• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2007.tde-24072007-163914
Document
Author
Full name
Pablo Martin Rodriguez
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2007
Supervisor
Committee
Lebensztayn, Élcio (President)
Machado, Fabio Prates
Mitrowsky, Rafael Andres Rosales
 
Title in Portuguese
Transição de fase para um modelo de percolação de discos em grafos
Keywords in Portuguese
modelo epidêmico
parâmetro crítico
percolação
transição de fase
Abstract in Portuguese
Associamos independentemente a cada vértice v de un grafo infinito G um raio de infecção aleatório R_v e definimos um modelo de percolação sujeito às seguintes regras: (1) no tempo zero só a raiz é declarada infectada, (2) um vértice é declarado infectado em um instante t, t>0, se está a uma distância no maximo R_v de algum vértice v previamente infectado, e (3) vértices infectados permanecem infectados para sempre. Dizemos que há sobrevivência em uma realização particular do modelo se o número final de vértices infectados é infinito. Neste trabalho damos condições suficientes sobre o grafo G para a transição de fase deste modelo, estabelecendo limitantes não triviais para o parâmetro crítico quando os raios R_v têm distribuição geometrica de parâmetro 1-p. Além disto, restringindo nosso estudo para o caso das árvores esfericamente simétricas, obtemos um melhor limitante superior para este parâmetro. Finalmente, concluímos que o parâmetro crítico para o modelo nas árvores homogêneas de grau d+1 se comporta assintoticamente como 1/(2d).
 
Title in English
Phase transition for a disk percolation model on graphs
Keywords in English
critical parameter
epidemic model
percolation
phase transition
Abstract in English
We assign independently to each vertex v of an infinite graph G, a random radius of infection R_v and define a percolation model subject to the following rules: (1) at time zero, only the root is declared infected, (2) a vertex is declared infected at time t, t>0, if it is at distance at most R_v of some vertex v previously infected, and (3) infected vertices stay infected forever. We say that there is survival in a particular realization of the model if the final number of infected vertices is infinite. In this work, we give sufficient conditions on the graph G for the phase transition of this model, by stating non-trivial bounds for the critical parameter when the radii have geometrical distribution with parameter 1-p. In addition, restricting our study to the case of the spherically symmetric trees, we obtain an improved upper bound for this critical parameter. Finally, we conclude that the critical parameter for the model on homogeneous trees of degree (d+1) behaves asymptotically as 1/(2d).
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
modelo.pdf (264.88 Kbytes)
Publishing Date
2007-09-13
 
WARNING: The material described below relates to works resulting from this thesis or dissertation. The contents of these works are the author's responsibility.
  • LEBENSZTAYN, E, and RODRIGUEZ, P. The disk-percolation model on graphs [doi:10.1016/j.spl.2008.02.001]. Statistics & Probability Letters [online], 2008, vol. 78, n. 14, p. 2130-2136.

All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.