 1 and δ = 1.
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Figure B.26: Boxplots of MSEs obtained by tvSTAR(11) model with Mexican hat wavelet and different

spatial weights matrices, which the dataset was simulated using γ = 1 and δ = 1.

Figure B.27: Boxplots of MSEs obtained by STAR(11) model with Haar wavelet and different spatial

weights matrices, which the dataset was simulated using γ = 1 and δ = 1.5.

Figure B.28: Boxplots of MSEs obtained by STAR(11) model with Mexican hat wavelet and different

spatial weights matrices, which the dataset was simulated using γ = 1 and δ = 1.5.
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Figure B.29: Boxplots of MSEs obtained by tvSTARMA(11, 11) model with J = 2 and different spatial

weights matrices, which the dataset was simulated using γ = 0.25 and δ = 0.5.

Figure B.30: Boxplots of MSEs obtained by tvSTARMA(11, 11) model with J = 2 and different spatial

weights matrices, which the dataset was simulated using γ = 0.25 and δ = 1.

Figure B.31: Boxplots of MSEs obtained by tvSTARMA(11, 11) model with J = 2 and different spatial

weights matrices, which the dataset was simulated using γ = 0.25 and δ = 1.5.
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Figure B.32: Boxplots of MSEs obtained by tvSTARMA(11, 11) model with J = 2 and different spatial

weights matrices, which the dataset was simulated using γ = 0.5 and δ = 0.5.

Figure B.33: Boxplots of MSEs obtained by tvSTARMA(11, 11) model with J = 2 and different spatial

weights matrices, which the dataset was simulated using γ = 0.5 and δ = 1.

Figure B.34: Boxplots of MSEs obtained by tvSTARMA(11, 11) model with J = 2 and different spatial

weights matrices, which the dataset was simulated using γ = 0.5 and δ = 1.5.
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Figure B.35: Boxplots of MSEs obtained by tvSTARMA(11, 11) model with J = 2 and different spatial

weights matrices, which the dataset was simulated using γ = 1 and δ = 0.5.

Figure B.36: Boxplots of MSEs obtained by tvSTARMA(11, 11) model with J = 2 and different spatial

weights matrices, which the dataset was simulated using γ = 1 and δ = 1.

Figure B.37: Boxplots of MSEs obtained by tvSTARMA(11, 11) model with J = 2 and different spatial

weights matrices, which the dataset was simulated using γ = 1 and δ = 1.5.
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