• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2012.tde-24032013-123415
Documento
Autor
Nome completo
Renata Trevisan Brunelli
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2012
Orientador
Banca examinadora
Barroso, Lucia Pereira (Presidente)
Cirillo, Marcelo Angelo
Soler, Julia Maria Pavan
Título em português
Análise do impacto de perturbações sobre medidas de qualidade de ajuste para modelos de equações estruturais
Palavras-chave em português
Análise de Equações Estruturais
Análise Multivariada
assimetria
curtose
Medidas de Qualidade de Ajuste
multicolinearidade
outliers
relações causais.
tamanho da amostra
Resumo em português
A Modelagem de Equações Estruturais (SEM, do inglês Structural Equation Modeling) é uma metodologia multivariada que permite estudar relações de causa/efeito e correlação entre um conjunto de variáveis (podendo ser elas observadas ou latentes), simultaneamente. A técnica vem se difundindo cada vez mais nos últimos anos, em diferentes áreas do conhecimento. Uma de suas principais aplicações é na conrmação de modelos teóricos propostos pelo pesquisador (Análise Fatorial Conrmatória). Existem diversas medidas sugeridas pela literatura que servem para avaliar o quão bom está o ajuste de um modelo de SEM. Entretanto, é escassa a quantidade de trabalhos na literatura que listem relações entre os valores de diferentes medidas com possíveis problemas na amostra e na especicação do modelo, isto é, informações a respeito de que possíveis problemas desta natureza impactam quais medidas (e quais não), e de que maneira. Tal informação é importante porque permite entender os motivos pelos quais um modelo pode estar sendo considerado mal-ajustado. O objetivo deste trabalho é investigar como diferentes perturbações na amostragem, especicação e estimação de um modelo de SEM podem impactar as medidas de qualidade de ajuste; e, além disso, entender se o tamanho da amostra influencia esta resposta. Simultaneamente, também se avalia como tais perturbações afetam as estimativas, dado que há casos de perturbações em que os parâmetros continuam sendo bem ajustados, mesmo com algumas medidas indicando um mau ajuste; ao mesmo tempo, há ocasiões em que se indica um bom ajuste, enquanto que os parâmetros são estimados de forma distorcida. Tais investigações serão realizadas a partir de simulações de exemplos de amostras de diferentes tamanhos para cada tipo de perturbação. Então, diferentes especicações de modelos de SEM serão aplicados a estas amostras, e seus parâmetros serão estimados por dois métodos diferentes: Mínimos Quadrados Generalizados e Máxima Verossimilhança. Conhecendo tais resultados, um pesquisador que queira aplicar a técnica de SEM poderá se precaver e, dentre as medidas de qualidade de ajuste disponíveis, optar pelas que mais se adequem às características de seu estudo.
Título em inglês
Analysis of the impact of disturbances over the measures of goodness of fit for structural equation models
Palavras-chave em inglês
causal relationships.
kurtosis
measures of goodness of fit
multicollinearity
Multivariate Analysis
outliers
sample size
skewness
Structural Equation Modeling
Resumo em inglês
The Structural Equation Modeling (SEM) is a multivariate methodology that allows the study of cause-and-efect relationships and correlation of a set of variables (that may be observed or latent ones), simultaneously. The technique has become more diuse in the last years, in different fields of knowledge. One of its main applications is on the confirmation of theoretical models proposed by the researcher (Confirmatory Factorial Analysis). There are several measures suggested by literature to measure the goodness of t of a SEM model. However, there is a scarce number of texts that list relationships between the values of different of those measures with possible problems that may occur on the sample or the specication of the SEM model, like information concerning what problems of this nature impact which measures (and which not), and how does the impact occur. This information is important because it allows the understanding of the reasons why a model could be considered bad fitted. The objective of this work is to investigate how different disturbances of the sample, the model specification and the estimation of a SEM model are able to impact the measures of goodness of fit; additionally, to understand if the sample size has influence over this impact. It will also be investigated if those disturbances affect the estimates of the parameters, given the fact that there are disturbances for which occurrence some of the measures indicate badness of fit but the parameters are not affected; at the same time, that are occasions on which the measures indicate a good fit and there are disturbances on the estimates of the parameters. Those investigations will be made simulating examples of different size samples for which type of disturbance. Then, SEM models with different specifications will be fitted to each sample, and their parameters will be estimated by two dierent methods: Generalized Least Squares and Maximum Likelihood. Given those answers, a researcher that wants to apply the SEM methodology to his work will be able to be more careful and, among the available measures of goodness of fit, to chose those that are more adequate to the characteristics of his study.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2013-06-26
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.