• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.45.2008.tde-22122008-150501
Document
Author
Full name
Marcelo Gonçalves
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2008
Supervisor
Committee
Kolev, Nikolai Valtchev (President)
Lopes, Hélio Côrtes Vieira
Fernandes, Cristiano Augusto Coelho
Lopez, Veronica Andrea Gonzalez
Morettin, Pedro Alberto
Title in Portuguese
Um estudo sobre funções de dependência e medidas de risco
Keywords in Portuguese
Cópulas e Dependência
Medidas de Risco
Abstract in Portuguese
Começamos por estudar fronteiras para uma classe especial de medidas de risco quantis, chamadas medidas de risco distorcidas. A hipótese básica é que o conhecimento da estrutura de dependência (ou seja, da distribuição conjunta) da carteira de riscos é incompleta, fazendo com que não seja possível obter um valor exato para tais medidas. Isso é muito comum na prática. Fornecemos duas formas de obter tais limites nessa situação, apresentando seus prós e contras. A modelagem de risco, em um cenário de desconhecimento total ou parcial da distribuição conjunta dos mesmos, geralmente faz uso de cópulas. Entretanto, as cópulas vêm sendo alvo de críticas na literatura recente. Um dos motivos é que as mesmas desprezam o comportamento marginal e comprimem os dados no quadrado unitário. Dentro desse cenário, apresentamos uma função que pode ser vista como uma alternativa e complemento ao uso de cópulas: função de dependência de Sibuya.
Title in English
A study on dependence functions and risk measures.
Keywords in English
copulas
dependence
risk measures
Abstract in English
We begin our work studying an special class of quantile risk measures, known as distorted risk measures. The basic assumption is that the risk manager does not know the complete dependence structure (that is, the risks's joint distribution) embedded in the risk's portfolio, what makes the exact computation of the risk measure an impossible task. This is a common scenario in practical problems. We present two approaches to compute bounds for the distorted risk measures in such situation, underlining the pros and cons of each one. In risk modeling, in the absence of complete knowledge regarding their joint distribution, one often relies on the copula function approach. However, copulas have been criticized in recent publications mostly because it ignores the marginal behavior and smash the data into the unity square. In order to overcome such problems we present and alternative and complement to the copula approach: the Sibuya dependence function.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
tese1.pdf (404.78 Kbytes)
Publishing Date
2009-02-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.