
Community detection in graphs

Felipe Castro de Britto

Dissertation presented
to the

Institute of Mathematics and Statistics
of

University of São Paulo
to

obtain the degree
of

Master in science

Program: Statistics
Advisor: Prof. Dr. Florencia G. Leonardi

São Paulo, october 2020

Detecção de comunidades em grafos

Felipe Castro de Britto

Dissertação apresentada
ao

Instituto de Matemática e Estatística
da

Universidade de São Paulo
para

obtenção do título
de

Mestre em Ciências

Programa: Estatística
Orientador: Prof. Dr. Florencia G. Leonardi

São Paulo, outubro de 2020

Community detection in graphs

This is the original version of the dissertation of the
Msc. candidate Felipe Castro de Britto,
as presented to the Judging Commitee.

Community detection in graphs

Comissão Julgadora:

• Prof. Dra. Florência Graciela Leonardi - IME-USP

• Prof. Dra. Andressa Cerqueira - DEs-UFSCar

• Prof. Dr. André Fujita - IME-USP

Resumo

BRITTO, F.C. Detecção de comunidades em grafos. 2020. Tese (Mestrado) - Instituto
de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2020.

O Modelo Estocástico de Blocos (SBM), do inglês, Stochastic Block Model, é um dos
modelos mais famosos de grafos com estutura de comunidades, devido a sua facilidade em
simular diversas estruturas diferentes. Neste trabalho é feita uma introdução a detecção de
comunidades no modelo SBM, diferentes estratégias para essa detecção, e condições para que
se obtenha consitência na detecção de comunidades. É feita também uma aplicação dessas
estratégias, ou algoritmos, para saber sob quais condições, ou regimes, também conhecido
como limites fundamentais, esses algoritmos obtém bons resultados, em grafos simulados
com diferentes regimes.

Palavras-chave: Modelo estocástico de blocos, detecção de comunidades, limites funda-
mentais.

i

ii

Abstract

BRITTO, F.C. Community detection in graphs. 2020. Dissertation (Master’s Degree)
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2020.

The Stochastic Block Model (SBM), is one of the most famous models of graphs with com-
munity structure, due to its facility in simulating several different structures. In this work,
an introduction to community detection in the SBM model is made, to different approaches
to this detection, and conditions to obtain consistency in the detection of communities. An
application of these strategies, or algorithms, is also made to know under which conditions,
or regimes, also known as fundamental limits, these algorithms have good results, in simu-
lated graphs with different regimes.

Keywords: Stochastic Block Model, community detection, fundamental limits.

iii

iv

Contents

1 Introduction 1
1.1 Organization . 2
1.2 Objectives . 2

2 Stochastic Block Models 3
2.1 Stochastic Block Model . 3

2.1.1 The general Stochastic Block Model 3
2.1.2 Recovery in the SBM . 4
2.1.3 MAP in the SBM . 6

2.2 Community Structure Problem . 8

3 Algorithms 11
3.1 Newman-Girvan Algorithm . 11
3.2 Spectral Clustering . 12
3.3 SDP algorithm . 13
3.4 Allocation Sampler . 13

3.4.1 MK . 15
3.4.2 GS . 15
3.4.3 M3 . 15
3.4.4 AE . 16

3.5 Exact ICL algorithm . 16

4 Simulation 21
4.1 Simulation with two communities . 21

4.1.1 |
√
a−
√
b| >

√
2 and (a− b)2 > (8(a+ b) + (8/3)(a− b) 22

4.1.2 |
√
a−
√
b| >

√
2 and (a− b)2 < (8(a+ b) + (8/3)(a− b) 23

4.1.3 |
√
a−
√
b| <

√
2 . 24

4.2 Simulations with more than two communities 25

5 Conclusion 29
5.1 Suggestions for future research . 29

A Code 31

v

vi CONTENTS

Bibliography 41

Chapter 1

Introduction

Graph theory goes back to the 17-century (Euler, 1736). Due to the advancements of
computational power and the flexibility of these models, graphs, or networks, became a
popular topic in recent years. Graphs are used in many different areas to describe all types
of datasets that describe relationships between observations, from websites and people to
financial or healthcare data. Consider each observation as a node, like a person or a blog on
the internet, and the relationship between observations as edges, like people that are friends
to each other (or if two blogs have links that connect both of them), you can represent all
these types of data in a graph form, just having to choose the "right" model for it.

The model studied in this dissertation is the Stochastic Block Model (SBM), introduced
by (Holland et al., 1983), which is seen as an extension to another popular model, the Erdős-
Rényi model (Erdõs and Rényi, 1960). The SBM became highly used because of its ability
to represent community structure in graphs, both simple and complex structures. One of the
main areas of study about the SBM is the problem of parameter estimation. In our work,
we want to focus mainly on two things, the latent variable that defines the "labels" of each
node and the parameter that tells us how many labels, or communities, there are in the
graph. When estimating the number of communities, we call model selection. When trying
to identify the labels, we call community detection. However, in other areas, it is usual to
see community detection as a way to identify both the number of communities as the labels
of each node.

Different approaches were proposed to address the problem of model selection and com-
munity detection, using maximum likelihood (Bickel and Chen, 2009), variational meth-
ods (Côme and Latouche, 2013; Daudin et al., 2008), semidefinite programming relaxation
(Abbe et al., 2014c), spectral clustering (Rohe et al., 2011) and bayesian approaches like
Pas and Vaart (2016), or McDaid et al. (2012). Some of those methods assume that we
know the number of communities, while others try to estimate this number. These methods
use statistics foundations to estimate the parameters, but this is not the only approach used
to estimate graphs’ labels. Methods like the one in Newman and Girvan (2004) based on
modularity do not use statistical knowledge in their algorithms, Fortunato and Castellano
(2007); Lee and Wilkinson (2019) gives us an overview of some existing methods in commu-
nity detection.

Another aspect of community detection is to study the conditions under which our al-
gorithms are able to recover correctly all the labels, which is called exact recovery or strong
consistency, and these conditions are known as fundamental limits.

Works like Abbe and Sandon (2015); Bickel and Chen (2009); Jerrum and Sorkin (1998);
Rohe et al. (2011) tries to understand under which conditions algorithms can achieve strong

1

2 INTRODUCTION 1.2

consistency. In these articles, usually, it is used an SBM with two symmetric communities,
also known as the planted bisection model.

Our thesis focuses on using some known methods in different situations and evaluates
how they will perform in these situations. We implement a simple but effective method to
evaluate the accuracy of these algorithms. Namely, we measure each model’s accuracy by
studying the number of labels that are correctly labeled. This measure will serve as the main
benchmark for assessing algorithm accuracy. In one part of our simulations, we look into
these different graph regimes to see how the algorithms work in those situations. In another
part, our focus will be on how well they are estimating the number of communities and the
labels together.

1.1 Organization
In Chapter 2, we define the Stochastic Block Model and the statistical background used

by some of the methods studied in this thesis, such as the relaxations for the model, the
KT distribution, and some conditions for recovery, or consistency, in the model. In Chapter
3, we will explain briefly the algorithms used in this dissertation. In Chapter 4, we discuss
the simulations. This Chapter is divided into two parts. The first one using a symmetric
Stochastic Block Model with two communities only, since one of the algorithms only works
in situations with two communities, and our focus is on the regimes of the graph. In the
other part, we will test a different number of communities and see how those algorithms
estimate the labels and number of communities in these situations. Chapter 5 concludes our
results and what could be done after that, with suggestions for future research.

1.2 Objectives
One of this thesis objectives is to test if the algorithm used in Abbe et al. (2014c) is good

compared with more commonly used algorithms and how viable it could be in real networks.
We used this algorithm in different situations according to a strong consistency limit found
in the same article. With the results, we hope to see if the algorithm can not only be used
"inside" the limit but how good it can be even if these limits are not achieved.

Another objective is to test two algorithms, based on the KT distribution, and see if the
algorithm can not only achieve the consistency of estimating the correct number of commu-
nities but to achieve the same when estimating the labels of each node too. The difference
between those two algorithms is that they estimate both the number of communities and
the labels together, which is not usual to see in statistic based algorithms in community
detection. These simulations could also indicate the consistency of these approaches.

Chapter 2

Stochastic Block Models

2.1 Stochastic Block Model
A graph, or network, is a pair (V,E) where V is the number of vertices, or nodes, and E

is a set of edges connecting those vertices. A graph G = (V,E) is commonly denoted by it’s
adjacency matrix X, since a network is completely identified by this matrix. The adjacency
matrix, in this dissertation, is a binary matrix where, if there is an edge between two nodes
it receives the value 1, and if there isn’t an edge, it receives the value 0 (or −1), that is:
x(i, j) = 1 if (i, j) ∈ E, and x(i, j) = 0 if (i, j) /∈ E.

We will also work with only undirected, non-weighted, and with no self-loops graphs,
meaning that the adjacency matrix will always be symmetric. Each pair of vertices only
have assigned 1 or 0 to represent the presence or not of an edge, and the diagonal of the
graph is always 0, that is:

• ∀i ∈ V, (i, i) /∈ E,

• (i, j) ∈ E =⇒ (j, i) ∈ E.

One of the most popular models in random graphs, the Erdős Rényi (ER) model, can
be seen as a particular case of the model that is presented next, the Stochastic Block Model
(SBM). Unlike the ER model, where each edge is placed independently with probability p,
the SBM has a community structure, making more realistic models and still maintaining
simplicity. When working with the ER model, there is not community detection to apply
since the model cannot represent community structures.

2.1.1 The general Stochastic Block Model

The Stochastic Block Model (SBM) with k communities is a probability model for a
random graph where the latent variables Zi, i ∈ {1, . . . , n}, called sometimes labels or
communities, are independent and identically distributed random variables over [k], [k] :=
{1, 2, . . . , k}, and the adjacency matrix Xn×n are independent Bernoulli random variables
whose parameters depend only on the nodes label. This means that given the community of
the vertices, edges are independently placed in the graph, that is:

X(i, j)|(Zi = a, Zj = b) ∼ Bernoulli(Pa,b), 1 ≤ i < j ≤ n, a, b ∈ [k],

3

4 STOCHASTIC BLOCK MODELS 2.1

where Pa,b is a symmetric matrix.
Since in this work there are only unweighted and non-oriented graphs, that will be defined

as a set of nodes 1, 2, . . . , n, specified by a symmetric matrix Xn×n ∈ {0, 1}n×n, and since
there are no self-loops in this graph, the diagonal of the adjacency matrix will always have
the value 0. For each node in this graph there is a latent variable Zi, i ∈ {1, . . . , k}.

A formal statistical definition is to assume that there exists π = (π1, . . . , πk), where π is
the probability distribution of each community, and P ∈ [0, 1]k×k a symmetric probability
matrix such that the distribution of (Zn, Xn×n) is:

Pπ,P(Zn = z,Xn×n = x) =
k∏
a=1

πna
a

k∏
a,b=1

P
Oa,b

a,b (1− Pa,b)na,b−Oa,b (2.1)

where

na = na(zn) =
n∑
i=1

I{zi = a}, 1 ≤ a ≤ k,

na,b = na,b(zn) =

na(zn)nb(zn), 1 ≤ a, b ≤ k; a 6= b,

1

2
na(zn)(na(zn)− 1) 1 ≤ a, b ≤ k; a = b.

(2.2)

(2.3)

Oa,b = Oa,b(zn, xn×n) =

∑

1≤i,j≤n

I{zi = a, zj = b}xij, a < b,∑
1≤i<j≤n

I{zi = a, zj = b}xij, a = b.

(2.4)

(2.5)

In the first part of the simulation, the focus is on the symmetric SBM with two equal-size
communities, that is, the SBM will have k = 2, and there will be a probability p ∈ [0, 1]
of having an edge between vertices of the same community and a probability q ∈ [0, 1], of
having an edge between two vertices from different communities, and p > q.

This model is called symmetric when the probability p is constant for all groups, so does
the same hold for q. We will use the notation SBM(n, k, p, q) when referring to a general
SBM, with n being the number of nodes or vertices, k the number of communities or clusters,
and p and q the probabilities for vertices in the same community or different communities.
We could also use a notation SBM(n, k,P) when having more than two communities, or
non-symmetric SBM, where Pk×k is the matrix with the probabilities of connection between
members of each cluster.

Before discussing the estimation of an SBM, we present some of the recovery requirements
for the SBM models.

2.1.2 Recovery in the SBM

Recovery in community detection is related to how many of the latent variables Zi, that
is, which community the node i belongs, can be "recovered" by applying some algorithm
to an observed graph G. A way to define the types of recovery is to use a measure called
agreement (Abbe, 2017). As we can see in the following definition, some types of recovery
are related to what is known in statistics as consistency of estimators.

Definition 2.1.1. The agreement between two label vectors x,y ∈ {1,2, . . . ,k}n is obtained
by maximizing the common components of x and any relabeling of y, that is,

2.1 STOCHASTIC BLOCK MODEL 5

A(x,y) = maxπ∈Sk

1

n

n∑
i=1

I(xi = π(yi)), (2.6)

Ā(x,y) = maxπ∈Sk

1

k

k∑
i=1

∑
u∈[n] I(xu = π(yu),xu = i)∑

u∈[n] I(xu = i)
, (2.7)

where Ā(x, y) is the normalized agreement and Sk is the space with all the relabeling
possibilities for π.

Definition 2.1.2. LetX ∼ SBM(n, k, P). The asymptotic recovery requirements are solved
by any algorithm that takes G as an input and gives an output ẑ = ẑ(G) such that:

• Exact recovery: P{A(z, ẑ) = 1} = 1− o(1),

• Almost exact recovery: P{A(z, ẑ)} = 1− o(1)} = 1− o(1),

• Partial recovery: P{Â(z, ẑ) ≥ α} = 1− o(1), α ∈ (1
k
, 1),

• Weak recovery: P{A(z, ẑ) ≥ 1
k

+ ε} = 1− o(1), ε > 0.

If you say that a function f(n) = o(1), then limn→∞ f(n) = 0.
Exact recovery means that the partition will be completely recovered with no errors,

while almost exact recovery means that a small part of the graph can be misclassified. Our
focus in this article will be on the exact recovery and almost exact recovery for the symmetric
SBM with two communities since the algorithms can give an idea if the algorithm is indeed
consistent in their estimations. In statistics exact recovery is known as strong consistency
and almost exact recovery as weak consistency, and we will refer to exact recovery just as
recovery.

While talking about recovery, it is important to remember some topological properties
of the graph since they are necessary for the exact recovery in the SBM graphs. We can
generalize the results of the ER model to the SBM. Considering the ER model G(n, p)
(Erdõs and Rényi, 1960):

• G(n; c log(n)/n) is connected with high probability if and only if c > 1,

• G(n; c = n) has a giant component (i.e., a component of size linear in n) if and only if
c > 1.

considering SBM(n,k,p,q):

• For a > 0, b > 0, SBM(n; k ; a log n/n; b log n/n) is connected with high probability
if and only if a+(k−1)b

k
> 1 (if a or b is equal to 0, the graph is of course not connected),

• SBM(n; k ; a/n; b/n) has a giant component (i.e., a component of size linear in n) if
and only if a+(k−1)b

k
> 1.

With these conditions Abbe et al. (2014c) defines a new threshold for exact recovery: if
|
√
a −
√
b| >

√
2 and impossible if |

√
a −
√
b| ≤

√
2. In the same paper it’s defined a limit

where the SDP algorithm will work best, that is: if (a− b)2 > (8(a+ b) + (8/3)(a− b) exact
recovery is possible, and impossible if (a − b)2 < (8(a + b) + (8/3)(a − b), and both limits
will be used in the simulations with two communities. Before explaining the algorithms we
need first to understand some of the approaches for parameter estimation in the SBM, since
some algorithms are based in these approaches.

6 STOCHASTIC BLOCK MODELS 2.1

2.1.3 MAP in the SBM

Another approach for estimating the communities in the SBM is the maximum a pos-
teriori estimator, using bayesian statistics to model a graph. Suppose that, given prioris to
the parameters, we want to estimate Z, the community label of each node in an observed
graph G. The probability of error when estimating a partition of this graph, Ω = Ω(Z) is:

P{Ω 6= Ω̂(G)} =
∑
g

P{Ω 6= Ω̂(G)|G = g}P{G = g},

An estimator Ω̂map(·) minimizing the equation above must minimize P{Ω 6= Ω̂(G)|G = g}
for every g, and to do that we must use a reconstruction ω that maximizes the posterior
distribution:

P{Ω = ω|G = g} ∝ P{G = g|Ω = ω}P{Ω = ω}.

Since we are working with the balanced SBM, where P{Ω = ω} is the same for all
partitions, the MAP estimator is equivalent to the Maximum Likelihood estimator, that is,
maximize P{Ω = ω|G = g} for all partitions ω of graph G.

And in the two community case, having nin and nacross as the number of edges inside
and edges between different communities, we have:

P{Ω = ω|G = g} ∝
(
q(1− p)
p(1− q)

)nacross

.

Since p > q the MAP for the SBM with two communities is equivalent to finding a min-
bisection of the graph G, an equal partition with the minimum number of edges between
partitions.

The MAP minimizes the probability of making an error for the reconstruction of the
entire partition Ω, minimizing the error probability for exact recovery. Thus, if MAP fails
in solving exact recovery, no other algorithm can succeed (Abbe and Sandon, 2015).

Direct maximization of a posteriori distribution in a graph model is expensive since it
involves too many terms, parameters, and prioris. Because of this, relaxations have been
proposed for the MAP estimator. The relaxations are done using the expression ztXz, that
counts the number of edges inside the clusters minus the number of edges across the clusters,
which is equivalent to the min-section problem, and is equivalent to maximize the MAP. Here,
z is the vector of labels of each node, and X the adjacency matrix. Two relaxations are done
using that expression, the Spectral relaxation and the SDP relaxation:

The MAP for the symmetric SBM maximizes

max
z∈{1,−1}n
zt1n=0

ztXz, (2.8)

that is an equivalent way to find the MAP estimator, that is, finding the partition with the
minimum number of "crossing" edges. Here 1n is a vector of length n with only the value 1,
that is zt1n =

∑n
i=1 zi.

Spectral relaxations. The spectral relaxation uses a different constraint for z, resulting
in the maximization of

max
z∈R2:||z||22=n

zt1n=0

ztXz, (2.9)

2.2 STOCHASTIC BLOCK MODEL 7

Without the constraint zt1n = 0 the result of this maximization is the eigenvector cor-
responding to the largest eigenvalue of X, and X1n is the vector that contains the degrees
of each node in g. This equation is easier to compute than the actual MAP estimator. We
can also write the MAP estimator as a minimizer of

min
z∈{1,−1}n
zt1n=0

∑
1≤i<j≤n

Xij(zi − zj)2. (2.10)

This equation also looks for the best balanced cut between two partitions of the graph, and
as in the equations before, it is an equivalent approach to the MAP estimator. With a few
manipulations we get

min
z∈{1,−1}n
zt1n=0

ztLz, (2.11)

where L is the Laplacian of the graph, L = D − X, D is the degree matrix of the graph,
and X the adjacency matrix. The degree of an adjacency matrix X is

di =
n∑
i=1

xij,

and the degree matrix is a diagonal matrix with the degrees on the diagonal. When using the
Laplacian matrix, 1n is an eigenvector of L with eigenvalue 0. The relaxation to a real-valued
vector leads directly to the second eigenvector of L to determine the communities. A problem
with this approach is that if the graph becomes sparse, the results no longer determine the
communities since the second eigenvector may concentrate on nodes with large degrees.

SDP relaxations. Semidefinite Programming is a sub-field of convex optimization con-
cerned with the optimization of a linear objective function. In the symmetric SBM with
two equal communities, the SDP relaxation changes the MAP maximization into a linear
maximization, similar to the min-bisection problem. We know that tr(AB) = tr(BA) for
matrices with same dimension, and this results in

ztXz = Tr(ztXz) = Tr(Xzzt). (2.12)

Making Ẑsdp(g) = zzt we have

Ẑsdp(g) = argmax
Z�0

Zii=1, ∀i∈[n]

Z1n=0

tr(XZ). (2.13)

The first two constraints force Ẑ to be zzt for a vector z ∈ {1,−1}n, and the last is
a balance requirement. To handle the constraint Z1n = 0 one could substitute the matrix
X by a matrix that receives 1 if there is an edge between two nodes and −1 otherwise.
Although the SDP relaxation is not as sensitive as the basic spectral relaxations, it is more
complex, and the equation could not be solvable in an optimal time depending on the size
of the graph.

8 STOCHASTIC BLOCK MODELS 2.2

2.2 Community Structure Problem
In real data that networks can represent, there is a high complexity that simple models,

as the Erdős-Renyi model, can not represent, like community structures. These networks,
like websites on the internet, companies in a country, and any other type of population, can
have such structures, called communities, or clusters, that differentiate their members from
the ones in another cluster. Understanding these structures, how many there are, and how
they relate to each other is a good way to understand the data population and get precise
information.

Identifying communities, or community detection, became popular in recent years with
the advancements of computational power and statistics theory, getting attention from many
areas, such as biological sciences, computer, sociology, psychology sciences, math, and statis-
tics. There are numerous topics that are studied, such as making theories about the condi-
tions that a community must have to retrieve some information, creating algorithms that
can run in faster times, developing new theoretical models that can represent better real
networks, or just applying these models to other networks and studying their findings. This
range of studies usually arrives because when studying complex networks, we come upon
questions like "Does this graph have a community? How many of them", "Does my model
really represents the structure of this graph? Moreover, does my algorithm can be applied to
large graphs?", and to answer all these questions, one must have knowledge of many different
areas, such as statistics, math, and programming languages, and know about the data that’s
being studied; that is why many researchers focus on their areas of expertise to tackle this
problem.

Usually, in a more philosophical way, the first thing that someone must do is define what
a community is. Using this definition, the researcher will use a method that takes that into
account. Since we will work with only unweighted graphs, our definitions of communities are
based only on the structure of the network. The two most common types of communities,
defined as in Caldarelli and Vespignani (2007b), are:

• Self-referring communities: this type of community is usually called a clique, that
is, a community is a group of fully connected subgraph, meaning that all nodes inside
the same group are connected to each other.

• Comparative communities: unlike the self-referring community, this type of defi-
nition is based on the sense that the nodes "inside" a community are more connected,
while connections between nodes in different communities are less likely to occur.
Radicchi et al. (2004) proposes to use the sum of degrees of the nodes in a community
as a metric to define a good community.

The first definition usually has problems when applying to real-world problems since its
algorithms are costly. With the growing size of the network, it may not be able to get optimal
results, and it is not a common characteristic found in real networks. The comparative
communities definition is easier to be used in large graphs since it is easier to tackle the
problem from a mathematics/statistics point of view. It is a definition similar to the concept
of the SBM model.

2.2 COMMUNITY STRUCTURE PROBLEM 9

Figure 2.1: The graph in the left represents the observed graph and the graph on the right represents
the graph after we find the labels of each node, representing a community structure.

10 STOCHASTIC BLOCK MODELS 2.2

Chapter 3

Algorithms

All the attention that the field of community detection is receiving results in many new
algorithms to find community structure in networks that is, selecting the model and estimat-
ing the parameters in the graph model. There are many ways to tackle community detection,
with divisive algorithms, agglomerative algorithms, or algorithms based on paths or statis-
tics models. In this thesis, we will explain briefly the algorithms used in the simulations in
this thesis and not make an overall analysis of all the types of algorithms available.

Next, we will explain five algorithms used in this dissertation, the Newman-Girvan al-
gorithm is not based on any statistical model, both Spectral Clustering algorithm and SDP
algorithm are based on the SBM. At the same time, the Exact ICL algorithm and Allocation
sampler algorithm are too based on the SBM but with a bayesian approach.

3.1 Newman-Girvan Algorithm
Also known as edge-betweenness algorithm, it is a divisive algorithm based on each node’s

degree in the graph. It "erases" the nodes with the highest "betweenness" measure in the
graph recursively, thus "creating" communities in the graph. The algorithm repeats the
calculation of betweenness every time it removes a node from the graph. In the end, it uses a
measure called modularity to select the best division possible. Thus, this algorithm’s "real"
objective is to maximize the modularity.

Let ek×k be a symmetric matrix with the fractions of all the vertices that connects the
community i to community j. Let ai =

∑
j eij. The modularity is then defined as:

Q =
∑
i

(eii − a2
i)

The first part of the algorithm is to assign weights and distances to the nodes in the
graph. Consider one node v in the graph:

1. Node v is given distance dv = 0 and weight wv = 1.

2. Every node i adjacent to v is given distance di = dv + 1 and weight wi = wv

3. For each node j adjacent to one of those neighbours in the last step we will do one of
this:

• if j has not yet been assigned a distance, it is assigned distance dj = di + 1 and
weight wj = wi;

11

12 ALGORITHMS 3.2

• if j already have a distance, and dj = di + 1, then we increase this node’s weight
by wi;

• if j already have a distance, and dj < di + 1, we do nothing.

4. Repeat step 3 until no nodes remain without having distances but whose neighbors
don’t have distance.

After this, we will begin the calculation of the edge-betweenness score:

1. Find every node t that no paths from node v to other nodes go through node t;

2. For each node i adjacent to node t, assign a score to the edge from t to i as wi/wt;

3. Starting with farthest node from the node v, go towards v assigning 1 plus the sum
of the scores on the neighboring edges; immediately below it, all multiplied by wi/wj,
where node j is far from v than node i;

4. Repeat the last step until you reach the node v.

This step is just for one node. After doing this for every node in the graph and adding
all the scores, you will have the total betweenness of all the edges in the graph.

Figure 3.1: An example of the NG algorithm being applied on the node A. First (middle graph)
we go from the node A to the node F giving weights and distances, and in the right graph, we "go
back" from node F to node A giving the scores.

3.2 Spectral Clustering
With a vast literature, spectral clustering is one of the most used algorithms for com-

munity detection. There are many variations and ways to apply this method; the one used

3.4 SDP ALGORITHM 13

in this dissertation is the same one presented in Lei and Rinaldo (2015). The choice of this
algorithm is because the consistency for it is already proven.

This algorithm consists in applying the k-means method in the matrix Un×u, where the
matrix Un×u is the matrix with u leading eigenvectors of the adjacency matrix A, that is,
the eigenvectors related with the u largest eigenvalues.

3.3 SDP algorithm
This algorithm uses the SDP relaxation explained before, in 2.2.4, and this relaxation

can be solved faster than solving the maximum likelihood equation using methods like the
interior-point methods. After solving this equation, the vector that we have is not a vector
of only 1′s and −1′s, so we take the sign function of this vector as our estimation of the
communities, that is x = sign(v), where v is the result of the SDP relaxation. In this
dissertation, we used the package CVXR from software R to solve this problem, where it
uses the "best" (chosen by the algorithm) way to solve a semidefinite constraint like the one
used here. There are a few ways to solve this type of problem, so we will not explain in detail
those methods.

This algorithm, in the way that it is built, only works with two community graphs.
Thus we will only use this approach in the first part of the simulation, while the others are
used in all simulations. Another point about this algorithm is that it is slower than other
algorithms and demands a lot of computer processing, at least with the approach used in
this dissertation.

3.4 Allocation Sampler
This algorithm is based on Nobile and Fearnside (2007) and was proposed by McDaid et al.

(2012). Using priors to the parameters (and hyperparameters), the author uses the concept
of collapsing the SBM to find a fast way to compute the posterior distribution of the number
of clusters and labels at the same time and make inference about them. For this algorithm
it has used a discrete or categorical distribution for the labels, that is:

zi ∼ CAT (π1, . . . , πK),

a Dirichlet for the hyperparameters,

π ∼ Dirichlet(α1, . . . , αK), αi = α ∀i ∈ {1, . . . , K},

and similarly to the KT distribution:

xij|z,K, π ∼ Bernoulli(pzizj)

with,

pkl ∼ Beta(β1, β2).

This formulation of the SBM is from Snijders and Nowicki (1997), and like them, we
choose β1 = β2 = 1.

To collapse the SBM, it is used a Poisson prior for K, the number of clusters, that is,
K ∼ Poisson(1), this gives us P (K) ∝ 1

K!
. We only need a proportion of the expressions

14 ALGORITHMS 3.4

based on z and K only since it is the focus of this algorithm. Then we "separate" the full
distribution of the model in a way that our algorithm only needs to search over K and z:

p(x, p, z, π,K) = P (K)× p(z, π|K)× p(x, p|z),

Consider Π and Θ the domains of π and p,

P (x, z,K) = P (K)×
∫

Π

p(z, π|K)dπ ×
∫

Θ

p(x, p|z)dp,

using the block-by-block independence x(kl)|z,K, we have

P (x, z,K) = P (K)×
∫

Π

p(z, π|K)dπ ×
∏
k,l

∫
Θ

p(x(kl), pkl|z)dpkl.

Thus, we get the full posteriori expression as:

P (x, z,K) ∝ 1

K!
× Γ(αK)

∏K
i=1 Γ(pi + α)

Γ(α)KΓ(N + αK)
×
∏

f(xkl|z).

The function f(xkl|z) is given by

f(xkl|z) =
B(β1 +Okl, nkl −Okl + β2)

B(β1, β2)
,

where Okl and nkl are the same defined in chapter 2, and B(·) is the beta function.
The algorithm will sample from the posteriors z andK|x using four moves. Each iteration

will choose one of those moves with the same probability and execute them. The four moves
are:

• MK: A metropolis-hastings to add or remove an empty cluster.

• GS: Gibbs sampling on one single node, it will select a new cluster for only this node
selected randomly.

• M3: It will choose two randomly clusters and reassign all the nodes in these clusters
using a movement described in (Nobile and Fearnside (2007)).

• AE: This move will choose between merging two existing clusters or split one randomly
selected cluster.

The name of each move, MK, GS, M3 and AE, are names used by the creators of this
algorithm, and we will continue to use them.

All the moves are a Metropolis-Hastings move, that is, given a state z and K, the algo-
rithm will modify and propose a new state for z′ or K ′ , or both. The new move is accepted
with probability:

min

(
1,
P (x, z

′
, K

′
)

P (x, z,K)
× Pprop((K

′
, z
′
)→ (K, z))

Pprop((K, z)→ (K ′ , z′))

)
,

where Pprop((K, z) → (K
′
, z
′
)), is the transition probability from state (K, z) to state

(K
′
, z
′
).

3.4 ALLOCATION SAMPLER 15

The algorithm initializes by setting K =2 and randomly giving labels to every node in
the graph. Next, the four moves are explained as in the original article.

3.4.1 MK

This move increases or decreases the number of clusters (only empty clusters), that is
z
′
= z in all moves since only the number of clusters will change. The proposal probabilities

if you add a cluster is:

Pprop((K, z)→ (K + 1, z
′
)) =

0.5

K + 1

Pprop((K
′
, z
′
)→ (K − 1, z)) =

 0.5

K ′
if K

′
> 1

0 otherwise.

P (x, z
′
, K

′
)

P (x, z,K)
=

Γ(α(K + 1))Γ(N + αK)

(K + 1)Γ(αK)Γ(N + α(K + 1))

3.4.2 GS

This move selects a random node, and it will reassign a new cluster to it. Could it be the
same cluster that the node is part of, or could it be any other cluster possible. This move
only changes one node, and it does not change the number of clusters K. The acceptance
probability is chosen proportional to P (x, z

′
, K), where z′ is the new cluster assignment for

the selected node.
This move is complex to do since it changes many factors in P (x, z,K). Because of this,

the algorithm only uses neighbors of the selected node to do all the calculation changes, that
is, it will not test all the possible clusters for the selected node, avoiding problems with time
when applying this method in larger networks.

3.4.3 M3

This move’s name is from Nobile and Fearnside (2007), it will select two clusters j and
k, remove all the nodes from those two clusters, put in a ordered list A = (a1, . . . , anj+nk

).
For each node in A it will assign to one of those two clusters, and this new assignments will
be placed in a list Bi = (b1, . . . , bi−1) where Bi means the assignment done at the iteration
i of this move.

The nodes on list A are assigned to one of the two clusters satisfying

pai→jBi
+ pai→kBi

= 1.

Those probabilities are conditional on the nodes already assigned, and any probability
can be chosen, as long as it’s not zero and sum to one. After all nodes have a new assignment,
the proposal probability is:

Pprop(z → z
′
) =

nj+nk∏
i=1

pai→biBi
,

and,

16 ALGORITHMS 3.5

Pprop(z
′ → z) =

nj+nk∏
i=1

p
ai→b

′
i

B
′
i

,

whereB′ = za1 , . . . , zai−1
. For the ratio probabilities, it’s the same used in Nobile and Fearnside

(2007), that is:

pai→jBi

pai→kBi

=
P (x

′
, z{ai→j,Bi}, K)

P (x′ , z{ai→k,Bi}, K)
,

in this equation all the unassigned nodes and the edge of these nodes are ignored.

3.4.4 AE

This move will choose between split or merge two clusters, If it chooses to split, it will
select one cluster, and if it chooses to merge, two clusters will be selected at random.

In the split move, for each node in the selected cluster, there will be a probability pE of
the node to be assigned to the new cluster, called probability of ejection, and it is chosen at
random from a Uniform(0, 1) distribution. The proposal probability is dependent on pE, but
the author decides to integrate over pE. Similar to collapsing the SBM, then the transition
probability of a given state (z,K) going to the new state (z

′
, K

′
= K + 1) is

Pprop((z,K)→ (z
′
, K

′
)) =

Γ(n1 + 1)Γ(n2 + 1)

K(K + 1)Γ(n+ 2)
,

where n is the number of nodes in the original cluster, and n1, n2 are the number of nodes
in each new cluster after the split.

In the merge move, one of the clusters will maintain all the nodes and will receive the
other nodes of the second cluster, and the transition probability is simply

Pprop((z,K)→ (z
′
, K − 1)) =

1

K(K + 1)

3.5 Exact ICL algorithm
This algorithm was created by Côme and Latouche (2013) based on Daudin et al. (2008)

and is an alternative to the allocation sampler algorithm. Similar to McDaid et al. (2012),
and the KT distribution, the SBM is defined as:

πk = P (Zik = 1) with
K∑
k=1

πk = 1.

Here Z represents the labels of each node. However, instead of being a vector with the num-
ber of the community that the node belongs, it is a matrix where the columns represent the
communities, and the lines represent the nodes, in each line has a value 1 in the column
representing the community of the node, and the value 0 in all the other columns. This does
not change anything from the theoretical point of view, but the authors did this for com-
putational calculations, and K is an upper case to differentiate the number of communities
that we have in the algorithm and the community k that the algorithm will select in each
step. The edges are given by:

3.5 EXACT ICL ALGORITHM 17

Xij|Z ∼ Bernoulli(pkl) for i 6= j.

This gives:

p(Z|π) =
N∏
i=1

K∏
k=1

πZik
k ,

and

p(X|Z, p) =
N∏
i 6=j

K∏
k,l

(
p
Xij

kl (1− pkl)1−Xij
)ZikZjl .

For π we use a Dirichlet prior, that is,

π ∼ Dirichlet(α0 = (α0
1, . . . , α

0
K)),

For p we have
pkl ∼ Beta(η0

kl, ζ
0
kl).

The integrated complete data log likelihood, or ICL, can be decomposed as:

ICL(Z,K) = log p(X|Z,K) = log

(∫
π,p

p(X,Z, p, π|K)dπdp

)
= log

(∫
p

p(X|Z, p,K)p(p|K)dp

∫
π

p(Z|π,K)p(π|K)dπ

)
= log p(X|Z,K) + log p(Z|K)

Usually, this equation does not have analytical form, but with using the chosen priors,
both distributions log p(X|Z,K), and log p(Z|K) are known, thus making it possible to
calculate the exact ICL to make inference about the clusters and labels.

The calculation of the ICL already penalizes the number of clusters, so the model com-
plexity, in theory, will not be a problem since it will not estimate a higher number of
communities. To compute this algorithm, the author uses a greedy algorithm to calculate
the ICL multiple times and select an optimum K and Z simultaneously to see all the steps
of the Exact algorithm, see Côme and Latouche (2013).

With the priors already given, the only thing that we need to do is give a Kup that is,
the upper bound for K, or the maximum number of communities that your model will have,
and Z, the labels of each node of the graph. Kup usually is known by the researchers that
know about the Data, while the common approach for Z is to use another algorithm like
spectral clustering for the initial guess since the algorithm is fast and can provide a good
initial labeling for the labels.

The algorithm will select randomly every node (one by one) in the graph and will maxi-
mize an equation ∆g→h, ∀h 6= g, that is, it will see if the ICL will increase if we change the
label of the selected node, this equation, as some of the other calculations that the algorithm
does will be explained next. After making the calculations for every single node in the graph,
one by one, the algorithm makes calculations of the ICL based on merging some clusters to
see if the ICL will increase.

The algorithm will calculate ∆g→h for every node in the graph, and each iteration will
do the calculations for only one node. The term ∆g→h is defined as:

18 ALGORITHMS 3.5

∆g→h = ICLex(Z
′
, K

′
)− ICLex(Z,K),

the ICL is given by

ICLex(Z,K) =
K∑
k,l

log

(
Γ(η0

kl + ζ0
kl)Γ(ηkl)Γ(ζkl)

Γ(ηkl + ζkl)Γ(η0
kl)Γ(ζ0

kl)

)
+ log

(
Γ(
∑K

k=1 α
0
k)
∏K

k=1 Γ(αk)

Γ(
∑K

k=1 αk)
∏K

k=1 Γ(α0
k)

)
,

where

αk = α0
k +

N∑
i=1

Zik, ∀k ∈ {1, . . . , K},

ηkl = η0
kl +

N∑
i 6=j

ZikZjlXij, ∀(k, l) ∈ {1, . . . , K}2,

and

ζkl = ζ0
kl

N∑
i 6=j

ZikZjl(1−Xij), ∀(k, l) ∈ {1, . . . , K}2.

The equation ∆g→h takes two different forms depending on the cluster g that the selected
node is part of, if g is empty after the changing of the node’s label. Consider that the node
i was selected:

Cluster g still have nodes after removal of i

If after changing the label of the node i, cluster g still have nodes, that is,
∑

i Z
′
ig > 0

the equation used is:

∆g→h = log

(
αh

αg − 1

)
+

K∑
l=1

∑
k∈{g,h}

log

(
B(ηkl + δ

(i)
kl , ζkl + ρ

(i)
kl)

B(ηkl, ζkl)

)
+
∑
k/∈g,h

∑
lin{g,h}

log

(
B(ηkl + δ

(i)
kl , ζkl + ρ

(i)
kl)

B(ηkl, ζkl)

)
,

with

δ
(i)
kl = I{k=h}

N∑
j 6=i

ZjlXij + I{l=h}
N∑
j 6=i

ZjkXji − I{k=g}

N∑
j 6=i

ZjlXij − I{l=g}
N∑
j 6=i

ZjkXji,

and

ρ
(i)
kl =

(
I{k=h} − I{k=g}

)
(αl − α0

l − Zil) +
(
I{l=h} − I{l=g}

)
(αk − α0

k − Zik)− δ
(i)
kl .

3.5 EXACT ICL ALGORITHM 19

Cluster g is empty after the removal of i

If after removing node i from cluster g, this cluster becomes empty (
∑

i Zig = 0), the
equation is defined as

∆g→h =log

(
αh
α0

Γ((K − 1)α0)Γ(Kα0 +N)

Γ(Kα0)Γ((K − 1)α0 +N)

)
+

∑
(k,l) 6=g

k=h or l=h

log

(
B(ηkl + δ

(i)
kl , ζkl + ρ

(i)
kl)

B(ηkl, ζkl)

)
+

∑
k=g or l=g

log

(
B(η0

kl, ζ
0
kl)

B(ηkl, ζkl)

)
.

Merge movement

After making all the calculations using every node in the graph, we can start to look at
full cluster and see if they can be put together. If there is a merge between two clusters, the
equation used to calculate the ICL is given by

∆g∪h =log

(
Γ(α0)

Γ((K − 1)α0)Γ(Kα0 +N)Γ(αh + αg − α0)

Γ(Kα0)Γ((K − 1)α0 +N)Γ(αg)Γ(αh)

)
+

∑
(k,l)6=g

k=h or l=h

log

(
B(ηkl + δ

(i)
kl , ζkl + ρ

(i)
kl)

B(ηkl, ζkl)

)
+

∑
k=g or l=g

log

(
B(η0

kl, ζ
0
kl)

B(ηkl, ζkl)

)
.

In this case, δ(i)
kl and ρ(i)

kl are defined as

δ
(i)
kl = I{k=h}(ηgl − η0

gl) + I{l=h}(ηkg − η0
kg) + I{l=h and k=h}(ηgg − η0

gg)

ρ
(i)
kl = I{k=h}(ζgl − ζ0

gl) + I{l=h}(ζkg − ζ0
kg) + I{l=h and k=h}(ζgg − ζ0

gg)

20 ALGORITHMS 3.5

Chapter 4

Simulation

In this section, we tested the algorithms explained in chapter 3 in different situations
and then compared them to see if there is a better one. We used a few different probabilities
for each graph, having more sparse graphs and more dense ones, and also different sizes for
the simulated graphs to test if this would change the precision of the algorithms.

The simulations were done on a 3.6 GHz AMD Ryzen 5 2600X with 8GB RAM. Memory
was a problem when applying the SDP algorithm since it could not handle larger graphs. All
the simulations were made in R, besides the allocation sampler, since the author released the
algorithm in another language. However, the same matrix created for the other algorithms
was used in the allocation sampler.

For two communities the algorithms Allocation Sampler (AS), Exact ICL (Exact ICL),
Newman-Girvan Modularity (NG), Semidefinite Programming (SDP), Spectral Clustering
(Spectral), were used, while for more communities we didn’t use the SDP. No algorithm
was made by the author of this dissertation, instead every algorithms used here is available,
or by the authors that created the algorithm (showed in the references) or by the package
igraph from the software R, used here for the NG algorithm.

4.1 Simulation with two communities
The models used here are in the form SBM(n, k, a ∗ log(n)

n
, b ∗ log(n)

n
), we used three types

of values for the probabilities, always satisfying one of the limits:

• Inside both limits |
√
a−
√
b| >

√
2 and (a− b)2 > (8(a+ b) + (8/3)(a− b),

• Inside the limit |
√
a−
√
b| >

√
2 and not on (a− b)2 > (8(a + b) + (8/3)(a− b), that

is: |
√
a−
√
b| >

√
2 and (a− b)2 < (8(a+ b) + (8/3)(a− b),

• Not on any limit, that is |
√
a−
√
b| <

√
2.

For each of the above items, we simulated with a graph of a fixed size of 100 nodes and
fixed a, while changing b, and a model with fixed a and b, and an increasing size of the
network, going from 100 to 300. This was done to test how the algorithms will behave in the
known limits presented in Abbe’s article, and increasing the size of the graph, maintaining
the other parameters fixed will make the graph sparser as the graph grows.

The limits used here are fundamental limits in exact recovery, were |
√
a−
√
b| >

√
2 is a

known limit when using maximum likelihood estimation, and (a−b)2 > (8(a+b)+(8/3)(a−b)

21

22 SIMULATION 4.1

was proposed by Abbe et al. (2014c) when using an SDP algorithm, and because of this we
decided to test the algorithms in different situations with those limits. These limits are used
only in balanced communities. Thus, even when increasing the sizer of the graph, it will
always be balanced communities when working with two communities.

For each value of b (or size n), we created 100 graphs and applied the algorithms on each
one of them. Then we took the mean of how much each algorithm got the correct nodes, that
is, the number of nodes estimated in the right communities divided by the number of nodes
in the graph, that is, similar to the agreement measure explained in chapter 2. We consider
almost all the permutations of labels here, but, in this simulations with two communities
only, estimating more than two communities were heavily penalized, and this particularly is a
problem for the Exact ICL since, as our simulations will show, the algorithms overestimate
the real number of communities in many simulations, and because of this if algorithms
estimated a number large compared to the real number of communities (if estimated five or
more communities), not all relabeling were tested.

The difference between the agreement and the measure that we call precision here is
that the agreement consider that the algorithms got the real number of communities. Here
we will consider the relabeling even if the algorithm got the wrong number of communities.
The rest of the calculations are exactly like the agreement.

4.1.1 |
√
a−
√
b| >

√
2 and (a− b)2 > (8(a+ b) + (8/3)(a− b)

As we can see in (Figure 4.1), with fixed a, for the value of a = 3, giving a probability
of 0.13 of nodes in the same community having an edge, the Exact ICL algorithm and
the Spectral Clustering was the two algorithms that had the worst performance between
all algorithms used. Still, no algorithm got lower precision than 80%. With a higher value
of a, having a probability of an edge between nodes of the same community equal to 0.92,
the Exact ICL algorithm performed better, always having a precision above 90%, but still
being the algorithm with the worst results in general, with the spectral clustering being the
other algorithm with a lower precision at some values of B. The SDP algorithm was the
slowest one but had a high consistency of estimating well the communities of each node.
The NG and the AS algorithms were the ones that performed better, having near-perfect
precision in all samples.

Figure 4.1: Precision of algorithms when changing the term b in the SBM. In the upper graph we
have a = 5. and in the bottom one a = 20. Both have n = 100.

When increasing the size of the graphs (Figure 4.2), while maintaining the terms a
and b fixed, the graph becomes sparser as n goes higher. However, most algorithms did

4.1 SIMULATION WITH TWO COMMUNITIES 23

not perform differently, maintaining a high precision as the graph grew sparser. In these
simulations, Exact ICL started to perform worse each time that the graph increased, again
probably having a problem dealing with sparse graphs, probably due to estimating more
than two communities when the graph becomes sparser. All the other algorithms, besides
the Spectral, had again an almost perfect precision in those simulations.

Figure 4.2: Precision of algorithms when increasing the size of the graph. In the upper graph we
have a = 11 and b = 1.3. and in the bottom one a = 20 and b = 4.

4.1.2 |
√
a−
√
b| >

√
2 and (a− b)2 < (8(a+ b) + (8/3)(a− b)

When fixing a and the size of the graph (Figure 4.3), with a low value of a the Exact
ICL had the worst result, and overall bad results, suggesting that it is not a good option
to use this algorithm in this interval of parameters. For a higher value of a, the Spectral
was the algorithm that had the worst result but still having a precision above 90%. All the
other three algorithms had precision above 95%.

Figure 4.3: Precision of algorithms when changing the term b in the SBM. In the upper graph we
have a = 5. and in the bottom one a = 20. Both have n = 100.

When fixing a and b (Figure 4.4), we decide in both simulations to use small values of a
and b, and again the Exact ICL had problems estimating the labels as the size of the graph
increased. The Spectral algorithm had a lower precision than the other three algorithms
but did not have any precision below 80%.

24 SIMULATION 4.2

Figure 4.4: Precision of algorithms when increasing the size of the graph. In the upper graph we
have a = 3 and b = 0.1. and in the bottom one a = 7 and b = 1.

4.1.3 |
√
a−
√
b| <

√
2

In these simulations, we should expect for the algorithms not to be able to get consistent
high precision in the simulations, but besides the Exact ICL algorithm when a = 5, and the
spectral clustering that did not get high precision, all the algorithms got above 95% precision
in most of the simulations. When a = 20 the NG and SDP have a poor performance when
the value of the parameter b(B in the image) get near the parameter a, but that can be
explained because the model becomes unidentifiable in this situation.

Figure 4.5: Precision of algorithms when changing the term b in the SBM. In the upper graph we
have a = 5. and in the bottom one a = 20. Both have n = 100.

When fixing both probabilities and increasing the size of the graph (Figure 4.6), the
Exact ICL got the worse results in both cases, and the Spectral algorithm again had lower
results when compared to the other three algorithms that had almost near perfection results.

It seems that the Exact ICL have problems estimating the correct number of commu-
nities and labels when the graph has two communities only, and this is probably because
this algorithm overestimates the real number of communities many times, as we will see in
the next section.

4.2 SIMULATIONS WITH MORE THAN TWO COMMUNITIES 25

Figure 4.6: Precision of algorithms when increasing the size of the graph. In the upper graph we
have a = 5 and b = 0.7. and in the bottom one a = 10 and b = 5.

4.2 Simulations with more than two communities
In this section, we work with more than two communities (K = 4, 5, 6, 7), and unlike when

working with two communities, we will not focus on the different regimes of probabilities.
Instead, we will change the probabilities and see if the algorithms can achieve exact recovery
with these changes.

In the first part, like in Côme and Latouche (2013), we fix q, that is, the probability
of having an edge between nodes of different communities, and we increase the value of p,
the probability of having an edge between nodes from the same community. In this part
of the algorithm, for simplicity, we consider the SBM in the form SBM(k, n, p, q). Like in
the simulations with two communities, we also fix both probabilities p and q and increase
the size of the graph n, for these simulations, we consider again the SBM in the form
SBM(n, k, a ∗ log(n)

n
, b ∗ log(n)

n
) because we want the graph to become sparser as it increases

the number of nodes.
In Figure 4.7 shows the simulations done with q fixed at 0.01 and a graph with 100

nodes. We started the probability of connection between nodes of the same edges p at 0.07
and increased the value 0.03 each time until p was equal to 0.82, that is, we started with a
model that is almost impossible to identify and finished with a model with a considerable
difference between probabilities, being easier in theory to identify the communities. As we
can see in the graph, the Spectral was never able to estimate the communities fully, while
the other algorithms at some point got the exact communities of each node. The NG and
Exact ICL algorithms were the best ones in these simulations, having good results with
minimal values of p. In contrast, the AS algorithm was only able to increase his precision
at higher values of p.

In all simulations, we made bar-plots of the number K estimated, that is, the number of
communities estimated. For every parameter or size of the graph, we estimated 100 different
graphs, and the bar-plots consist of the number that each algorithm estimated K communi-
ties. We did not use the Spectral algorithm here since he does not estimate the number of
communities. All the label changes were tested when looking at the precision. However, the
Exact ICL sometimes estimated a high number of communities. When the algorithm esti-
mated more than three communities above the real number, not all the label permutations
were used. The precision is probably lower than it should be if all permutations were tested
if this happens.

In Figure 4.8 we see that while the AS underestimate the right number of communities,
the Exact ICL and NG consistent overestimate the right number of communities. The AS

26 SIMULATION 4.2

Figure 4.7: Precision of algorithms when increasing p with q = 0.01. In the top left we have 4
communities in the graph, 5 communities in the top right, in the bottom left we have k = 6 and
bottom right k = 7. All graphs have n = 100.

only got the right number of communities more times than the other algorithms when K = 4
while being equal with K = 5 and having worse results when there were 6 and 7 communities
in those graphs.

Figure 4.8: Number of times that each algorithm estimated K when increasing p with q = 0.01. In
the top left we have 4 communities in the graph, 5 communities in the top right, in the bottom left
we have k = 6 and bottom right k = 7. All graphs have n = 100.

With a value of q equal to 0.1, that is, a probability of connection between two nodes
of different communities equal to 10%, we intended to have a less sparse graph and see if
this would change something in the estimation. In these simulations, p will start in 0.17 and
again will increase 0.03 each time until p reaches 0.82.

In Figure 4.9 we can see that for a graph with more nodes, the algorithms have worse
results for low values of p, needing higher values (higher than the simulations with q = 0.01)
to get higher precision, and the only algorithm to increase the precision earlier was the
Spectral algorithm. However, while his precision gets better earlier than other algorithms,
he does not achieve at any point precision higher than 90%. The AS and Exact ICL
algorithms look like the ones with better precision overall in the simulations.

In Figure 4.10, in all cases, the Exact ICL and theNG algorithms got the wrong num-
ber of communities more than getting it right. While the AS algorithm only had this poor
results when K = 7, but still had problems estimating the correct number of communities.

When doing simulations increasing the size of the graph, it begins with graphs of 100
nodes, and we increase the size of the graph by 25 nodes until it reaches the size 400, that

4.2 SIMULATIONS WITH MORE THAN TWO COMMUNITIES 27

Figure 4.9: Precision of algorithms when increasing p with q = 0.1. In the top left we have 4
communities in the graph, 5 communities in the top right, in the bottom left we have K = 6 and
bottom right K = 7. All graphs have n = 100.

Figure 4.10: Number of times that each algorithm estimated K when increasing p with q = 0.1.
In the top left we have 4 communities in the graph, 5 communities in the top right, in the bottom
left we have k = 6 and bottom right k = 7. All graphs have n = 100.

is, n = {100, 125, 150, . . . , 400}. We fixed a = 13 and b = 2, that gives us a probability p,
where p = a ∗ log(n)

n
, of almost 60% with a graph of size 100, and a probability a little lower

than 20% when the graph reaches the maximum size in the simulations, and a probability
q = b ∗ log(n)

n
of almost 10% in the beginning, and a probability near 3% when the graph

reaches 400 nodes. As the graph increases, it will become sparser and, in theory, harder to
estimate the right communities.

In Figure 4.11 we can see that almost all the algorithms followed the "trend", having
lower precision when the size of the graph got bigger, and the number of edges got lower. For
lower values of K the AS algorithm got excellent results while the other algorithms could
not maintain a precision above 90%. But for a higher value of K, with 7 communities, the
Exact ICL got better results being consistent in estimate the right communities of each
node, while the Spectral algorithm, even having always the right number of communities,
could not have a high precision, and the NG algorithm only had good results when K = 4.

The following figure (Figure 4.9) shows us that for a lower number of communities
(k = 4, k = 5 and k = 6), the AS algorithm got better results estimating most of the times
the correct number of communities, while with K = 7, the AS was not able to keep the
same good results, underestimating many times the right number of communities. The NG
and Exact ICL algorithms had poor results overall, almost always estimating the wrong
number of communities.

28 SIMULATION 4.2

Figure 4.11: Precision of algorithms when increasing the size of the graph. In the top left we have
4 communities in the graph, 5 communities in the top right, in the bottom left we have K = 6 and
bottom right K = 7.

Figure 4.12: Precision of algorithms when increasing the size of the graph. In the top left we have
4 communities in the graph, 5 communities in the top right, in the bottom left we have K = 6 and
bottom right K = 7.

Chapter 5

Conclusion

In the simulations where the graphs had two communities, we saw that, besides having
good results, the SDP algorithm is not the best choice since other algorithms achieve similar
results with a low computational cost. We saw that the allocation sampler had better re-
sults overall than the exact ICL algorithm, despite having similar approaches. The Spectral
algorithm and the Newman-Girvan modularity continues to be a good choice of algorithm
depending on the graph that you will study since they had good performance when using
two communities. However, it seems that there are better options in the case of the Spectral
clustering.

Besides the exact ICL algorithm, all the other algorithms could estimate exactly the nodes
in each community in all regimes tested, meaning that they could achieve exact recovery
even in regimes where in theory, it should be impossible.

In the simulations with more than two communities, there was no best algorithm. How-
ever, in most cases, the allocation sampler was the most consistent one, having good results in
all simulations at some point. Unlike the other algorithms, the Spectral clustering, even with
the exact number of communities, did not perform well. In most cases, it should be avoided
since there are better algorithms available. When estimating the number of communities, we
saw that the allocation sampler tends to underestimate the number of communities, while
the exact ICL overestimates the value of K. The same problem happened with the Newman-
Givan algorithm. The non-statistic based algorithm Newman-Girvan continues to be a good
choice for community detection if you have a low number of communities and the graph is
not very sparse.

Another aspect noted in the simulations is that not only sparser graphs cause problems
for detecting the clusters, but the difference between the probabilities of having edges seems
to have a significant impact on the precision of algorithms, something already studied when
using two balanced communities.

5.1 Suggestions for future research
For future research, one could try to generalize the semidefinite programming algorithm

for more than two communities and see if it will maintain consistent good results when
estimating the right communities.

Still in the computational field, one of the paths to take is to look for more defined
"regimes" of graphs where each algorithm is more consistent than others, as it was shown
by the figures, there is not a clear better algorithm since in different situations all the algo-

29

30 CONCLUSION

rithms were the "best" at some point, understanding these situations is a way to make good
advancements in the area of community detection. Looking at the Allocation Sampler and
the Exact ICL algorithms to find out why both algorithms have consistently underestimated
or super-estimated the number of communities in the simulations could result in a more
consistent and better algorithm for community detection.

From a more theoretical perspective, the allocation sampler, exact ICL, and the Newman-
Girvan algorithms do not have any proof of consistency. However, the simulations suggest
that they could be consistent. Looking at these models more carefully could give a stronger
base on when to use these algorithms and the confidence that those algorithms will achieve
the exact recovery or at least almost exact recovery.

Appendix A

Code

1
2 ##### Packages
3
4 l ibrary (igraph) # Graphs and C lu s t e r s
5 l ibrary (CVXR) # Convex optmiza t ion
6 l ibrary (greed) # Come e Latouche (2015) ICL exac t
7 l ibrary (Matrix) # Making a matrix f o r the ICL
8
9 ##### Code f o r i n s t a l l i n g the package f o r the AS a lgor i thm

10
11 setwd (path) #Path were the graphs w i l l be saved
12 system (" g i t c l one −−r e c u r s i v e −o github g i t : //github . com/aaronmcdaid/

collapsedSBM . g i t ")
13 system ("cd collapsedSBM")
14 system ("make")
15
16 ##### Support Functions
17
18 qu i e t <− function (x) { #Function to avoid warningsS
19 sink (tempfile ())
20 on . exit (sink ())
21 invis ib le (f o r c e (x))
22 }
23
24 makegraph . as <− function (x) { #x adjacency matrix
25 edges <− c ()
26 for (i in 1 :nrow(x)) {
27 for (j in 1 : ncol (x)) {
28 i f (x [i , j]==1){
29 edges <− rbind (edges , c (i , j))
30 }
31 }

31

32 APPENDIX A

32 }
33 return (edges)
34 }
35
36 permut . labels <− function (k , xest , x r e a l) { #k number o f communities , x the

l a b e l v e c t o r s
37 perm <− function (v) { #Permutations
38 n <− length (v)
39 i f (n == 1) v
40 else {
41 X <− NULL
42 for (i in 1 : n) X <− rbind (X, cbind (v [i] , perm(v[− i])))
43 X
44 }
45 }
46 comlabe l s <− 1 : k
47 vetordeperms <− perm (1 : k)
48 novo labe l <− c ()
49 p r e c i s <− 0
50 for (i in 1 :nrow(vetordeperms)) {
51 for (j in 1 : k) {
52 novo labe l [xe s t == j] <− vetordeperms [i , j]
53 }
54 novo labe l [i s .na(novo labe l)] <− k + 1
55 i f ((sum(novo labe l==xr ea l)/length (x r e a l))>p r e c i s) {
56 p r e c i s <− (sum(novo labe l==xr ea l)/length (x r e a l))
57 }
58 }
59 return (p r e c i s)
60 }
61
62 s p e c t r a l_c l u s t e r i n g <− function (X, # matrix o f data po in t s
63 nn = 10 , # the k neares t ne i ghbor s to

cons ider
64 n_e i g = 3) # m number o f e i gnenvec t o r s

to keep
65 {
66
67 e i = eigen (X, symmetric = TRUE) # 3. Compute the e i g en v e c t o r s and

va l u e s o f L
68 return (e i$vec to r s [, 1 : n_e i g]) # return the e i g en v e c t o r s o f the n_e i g

l a r g e s t va l u e s e i g enva l u e s
69
70 }
71

CODE 33

72 sample . z <− function (n ,q , k) { #Sample the l a b e l s g i ven the p r o b a b i l i t i e s
p i (q)

73 k <− length (q)
74 return (sample (x = seq (1 : k) , n , replace = T, prob = q))
75 }
76
77 sample . g <− function (P, z , n , k) { #Sample the adjacency matrix g i ven the

l a b e l s and matrix P
78 mat . adj <− matrix (0 , n , n)
79 k <− dim(P) [1]
80 for (i in 1 : (n−1)) {
81 for (j in (i +1) : n) {
82 mat . adj [i , j] <− rbinom (1 , 1 ,P [z [i] , z [j]])
83 mat . adj [j , i] <− mat . adj [i , j]
84 }
85 }
86 #diag (mat . ad j) <− 0
87 return (mat . adj)
88 }
89
90 conv e r t s t r i n g <− function (s e t ence) { #Convert ing a s t r i n g in t o numeric
91 r e s u l t <− s tr sp l i t (setence , " , ")
92 r e s u l t <− as .numeric (r e s u l t [[1]])
93 return (r e s u l t)
94 }
95
96 ### Main Functions
97
98 sim_i n c_s i z e <−function (comsize = 2 ,n , p ,q) {
99 SDPmean <− c ()

100 NGmean <− c ()
101 Specmean <− c ()
102 ExactICLmean <− c ()
103 AllocSamplermean <− c ()
104
105 num_communities <− c ()
106 sample_s i z e <− c ()
107
108 k_NGmean <− c ()
109 k_specmean <− c ()
110 k_ic lmean <− c ()
111 k_AS <− c ()
112
113 for (k in comsize) {
114 for (i in seq (100 ,400 ,25)) {
115 n <− i

34 APPENDIX A

116 p <− p∗ (log (n)/n)
117 q <− q∗ (log (n)/n)
118
119 kmat <− matrix (rep (q , k∗k) ,ncol = k , nrow = k)
120 diag (kmat) <− p
121
122 tempNG <− c ()
123 tempspecc lust <− c ()
124 tempExactICL <− c ()
125 tempSDP <− c ()
126
127 k_ng_temp <− c ()
128 k_spec_temp <− c ()
129 k_i c l_temp <− c ()
130
131 for (j in 1 : 100) {
132 z <− sample . z (n , rep (1/k , k) , k)
133 g <− sample . g (kmat , z , n , k)
134 gx <− i graph : : graph_from_adjacency_matrix (g ,mode="

undi rec ted " ,diag=FALSE) # Grafo
135
136 # Saving the graph to use on the AS a lgor i thm
137 l o c s ave <− paste0 ("~/IncSample/collapsedSBM/n" ,n , "k"

,k , " i t e r " , j , " . txt ")
138 write . table (makegraph . as (g) , f i l e = locsave , sep = "

\ t " , row .names = FALSE, col .names = FALSE)
139
140 # AS ca l c u l a t i o n s
141 l o c r ead <− paste0 (" . /sbm −− i t e r a t i o n s =5000 n" ,n , "k" ,

k , " i t e r " , j , " . txt ")
142 x <− system (locread , i n t e rn = TRUE)
143 v e t o r r e s u l t <− s t r i n g i : : s t r i_extract (x , regex = ’

[0 −9]+(,[0 −9]+)+’)
144 v e t o r r e s u l t <− na . omit (v e t o r r e s u l t) [1]
145 v e t o r r e s u l t <− c onv e r t s t r i n g (v e t o r r e s u l t)
146 i f (length (unique (v e t o r r e s u l t)) == 1) {
147 tempal locsampler [j] <− sum(((v e t o r r e s u l t + 1) ==

z))/n
148 k_as_temp [j] <− 1
149 }
150 else {
151 k_as_temp [j] <− i f e l s e (length (unique (v e t o r r e s u l t

)) < (k +3) , length (unique (v e t o r r e s u l t)) , (k
+1))

152 tempal locsampler [j] <− permut . labels (k_as_temp [j
] , (v e t o r r e s u l t + 1) , z)

CODE 35

153 }
154
155 # SDP Ca l cu l a t i on s (For two communities on ly)
156 new_g <− g
157 new_g [new_g == 0] <− −1
158 xest imated <− Var iab le (rows = n , c o l s = n ,PSD =

TRUE)
159 ob j e c t i v e <− (matrix_trace (new_g \% ∗ \%

xest imated))
160 c on s t r a i n t s <− l i s t (diag (xest imated) == 1)
161 problem <− Problem (Maximize (ob j e c t i v e) , c o n s t r a i n t s)
162 r e s u l t <− solve (problem)
163 SDPcluster <− sign (eigen (r e s u l t [[1]]) $vec to r s [, 1])
164 tempSDP <− c (tempSDP , permut . labels (k , SDPcluster , z))
165
166 # NG ca l c u l a t i o n s
167 ngtemp <− c l u s t e r_edge_betweenness (gx)
168 kngtemp <− i f e l s e (length (unique (ngtemp$membership))

<= (k + 2) , length (unique (ngtemp$membership)) , k+1
)

169 NGcluster <− permut . labels (kngtemp , ngtemp$membership
, z)

170 tempNG <− c (tempNG, NGcluster)
171 k_ng_temp <− c (k_ng_temp , kngtemp)
172
173 # Spec t r a l C l u s t e r i n g Ca l cu l a t i on s
174 kmeantemp <− kmeans (s p e c t r a l_c l u s t e r i n g (g) , c en t e r s

= k)
175 X_temp_kmeans <− permut . labels (length (unique (

kmeantemp$ c l u s t e r)) , kmeantemp$ c l u s t e r , z)
176 k_spec_temp <− c (k_spec_temp , length (unique (kmeantemp

$ c l u s t e r)))
177 tempspecc lust <− c (tempspecc lust ,X_temp_kmeans)
178
179 # Exact ICL c a l c u l a t i o n s
180 tempic l <− NULL
181 while (i s . null (tempic l)) {
182 try (
183 tempic l <− qu i e t (greed (g)) ,
184 s i l e n t = TRUE
185)
186 }
187 k_i c l_temp <− c (k_i c l_temp , tempicl@K)
188 kic l temp <− i f e l s e (tempicl@K <= (k+2) , tempicl@K , k+1

)
189 X_temp_i c l <− permut . labels (kic ltemp , tempicl@cl , z)

36 APPENDIX A

190 tempExactICL <− c (tempExactICL ,X_temp_i c l)
191 }
192
193 # Prec i s ion means
194 NGmean <− c (NGmean, mean(tempNG))
195 Specmean <− c (Specmean ,mean(tempspecc lust))
196 ExactICLmean <− c (ExactICLmean , mean(tempExactICL))
197 SDPmean <− c (SDPmean , mean(tempSDP))
198 AllocSamplermean <− c (AllocSamplermean , mean(

tempal locsampler))
199
200 # Checking the va l u e s used
201 num_communities <− c (num_communities , k)
202 sample_s i z e <− c (sample_s i z e , n)
203
204 # Means o f es t imated number o f communities
205 k_ic lmean <− c (k_ic lmean , mean(k_i c l_temp))
206 k_specmean <− c (k_specmean , mean(k_spec_temp))
207 k_NGmean <− c (k_NGmean, mean(k_ng_temp))
208 k_AS <− c (k_AS, mean(k_as_temp))
209 }
210 }
211 table <− data . frame (Ncom = num_communities , SampleSize = sample_s i z e

, NG = NGmean, Spec = Specmean , ExactICL = ExactICLmean ,
212 SDP = SDPmean , AS =

AllocSamplermean , KNG = k_
NGmean, KSPEC = k_specmean ,
KICL = k_ic lmean , KAS = k_AS)

213 return (table)
214 }
215
216 plot_d i f_probs <− function (p_vetor , q_vetor , comsize = 2) {
217 SDPmean <− c ()
218 NGmean <− c ()
219 Specmean <− c ()
220 ExactICLmean <− c ()
221 AllocSamplermean <− c ()
222
223 num_communities <− c ()
224 p_used <− c ()
225 q_used <− c ()
226
227 k_NGmean <− c ()
228 k_specmean <− c ()
229 k_ic lmean <− c ()
230 k_AS <− c ()

CODE 37

231
232 for (k in comsize) {
233 for (i in 1 : length (p_vetor)) {
234 n <− 100
235 p <− p_vetor [i]
236 q <− q_vetor [i]
237
238 kmat <− matrix (rep (q , k∗k) ,ncol = k , nrow = k)
239 diag (kmat) <− p
240
241 tempNG <− c ()
242 tempspecc lust <− c ()
243 tempExactICL <− c ()
244 tempSDP <− c () # Only f o r two communities
245
246 k_ng_temp <− c ()
247 k_spec_temp <− c ()
248 k_i c l_temp <− c ()
249
250 for (j in 1 : 100) {
251 # Creat ing the graph
252 z <− sample . z (n , rep (1/k , k) , k)
253 g <− sample . g (kmat , z , n , k)
254 gx <− i graph : : graph_from_adjacency_matrix (g ,mode="

undi rec ted " ,diag=FALSE) # Grafo
255
256 # Saving the graph to use on the AS a lgor i thm
257 l o c s ave <− paste0 ("~/DifProbs/collapsedSBM/p" ,p , "q" ,

q , "k" ,k , " i t e r " , j , " . txt ")
258 write . table (makegraph . as (g) , f i l e = locsave , sep = "

\ t " , row .names = FALSE, col .names = FALSE)
259
260 # AS ca l c u l a t i o n s
261 l o c r ead <− paste0 (" . /sbm −− i t e r a t i o n s =5000 p" ,p , "q" ,

q , "k" ,k , " i t e r " , j , " . txt ")
262 x <− system (locread , i n t e rn = TRUE)
263 v e t o r r e s u l t <− s t r i n g i : : s t r i_extract (x , regex = ’

[0 −9]+(,[0 −9]+)+’)
264 v e t o r r e s u l t <− na . omit (v e t o r r e s u l t) [1]
265 v e t o r r e s u l t <− c onv e r t s t r i n g (v e t o r r e s u l t)
266 i f (length (unique (v e t o r r e s u l t)) == 1) {
267 tempal locsampler [j] <− sum(((v e t o r r e s u l t + 1) ==

z))/n
268 k_as_temp [j] <− 1
269 }
270 else {

38 APPENDIX A

271 k_as_temp [j] <− i f e l s e (length (unique (v e t o r r e s u l t
)) < (k +3) , length (unique (v e t o r r e s u l t)) , (k
+1))

272 tempal locsampler [j] <− permut . labels (k_as_temp [j
] , (v e t o r r e s u l t + 1) , z)

273 }
274
275 # SDP Ca l cu l a t i on s (For two communities on ly)
276 new_g <− g
277 new_g [new_g == 0] <− −1
278 xest imated <− Var iab le (rows = n , c o l s = n ,PSD =

TRUE)
279 ob j e c t i v e <− (matrix_trace (new_g \% ∗ \%

xest imated))
280 c on s t r a i n t s <− l i s t (diag (xest imated) == 1)
281 problem <− Problem (Maximize (ob j e c t i v e) , c o n s t r a i n t s)
282 r e s u l t <− solve (problem)
283 SDPcluster <− sign (eigen (r e s u l t [[1]]) $vec to r s [, 1])
284 tempSDP <− c (tempSDP , permut . labels (k , SDPcluster , z))
285
286 # NG ca l c u l a t i o n s
287 ngtemp <− c l u s t e r_edge_betweenness (gx)
288 kngtemp <− i f e l s e (length (unique (ngtemp$membership))

<= (k + 2) , length (unique (ngtemp$membership)) , k+1
)

289 NGcluster <− permut . labels (kngtemp , ngtemp$membership
, z)

290 tempNG <− c (tempNG, NGcluster)
291 k_ng_temp <− c (k_ng_temp , kngtemp)
292
293 # Spec t r a l C l u s t e r i n g c a l c u l a t i o n s
294 kmeantemp <− kmeans (s p e c t r a l_c l u s t e r i n g (g) , c en t e r s

= k)
295 X_temp_kmeans <− permut . labels (length (unique (

kmeantemp$ c l u s t e r)) , kmeantemp$ c l u s t e r , z)
296 k_spec_temp <− c (k_spec_temp , length (unique (kmeantemp

$ c l u s t e r)))
297 tempspecc lust <− c (tempspecc lust ,X_temp_kmeans)
298
299 # Exact ICL c a l c u l a t i o n s
300 tempic l <− NULL
301 while (i s . null (tempic l)) {
302 try (
303 tempic l <− qu i e t (greed (g)) ,
304 s i l e n t = TRUE
305)

CODE 39

306 }
307 k_i c l_temp <− c (k_i c l_temp , tempicl@K)
308 kic l temp <− i f e l s e (tempicl@K <= (k+2) , tempicl@K , k+1

)
309 X_temp_i c l <− permut . labels (kic ltemp , tempicl@cl , z)
310 tempExactICL <− c (tempExactICL ,X_temp_i c l)
311 }
312
313 # Gett ing the means f o r the p r e c i s i on
314 NGmean <− c (NGmean, mean(tempNG))
315 Specmean <− c (Specmean ,mean(tempspecc lust))
316 ExactICLmean <− c (ExactICLmean , mean(tempExactICL))
317 SDPmean <− c (SDPmean , mean(tempSDP))
318 AllocSamplermean <− c (AllocSamplermean , mean(

tempal locsampler))
319
320 # Just check ing the va l u e s used in each s t ep
321 num_communities <− c (num_communities , k)
322 p_used <− c (p_used , p)
323 q_used <− c (q_used ,q)
324
325 # Gett ing the means f o r the number o f communities
326 k_ic lmean <− c (k_ic lmean , mean(k_i c l_temp))
327 k_specmean <− c (k_specmean , mean(k_spec_temp))
328 k_NGmean <− c (k_NGmean, mean(k_ng_temp))
329 k_AS <− c (k_AS, mean(k_as_temp))
330 }
331 }
332 table <− data . frame (Ncom = num_communities , p = p_used , q = q_used ,

NG = NGmean, Spec = Specmean , ExactICL = ExactICLmean ,
333 SDP = SDPmean , AS =

AllocSamplermean , KNG = k_
NGmean, KSPEC = k_specmean ,
KICL = k_ic lmean , KAS = k_AS)

334 return (table)
335 }

40 APPENDIX A

Bibliography

Abbe(2018) Emmanuel Abbe. Community detection and stochastic block models: Recent
developments. Journal of Machine Learning Research, 18(177):1–86. URL http://jmlr.
org/papers/v18/16-480.html. Quoted on page

Abbe(2017) Emmanuel Abbe. Community detection and stochastic block models: recent
developments, 2017. Quoted on page 4

Abbe and Sandon(2015) Emmanuel Abbe and Colin Sandon. Community detection
in general stochastic block models: fundamental limits and efficient recovery algorithms,
2015. Quoted on page 1, 6

Abbe et al.(2014a) Emmanuel Abbe, Afonso S. Bandeira, Annina Bracher and Amit Singer.
Linear inverse problems on erdõs-rényi graphs: Information-theoretic limits and efficient
recovery. 2014 IEEE International Symposium on Information Theory, páginas 1251–1255.
Quoted on page

Abbe et al.(2014b) Emmanuel Abbe, Afonso S. Bandeira, Annina Bracher and Amit
Singer. Decoding binary node labels from censored edge measurements: Phase transi-
tion and efficient recovery, 2014b. Quoted on page

Abbe et al.(2014c) Emmanuel Abbe, Afonso S. Bandeira and Georgina Hall. Exact recov-
ery in the stochastic block model, 2014c. Quoted on page 1, 2, 5, 22

Bickel and Chen(2009) Peter Bickel and Aiyou Chen. A nonparametric view of network
models and newman-girvan and other modularities. Proceedings of the National Academy
of Sciences of the United States of America, 106:21068–73. doi: 10.1073/pnas.0907096106.
Quoted on page 1

Caldarelli and Vespignani(2007a) Guido Caldarelli and Alessandro Vespignani. Large
scale structure and dynamics of complex networks: From information technology to finance
and natural science, 2007a. Quoted on page

Caldarelli and Vespignani(2007b) Guido Caldarelli and Alessandro Vespignani. Large
Scale Structure and Dynamics of Complex Networks: From Information Technology to
Finance and Natural Science. World Scientific Publishing Co., Inc., USA. ISBN
9789812706645. Quoted on page 8

Cerqueira(2018) Andressa Cerqueira. Statistical inference on random graphs and networks.
Tese de Doutorado, Instituto de Matemática e Estatística, Universidade de São Paulo,
Brasil. Quoted on page

Cerqueira and Leonardi(2018) Andressa Cerqueira and Florencia Leonardi. Strong con-
sistency of krichevsky-trofimov estimator for the number of communities in the stochastic
block model, 2018. Quoted on page

41

http://jmlr.org/papers/v18/16-480.html
http://jmlr.org/papers/v18/16-480.html

42 BIBLIOGRAPHY

Chen et al.(2018) Shi Chen, Zhi-Zhong Wang, Liang Tang, Yan-Ni Tang, Yuan-Yuan
Gao, Hui-Jia Li, Ju Xiang and Yan Zhangyan. Global vs local modularity for network
community detection. PLOS ONE, 13:e0205284. doi: 10.1371/journal.pone.0205284. Quoted

on page

Clauset et al.(2004) Aaron Clauset, M. E. J. Newman and Cristopher Moore. Finding
community structure in very large networks. Physical Review E, 70(6). ISSN 1550-2376.
doi: 10.1103/physreve.70.066111. URL http://dx.doi.org/10.1103/PhysRevE.70.066111.
Quoted on page

Côme and Latouche(2013) E. Côme and P. Latouche. Model selection and clustering in
stochastic block models with the exact integrated complete data likelihood, 2013. Quoted on

page 1, 16, 17, 25

Daudin et al.(2008) J. Daudin, F. Picard and S. Robin. A mixture model for random
graphs. Statistics and Computing, 18:173–183. Quoted on page 1, 16

Erdõs and Rényi(1960) P. Erdõs and A. Rényi. On the evolution of random graphs.
Em PUBLICATION OF THE MATHEMATICAL INSTITUTE OF THE HUNGARIAN
ACADEMY OF SCIENCES, páginas 17–61. Quoted on page 1, 5

Euler(1736) Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Com-
mentarii Academiae Scientiarum Imperialis Petropolitanae, 8:128–140. Quoted on page 1

Fortunato and Castellano(2007) Santo Fortunato and Claudio Castellano. Community
structure in graphs, 2007. Quoted on page 1

Freund(2004) Robert M. Freund. Introduction to semidefinite programming (sdp). Quoted

on page

Hastie et al.(2001) Trevor Hastie, Robert Tibshirani and Jerome Friedman. The Elements
of Statistical Learning. Springer Series in Statistics. Springer New York Inc., New York,
NY, USA. Quoted on page

Holland et al.(1983) Paul W. Holland, Kathryn Blackmond Laskey and Samuel Leinhardt.
Stochastic blockmodels: First steps. Social Networks, 5(2):109 – 137. ISSN 0378-8733.
doi: https://doi.org/10.1016/0378-8733(83)90021-7. URL http://www.sciencedirect.com/
science/article/pii/0378873383900217. Quoted on page 1

Hu et al.(2016) Jianwei Hu, Hong Qin, Ting Yan and Yunpeng Zhao. Corrected bayesian
information criterion for stochastic block models, 2016. Quoted on page

Jerrum and Sorkin(1998)Mark Jerrum and Gregory B. Sorkin. The metropolis algorithm
for graph bisection. Discrete Applied Mathematics, 82(1):155 – 175. ISSN 0166-218X. doi:
https://doi.org/10.1016/S0166-218X(97)00133-9. URL http://www.sciencedirect.com/
science/article/pii/S0166218X97001339. Quoted on page 1

Krichevsky and Trofimov(1981) R. Krichevsky and V. Trofimov. The performance of
universal encoding. IEEE Transactions on Information Theory, 27(2):199–207. Quoted on

page

Lee and Wilkinson(2019) Clement Lee and Darren Wilkinson. A review of stochastic
block models and extensions for graph clustering. Applied Network Science, 4. doi: 10.
1007/s41109-019-0232-2. Quoted on page 1

http://dx.doi.org/10.1103/PhysRevE.70.066111
http://www.sciencedirect.com/science/article/pii/0378873383900217
http://www.sciencedirect.com/science/article/pii/0378873383900217
http://www.sciencedirect.com/science/article/pii/S0166218X97001339
http://www.sciencedirect.com/science/article/pii/S0166218X97001339

BIBLIOGRAPHY 43

Lei and Rinaldo(2015) Jing Lei and Alessandro Rinaldo. Consistency of spectral cluster-
ing in stochastic block models. The Annals of Statistics, 43(1):215–237. ISSN 0090-5364.
doi: 10.1214/14-aos1274. URL http://dx.doi.org/10.1214/14-AOS1274. Quoted on page 13

McDaid et al.(2012) Aaron F. McDaid, Thomas Brendan Murphy, Nial Friel and Neil J
Hurley. Clustering in networks with the collapsed stochastic block model, 2012. Quoted on

page 1, 13, 16

Newman and Girvan(2004) M. E. J. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical Review E, 69(2). ISSN 1550-2376. doi: 10.
1103/physreve.69.026113. URL http://dx.doi.org/10.1103/PhysRevE.69.026113. Quoted on

page 1

Newman(2004) Mark Newman. Detecting community structure in networks. Eur Phys J,
38. Quoted on page

Nobile and Fearnside(2007) Agostino Nobile and Alastair Fearnside. Bayesian finite
mixtures with an unknown number of components: The allocation sampler. Statistics and
Computing, 17:147–162. doi: 10.1007/s11222-006-9014-7. Quoted on page 13, 14, 15, 16

Pas and Vaart(2016) Stéphanie Pas and Aad Vaart. Bayesian community detection.
Bayesian Analysis, 13. doi: 10.1214/17-BA1078. Quoted on page 1

Radicchi et al.(2004) Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio
Loreto and Domenico Parisi. Defining and identifying communities in networks. Pro-
ceedings of the National Academy of Sciences, 101(9):2658–2663. ISSN 0027-8424. doi:
10.1073/pnas.0400054101. URL https://www.pnas.org/content/101/9/2658. Quoted on page

8

Rohe et al.(2011) Karl Rohe, Sourav Chatterjee and Bin Yu. Spectral clustering and the
high-dimensional stochastic blockmodel. The Annals of Statistics, 39(4):1878–1915. ISSN
0090-5364. doi: 10.1214/11-aos887. URL http://dx.doi.org/10.1214/11-AOS887. Quoted on

page 1

Snijders and Nowicki(1997) Tom Snijders and Krzysztof Nowicki. Estimation and pre-
diction for stochastic blockmodels for graphs with latent block structure. Journal of
Classification, 14:75–100. doi: 10.1007/s003579900004. Quoted on page 13

von Luxburg(2007) Ulrike von Luxburg. A tutorial on spectral clustering, 2007. Quoted on

page

http://dx.doi.org/10.1214/14-AOS1274
http://dx.doi.org/10.1103/PhysRevE.69.026113
https://www.pnas.org/content/101/9/2658
http://dx.doi.org/10.1214/11-AOS887

	Introduction
	Organization
	Objectives

	Stochastic Block Models
	Stochastic Block Model
	The general Stochastic Block Model
	Recovery in the SBM
	MAP in the SBM

	Community Structure Problem

	Algorithms
	Newman-Girvan Algorithm
	Spectral Clustering
	SDP algorithm
	Allocation Sampler
	MK
	GS
	M3
	AE

	Exact ICL algorithm

	Simulation
	Simulation with two communities
	 | a - b | > 2 and (a - b)2 > (8(a + b) +(8/3)(a - b)
	 | a - b | > 2 and (a - b)2 < (8(a + b) +(8/3)(a - b)
	 | a - b | < 2

	Simulations with more than two communities

	Conclusion
	Suggestions for future research

	Code
	Bibliography

