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Resumo

MELO, M. S.Modelagem de séries temporais de contagem usando a distribuição Conway-

Maxwell Poisson. 2020. 87 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Univer-

sidade de São Paulo, São Paulo, 2020.

Recentemente, modelos para dados de séries temporais que não satisfazem a suposição de nor-

malidade vêm sendo propostos a �m de possibilitar melhores ajustes a dados reais. O presente

trabalho tem por objetivo desenvolver modelos de séries temporais e propor grá�cos de controle

para dados de contagem com subdispersão, equidispersão e sobredispersão, baseado na distribuição

Conway-Maxwell-Poisson. A distribuição Conway-Maxwell-Poisson é bastante �exível e tem como

casos particulares as distribuições Poisson e geométrica e como caso limite a distribuição binomial.

Sua principal vantagem quando comparada a outras distribuições discretas é que permite acomodar

adequadamente a subdispersão e sobredispersão encontrada frequentemente na análise de conjun-

tos de dados reais. Este trabalho é composto por 3 artigos. Nos dois primeiros artigos, propomos

dois novos modelos de séries temporais de contagens, intitulados Modelo Conway-Maxwell-Poisson

Autorregressivo de Médias Móveis para dados de contagem subdispersos, equidispersos e sobredis-

persos; e Modelo Conway-Maxwell-Poisson Sazonal Autorregressivo de Médias Móveis, respectiva-

mente. Apresentamos os estimadores de máxima verossimilhança condicional, teste de hipóteses

e análise de diagnóstica para os modelos propostos. Realizamos estudos de simulação para veri-

�car as propriedades de amostras �nitas dos estimadores. Os resultados numéricos mostram que

os estimadores dos dois modelos propostos possuem boas propriedades assintóticas, à medida que

o tamanho amostral aumenta o viés e o erro quadrático médio de todos os estimadores diminuem.

Também fornecemos expressões de forma fechada para o vetor escore condicional e a matriz de infor-

mações de Fisher condicional. Finalmente, ilustramos a utilidade dos modelos propostos, explorando

aplicações empíricas. No último artigo, propomos um novo grá�co de controle com memória para

monitorar dados de contagem autocorrelacionados, no qual uma média progressiva é usada como

a estatística de plotagem. O novo grá�co de controle é baseado nos resíduos quantílicos aleatoriza-

dos obtidos pelo ajuste de um modelo Conway-Maxwell Poisson Autorregressivo de Média Móvel.

Um estudo de simulação é realizado para avaliar o desempenho do grá�co de controle proposto. Os

resultados mostram que a proposta atual apresenta bom desempenho para detectar pequenas, mod-

eradas e grandes mudanças na média do processo. Além disso, quando comparado com os grá�cos

de controle do tipo EWMA e Shewhart, o novo grá�co apresentou desempenho melhor em termo

do número médio de amostras até o sinal.

Palavras-chave: Séries temporais, Distribuição Conway-Maxwell-Poisson, Grá�co de controle, Da-

dos de contagem, Sobredispersão, Subdispersão.
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Abstract

MELO, M. S. Count time series modeling using the Conway-Maxwell Poisson distribu-

tion. 2020. 87 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São

Paulo, São Paulo, 2020.

Recently, models for time series data that do not satisfy the assumption of normality have

been proposed to be able to �t real data better. The present work aims to develop regression

models and propose control charts for time series of counts with subdispersion, equidispersion and

overdispersion, based on the Conway-Maxwell-Poisson distribution. The Conway-Maxwell-Poisson

distribution is very �exible and it has the Poisson and geometric distributions as special cases, and

the Bernoulli distribution as a limiting case. Its main advantage when compared to other discrete

distributions is that it can adequately accommodate the subdispersion and overdispersion found

frequently in the analysis of real data sets. This thesis is composed by 3 articles. In the �rst two

articles, we propose two new models for time series of counts, namely Conway-Maxwell-Poisson au-

toregressive moving average model for equidispersed, underdispersed, and overdispersed count data;

and Conway-Maxwell-Poisson seasonal autoregressive moving average model, respectively. We pre-

sented and discussed the conditional maximum likelihood estimators, hypothesis testing, and some

diagnostic tools for the proposed models. We conduct a Monte Carlo simulation to evaluate of the

�nite sample performance of the proposed estimators. The numerical results show good asymptotic

properties of the estimadors, as the sample size increases, the bias and mean square error of all esti-

mators decreases. We also provide closed forms for the conditional score vector and the conditional

Fisher information matrix. Finally, we illustrate the usefulness of the proposed models, exploring

empirical applications. In the last article, we propose a new memory-type control chart by moni-

toring autocorrelated count data, in which a progressive mean is used as the plotting statistic. The

new control chart is based on randomized quantile residuals obtained from a �tted Conway-Maxwell

Poisson autoregressive moving average model. A simulation study is carried out to evaluate the per-

formance of the proposed control chart. The results show that the current proposal performs well

to detect small, moderate, and large shifts in the process mean. In addition, when compared to the

control charts of type EWMA and Shewhart, the new chart showed better performance in terms of

average run lengths(ARL).

Keywords: Time series, Conway-Maxwell-Moisson distribution, Control chart, Count data, Overdis-

persion, Underdispersion.
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Chapter 1

Introduction

The most well-known and frequently used time series models in the literature are based on

he Gaussianity assumption (Box et al., 2015). However, the assumption of normality is not always

satis�ed in practice. As a consequence, in recent years, there has been increasing interest in the

development and analysis of non-Gaussian models for time. Benjamin et al. (2003) introduced the

class of generalized linear autoregressive moving average (GARMA) models, which is an extension

of the standard ARMA models for situations where the conditional distribution of the dependent

variable given the past of the process belongs to the exponential family, such as the Poisson and

binomial negative distributions. These class of models are widely used to model discrete response

time series (Albarracin et al., 2018b). In practice, however, Poisson and negative binomial distribu-

tions are not suitable for modeling underdispersed count data, where the variance is smaller than

the mean. There are some distributions that contain the Poisson distribution as special case and

can to model overdispersed and underdispersion count data. For example, the generalized Poisson,

the gamma count, the double Poisson, and the Conway-Maxwell Poisson (CMP or COM-Poisson)

distributions (Sellers and Morris, 2017).

Recent works on time series modeling has used the CMP distribution to model count data with

equidispersion, underdispersion and overdispersion. For example, Zhu (2012) introduced a CMP in-

teger generalized autoregressive conditionally heteroscedastic (INGARCH) model; Mamode Khan et al.

(2018) proposed an observation-driven longitudinal integer-valued moving average model of order 1

(INMA(1)) with CMP innovations; Sunecher et al. (2018) introduced a �rst-order bivariate integer-

valued moving average (BINMA(1)) models driven by CMP innovations; among others. The CMP

distribution is very �exible and generalizes several classical distributions, such as the geometric and

Poisson distributions as special cases, and the Bernoulli distribution as a limiting case. This distri-

bution's �exibility and special properties encourage its empirical use in a wide range of applications

(Sellers et al., 2012).

The CMP distribution has also attracted considerable attention in the quality control area.

Several control charts have been proposed in the literature to monitor count data using the CMP

distribution. Sellers (2012) proposed a Shewhart-type control chart based on the CMP distribution.

Saghir and Lin (2014a) introduced a Shewhart-type multivariate control chart is constructed to

monitor such kind of data based on the CMP distribution. Saghir and Lin (2014b) proposed cu-

mulative sum (CUSUM) charts for monitoring the CMP processes. Aslam et al. (2016) introduced

an attribute control chart for the CMP distributed non-conformities using multiple dependent

states sampling based on the modi�ed exponentially weighted moving average (EWMA) statistic.

1



2 INTRODUCTION 1.0

Aslam et al. (2017) developed a control chart for the CMP distribution using the EWMA statis-

tic. Aslam et al. (2018) proposed a hybrid EWMA control chart for count data assuming CMP

distribution. Alevizakos and Koukouvinos (2019a) presented a double EWMA control chart with

steady-state control limits to monitor CMP attributes. Alevizakos and Koukouvinos (2019b) intro-

duced a control chart based on the progressive mean (PM) statistic for monitoring CMP distributed

data. Rao et al. (2020) developed a mixed EWMA-CUSUM control chart for monitoring moderate

and/or small shift in the process following the CMP distribution.

The CMP distribution, originally developed by Conway and Maxwell (1962) as a model for

queuing systems with state dependent service times, had its statistical properties, as well as the

methods to estimate its parameters established by Shmueli et al. (2005). Due to its �exibility and

nice special properties, the CMP distribution has been used in di�erent areas of application such

as transport, linguistic, marketing and many others (Lord et al., 2008, 2012; Sellers et al., 2012).

In the original formulation, the CMP probability mass function is given by

Pr(Y = y | λ, ν) =
λy

(y!)νZ(λ, ν)
, y = 0, 1, 2, . . . , λ > 0, ν ≥ 0,

where Z(λ, ν) =
∑∞

s=0 λ
s/(s!)ν is a normalization constant, and ν is considered the dispersion

parameter such that ν > 1 represents underdispersion and 0 ≤ ν < 1 overdispersion. When ν = 1,

the distribution coincides with the Poisson distribution.

Although the CMP distribution is very �exible for modeling count data, its moments cannot

be expressed in terms of the two parameters that index the distribution, λ and ν. The inability to

model the mean directly limited the use of the CMP distribution in practice, especially in regression

analysis, where it is typically more useful to model the mean of the distribution (Huang, 2017).

Recently, in order to obtain a regression structure for the mean of the CMP distribution, and thus fa-

cilitate the interpretation of the regression models, Huang (2017) proposed a mean-parametrization

of the CMP distribution. In the proposed model by Huang (2017), the regression coe�cients are

directly associated with the mean of the response variable, as in the class of the generalized linear

models (GLMs) introduced by McCullagh (1984). In addition, in this parameterization the mean

and dispersion parameters are orthogonal. As a consequence, the maximum likelihood estimators

for the mean and dispersion parameter are asymptotically independent.

The reparameterized CMP distribution (Huang, 2017), denoted by CMPµ, is given by the

probability mass function

Pr(Y = y | µ, ν) =
λ(µ, ν)y

(y!)νZ(λ(µ, ν), ν)
, µ ≥ 0; ν ≥ 0; y = 0, 1, 2, . . . ,

where λ(µ, ν) is obtained by solving the following non-linear equation

0 =

∞∑
s=0

(s− µ)
λs

(s!)ν
.

The purpose of this thesis is to propose two dynamic regression models for counting data with

overdispersion and underdispersion based on the CMP distribution with time-varying conditional

mean depending on covariates and lagged observations. Following the approach presented in the

GARMA model, in the �rst model, the conditional mean of the dependent variable is modeled
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through a autoregressive moving average structure. This model can be viewed with a combination of

the ARMA model and the generalized linear model (GLM) (McCullagh, 1984). In the second article,

we extended the class of models proposed in the �rst article including seasonality components. In

addition, we proposed a new memory-type control chart, in which a progressive mean is used as

the plotting statistic for monitoring autocorrelated count data. The development of the proposed

control chart is based on the randomized quantile residuals obtained from a �tted model.

1.1 Contributions

The main contributions of this work are the following:

• To propose dynamic regression models based on the Conway-Maxwell-Poisson distribution for

modeling underdispersed, equidispersed, and overdispersed time series count data.

• To evaluate the asymptotic properties of conditional maximum likelihood estimators of the

models, as well as to provide closed-form expressions for the conditional score vector and

conditional Fisher information matrix.

• To propose memory-type control chart based on the progressive mean statistic to monitor

autocorrelated count time series. The new control chart is based on the randomized quan-

tile residuals obtained from a �tted Conway-Maxwell-Poisson autoregressive moving average

model.

1.2 Thesis organization

The thesis is composed by 3 articles. The �rst article, Conway-Maxwell-Poisson autoregressive

moving average model for equidispersed, underdispersed, and overdispersed count data, is intro-

duced in Chapter 2. The second article, Conway-Maxwell-Poisson seasonal autoregressive moving

average model, is presented in Chapter 3. And the last article, Progressive Mean Control Chart for

Monitoring Count Time Series is developed in Chapter 4. Each chapter in the thesis can be read

independently.
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Chapter 2

Conway-Maxwell-Poisson autoregressive

moving average model for equidispersed,

underdispersed, and overdispersed count

data

In this work, we propose a dynamic regression model based on the Conway-Maxwell-Poisson

(CMP) distribution with time-varying conditional mean depending on covariates and lagged obser-

vations. This new class of Conway-Maxwell-Poisson autoregressive moving average (CMP-ARMA)

models is suitable for the analysis of time series of counts. The CMP distribution is a two-parameter

generalization of the Poisson distribution that allows the modeling of underdispersed, equidispersed,

and overdispersed data. Our main contribution is to combine this dispersion �exibility with the

inclusion of lagged terms to model the conditional mean response, inducing an autocorrelation

structure, usually relevant in time series. We present the conditional maximum likelihood estima-

tion, hypothesis testing inference, diagnostic analysis, and forecasting along with their asymptotic

properties. In particular, we provide closed-form expressions for the conditional score vector and

conditional Fisher information matrix. We conduct a Monte Carlo experiment to evaluate the per-

formance of the estimators in �nite sample sizes. Finally, we illustrate the usefulness of the proposed

model by exploring two empirical applications.

Keywords: CMP-ARMA; Conway-Maxwell-Poisson distribution; Time series of counts; Overdis-

persion; Underdispersion

2.1 Introduction

Models for time series of counts have received considerable and growing attention in recent

decades. These series are commonly observed in real applications such as economics, medicine, and

epidemiology (Franke and Seligmann, 1993; Freeland and McCabe, 2004; Zeger and Qaqish, 1988).

An appropriate and �exible approach for count time series is to apply the generalized autore-

gressive moving average model (GARMA) proposed by Benjamin et al. (2003). The GARMA model

combines the autoregressive moving average model (ARMA) (Box et al., 2015) with the generalized

5
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linear model (GLM) methodology (McCullagh and Nelder, 1989), enabling the inclusion of autore-

gressive and moving average components. This model can be applied in the analysis of count data

observed over time using the conditional Poisson, Negative Binomial, or binomial distributions.

The most popular distribution for modeling count data is the Poisson distribution (Shmueli et al.,

2005). However, in practice, this distribution is not always suitable since many real data do not

adhere to the assumption of equidispersion (where the mean and variance are equal). Often the data

are overdispersed (variance is greater than the mean), this phenomenon has received considerable

attention in the literature (MacDonald and Bhamani, 2018). The phenomenon of underdispersion

(variance is lower than the mean) occurs less frequently, and the choice of distributions is restricted

(Zhu, 2012).

In recent years, the modeling of count time series with overdispersion and underdispersion has

received great attention, and one of the distributions that accommodates these dispersion cases

is the Conway-Maxwell-Poisson (CMP) distribution. This distribution has been applied in several

�elds, including marketing, transportation, and epidemiology (Sellers et al., 2012). In time series

settings, Zhu (2012) proposed an integer-valued generalized autoregressive conditional heteroscedas-

tic model with CMP distribution. Mamode Khan et al. (2018) introduced an observation-driven

integer-valued moving average model of order 1 (INMA(1)) with CMP innovations under non-

stationary moment conditions. Despite this last model includes the thinning operator considering

the serial correlation, it is more appropriate for low counts. Moreover, MacDonald and Bhamani

(2018) introduced the class of stationary hidden Markov models with CMP distribution as state-

dependent distribution. Although the models proposed by Zhu (2012) and MacDonald and Bhamani

(2018) are able to model underdispersion and overdispersion, they do not include covariates. The

model proposed by Mamode Khan et al. (2018) includes regressors, but the mean is not directly

modeled, leading to a complicate interpretation of parameters. For the proposed model in this ar-

ticle, the mean of the conditional distribution is directly modeled, making the model parameters

easily interpretable.

The present article introduces a dynamic regression model for time series following a CMP

distribution. To de�ne the proposed model, we shall follow similar construction as the GARMA

model (Benjamin et al., 2003). The proposed CMP-ARMA model can be used for modeling time

series of counts with equidispersion, underdispersion, and overdispersion. One of the advantages

of time series models based on GLM is that they straightforwardly describe covariate e�ects and

negative autocorrelations (Liboschik et al., 2017). In addition to the GARMA model, several time

series models based on GLM with di�erent distributions have been considered in the literature

(Bayer et al., 2017; Fokianos and Kedem, 2004; Li, 1991, 1994; Rocha and Cribari-Neto, 2009).

Our chief goal is to propose a new class of dynamic regression time series models for non-

negative discrete data, with equidispersion, overdispersion, and/or underdispersion, based on the

structure developed in Benjamin et al. (2003). We use the parametrization of the CMP distribution

in terms of its mean as proposed by Huang (2017). For this purpose, we present the main properties

of the model, the conditional maximum likelihood estimators (CMLE), and some residual and

diagnostic tools. In addition, we provide a Monte Carlo study to evaluate the CMLE performance

and stationarity conditions.

This article is organized as follows. Section 2.2 reviews the CMP distribution and its reparametriza-

tion, where the mean of the distribution is rewritten as a function of the original parameters. Section
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2.3 introduces the proposed model. In Section 2.4, we develop the estimation and inference for the

new CMP-ARMA model based on the conditional maximum likelihood theory, including closed-

form expressions for the conditional score vector and conditional Fisher information matrix. We

also discuss the construction of con�dence intervals and hypothesis testing. Section 2.5 discusses

some diagnostic measures and forecasting. In Section 2.6, we present the results of the Monte Carlo

simulation study. Section 2.7 illustrates the �exibility of the proposed model through two empiri-

cal applications. Finally, some conclusions are given in Section 2.8. Details on the derivation of the

conditional score vector and conditional Fisher information matrix are presented in the Appendices.

2.2 The CMP distribution

Although Poisson models are popularly known for modeling count data, many real data sets

usually do not present equidispersion as in the Poisson distribution. Another widely used distribu-

tion is the Negative Binomial, which can capture overdispersion. However, analyzing underdispersed

counts is a big challenge. Recently, Shmueli et al. (2005) suggested the use of the CMP distribution

to model equidispersed, overdispersed, and underdispersed counts, which was originally developed

by Conway and Maxwell (1962) as a model for queuing systems with state-dependent service times.

Let Y be a random variable with CMP(λ, ν) distribution, then its probability mass function is

given by

Pr(Y = y | λ, ν) =
λy

(y!)νZ(λ, ν)
, y = 0, 1, 2, . . . , λ > 0, ν ≥ 0,

where Z(λ, ν) =
∑∞

s=0 λ
s/(s!)ν is a normalization constant, and ν is the dispersion parameter such

that ν > 1 represents underdispersion and 0 ≤ ν < 1 overdispersion.

The CMP distribution generalizes the Poisson distribution by relaxing the assumption of lin-

earity of the ratio of consecutive probabilities, such that

Pr(Y = y − 1)

Pr(Y = y)
=
yν

λ
.

This generalization allows heavier or lighter tails compared to the Poisson distribution (Sellers and Shmueli,

2010). One of the advantages of the CMP distribution is that, in addition to the Poisson distribu-

tion (ν = 1), we have the geometric (ν = 0;λ < 1) and the Bernoulli (ν → ∞ with probability

λ/(1 + λ)) distributions as particular cases.

The moments of the CMP distribution are expressed using the following recursive method

E(Y r+1) =

{
λE(Y + 1)1−ν , r = 0

λ d
dλE(Y r) + E(Y )E(Y r), r > 0.

Since the above method does not have a closed-form solution, an asymptotic approximation for

Z(λ, ν) can be used. Shmueli et al. (2005) presented an approximate form for the moments of the

distribution given by

E(Y ) ≈ λ1/ν − ν − 1

2ν
and V (Y ) ≈ λ1/ν

ν
(2.1)

which is particularly accurate for ν ≤ 1 or λ > 10ν .
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Sellers and Shmueli (2010) proposed the CMP regression model using the original parametriza-

tion log(λi) = xTi β, where the mean is modeled through the approximation in (2.1). Note that this

approximation is accurate for ν ≤ 1 or λ > 10ν , and the mean is indirectly modeled. To avoid such

issues, Huang (2017) proposed a reparametrization of the CMP model, where instead of using an

approximation for the mean value, the mean of the counts µ = E(Y ) is modeled directly assuming

that log(µi) = xTi β, as de�ned in GLMs. This reparametrization makes the model simpler and

easily interpretable.

The reparametrized CMP distribution (Huang, 2017), denoted by CMPµ, is given by the prob-

ability mass function

Pr(Y = y | µ, ν) =
λ(µ, ν)y

(y!)νZ(λ(µ, ν), ν)
, µ ≥ 0; ν ≥ 0; y = 0, 1, 2, . . . ,

where λ(µ, ν) is a function of µ and ν, given by the solution for

0 =

∞∑
s=0

(s− µ)
λs

(s!)ν
.

y
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Figure 2.1: Shapes of the Poisson and CMPµ probability mass functions for di�erent values of µ and ν

.

In Figure 2.1, some CMPµ distributions are depicted for di�erent mean values µ and dispersion

parameter ν and compared to Poisson distributions of same mean µ. The left panel shows the

distribution of overdispersion counts (ν < 1). In the central panel, the CMPµ with ν = 1 corresponds

to the Poisson distribution. Finally, the right panel exposes a case in which the distribution presents

underdispersion (ν > 1). Note that a large dispersion parameter value ν condenses the distribution

around the mean, and a small dispersion parameter value extends the distribution away from the

mean.

The CMPµ distribution can be expressed as the exponential family of two parameters (Huang,

2017). This is analogous to the result obtained by Shmueli et al. (2005) for the standard CMP
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distribution. For �xed ν, the CMPµ distribution belongs to the one parameter exponential family.

2.3 The proposed model

In this work, we propose a new dynamic regression model for random variables with a CMP

distribution observed over time. To de�ne the model, we include an ARMA time series structure

in the conditional mean to accommodate the presence of serial correlation. Since for time series

analysis it is convenient to work with the mean response, we use the CMP reparametrization given

in (1).

Let Y = (Y1, . . . , Yn)> be a vector of n random variables, where the conditional distribution of Yt
, t = 1, . . . , n, given the previous information set Ft−1 = {Yt−1, . . . , Y1}, follows a CMP distribution

with mean parameter µt and dispersion parameter ν. The conditional probability function of Yt,

given Ft−1, is de�ned as

Pr(Yt = yt | Ft−1, µt, ν) =
λ(µt, ν)yt

(yt!)νZ(λ(µt, ν), ν)
, y = 0, 1, 2, . . . , (2.2)

where λ(µt, ν) is a function of µt and ν, given by the solution for

0 =

∞∑
s=0

(s− µt)
λs

(s!)ν
, (2.3)

and Z(λ(µt, ν), ν) =
∑∞

s=0 λ(µt, ν)s/(s!)ν is a normalization function, and the conditional mean of

Yt is given by E(Yt | Ft−1) = µt. As in Huang (2017), the variance does not have a closed-form

expression. However, the main advantage of the reparametrization proposed by Huang (2017) is its

ability to model the mean directly, making it possible to compare the CMP-ARMA model with the

Poisson and Negative Binomial GARMA models.

As in the CMP regression model (Huang, 2017), the conditional mean µt is related to the linear

predictor ηt by a twice-di�erentiable one-to-one monotonic function g(·), called the link function.

However, unlike the CMP regression model, the linear predictor of the proposed model has an

additional component, allowing for autoregressive and moving average terms to be included as

ηt = g(µt) = α+ x>t β +

p∑
j=1

φj [g(yt−j)− x>t−jβ] +

q∑
j=1

θjrt−j , (2.4)

where β = (β1, . . . , βr)
> is the r-dimensional unknown parameter vector, xt = (x1, . . . , xr)

> is

the r-dimensional explanatory variables vector, φ = (φ1, . . . , φp)
> and θ = (θ1, . . . , θq)

> are the

autoregressive and moving average coe�cients, respectively, rt is a random error, and α is an

intercept. In this article, we consider the errors measured on the predictor scale rt = g(yt)− g(µt)

as in Bayer et al. (2017), although other the moving average error terms can be used Benjamin et al.

(2003); Rocha and Cribari-Neto (2009).

The proposed CMP-ARMA(p, q) model is de�ned by (2.2) and (2.4). Due to the restriction µt ≥
0, we choose the logarithm as link function because it provides non-negative values for µt = g−1(ηt)

regardless the values assigned to ηt. To allow the use of the logarithm link function with modeling

count series containing observations equal to zero, we replace yt−j in (2.4) for y∗t−j = max(yt−j , c),
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with threshold c such that 0 < c < 1. This procedure allows replacing yt−j = 0 by an arbitrary

small value c. Note that the dynamic part of (2.4) is the same as in Benjamin et al. (2003).

The CMP-ARMAmodel contains the GARMAmodels with the Poisson, Geometric, and Bernoulli

distributions as special cases (see Appendix A for details).

2.4 Parameter estimation

Let y1, . . . , yt, t = 1, . . . , n, be a sample from a CMP-ARMA(p, q) model. Let γ = (α,β>,φ>,θ>, ν)>

be the regression parameter vector. Based, conditionally, on the m �rst observations, where m =

max(p, q), the conditional log-likelihood function is given by

`(γ) =

n∑
t=m+1

logPr(yt|Ft−1, µt, νt) =

n∑
t=m

`t(µt, ν), (2.5)

where

`t(µt, ν) = yt log(λ(µt, ν))− ν log(yt!)− logZ(λ(µt, ν), ν).

2.4.1 Conditional Score Vector

The conditional score vector U(γ) = (Uα(γ),Uβ(γ)>,Uφ(γ)>, Uθ(γ)>, Uν(γ))> is obtained by

taking the �rst derivative of the conditional log-likelihood function with respect to each element of

γ and is expressed in matrix form as

Uα(γ) = δ>TV (y − µ),

Uβ(γ) = M>TV (y − µ),

Uφ(γ) = P>TV (y − µ), (2.6)

Uθ(γ) = Q>TV (y − µ),

Uν(γ) =

n∑
t=m+1

Eµt,ν [log(yt!)(µt − yt)]
(yt − µt)
V (µt, ν)

− [log(yt!)− Eµ,ν log(yt!)] ,

where y = (ym+1, . . . , yn)>, µ = (µm+1, . . . , µn)>, T = diag {1/g′(µm+1), . . . , 1/g′(µn)}, δ =(
∂ηm+1

∂α , . . . , ∂ηn∂α

)>
, V = diag {1/V (µm+1, ν), . . . , 1/V (µn, ν)}, M is an (n−m)× r matrix whose

(i, j)th element is given by
∂ηi
∂βj

, P is an (n−m)×p matrix whose (i, j)-th element is equal to
∂ηi
∂φj

,

Q is an (n−m)×q matrix where the (i, j)-th element is
∂ηi
∂θj

, and V (µt, ν) =
∞∑
y=0

(y − µt)2λ(µt, ν)y

(y!)νZ(λ(µt, ν), ν)
.

To compute the derivative of ηt with respect to the unknown parameters, the error in (2.4) is de�ned

by rt = g(yt)− g(µt), then
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∂ηt
∂α

= 1 +

q∑
j=1

θj
∂rt−j
∂α

= 1−
q∑
j=1

θj
∂ηt−j
∂α

,

∂ηt
∂βi

= xti −
p∑
j=1

φjx(t−j)i −
q∑
j=1

θj
∂ηt−j
∂βi

,

∂ηt
∂φi

= g(yt−i)− x>t−iβ −
q∑
j=1

θj
∂ηt−j
∂φi

,

∂ηt
∂θi

= (g(yt−i)− ηt−i)−
q∑
j=1

θj
∂ηt−j
∂θi

,

(see Appendix B for details).

Notice that recursions are required only when the model includes moving average components. In

this case, it is necessary to choose initial values for ηt and its derivatives. Here, we assume ηt = g(yt),

and the initial values for the derivatives equal zero, both for t = 1, 2, . . . ,m. See Benjamin et al.

(1998) for details.

The solution of the estimation equation U(γ) = 0, where 0 is the null vector in Rr+p+q+2,

provides the CMLE of γ, denoted by γ̂. This system does not have an analytical solution, being

necessary the use of iterative numerical methods to obtain an approximate solution. Here, we

use the nlminb optimization function available in R (R Core Team, 2019), which is a reverse-

communication trust-region quasi-Newton method from the Port library (Gay, 1990).

2.4.2 Conditional Information Matrix

In this section, we derive the conditional Fisher information matrix, obtained by taking par-

tial derivatives of second order of the conditional log-likelihood function given in (2.5). Let W =

diag{w1, . . . , wn}, where

wt = − [Eµt,ν (log(yt!)(yt − µt))]2

V (µt, ν)
+ V arµt,ν(log(yt)).

The conditional Fisher information matrix is given by

K(γ) =


δ>V T 2δ δ>V T 2M δ>V T 2P δ>V T 2Q 0

(δ>V T 2M)> M>V T 2M M>V T 2P M>V T 2Q 0

(δ>V T 2P )> (M>V T 2P )> P>V T 2P P>V T 2Q 0

(δ>V T 2Q)> (M>V T 2Q)> (P>V T 2Q)> Q>V T 2Q 0

0 0 0 0 tr(W )


(see Appendix C for details).

Under regularity conditions, the maximum likelihood estimators are consistent and asymptot-

ically normally distributed (Andersen, 1970). Thus, when the sample size is su�ciently large, the

CMLE γ̂ of the parameter vector γ has an approximately normal distribution with mean γ and
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variance-covariance matrix K−1, that is,
α̂

β̂

φ̂

θ̂

ν̂

 ∼ Nr+p+q+2




α

β

φ

θ

ν

 ,K−1

 , (2.7)

where Nr+p+q+2 denotes the (r + p+ q + 2)-dimensional normal distribution and α̂, β̂, φ̂, θ̂, and ν̂

the CMLE of α,β,φ,θ, and ν, respectively.

2.4.3 Con�dence Intervals and Hypothesis Testing

Let γi be the i-th element of the parameter vector γ and kii the i-th diagonal element of

(K(γ))−1. From (2.7), the asymptotic distribution is

γ̂i − γi√
kii
∼ N(0, 1).

Therefore, an 100(1−α)% asymptotic con�dence interval for each parameter γi, i = 1, . . . , (r+ p+

q + 2), is given by [
γ̂i − z1−α/2

√
kii; γ̂i + z1−α/2

√
kii
]
,

where Φ(z1−α/2) = 1 − α/2, with Φ(·) being the cumulative density function of the standardized

normal distribution N(0, 1).

Consider the following null hypothesisH0 : γi = γ0
i , where γ

0
i is a speci�ed value for the unknown

parameter γi, vs. the alternative hypothesis H1 : γi 6= γ0
i . A convenient statistic to test individual

parameters is the so-called z statistic (Pawitan, 2001) given by

Z =
γ̂i − γi√
kii

. (2.8)

This statistic is based on the signed square root of Wald's statistic. Under H0 and large sample

sizes, the limiting null distribution of z is standard normal.

It is also possible to perform general hypothesis testing inference using the log-partial likelihood

ratio, Wald, and score statistics. Under H0, all of these test statistics converge to a χ2 distribution.

See Kedem and Fokianos (2005) for further details.

The z statistic in (2.8) can be used to test equidispersion in the data. We considered the following

hypotheses

H0 : ν = 1 vs H1 : ν 6= 1.

Here, the null hypothesis is that the data present equidispersion and the alternative hypothesis is

that the data are over/underdispersed. The non-rejection of the null hypothesis indicates that the

use of the Poisson model is appropriate.
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2.5 Model diagnosis and forecasting

In this section, we present some model selection criteria as well as some procedures to test the

adequacy and goodness-of-�t of the proposed model. We also provide a method for out-of-sample

forecasting.

2.5.1 Deviance

One way to measure goodness-of-�t is by means of scaled deviance, which is de�ned as twice

the di�erence between the conditional log-likelihood function of the saturated (where each µt is

estimated directly from yt) and �tted models, that is

D = 2(˜̀− ̂̀) = 2

(
n∑

t=m+1

`t(yt, ν̂)−
n∑

t=m+1

`t(µ̂t, ν̂)

)
.

When the �tted model is correct, the test statistic D is approximately χ2 distributed with n− (r+

p+ q +m+ 2) degrees of freedom (Benjamin et al., 2003; Fokianos and Kedem, 2004).

2.5.2 Model Selection Criteria

For comparison and selection among several competing models, we can use model selection

criteria available in the literature. The basic idea is to select a parsimonious model, in other words,

a model that is well-�tted and has a small/su�cient number of parameters. Two widely used

model selection criteria are the Akaike information criterion (AIC) (Akaike, 1974) and the Bayesian

information criterion (BIC) (Schwarz et al., 1978), given, respectively, by

AIC = −2̂̀+ 2(p+ q + r + 2),

BIC = −2̂̀+ log(n)(p+ q + r + 2).

Among the considered models, the one with smaller value of AIC and/or BIC is selected.

2.5.3 Residual Analysis

Residual analysis is important to check if all model assumptions are valid (Kedem and Fokianos,

2005), and also used to identify poorly �tted observations, that is, observations not well explained

by the model (Feng et al., 2017). For the proposed CMP-ARMA model, we consider the quantile

residual (Dunn and Smyth, 1996) as Pearson and deviance residuals are non-normally distributed

in count data (Benjamin et al., 2003). Let at = F (yt − 1 | Ft−1) and bt = F (yt | Ft−1), where F is

the �tted conditional cumulative distribution function. For the discrete distribution function, the

randomized quantile residual for yt is de�ned by

r
(q)
t = Φ−1(ut),

where Φ−1 is the quantile function of the standard normal distribution, and ui is a random variable

that is uniformly distributed on (at, bt]. If the model �tted to the data is correctly speci�ed, these

residuals should be independent and normally distributed, with zero mean and unit variance.
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2.5.4 Probability Integral Transform Histograms

Another diagnostic tool for model assessment is the probability integral transform (PIT), which

follows a uniform distribution if the �tted model is correctly speci�ed (Jung and Tremayne, 2011;

Jung et al., 2016). Although the PIT applies to continuous distributions, Czado et al. (2009) pro-

posed a non-randomized yet uniform version of the PIT as an alternative to time series models for

count data. The conditional cumulative distribution function of observed counts yt is

F (t)(u | Ft−1) =


0, u ≤ F (yt − 1 | Ft−1),

u− F (yt − 1 | Ft−1)

F (yt | Ft−1)− F (yt − 1 | Ft−1)
, F (yt − 1 | Ft−1) ≤ u ≤ F (yt | Ft−1),

1, u ≥ F (yt | Ft−1),

where F (yt | Ft−1) =
yt∑
y=0

P (y | Ft−1, µ̂t, ν̂) with P (y | Ft−1, µ, ν) de�ned in (2.2).

The assessment of the �tted model can be carried out by comparing the mean PIT, de�ned as

F (u) = (n−m)−1
n∑

t=m+1

F (t)(u | Ft−1), 0 ≤ u ≤ 1,

with the cumulative distribution function of a standard uniform random variable.

To perform this comparison, Czado et al. (2009) proposed plotting a non-randomized PIT his-

togram with J equally spaced bins, where the height fj for bin j = 1, . . . , J is computed by

fj = F

(
j

J

)
− F

(
j − 1

J

)
.

Czado et al. (2009) suggest J = 10 or J = 20 as good choices for the number of bins in the PIT

histogram.

2.5.5 Forecasting

Consider the problem of forecasting a value for the observed response h steps ahead, h ∈ N,
denoted by ŷn+h = ŷn(h). Forecasts of future observations for the CMP-ARMA model can be

obtained by applying the CMLE in (2.4),

ŷn(h) = exp

α̂+ x>n+hβ̂ +

p∑
j=1

φ̂j [g(yn+h−j)− x>n+h−iβ̂] +

q∑
j=1

θ̂j r̂n+h−j

 ,

where

[g(yt)] =

{
g(µ̂t), t > n,

g(yt), t ≤ n.

It is also possible to generate prediction intervals for the forecasts using quantiles.
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2.6 Monte Carlo simulation study

In this section, we present a Monte Carlo simulation study to evaluate the asymptotic properties

of the CMLE for the CMP-ARMA model and investigate the stationarity conditions.

2.6.1 Asymptotic Properties

We consider samples from a CMP-ARMA(1, 1) model and three di�erent values for the disper-

sion parameter: ν ∈ {0.5, 1.0, 2.0}. Thus, we have overdispersion, equidispersion, and underdisper-

sion, respectively. The CMP-ARMA(1,1) model with systematic component is given by

log(µt) = α+ β1xt + φ1[log(yt−1)− β1xt−1] + θ1rt−1, t = 2, . . . , n,

where xt = sin(2πt/12), α = 1.5, β1 = 0.5, φ = 0.5 and θ = 0.3. All routines were implemented

in the R statistical computing environment (R Core Team, 2019) and are available on request. All

results are based on 5, 000 replications of each combination for the sample sizes n = 50, 100, 200, 400.

We evaluate mean, percentage relative bias (RB %), de�ned as {E(θ̂) − θ}/θ, and mean squared

error (MSE).

Table 2.1 shows that the overall performance of the CMLE improves as the sample size increases.

We observe that the estimator of β1 is nearly unbiased for small sample sizes, for example n = 50. We

also note that the MSE decreases as the sample size increases, indicating consistency of the CMLE.

Moreover, the moving average parameter θ is overestimated while the autoregressive parameter φ

is underestimated in all scenarios.

2.6.2 Stationarity Conditions

Benjamin et al. (2003) derived stationarity conditions with marginal mean and variance of the

dependent variable Yt in the GARMA model with identity link function for some exponential family

distributions. As for the GARMA model, the stationarity for the CMP-ARMA model requires the

invertibility of the polynomial Φ(B) = 1 − φ1B − · · · , φpBp, where B is a backshift operator

(Bdyt = yt−d). When the link function is di�erent from identity, the parameter restrictions to

ensure stationarity appear to be analytical intractable.

To investigate the region of the parameter space for which a CMP-ARMA process is stationary,

we carried out a Monte Carlo simulation study similar to that presented in Benjamin et al. (2003).

We simulated 1, 000 realizations of length 200 of a CMP-ARMA(1, 1) model with logarithmic link

function, threshold c = 0.1, and intercept α = ln(2) in combination with the following parameter

values φ, θ ∈ {−0.4, 0, 0.4, 0.8} and ν ∈ {0.5, 1.0, 2.0}. As in Benjamin et al. (2003), we compared

the empirical distributions at times 150, 175, and 200 using a chi-square goodness-of-�t test to check

for non-stationarity in each parameter combination. We found no evidence of non-stationarity for

any of the parameter combinations considered.

2.7 Empirical Applications

In this section, we present and discuss two empirical applications to show the applicability of the

proposed model. We also compare the CMP-ARMA (proposed) model with the Poisson and Negative
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Table 2.1: Monte Carlo simulation results for CMLE on CMP-ARMA(1, 1) model.

Scenario 1 - overdispersion

α β1 φ1 θ1 ν
Parameters 1.5 0.5 0.5 0.3 0.5

Mean 1.6873 0.5052 0.4350 0.3189 0.5757
n = 50 RB(%) 12.4923 1.0419 −12.9926 6.3083 15.1501

MSE 0.3605 0.0129 0.0404 0.0489 0.0463

Mean 1.5997 0.5012 0.4655 0.3099 0.5350
n = 100 RB(%) 6.6471 0.2445 −6.8854 3.3208 7.0074

MSE 0.1457 0.0062 0.0162 0.0190 0.0156

Mean 1.5518 0.5003 0.4822 0.3056 0.5169
n = 200 RB(%) 3.4570 0.0491 −3.5533 1.8748 3.3947

MSE 0.0634 0.0031 0.0070 0.0084 0.0062

Mean 1.5269 0.5003 0.4908 0.3025 0.5082
n = 400 RB(%) 1.7935 0.0491 −1.8387 0.8569 1.6499

MSE 0.0313 0.0015 0.0034 0.0039 0.0028

Scenario 2 - equidispersion

α β1 φ1 θ1 ν
Parameters 1.5 0.5 0.5 0.3 1.0

Mean 1.6937 0.5040 0.4336 0.3208 1.1494
n = 50 RB(%) 12.9184 0.8036 −13.2679 6.9661 14.9459

MSE 0.3720 0.0090 0.0416 0.0507 0.0918

Mean 1.6029 0.5009 0.4648 0.3111 1.0689
n = 100 RB(%) 6.8606 0.1979 −7.0274 3.6943 6.8913

MSE 0.1535 0.0043 0.0170 0.0200 0.0314

Mean 1.5520 0.5009 0.4823 0.3059 1.0326
n = 200 RB(%) 3.4692 0.1979 −3.5334 1.9905 3.2641

MSE 0.0664 0.0021 0.0073 0.0089 0.0125

Mean 1.5266 0.5007 0.4909 0.3031 1.0157
n = 400 RB(%) 1.7762 0.1584 −1.8077 1.0493 1.5766

MSE 0.0331 0.0011 0.0036 0.0041 0.0058

Scenario 3 - underdispersion

α β1 φ1 θ1 ν
Parameters 1.5 0.5 0.5 0.3 2.0

Mean 1.7001 0.5021 0.4324 0.3214 2.2982
n = 50 RB(%) 13.3400 0.4378 −13.5150 7.1332 14.9109

MSE 0.3845 0.0049 0.0428 0.0536 0.3661

Mean 1.6079 0.5006 0.4636 0.3119 2.1367
n = 100 RB(%) 7.1985 0.1298 −7.2750 3.9884 6.8370

MSE 0.1617 0.0021 0.0179 0.0209 0.1232

Mean 1.5560 0.5003 0.4811 0.3070 2.0658
n = 200 RB(%) 3.7369 0.0556 −3.7651 2.3506 3.2930

MSE 0.0698 0.0010 0.0077 0.0093 0.0500

Mean 1.5282 0.5001 0.4905 0.3034 2.0309
n = 400 RB(%) 1.8850 0.0398 −1.8974 1.1381 1.5470

MSE 0.0350 0.0005 0.0038 0.0044 0.0226



2.7 EMPIRICAL APPLICATIONS 17

Binomial GARMA models, considering the parametrization of the Negative Binomial distribution

used in Evans (1953). Using this parametrization, the conditional mean and the conditional variance

of Yt given Ft−1 are E(Yt | Ft−1) = µt and V ar(Yt | Ft−1) = (σ + 1)µt, respectively, σ being the

dispersion parameter. It is noteworthy that for a Poisson distribution we have E(Yt | Ft−1) =

V ar(Yt | Ft−1) = µt. The Poisson and Negative Binomial GARMA models were �tted using the

garmaFit function from gamlss.util (Stasinopoulos and Rigby, 2016) library in the R software.

2.7.1 Overdispersion Data: Weekly Number of Hospitalizations

According to the United Nations Population Division (UN, 2015), the number of people with

age over 60 is expected to grow 56% worldwide between 2015 and 2030. In São Paulo, the largest

city in Brazil, with 11 million inhabitants in 2010 (IBGE, 2011), 11% of its inhabitants belong to

this age range. The number of admissions for respiratory problems is supposed to increase overtime

for elderly people (Alencar, 2018). Given its relevance, understanding and modeling the behavior

of the number of hospitalizations due to respiratory diseases is necessary, as well as evaluating the

out-of-sample forecasts. This helps the State to take preventive actions regarding public health, for

example, to plan the vaccination calendar.

The data consist of the weekly number of hospitalizations due to respiratory diseases for people

aged over 60 years in the city of São Paulo-Brazil from January 2010 to December 2014, yielding

a sample size of n = 260. The �rst 250 observations were used to model the time series, and the

remaining 10 observations were used to evaluate the out-of-sample forecasts. These data were ob-

tained from the Hospitalization Information System of the Ministry of Health (available at Datasus

website http://datasus.saude.gov.br/).

The empirical mean and variance of the data are 264.61 and 1201.60, respectively, indicating

that the data are overdispersed. The original series and its seasonal component are plotted in

Figures 2.2(a) and 2.2(b), respectively. The data present seasonal behavior since the mean number

of hospitalizations increases in the winter (June to September) and decreases during the summer.

We modeled the seasonal e�ect through sine and cosine functions with annual cycle. However, the

estimated coe�cient of the sine function was close to zero so that we considered only the cosine

function as covariate in the model: xt = cos(2πt/52)), t = 1, . . . , n. In addition, we chose the

logarithm as link function. First, we �tted the CMP-GLM model to the data, but their residual

autocorrelation (ACF) and partial autocorrelation function (PACF), as shown in Figures 2.3(a)

and 2.3(b), respectively, indicate a second-order autoregressive autocorrelation structure. Hence,

we �tted the proposed model to the data.

We considered di�erent orders (p, q) to �t the proposed model, and we selected the CMP-

ARMA(2, 0) model as it presented the lowest AIC and/or BIC. The chosen model corroborates

with the structure indicated by the residuals of the GLM model. Table 2.2 shows the parameter

estimates and corresponding standard errors (SE), z statistics, p-values and information criteria. For

comparison purposes, Table 2.2 also shows the �tted Poisson and Negative Binomial GARMA(2, 0)

models, which were the best Poisson and Negative Binomial GARMA models for this data set, that

is, the models with the lowest AIC and/or BIC. Note that the CMP-ARMA and Negative Binomial

GARMA models present similar parameter estimates and information criteria. It is noteworthy

that these results are expected since the estimated dispersion parameters indicate that the data are

overdispersed (ν = 0.4035 and σ = 1.471). We test H0 : ν = 1 vs. H1 : ν 6= 1 and rejected the null
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Figure 2.2: (a) Observed number of hospitalizations and (b) seasonal component present in the data.
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Figure 2.3: (a) ACF and (b) PACF of randomized quantile residuals for the CMP-GLM model.

hypothesis with p-value < 0.0001. We note that the AIC and BIC values of the Poisson GARMA

model are higher than those of the other two models.

Diagnostic plots for the CMP-ARMA model are presented in Figure 2.4. Figures 2.4(a) and

2.4(b) display the ACF and PACF of randomized quantile residuals, respectively. These plots along

with the Box-Ljung statistic (Ljung and Box, 1978) (using 15 lags) indicate that the residuals

are not autocorrelated (p-value = 0.935). The sequence of residuals in Figure 2.4(c) seems to be

oscillating around zero with constant variance. Figure 2.4(d) presents the empirical and normal

quantiles. The analysis of these two plots indicates that the residuals are approximately normally

distributed. Figure 2.4(e) shows the non-randomized PIT histogram of the �tted model with J = 10.

The uniformity of the PIT (Figure 2.4(e)) suggests that the CMP-ARMA(2, 0) is a suitable model to

the data, and Figure 2.6(a) shows that the model provides a good �t. Diagnostic plots for the �tted

Negative Binomial GARMA(2, 0) model exhibit similar results and are omitted for brevity. Figure

2.5 presents diagnostic plots for the Poisson GARMA model. Although the ACF (Figure 2.5(a))

and PACF (Figure 2.5(b)) of randomized quantile residuals indicate that residual autocorrelations

are not signi�cant, the sequence of residuals (Figure 2.5(c)) and normal probability (Figure 2.5(d))
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Table 2.2: Fitted CMP-ARMA(2, 0), Negative Binomial GARMA(2, 0), and Poisson GARMA(2, 0) models
for weekly number of hospitalizations data.

Model CMLE SE p-value AIC BIC

CMP-ARMA α̂ = 2.6812 0.3760 < 0.0001 2324.07 2341.68

β̂1 = −0.1022 0.0180 < 0.0001

φ̂1 = 0.3504 0.0631 < 0.0001

φ̂2 = 0.1693 0.0629 0.0071
ν̂ = 0.3986 0.0327 < 0.0001

Negative Binomial GARMA β̂0 = 5.5818 0.0130 < 0.0001 2323.84 2341.45

β̂1 = −0.1032 0.0180 < 0.0001

φ̂1 = 0.3516 0.0633 < 0.0001

φ̂2 = 0.1707 0.0629 0.0067
α̂ = 1.5049 0.2249 < 0.0001

Poisson GARMA β̂0 = 5.5819 0.0082 < 0.0001 2467.83 2481.91

β̂1 = −0.1022 0.0113 < 0.0001

φ̂1 = 0.3504 0.0398 < 0.0001

φ̂2 = 0.1693 0.0397 < 0.0001

plots indicate that the residuals are non-normally distributed. Furthermore, the PIT histogram

(Figure 2.5(e)) and the normal probability plots suggest that the Poisson GARMA model is unable

to capture overdispersion in the data.

Finally, the out-of-sample forecasts using the �tted CMP-ARMA model are presented in Figure

2.6(b) along with the observed values for comparison reason. The mean absolute percentage error

between the observed data (yn+h) and out-of-sample forecasts (ŷn+h), for h = 1, . . . , 10, is 5.08%.

2.7.2 Underdispersed Data: Pedestrian Counts

We analyzed the second data set to illustrate the �exibility of the proposed model for under-

dispersed data. The data set consists of 505 counts of the number of pedestrians traversing a city

block observed at 5-second intervals. These data were originally presented by Fürth (1918) and later

analyzed by, among others, Jung and Tremayne (2006) and MacDonald and Bhamani (2018). The

sample mean and variance are 1.592 and 1.508, respectively, indicating underdispersion in the data.

Jung and Tremayne (2006) analyzed the present data by �tting some �rst and second order integer-

valued autoregressive (INAR) and integer-valued moving average (INMA) models. However, they

concluded that none of these models �t the data satisfactorily. Recently, MacDonald and Bhamani

(2018) modeled these data using a class of stationary hidden Markov models with CMP distributions

as state-dependent distributions.

Figure 2.7 presents the count time series. Initially, we �tted the CMP-GLMmodel with logarithm

link function to the data. The ACF and PACF of randomized quantile residuals are displayed in

Figures 2.8(a) and 2.8(b), respectively, exhibiting a signi�cant serial dependence structure. Thus,

CMP-ARMA, Poisson GARMA, and Negative Binomial GARMA models were �tted to the data.

Based on the information criteria, the CMP-ARMA(1, 1), Negative Binomial GARMA(1, 1), and

the Poisson GARMA(1, 1) models were selected.
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Figure 2.4: Diagnostic plots for the �tted CMP-ARMA model; weekly number of hospitalizations data.

Table 2.3 presents the parameter estimates and corresponding SE, p-values, and information

criteria for the three models. Note that the estimated dispersion parameter for the CMP-ARMA

model is ν̂ = 2.4428, indicating existence of underdispersion in the data and inappropriateness of

the GARMA models with Poisson and Negative Binomial conditional distributions. Note that the

test H0 : ν = 1 vs. H1 : ν 6= 1 rejected the null hypothesis (p-value < 0.0001). Also, the AIC

and BIC values favor the CMP-ARMA model as they are smaller than those of the Poisson and
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(c) Quantile residuals
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Figure 2.5: Diagnostic plots for the �tted Poisson-GARMA model; weekly number of hospitalizations data.

Negative Binomial GARMA models.

Figure 2.9 shows diagnostic plots for the CMP-ARMA model. The ACF and PACF of ran-

domized quantile residuals shown in Figures 2.9(a) and 2.9(b), respectively, along with Box-Ljung

statistic based on 15 lags, con�rm the assumption that there is no signi�cant residual autocorrelation
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Figure 2.6: (a) Fitted values and (b) forecasts; weekly number of hospitalizations data.
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Figure 2.7: Number of pedestrians on a city block observed every 5 seconds

(p-value = 0.146). Figures 2.9(c) and 2.9(d) show the residual and normal probability plots, respec-

tively. Both plots indicate that the residuals are normally distributed. Figure 2.9(e) displays the PIT

histogram, indicating that the �tted CMP-ARMA(1, 1) model is correctly speci�ed. Figures 2.10

and 2.11 present diagnostic plots for the Poisson and Negative GARMA models, respectively. The

ACF and PACF of randomized quantile residuals (Figures 2.10(a), 2.10(b), 2.11(a), and 2.11(b))

indicate that residual autocorrelations are not signi�cant, and Figures 2.10(c) and 2.11(c) show

that the residuals are randomly distributed around zero for the two models. However, the normal

probability and PIT histogram plots (Figures 2.10(d), 2.10(e), 2.11(d), and 2.11(e)) suggest that

the models are not appropriate for these data. All plots indicate overdispersion of the Poisson and

Negative Binomial GARMA models. Finally, Figure 2.12 shows the observed and �tted values for

the CMP-ARMA(1, 1) model. The proposed model provides superior �t to the data.
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Figure 2.8: (a) ACF and (b) PACF of randomized quantile residuals for the CMP-GLM model.

Table 2.3: Fitted CMP-ARMA(1, 1), Negative Binomial GARMA(1, 1), and Poisson GARMA(1, 1) models
for pedestrians counts data.

Model CMLE SE p-value AIC BIC

CMP-ARMA α̂ = 0.3217 0.0457 < 0.0001 1246.89 1263.79

φ̂1 = 0.4511 0.0537 < 0.0001

θ̂1 = 0.2585 0.0456 < 0.0001
ν̂ = 2.4428 0.1822 < 0.0001

Negative Binomial GARMA β̂0 = 0.5920 0.0865 < 0.0001 1338.77 1355.67

φ̂1 = 0.4233 0.0704 < 0.0001

θ̂1 = 0.2671 0.0644 < 0.0001
σ̂ = 0.0010 0.1279 0.9937

Poisson GARMA β̂0 = 0.5911 0.0794 < 0.0001 1336.86 1349.54

φ̂1 = 0.4257 0.0700 < 0.0001

θ̂2 = 0.2662 0.0649 < 0.0001

2.8 Conclusions

The CMP is a �exible distribution that accounts for overdispersion (or underdispersion) en-

countered in count data. By parametrizing the CMP distribution depending on its mean, Huang

(2017) proposed a simpler and easily interpretable CMP model, while retaining all the key features

of the CMP distributions that have made them increasingly attractive for the analysis of dispersed

count data.

In this article, we introduced the CMP-ARMA(p, q) dynamic regression model for time se-

ries, based on the GARMA model proposed by Benjamin et al. (2003), and we also derived its main

properties. The proposed model generalizes the regression model of Huang (2017) by allowing the in-

clusion of lagged terms to account for autocorrelation. The mean is modeled by a dynamic structure

containing autoregressive and moving average terms, time-varying regressors, and a link function.

This class of models has potential uses for modeling both underdispersed and overdispersed time
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Figure 2.9: Diagnostic plots for the �tted CMP-ARMA model; pedestrians counts data.

series count data.

The model parameters are estimated by the conditional maximum likelihood method. We derived

closed-form expressions for the conditional score vector and conditional Fisher information matrix.

We also discussed interval estimation, hypothesis testing inference, and model selection criteria. We

studied the asymptotic properties of the CMLE in �nite samples through a Monte Carlo experiment.

We considered the errors measured on the predictor scale rt = g(yt)−g(µt). The numerical evidence
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(c) Quantile residuals
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Figure 2.10: Diagnostic plots for the �tted Poisson GARMA model; pedestrians counts data.

showed that the CMLE are unbiased and consistent. As in Albarracin et al. (2019), the GARMA

model presented an overestimated moving average parameter θ while the autoregressive parameter

φ was underestimated, indicating that there is multicollinearity between AR and MA terms. It is

thus recommended the inclusion of only AR or MA terms to �t the initial model.

Finally, we presented and investigated two empirical applications. In the �rst data set, with

overdispersion, the proposed model performed similarly to the Negative Binomial GARMA model
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Figure 2.11: Diagnostic plots for the �tted Negative Binomial GARMA model; pedestrians counts data.

and outperformed the Poisson GARMA model, while for the underdispersed data set (second ap-

plication) the CMP-ARMA model outperformed both the Poisson and Negative Binomial GARMA

models. Our results revealed the importance of the proposed model for count time series since it is

capable of modeling overdispersed, equidispersed, and underdispersed data.
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Figure 2.12: Fitted and observed values for the CMP-ARMA(1, 1) model.
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Appendix A - Special cases of the CMP-ARMA model

Some results discussed in the Appendices A, B, and C are derived from the results presented in

Huang (2017).

When ν = 1, by solving (2.3) we have λt = µt and Z(λ(µt, ν), ν) =
∑∞

s=0 λ(µt, 1)s/(s!) = e−λt =

e−µt . Thus, Pr(Yt = yt | Ft−1, µt, ν = 1) = e−µtµytt /yt! is the conditional probability of a Poisson

distribution with mean µt.

When ν = 0, solving (2.3) gives λt = 1/(1+µt) < 1 and Z(λ(µt, ν), ν) =
∑∞

s=0 λ
s
t = 1/(1−λt) =

(µt + 1)/µt. Thus, Pr(Yt = yt | Ft−1, µt, ν = 0) = µt/(µt + 1)yt+1 is the conditional probability of

a Geometric distribution with success probability pt = 1/(µt + 1).

When ν → ∞, Z(λ(µt, ν), ν) → 1 + λ(µt, ν) and the term (yt!)
ν in (2.2) tends to ∞ for

yt 6= 0, 1. By solving (2.3) we have λt = µt/1 − µt. Thus, Yt, given Ft−1, assumes only the values

yt = 0 or yt = 1 with probability 1/(1 + λt) = 1 − µt and λt/(1 + λt) = µt, respectively, and

the conditional probability function of Yt, given Ft−1, approaches to a Bernoulli distribution with

Pr(Yt = 1 | Ft−1, µt, ν →∞) = λt/(1 + λt) = µt.
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Appendix B - Conditional score vector

We provide below details on the derivation of the following conditional score vector

U(γ) =
∂`(γ)

∂γ
=

n∑
t=m

∂`t(µt, ν)

∂γ

Part 1 - score function for µt

By di�erentiating the conditional log-likelihood function given in (2.5) with respect to the i-th

element of the parameter vector γ, γi 6= ν, for i = 1, . . . , (r + p+ q + 1), we obtain

Uγi(γ) =
∂`(γ)

∂γi
=

n∑
t=1

∂`t(µt, ν)

∂µt

dµt
dηt

∂ηt
∂γi

.

Note that ηt = g(µt), then dµt/dηt = 1/g′(µt). Next, we shall obtain the derivative of `t(µt, ν) with

respect to µt.

First, remember that Zt =
∑∞

s=0 λ
s
t/(s!)

ν , where λt = λ(µt, ν), then

∂Zt
∂λt

=
∞∑
yt=0

yt
λyt−1
t

(yt!)ν
=

1

λt

∞∑
yt=0

yt
λytt

(yt!)ν
=

1

λt
µtZt,

where µt is the mean of the distribution. Therefore, the derivative of the log-likelihood given in

(2.5) with respect to λt is given by

∂`t(µt, ν)

∂λt
=
yt
λt
− ∂Zt/∂λt

Zt
=
yt − µt
λt

.

Second, λt(µt, ν) is the solution for 0 =
∑∞

yt=0(yt − µt)λ
yt
t /(yt!)

ν . Di�erentiating both sides

implicitly with respect to µ, we have

0 = −

 ∞∑
yt=0

λytt
(yt!)ν

+

 ∞∑
yt=0

(yt − µt)yt
λyt−1

(yt!)ν

 ∂λt
∂µt

= −Zt +
1

λt

 ∞∑
yt=0

(yt − µt)yt
λytt

(yt!)ν

 ∂λt
∂µt

= −Zt +
1

λt

 ∞∑
yt=0

(yt − µt)2 λyt

(yt!)ν

 ∂λt
∂µt

.

The last equality is true because
∑∞

yt=0(yt−µt)λyt /(yt!)ν = 0 by the de�nition of µt as the mean

of the distribution. Therefore, we have ∂λt/∂µt = λt/V (µt, ν), where

V (µt, ν) =

∞∑
yt=0

(yt − µt)2λt(µt, ν)yt
(yt!)νZ(λt(µt, ν), ν)

is the variance of Yt.
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Finally, we write

∂`t(µt, ν)

∂µt
=
∂`t(µt, ν)

∂λ(µt, ν)

∂λ(µt, ν)

∂µt
=
yt − µt
λ(µ, ν)

λ(µ, ν)

V (µ, ν)
=

yt − µt
V (µt, ν)

. (2.9)

Therefore, it follows that

Uγi(γ) =
n∑
t=1

yt − µt
V (µt, ν)g′(µt)

∂ηt
∂γi

, for γi /∈ ν. (2.10)

De�ne the error in (2.4) by rt = g(yt)−g(µt). When computing the derivative of ηt with respect

to γi 6= ν, we obtain

∂ηt
∂α

=1 +

q∑
j=1

θj
∂rt−j
∂α

= 1−
q∑
j=1

θj
∂ηt−j
∂α

,

∂ηt
∂βi

=xti −
p∑
j=1

φjx(t−j)i −
q∑
j=1

θj
∂ηt−j
∂βi

,

∂ηt
∂φi

=g(yt−i)− x>t−iβ −
q∑
j=1

θj
∂ηt−j
∂φi

,

∂ηt
∂θi

=(g(yt−i)− ηt−i)−
q∑
j=1

θj
∂ηt−j
∂θi

.

Part 2 - score function for ν

Since λt(µt, ν) is the solution for 0 =
∑∞

yt=0(yt − µt)λ
y
t /(yt!)

ν , by di�erentiating both sides

implicitly with respect to ν we have

0 = −

 ∞∑
yt=0

(yt − µt)
log(yt!)λ

yt
t

(yt!)ν

+

 ∞∑
yt=0

(yt − µt)yt
λyt−1
t

(yt!)ν

 ∂λt
∂ν

= −

 ∞∑
yt=0

(yt − µt)
log(yt!)λ

yt
t

(yt!)ν

+
1

λt

 ∞∑
yt=0

(yt − µt)yt
λytt

(yt!)ν

 ∂λt
∂ν

= −

 ∞∑
yt=0

(yt − µt)
log(yt!)λ

yt
t

(yt!)νZt

+
1

λt

 ∞∑
yt=0

(yt − µt)2 λytt
(yt!)νZt

 ∂λt
∂ν

= −Eµt,ν [log(yt!)(yt − µt)] +
1

λt
[V (µt, ν)]

∂λt
∂ν

∂λt
∂ν

=
λtEµt,ν [log(yt!)(yt − µt)]

V (µt, ν)
.

Remember also that Zt =
∑∞

yt=0 λ
yt
t /(yt!)

ν , then

∂Zt
∂ν

=

∞∑
yt=0

[
yt
λyt−1
t

(yt!)ν
∂λt
∂ν
− λytt log(yt!)

(yt!)ν

]

=
Eµt,ν [log(yt!)(yt − µt)]

V (µt, ν)

∞∑
yt=0

yt
λytt

(yt!)ν
−
∞∑
yt=0

λytt log(yt!)

(yt!)ν
.
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Thus, the derivative of the log-likelihood given in (2.5) with respect to ν is given by

∂`t(µt, ν)

∂ν
= yt

∂λt/∂ν

λt
− log(yt)−

∂Zt/∂ν

Zt

= yt
Eµt,ν [log(yt!)(yt − µt)]

V (µt, ν)
− log(yt)−

[
µt
Eµt,ν [log(yt!)(yt − µt)]

V (µt, ν)

−Eµt,ν log(yt!)]

= Eµt,ν [log(yt!)(yt − µt)]
(yt − µt)
V (µt, ν)

− [log(yt!)− Eµt,ν log(yt!)] .

Therefore, we obtain

∂`t(µt, ν)

∂ν
=

n∑
t=1

A(µt, ν)
(yt − µt)
V (µt, ν)

− [log(yt!)−B(µt, ν)], (2.11)

where A(µt, ν) = Eµt,ν [log(yt!)(yt − µt)] and B(µt, ν) = Eµt,ν log(yt!).

From (2.10) and (2.11), we then obtain the matrix expression for the score vector given in (2.6).

Appendix C - Conditional information matrix

In this appendix we derive the conditional Fisher information matrix for γ. To make algebra

easier, we initially present some preliminary results.

Part 1 - derivative of V (µt, ν) with respect to µt

First, Zt =
∑∞

yt=0 λ
y
t /(yt!)

ν , then

∂Zt
∂µt

=
∞∑
yt=0

yt
λyt−1
t

(yt!)ν
∂λt
∂µt

=
1

V (µt, ν)

∞∑
yt=0

yt
λyt

(yt!)ν
=

µtZt
V (µt, ν)

.

Let V (µt, ν) =
∞∑
yt=0

(yt − µt)2λyt

(yt!)νZt
, then the derivative of V (µt, ν) with respect to µt is given by

∂V (µt, ν)

∂µt
=

∞∑
yt=0

[
−2µt(yt − µt)λytt (yt!)

νZt
(yt!)2νZ2

t

+
(yt − µt)2ytλ

yt−1
t (∂λt/∂µt)(yt!)

νZt
(yt!)2νZ2

t

−(yt − µt)2λytt (yt!)
ν(∂Zt/∂µt)

(yt!)2νZ2
t

]
=
∞∑
yt=0

[
−2µt(yt − µt)λytt

(yt!)νZt
+

(yt − µt)2ytλ
yt
t

V (µt, ν)(yt!)νZt
− (yt − µt)2µtλ

yt
t

V (µt, ν)(yt!)νZt

]

=
1

V (µt, ν)

∞∑
yt=0

[
(yt − µt)3λytt

(yt!)νZt

]
=
m3(µt, ν)

V (µt, ν)
,

where m3(µt, ν) is the third central moment.

Part 2 - derivative of B(µt, ν) with respect to µt

Second, let B(µt, ν) =
∞∑
yt=0

log(yt!)λ
yt
t

(yt!)νZt
. The derivative of B(µt, ν) with respect to µt is de�ned
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as

∂B(µt, ν)

∂µt
=

∞∑
yt=0

[
log(yt!)ytλ

yt−1
t (∂λt/∂µt)(yt!)

νZt
(yt!)2νZ2

t

− log(yt!)λ
yt
t (yt!)

ν(∂Zt/∂µt)

(yt!)2νZ2
t

]

=
∞∑
yt=0

[
log(yt!)ytλ

yt

V (µt, ν)(yt!)νZt
− µt log(yt!)λ

yt
t

V (µt, ν)(yt!)νZt

]

=
1

V (µt, ν)

∞∑
yt=0

log(yt!)(yt − µt)λytt
(yt!)νZt

=
A(µt, ν)

V (µt, ν)
.

Part 3 - derivative of A(µt, ν) with respect to µt

Third, let A(µt, ν) =
∞∑
yt=0

log(yt!)(yt − µt)λytt
(yt!)νZt

, then the derivative of A(µt, ν) with respect to µt

is

∂A(µt, ν)

∂µt
=
∞∑
yt=0

[
[log(yt!)λ

yt + log(yt!)(yt − µt)ytλyt−1
t (∂λt/∂µt)](yt!)

νZt
(yt!)2νZ2

t

−(yt!)
ν(∂Zt/∂µt) log(yt!)(yt − µt)λytt

(yt!)2νZ2
t

]
=
∞∑
yt=0

[
log(yt!)λ

yt
t

(yt!)νZt
+

log(yt!)(yt − µt)ytλytt
V (µt, ν)(yt!)νZt

− µt log(yt!)(yt − µt)λytt
V (µt, ν)(yt!)νZt

]

=
∞∑
yt=0

[
log(yt!)λ

yt
t

(yt!)νZt
+

log(yt!)(yt − µt)2λytt
V (µt, ν)(yt!)νZt

]

= Eµt,ν log(yt!) +
Eµt,ν [log(yt!)(yt − µt)2]

V (µt, ν)

= B(µt, ν) +
D(µt, ν)

V (µt, ν)
,

where D(µt, ν) = Eµt,ν [log(y!)(y − µ)2].

Part 4 - derivative of A(µt, ν)/V (µt, ν) with respect to µt

Finally, by deriving A(µt, ν)/V (µt, ν) with respect to µt, the quotient rule yields

∂

∂µt

[
A(µt, ν)

V (µt, ν)

]
=

[∂A(µt, ν)/∂µt)V (µt, ν]

V (µt, ν)2
− [∂V (µt, ν)/∂µt]A(µt, ν)

V (µt, ν)2

=
B(µt, ν)

V (µt, ν)
+
D(µt, ν)

V (µt, ν)2
− m3(µt, ν)

V (µt, ν)3
= F (µt, ν).

Part 5 - derivatives of Eµt,ν log (yt!) with respect to ν

Let Eµt,ν log(yt!) =
∞∑
yt=0

log(yt!)λ
yt

(yt!)νZt
, then the derivative of Eµt,ν log(yt!) with respect to ν is
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given by

∂Eµt,ν log(yt!)

∂ν
=
∞∑
yt=0

[
log(yt!)yλ

yt−1(∂λt/∂ν)(yt!)
νZt

(yt!)2νZ2
t

− log(yt!)λ
yt(yt!)

ν log(yt!)Zt
(yt!)2νZ2

t

− log(yt!)λ
yt
t (yt!)

ν(∂Zt/∂ν)

(yt!)2νZ2
t

]
=
∞∑
yt=0

[
log(yt!)ytλ

yt
t Eµt,ν [log(yt!)(yt − µt)]
V (µt, ν)(yt!)νZt

− log(yt!)
2λytt

(yt!)νZt

− log(yt!)λ
yt
t

(yt!)νZt

(
µt
Eµt,ν [log(yt!)(yt − µt)]

V (µt, ν)
− Eµt,ν log(yt!)

)]
=
Eµt,ν [log(yt!)(yt − µt)]

V (µt, ν)

∞∑
yt=0

(yt − µt) log(yt!)λ
yt
t

(yt!)νZt
−
∞∑
yt=0

log(yt!)
2λytt

(yt!)νZt

+ Eµt,ν log(yt!)

∞∑
yt=0

log(yt!)λ
yt
t

(yt!)νZt

=
Eµt,ν [log(yt!)(yt − µt)]2

V (µt, ν)
−
[
Eµt,ν log(yt!)

2 − (Eµt,ν log(yt!))
2
]

=
A(µt, ν)2

V (µt, ν)
− C(µt, ν),

where C(µt, ν) = Vµt,ν(log(yt)).

We shall now derive the conditional Fisher information matrix for the proposed. We have

K(γ) = E

[
− ∂2`(γ)

∂γ∂γ>

]
= E

[
−

n∑
t=m

∂2`t(µt, ν)

∂γ∂γ>

]
.

For γi 6= ν and γj 6= ν, for i, j ∈ {1, . . . , r + p+ q + 1}, we obtain

∂2`(γ)

∂γi∂γj
=

n∑
t=m+1

∂

∂γi

[
∂`t(µt, ν)

∂µt

dµt
dηt

∂ηt
∂γj

]

=

n∑
t=m+1

[
∂2`t(µt, ν)

∂µ2
t

dµt
dηt

∂ηt
∂γj

dµt
dηt

∂ηt
∂γi

+
∂`t(µt, ν)

∂µt

∂

∂γi

(
dµt
dηt

∂ηt
∂γj

)]

=

n∑
t=m+1

[
∂2`t(µt, ν)

∂µ2
t

dµt
dηt

∂ηt
∂γj

dµt
dηt

∂ηt
∂γi

+
∂`t(µt, ν)

∂µt

∂ηt
∂γj

d2µt
dη2

t

∂ηt
∂γi

+
∂`t(µt, ν)

∂µt

dµt
dηt

∂2ηt
∂γj∂γi

]
.

Let ∂`t(µt, ν)/∂µt|Ft−1 given by (2.9), so it follows that E
[
∂`t(µt,ν)
∂µt

∣∣∣Ft−1

]
= 0. Therefore,

E

[
∂2`(γ)

∂γi∂γj

∣∣∣∣Ft−1

]
=

n∑
t=1

E

[
∂2`t(µt, ν)

∂µ2
t

∣∣∣∣Ft−1

](
dµt
dηt

)2 ∂ηt
∂γi

∂ηt
∂γj

. (2.12)
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From (2.9) we also obtain

∂2`t(µt, ν)

∂µ2
t

=
∂

∂µ

[
yt − µt
V (µt, ν)

]
=
−V (µt, ν)− (yt − µt) [∂V (µt, ν)/∂µt]

V (µt, ν)2

=
−V (µt, ν)− (yt − µt) [m3(µt, ν)/V (µt, ν)]

V (µt, ν)2
.

Thus,

E

[
∂2`t(µt, ν)

∂µ2
t

∣∣∣∣Ft−1

]
=

−1

V (µt, ν)
. (2.13)

By replacing (2.13) in (2.12) it follows that

E

[
∂2`(γ)

∂γi∂γj

∣∣∣∣Ft−1

]
=

n∑
t=1

−1

V (µt, ν)g′(µt)2

∂ηt
∂γi

∂ηt
∂γj

. (2.14)

From (2.14) we obtain the information matrix using the derivatives of ηt with respect to the

parameters (γi 6= ν e γj 6= ν) previously presented in the subsection 2.4.1.

Now, derivatives with respect to ν, are easily obtained directly as follows

∂`(γ)

∂ν
=

n∑
t=1

A(µt, ν)
(yt − µt)
V (µt, ν)

− [log(yt!)−B(µt, ν)] ,

then,

∂2`(γ)

∂ν∂γj
=

n∑
t=1

[
∂[A(µt, ν)/V (µt, ν)]

∂γj
(yt − µt)−

A(µt, ν)

V (µt, ν)

∂µt
∂γj

+
∂B(µt, ν)

∂γj

]

=
n∑
t=1

[
∂[A(µt, ν)/V (µt, ν)]

∂γj
(yt − µt)−

A(µt, ν)

V (µt, ν)

∂µt
∂γj

+
∂B(µt, ν)

∂µt

∂µt
∂γj

]

=

n∑
t=1

[
∂[A(µt, ν)/V (µt, ν)]

∂γj
(yt − µt)−

A(µt, ν)

V (µt, ν)

∂µt
∂γj

+
A(µt, ν)

V (µt, ν)

∂µt
∂γj

]

=
n∑
t=1

[
∂[A(µt, ν)/V (µt, ν)]

∂µt

∂µt
∂γj

(yt − µt)
]

=
n∑
t=1

[
F (µt, ν)

∂µt
∂γj

(yt − µt)
]
.

Since E(Yt|Ft−1) = µt, we have

E

[
∂2`(µt, ν)

∂ν∂γi

∣∣∣∣Ft−1

]
= 0,

that is, ν is orthogonal to the other parameters. Finally, we obtain

∂`

∂ν
= Uν(γ) =

n∑
t=1

Eµt,ν [log(yt!)(µt − y)]
(yt − µt)
V (µt, ν)

− [log(yt!)− Eµt,ν log(yt!)] .

As we are interested in E

(
∂2`

∂ν2

∣∣∣∣Ft−1

)
, it follows that by deriving Uν(γ) and then applying the
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expectation, the �rst and second terms will be zero. Thus,

E

[
∂2`(γ)

∂ν2

∣∣∣∣Ft−1

]
=

n∑
t=1

∂Eµ,ν log(y!)

∂ν
=

n∑
t=1

[
A(µt, ν)2

V (µt, ν)
− C(µt, ν)

]
.

Obtaining the Fisher information matrix for γ is now an easy task.



Chapter 3

Conway-Maxwell-Poisson seasonal

autoregressive moving average model

This work proposes a new class of models, namely Conway-Maxwell-Poisson seasonal autore-

gressive moving average (CMP-SARMA), which extends the class of CMP autoregressive moving

average models by including seasonal components to the dynamic model structure. The proposed

class of models assumes a Conway-Maxwell-Poisson (CMP) conditional distribution for the variable

of interest, which allows us to model univariate time series of non-negative counts with overdisper-

sion, equidispersion, and underdispersion. As in the generalized autoregressive and moving average

model (GARMA), the response's conditional mean of the proposed model is modeled by a autore-

gressive moving average structure. We estimated the parameters by conditional maximum likelihood.

We also present closed-form expressions for the conditional score function and conditional Fisher

information matrix. In addition hypothesis testing, diagnostic analysis, and forecasting are proposed

and asymptotic results are discussed. A Monte Carlo simulation study is conduct to evaluate the

�nite sample properties of the estimators. Finally, we present an application of the new model to

real data and compare the results with others models in the literature.

Keywords: CMP-SARMA; Conway-Maxwell-Poisson distribution; Time series of counts; season-

ality

3.1 Introduction

The generalized autoregressive moving average (GARMA) model proposed by Benjamin et al.

(2003) has been considered in some time series applications/studies recently, see for exemple,

Talamantes et al. (2007), Dugas et al. (2013), Albarracin et al. (2018b), and Albarracin et al. (2018a).

The GARMAmodel extends the univariate Gaussian autoregressive moving average (ARMA) model

to a �exible observation driven model for non-Gaussian time series data. Similar to the general-

ized linear model (GLM) introduced by McCullagh and Nelder (1989), the conditional mean of the

response variable is modeled directly by a regression structure through a link function.

The model proposed by Benjamin et al. (2003) assumes that the conditional distribution of the

dependent variable belongs to the exponential family given the process history. In the same ap-

proach, Rocha and Cribari-Neto (2009) developed dynamic models in the beta distribution family

35
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(βARMA), Bayer et al. (2017) introduced a dynamic class of models taking values in the dou-

ble bounded interval following the Kumaraswamy distribution, and Maior and Cysneiros (2018)

proposed a dynamic class of models for random variables belonging to the class of symmetric dis-

tributions. Recently, Melo and Alencar (2020) developed a dynamic regression model based on the

Conway-Maxwell-Poisson (CMP) distribution for the analysis of time series of counts with equidis-

persion, underdispersion, and overdispersion. Although the mentioned models can be used in time

series with seasonality, using sine/cosine functions as covariates, such a strategy is not appropriate

when the seasonality is stochastic (Briët et al., 2013).

Modeling seasonal time series has been the focus of extensive research in the literature. In practi-

cal situations, the well-known seasonal autoregressive integrated moving average (SARIMA) model

(Box et al., 2015) has been frequently used for modeling univariate time series. However, many

real data often do not adhere to the assumption of normality required by this model (Tiku et al.,

2000). Some works have shown an increasing interest in non-Gaussian seasonal time series mod-

els, such as Monteiro et al. (2010), Briët et al. (2013), Bourguignon et al. (2016), and Bayer et al.

(2018). However, the study of seasonal time series of counts with equidispersion, underdispersion,

and overdispersion has received less attention in the literature. Thus, this article aims to give a

contribution towards this direction.

Based on the above discussion, we propose a class of Conway-Maxwell-Poisson seasonal au-

toregressive moving average (CMP-SARMA) models, which extends the Conway-Maxwell-Poisson

autoregressive moving average (CMP-ARMA) and is capable to model seasonal time series of count

data that exhibit overdispersion, equidispersion, and underdispersion. For this purpose, we adopted

the mean-parametrized CMP distribution proposed by Huang (2017) that allows the mean to be

modeled directly. The model parameters are estimated using the conditional maximum likelihood

estimation. In addition, some residual and diagnostic tools are proposed and discussed. Finally, a

Monte Carlo simulation study is carried to evaluate the estimators performance.

This article is organized as follows. Initially, we present the proposed model in Section 3.2. The

parameters of the model are estimated by the conditional maximum likelihood method in Section

3.3, where we also provide closed-form expressions for the conditional score vector and conditional

Fisher information matrix. The discussion in Section 3.3 also provides con�dence intervals and

hypothesis testing. Section 3.4 gives some diagnostic measures and forecasting. In Section 3.5, we

conduct a brief simulation study. Section 3.6 presents an empirical application to illustrate the

proposed model. Finally, Section 3.7 gives some conclusions.

3.2 The proposed model

Let Y = (Y1, . . . , Yn)> denote the n-dimensional vector of random variables and let Ft−1 =

{Yt−1, . . . , Y1} denote previous information set. In the CPM-SARMA model, the conditional distri-

bution of Yt, given Ft−1, is assumed to follow the CMP distribution with mean µt and dispersion

ν, that is, the conditional probability is given by (Huang, 2017):

Pr(Yt = yt | Ft−1, µt, ν) =
λ(µt, ν)yt

(yt!)νZ(λ(µt, ν), ν)
, yt = 0, 1, 2, . . . ,



3.3 THE PROPOSED MODEL 37

where λ(µt, ν) is a function of µt and ν, given by the solution to

0 =
∞∑
s=0

(s− µt)
λs

(s!)ν
,

Z(λ(µt, ν), ν) =
∑∞

s=0 λ(µt, ν)s/(s!)ν is a normalization function, and ν is the dispersion parameter

such that ν > 1 implies underdispersion and ν < 1 implies overdispersion relative to a Poisson

distribution with same mean. The conditional mean of Yt is given by E(Yt | Ft−1) = µt.

The proposed Conway-Maxwell-Poisson seasonal autoregressive moving average model, CMP-

SARMA(p, q)× (P,Q)S , can be written as

φ(B)Φ(BS)[g(yt)− x>t β] = θ(B)Θ(BS)rt, (3.1)

where β = (β0, β1, . . . , βr)
> is the (r + 1)-dimensional vector of unknown parameters, xt =

(1, x1,t, . . . , xp,t)
> is the (r+ 1)-dimensional vector containing the covariates at time t, rt = g(yt)−

g(µt) is the error term, g(·) is a link function, φ(B) is the non-seasonal autoregressive polyno-

mial, θ(B) is the non-seasonal moving average polynomial, Φ(BS) is the seasonal autoregressive

polynomial, and Θ(BS) is the seasonal moving average polynomial de�ned by the polynomials

φ(B) = 1− φ1B − φ2B
2 − · · · − φpBp,

θ(B) = 1− θ1B − θ2B
2 − · · · − θqBq,

Φ(BS) = 1− Φ1B
S − Φ2B

2S − · · · − ΦPB
SP ,

Θ(BS) = 1−Θ1B
S −Θ2B

2S − · · · −ΘQB
SQ,

where p, q, P , and Q are the orders of the respective polynomials, S is the seasonal period, and B

is a backshift operator, then we have Bdyt = yt−d.

We can rewrite Equation (3.1) as

ηt = g(µt) = x>t β +

p∑
i=1

φi[g(yt−i)− x>t−iβ] +
P∑
I=1

ΦI [g(yt−IS)− x>t−ISβ]

−
p∑
i=1

P∑
I=1

φiΦI [g(yt−(i+IS))− x>t−(i+IS)β]−
q∑
j=1

θjrt−j −
Q∑
J=1

ΘJrt−(JS)

+

q∑
j=1

Q∑
J=1

θjΘJrt−(j+JS), (3.2)

where ηt = g(µt) is the linear predictor. Similarly to the SARMA model, the transformed mean

g(µt) may depend on lagged observations (g(yt−i)) and errors rt−i, for lags i = 1, 2, . . .; and/or

seasonal lags i = 1S, 2S, . . .. Choosing an identity link function g(µt) = µt implies some restrictions

to ensure µt ≥ 0. Thus, to circumvent this problem, we chose the logarithmic link function, and to

avoid calculating the logarithm of observations equal to zero, we replace yt−j in Equation (3.1) for

y∗t−j = max(yt−j , c), thus replacing yt−j = 0 by an arbitrary small value c such that 0 < c < 1. The

structure of the model is the same as in Bayer et al. (2018)

The CMP-SARMA model extends the approach proposed by Melo and Alencar (2020) by in-

corporating a seasonal autoregressive moving average (SARMA) structure.
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3.3 Parameter estimation

The parameter estimation of the CMP-SARMA model can be obtained by maximum conditional

likelihood method based on the �rst m observations, where m = max(p+ PS, q +QS).

Let y1, . . . , yt, t = 1, . . . , n, be a time series with length n. To �t a CMP-SARMA(p, q)×(P,Q)S

model, let γ = (β>,φ>,θ>,Φ>,Θ>, ν)> be the regression parameter vector. The conditional log-

likelihood function is given by

`(γ) =
n∑

t=m+1

logPr(yt|Ft−1) =
n∑

t=m+1

`t(µt, ν), (3.3)

where

`t(µt, ν) = yt log(λ(µt, ν))− ν log(yt!)− logZ(λ(µt, ν), ν).

3.3.1 Conditional score vector

The conditional score vector is given by taking �rst derivatives of the conditional log-likelihood

function given in (3.3) with respect to each element of γ. In what follows, we have

Uγi(γ) =
∂`(γ)

∂γi
=

n∑
t=m+1

∂`t(µt, ν)

∂λ(µt, ν)

∂λ(µt, ν)

∂µt

dµt
dηt

∂ηt
∂γi

. (3.4)

Observe that

∂`t(µt, ν)

∂λ(µt, ν)
=

yt − µt
λ(µt, ν)

,
∂λ(µt, ν)

∂µt
=
λ(µt, ν)

V (µt, ν)
, and

dµt
dηt

=
1

g′(µt)
,

where V (µt, ν) =
∞∑
yt=0

(yt − µt)2λt(µt, ν)yt
(yt!)νZ(λt(µt, ν), ν)

is the variance of Yt. Substituting these results in (3.4),

we obtain

Uγi(γ) =

n∑
t=1

yt − µt
V (µt, ν)g′(µt)

∂ηt
∂γi

, for γi /∈ ν. (3.5)

We also have

∂ηt
∂φi

= [g(yt−i)− x>t−iβ]Φ(BS) +

q∑
j=1

θj
∂ηt−j
∂φi

+

Q∑
J=1

ΘJ
∂ηt−JS
∂φi

−
q∑
j=1

Q∑
J=1

θjΘJ

∂ηt−(j+JS)

∂φi
,

∂ηt
∂θj

= −rt−jΘ(BS) +

q∑
i=1

θi
∂ηt−i
∂θj

+

Q∑
J=1

ΘJ
∂ηt−JS
∂θj

−
q∑
i=1

Q∑
J=1

θiΘJ

∂ηt−(i+JS)

∂θj
,

∂ηt
∂ΦI

= [g(yt−IS)− x>t−ISβ]φ(B) +

q∑
j=1

θj
∂ηt−j
∂ΦI

+

Q∑
J=1

ΘJ
∂ηt−JS
∂ΦI

−
q∑
j=1

Q∑
J=1

θjΘJ

∂ηt−(j+JS)

∂ΦI
,
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∂ηt
∂ΘJ

= −rt−JSθ(B) +

q∑
j=1

θj
∂ηt−j
∂ΘJ

+

Q∑
I=1

ΘI
∂ηt−IS
∂ΘJ

−
q∑
j=1

Q∑
I=1

θjΘI

∂ηt−(j+IS)

∂ΘJ
,

∂ηt
∂βk

= xtk −
p∑
i=1

φix(t−i)k −
P∑
I=1

ΦIx(t−IS)k +

p∑
i=1

P∑
I=1

φiΦIx(t−(i+IS))k +

q∑
j=1

θj
∂ηt−j
∂βk

+

Q∑
J=1

ΘJ
∂ηt−JS
∂βk

−
q∑
j=1

Q∑
J=1

θjΘJ

∂ηt−(j+JS)

∂βk
.

Let y = (ym+1, . . . , yn)>, µ = (µm+1, . . . , µn)>, T = diag {1/g′(µm+1), . . . , 1/g′(µn)}, and
V = diag {1/V (µm+1, ν), . . . , 1/V (µn, ν)}. Also, let Z, A, A, M , and M be the matrices with

dimension (n−m)× (r+ 1), (n−m)× p, (n−m)×P , (n−m)× q, and (n−m)×Q, respectively,
for which the (i, j)-th elements are given by

Zi,j =
∂ηm+i

∂βj
, Ai,j =

∂ηm+i

∂φj
, Ai,j =

∂ηm+i

∂Φj
, Mi,j =

∂ηm+i

∂θj
, andMi,j =

∂ηm+i

∂Θj
.

For each γi /∈ ν in Equation (3.5), each element can be written in matrix form as

Uβ(γ) = Z>TV (y − µ), Uφ(γ) = A>TV (y − µ),

UΦ(γ) = A>TV (y − µ), Uθ(γ) = M>TV (y − µ),

UΘ(γ) = M>TV (y − µ) .

The derivative of `(γ) with respect to the dispersion parameter ν is given by

Uν(γ) =
∂`(γ)

∂ν
=

n∑
t=m+1

∂`t(µt, ν)

∂ν
=

n∑
t=m+1

A(µt, ν)
(yt − µt)
V (µt, ν)

− [log(yt!)−B(µt, ν)],

where A(µt, ν) = Eµt,ν [log(yt!)(yt − µt)] and B(µt, ν) = Eµt,ν log(yt!).

The conditional score vector can then be written as

U(γ) = (Uβ(γ)>,Uφ(γ)>,Uθ(γ)>,UΦ(γ)>,UΘ(γ)>, Uν(γ)).

The conditional maximum likelihood estimators (CMLE) are obtained from the solution of the

system of nonlinear equations U(γ) = 0, where 0 is a vector of zeros with dimension (r+ p+ P +

q +Q+ 2). Such a system does not have an analytical solution, being necessary to apply iterative

numerical methods. Here, we apply the nlminb optimization algorithm (Gay, 1990) available from

the stats package in R software (R Core Team, 2019). We assume the initial values for ηt and rt
to be equal zero, both for t = 1, 2, . . . ,m. Next, we shall obtain ηt and rt for t > m recursively

using (3.2).

3.3.2 Conditional information matrix

This section provides analytic formulae for the conditional Fisher information matrix, which

will be used later to construct the asymptotic con�dence intervals and hypothesis tests. The condi-
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tional Fisher information matrix for γ is given by K(γ) = E[−∂2`(γ)/∂γ∂γ>], which requires the

expectations of the second derivatives of the conditional log-likelihood function.

The second order derivatives of the log-likelihood function, for i, j ∈ {1, . . . , r+ p+P + q+Q}
(γi 6= ν,), is given by

∂2`(γ)

∂γi∂γj
=

n∑
t=m+1

∂

∂γi

[
∂`t(µt, ν)

∂µt

dµt
dηt

∂ηt
∂γj

]

=
n∑

t=m+1

[
∂2`t(µt, ν)

∂µ2
t

dµt
dηt

∂ηt
∂γj

dµt
dηt

∂ηt
∂γi

+
∂`t(µt, ν)

∂µt

∂

∂γi

(
dµt
dηt

∂ηt
∂γj

)]

=
n∑

t=m+1

[
∂2`t(µt, ν)

∂µ2
t

dµt
dηt

∂ηt
∂γj

dµt
dηt

∂ηt
∂γi

+
∂`t(µt, ν)

∂µt

∂ηt
∂γj

d2µt
dη2

t

∂ηt
∂γi

+
∂`t(µt, ν)

∂µt

dµt
dηt

∂2ηt
∂γj∂γi

]
.

Since E
(
∂`t(µt,ν)
∂µt

∣∣∣Ft−1

)
= 0 (Melo and Alencar, 2020) the expected value of the derivative

above is given by

E

(
∂2`(γ)

∂γi∂γi

∣∣∣∣Ft−1

)
=

n∑
t=m+1

E

(
∂2`t(µt, ν)

∂µ2
t

∣∣∣∣Ft−1

)(
dµt
dηt

)2 ∂ηt
∂γi

∂ηt
∂γj

. (3.6)

The second order derivatives of `t(µt, ν) with respect to µt is given by

∂2`t(µt, ν)

∂µ2
t

=
−V (µt, ν)− (yt − µt) [m3(µt, ν)/V (µt, ν)]

V (µt, ν)2
,

where m3(µt, ν) is the third central moment. Thus,

E

(
∂2`t(µt, ν)

∂µ2
t

∣∣∣∣Ft−1

)
=

−1

V (µt, ν)
. (3.7)

By replacing (3.7) in (3.6), it follows that

E

(
∂2`(γ)

∂γi∂γi

∣∣∣∣Ft−1

)
=

n∑
t=m+1

−1

V (µt, ν)g′(µt)2

∂ηt
∂γi

∂ηt
∂γj

.

The second order derivatives of the log-likelihood function related to ν are given by (Melo and Alencar,

2020)

∂2`(γ)

∂ν∂γj
=

∂

∂γj

{
n∑

t=m+1

A(µt, ν)
(yt − µt)
V (µt, ν)

− [log(yt!)−B(µt, ν)]

}

=
n∑

t=m+1

{[
B(µt, ν)

V (µt, ν)
+
D(µt, ν)

V (µt, ν)2
− m3(µt, ν)

V (µt, ν)3

]
∂µt
∂γj

(yt − µt)
}
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and

∂2`(γ)

∂ν2
=

∂

∂γj

{
n∑

t=m+1

A(µt, ν)
(yt − µt)
V (µt, ν)

− [log(yt!)−B(µt, ν)]

}

=
A(µt, ν)2

V (µt, ν)
− C(µt, ν),

where C(µt, ν) = Vµt,ν(log(yt)) and D(µt, ν) = Eµt,ν [log(y!)(y − µ)2].

Since E(Yt|Ft−1) = µt, we have

E

(
∂2`(µt, ν)

∂ν∂γi

∣∣∣∣Ft−1

)
= 0

and

E

(
∂2`(γ)

∂ν2

∣∣∣∣Ft−1

)
=

n∑
t=m+1

[
A(µt, ν)2

V (µt, ν)
− C(µt, ν)

]
.

Notice that ν is orthogonal to the other parameters.

Let W = diag{w1, . . . , wn}, where

wt = −A(µt, ν)2

V (µt, ν)
+ C(µt, ν).

The conditional Fisher information matrix for γ is given by

K(γ) =



K(β,β) K(β,φ) K(β,θ) K(β,Φ) K(β,Θ) K(β,ν)

K(φ,β) K(φ,φ) K(φ,θ) K(φ,Φ) K(φ,Θ) K(φ,ν)

K(θ,β) K(θ,φ) K(θ,θ) K(θ,Φ) K(θ,Θ) K(θ,ν)

K(Φ,β) K(Φ,φ) K(Φ,θ) K(Φ,Φ) K(Φ,Θ) K(Φ,ν)

K(Θ,β) K(Θ,φ) K(Θ,θ) K(Θ,Φ) K(Θ,Θ) K(Θ,ν)

K(ν,β) K(ν,φ) K(ν,θ) K(ν,Φ) K(ν,Θ) K(ν,ν)


,

where

K(β,β) = Z>V T 2Z,

K(β,θ) = K>(θ,β) = Z>V T 2M ,

K(β,Θ) = K>(Θ,β) = Z>V T 2M,

K(φ,φ) = A>V T 2A,

K(φ,Φ) = K>(Φ,φ) = A>V T 2A,

K(φ,ν) = K>(ν,φ) = 0,

K(θ,Φ) = K>(Φ,θ) = M>V T 2A,

K(θ,ν) = K>(ν,θ) = 0,

K(Φ,Θ) = K>(Θ,Φ) = A>V T 2M,

K(Θ,Θ) = M>V T 2M,

K(ν,ν) = tr(W ).

K(β,φ) = K>(φ,β) = Z>V T 2A,

K(β,Φ) = K>(Φ,β) = Z>V T 2A,

K(β,ν) = K>(ν,β) = 0,

K(φ,θ) = K>(θ,φ) = A>V T 2M ,

K(φ,Θ) = K>(Θ,φ) = A>V T 2M,

K(θ,θ) = M>V T 2M ,

K(θ,Θ) = K>(Θ,θ) = M>V T 2M,

K(Φ,Φ) = A>V T 2A,

K(Φ,ν) = K>(ν,Φ) = 0,

K(Θ,ν) = K>(ν,Θ) = 0,
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Under the usual regularity conditions and for n su�ciently large, the conditional maximum

likelihood estimator γ̂ of the parameter vector γ is asymptotically normally distributed (Andersen,

1970; Bayer et al., 2017; Pumi et al., 2019), that is,

β̂

φ̂

Φ̂

θ̂

Θ̂

ν̂


∼ Nr+p+q+P+Q+1





β

φ

Φ

θ

Θ

ν


,K(γ)−1


,

whereNr+p+q+P+Q+2 denotes the (r+p+q+P+Q+2)-dimensional normal distribution, β̂, φ̂, Φ̂, θ̂, Θ̂,

and ν̂ are the CMLE of β,φ,Φ,θ,Θ, and ν, respectively, and K(γ)−1 is the conditional Fisher

information inverse matrix.

3.3.3 Con�dence intervals and hypothesis testing

Considering the null hypothesis H0 : γi = γ0
i versus H1 : γi 6= γ0

i , where γ
0
i is a speci�ed value

for the unknown parameter γi. A useful statistic that is particularly convenient to test individual

parameters (Pawitan, 2001) is the so-called z statistic, which is given by

z =
γ̂i − γi√
kii

,

where kii is the i-th diagonal element of K(γ̂)−1.

UnderH0 and for large n, z follows a standard normal distribution. More general hypothesis test-

ing inference can also be performed using the log-partial likelihood ratio, Wald, and score statistics.

Under H0, all the mentioned test statistics converge to a χ2 distribution. See Kedem and Fokianos

(2005) for further details.

We can also obtain asymptotic con�dence intervals for each parameter γi. An approximate

100(1− α)% con�dence interval for γi is given by[
γ̂i − z1−α/2

√
kii; γ̂i + z1−α/2

√
kii
]
,

where Φ(z1−α/2) = 1 − α/2, with Φ(·) being the cumulative density function of the standardized

normal distribution N(0, 1).

3.4 Diagnostic measures and forecasting

This section introduces some model selection criteria and procedures to test the adequacy and

goodness-of-�t of the proposed model. For the model selection, we use a modi�cation of the Akaike

Information Criterion (AIC) (Akaike, 1974) for dynamic models proposed by Bayer et al. (2018),

which is given by

MAIC = −̂̀∗ + 2k, (3.8)
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where ̂̀∗ = n
n−m`(γ̂) and k = r+ p+ q+P +Q+ 1 is the number of parameters in the model. The

models can be selected using the modi�ed Schwarz Information Criterion (MSIC) (Schwarz et al.,

1978), obtained by replacing the term 2k by log(n)k in (3.8).

As an alternative, we can also to evaluate the goodness-of-�t of the models by the deviance,

given by D = 2(`(γ̃)− `(γ̂)), where `(γ̃) and `(γ̂) are the conditional log-likelihood function of the

saturated (µ̂t = yt) and �tted models, respectively. When the �tted model is well adjusted, the test

statistic D has the asymptotic chi-squared distribution with n− (r+ p+ q+P +Q+ 1) degrees of

freedom (Benjamin et al., 2003; Fokianos and Kedem, 2004). If D/n− (r+ p+ q+P +Q+ 1)� 1,

then the �t to the data can be considered inadequate.

Residual analysis is an important technique for checking model adequacy. Although there are

several ways for specifying residuals, the traditional residuals are typically not normally distributed

given the true model (Feng et al., 2017).

Here, we consider the randomized quantile residuals introduced by (Dunn and Smyth, 1996).

When a response variable is discrete the randomized quantile residuals is given by r(q)
t = Φ−1(ut),

where Φ−1(·) is the quantile function of the standard normal distribution, ui is a random variable

uniformly distributed the interval [F (yt − 1 | Ft−1), F (yt | Ft−1)], and F (·) is the cumulative

distribution function of the distribution.

To test the validity of the assumed distribution in the proposed model, we use a non-randomized

yet uniform version of the probability integral transformation (PIT) proposed by Czado et al. (2009)

for time series models for count data. The non-randomized PIT is given as follows

F (u) = (n−m)−1
n∑

t=m+1

F (t)(u | Ft−1), 0 ≤ u ≤ 1,

where F (t)(u | Ft−1) is the conditional cumulative distribution function of observed counts yt, given

by

F (t)(u | Ft−1) =


0, u ≤ F (yt − 1 | Ft−1),

u− F (yt − 1 | Ft−1)

F (yt | Ft−1)− F (yt − 1 | Ft−1)
, F (yt − 1 | Ft−1) ≤ u ≤ F (yt | Ft−1),

1, u ≥ F (yt | Ft−1).

The PIT has a standard uniform distribution when the model is correctly speci�ed (Jung and Tremayne,

2011; Jung et al., 2016).

We can obtain h-steps ahead forecasts for the CMP-SARMA model as follows

ŷn(h) = exp

(
α̂+

p∑
i=1

φ̂i[g(yn+h−i)] +

P∑
I=1

Φ̂I [g(yn+h−IS)]−
p∑
i=1

P∑
I=1

φ̂iΦ̂I [g(yn+h−(i+IS))]

−
q∑
j=1

θ̂j [r̂n+h−j ]−
Q∑
J=1

Θ̂J [r̂n+h−JS ] +

q∑
j=1

Q∑
J=1

θ̂jΘ̂J [r̂n+h−(j+JS)]

 ,
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where

[g(yt)] =

{
g(µ̂t), t > n,

g(yt), t ≤ n.

3.5 Monte Carlo simulation study

In what follows, we shall evaluate the asymptotic properties of the CMLE for the proposed model

through a Monte Carlo (MC) simulation study using the CMP-SARMA(1, 1)× (1, 1)12 model with

three di�erent values for the dispersion parameter: ν ∈ {0.5, 1.0, 2.0}. The systematic component

of the model is given by

log(µt) = φ1[log(yt−1)− xt−1β0] + Φ1[log(yt−12)− xt−12β0]− φ1Φ1[log(yt−13)− xt−13β0]

−θ1[rt−1]−Θ1[rt−12] + θ1Θ1rt−13, t = 14, . . . , n,

where β0 = 2.0, φ1 = 0.5, θ1 = −0.4, Φ1 = −0.2, and Θ1 = 0.3. All computational routines

developed in this article were implemented and performed in R (R Core Team, 2019). We generate

5, 000 Monte Carlo replicates of each experiment with n ∈ {100, 200, 400, 800}. For each experiment,

we evaluate the mean, percentage relative bias (RB %), de�ned as {E(γ̂i)−γi}/γi, and mean squared

error (MSE).

The results for all scenarios are shown in Table 3.1. We note that the bias decreases and that

the MSE tend toward zero as the size of the sample increases, indicating the consistency property

of the CMLE. This results indicate that the CMLE appeared to perform well. We also note that

the seasonal estimators present a larger relative bias in all scenarios. Such a fact was also veri�ed

for the βSARMA model in Bayer et al. (2018).

3.6 Empirical application

In this section, for illustrative purposes, we analyze and discuss a real data application. The

data consists of 120 observations of the monthly number of claims of short-term disability bene�ts

made by the Workers' Compensation Board of British Columbia, from January 1985 to December

1994. All the claimants are male, between the ages of 35 and 54 years, work in the logging industry,

and have injuries caused by cuts, lacerations, and punctures.

This series was originally studied by Freeland (1998), who considered an INAR(1) model using

sine/cosine functions as covariates to explain the seasonality of this data set. Recently, Bourguignon et al.

(2016) �tted a Poisson seasonal INAR(1)s model to this same data set. Figure 3.1 presents the time

series plot and its sample autocorrelation function (ACF) and partial autocorrelation function

(PACF). These plots indicate the presence of a seasonal dynamic.

For comparison purposes, we also �tted the CMP-ARMA and negative binomial GARMA (NB-

GARMA) models to these data. For these models, the seasonal e�ect is modeled including determin-

istic cosine and sine functions with an annual cycle, xt = (cos(2πt/12), sin(2πt/12)), t = 1, . . . , n.

Here, we consider the parameterization given in Evans (1953), where the conditional mean and

the conditional variance of Yt given Ft−1 are E(Yt | Ft−1) = µt and V ar(Yt | Ft−1) = (σ + 1)µt,

respectively; and σ is called the dispersion parameter. The NB-GARMA model was �tted using the
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Table 3.1: Monte Carlo simulation results of the CMLE for the CMP-ARMA (1, 1)× (1, 1)12 model.

Scenario 1 - overdispersion

β0 φ1 Φ1 θ1 Θ1 ν
Parameters 2.0 0.5 −0.2 −0.4 0.3 0.5
Mean 2.299 0.469 −0.300 −0.413 0.211 0.539

n = 100 RB(%) 14.966 −6.113 50.058 3.366 −29.501 7.937
MSE 0.506 0.018 0.040 0.019 0.055 0.018
Mean 2.161 0.486 −0.261 −0.406 0.249 0.518

n = 200 RB(%) 8.043 −2.830 30.386 1.538 −16.880 3.566
MSE 0.203 0.007 0.021 0.008 0.024 0.007
Mean 2.115 0.490 −0.244 −0.404 0.266 0.512

n = 300 RB(%) 5.746 −2.045 22.012 0.938 −11.344 2.367
MSE 0.122 0.005 0.014 0.005 0.015 0.005
Mean 2.089 0.493 −0.237 −0.402 0.273 0.510

n = 400 RB(%) 4.452 −1.387 18.260 0.595 −9.075 2.015
MSE 0.090 0.003 0.011 0.004 0.012 0.004
Mean 2.055 0.497 −0.225 −0.398 0.289 0.509

n = 800 RB(%) 2.750 −0.685 12.707 −0.392 −3.732 1.904
MSE 0.044 0.002 0.007 0.002 0.006 0.003

Scenario 2 - equidispersion

α φ1 Φ1 θ1 Θ1 ν
Parameters 2.0 0.5 −0.2 −0.4 0.3 1.0
Mean 2.298 0.469 −0.299 −0.414 0.214 1.079

n = 100 RB(%) 14.924 −6.211 49.434 3.500 −28.668 7.883
MSE 0.513 0.018 0.041 0.020 0.058 0.037
Mean 2.159 0.485 −0.259 −0.407 0.251 1.034

n = 200 RB(%) 7.958 −2.918 29.292 1.775 −16.431 3.410
MSE 0.207 0.007 0.021 0.008 0.025 0.013
Mean 2.112 0.489 −0.241 −0.405 0.266 1.020

n = 300 RB(%) 5.599 −2.163 20.261 1.334 −11.369 2.022
MSE 0.125 0.005 0.013 0.005 0.015 0.008
Mean 2.085 0.492 −0.232 −0.404 0.273 1.015

n = 400 RB(%) 4.272 −1.539 16.036 1.038 −9.166 1.545
MSE 0.092 0.003 0.010 0.004 0.011 0.006
Mean 2.047 0.496 −0.218 −0.402 0.285 1.007

n = 800 RB(%) 2.347 −0.802 9.239 0.464 −5.079 0.704
MSE 0.042 0.002 0.005 0.002 0.005 0.003

Scenario 3 - underdispersion

α φ1 Φ1 θ1 Θ1 ν
Parameters 2.0 0.5 −0.2 −0.4 0.3 2.0
Mean 2.300 0.468 −0.298 −0.415 0.218 2.158

n = 100 RB(%) 14.998 −6.360 48.870 3.677 −27.260 7.886
MSE 0.525 0.019 0.042 0.021 0.060 0.146
Mean 2.159 0.485 −0.257 −0.407 0.254 2.068

n = 200 RB(%) 7.944 −3.008 28.688 1.866 −15.394 3.422
MSE 0.212 0.008 0.021 0.008 0.025 0.053
Mean 2.110 0.489 −0.239 −0.406 0.269 2.041

n = 300 RB(%) 5.518 −2.232 19.354 1.386 −10.371 2.061
MSE 0.129 0.005 0.014 0.005 0.015 0.033
Mean 2.083 0.492 −0.230 −0.404 0.275 2.032

n = 400 RB(%) 4.154 −1.560 15.243 1.067 −8.354 1.575
MSE 0.094 0.004 0.010 0.004 0.012 0.023
Mean 2.046 0.496 −0.217 −0.402 0.286 2.015

n = 800 RB(%) 2.276 −0.815 8.724 0.493 −4.571 0.730
MSE 0.044 0.002 0.005 0.002 0.005 0.011
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Figure 3.1: Time series, ACF and PACF plots for the monthly number of claims time series from 1985 to
1994.

garmaFit function from gamlss.util (Stasinopoulos and Rigby, 2016) library in the R software.

Based on the previously mentioned diagnostic measures, the CMP-SARMA(1, 0) × (1, 0)12,

CMP-ARMA(1, 0), and NB-GARMA(1, 0) models were selected. The parameter estimates with

corresponding standard errors (shown in parentheses), and MAIC and MSIC values for the selected

models are given in Table 3.2. Notice that the CMP-SARMA model presented the smallest MAIC

and MSIC values, suggesting that the proposed model yielded a better �t to the data than the other

two non-seasonal models. The estimated dispersion parameter indicates overdispersion (ν < 1).

Figure 3.2 presents a diagnostic analysis of the �tted CMP-SARMA(1, 0) × (1, 0)12 model.

The ACF and PACF of randomized quantile residuals in Figures 3.2(a) and 3.2(b), respectivel,
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Table 3.2: Parameter estimates, standard errors (shown in parentheses), and model selection criteria;
monthly count of claims data

.

Model Estimate(se) MAIC MSIC

CMP-SARMA(1, 0)× (1, 0)12 β̂0 1.9353(0.1128) 567.711 578.861

φ̂1 0.5149(0.0761)

Φ̂1 0.1905(0.0886)
ν̂ 0.7932(0.1222)

CMP-ARMA(1, 0) β̂0 1.8398(0.0742) 569.455 583.376

β̂1 −0.1871(0.0853)

β̂2 −0.2819(0.0877)

φ̂1 0.4526(0.0761)
ν̂ 0.8860(0.1270)

NB-GARMA(1, 0) β̂0 1.8384(0.0754) 568.833 582.771

β̂1 −0.1889(0.0870)

β̂1 −0.2839(0.0896)

φ̂1 0.4489(0.0774)
α̂ 0.0263(0.0232)

indicate that there is no signi�cant autocorrelation in the residuals, which is con�rmed by the

Ljung-Box Q test (Ljung and Box, 1978) based on 15 lags. The ACF and PACF of randomized

quantile residuals are presented in Figures 3.2(a) and 3.2(b), respectively. Notice that there is no

indication of signi�cant autocorrelation in the residuals, which is con�rmed by the Ljung-Box Q test

(Ljung and Box, 1978) based on 15 lags. The Ljung-Box test does not reject the null hypothesis with

p-value = 0.9794. By looking at the residual plot in Figure 3.2(c), we observe that the residuals are

randomly distributed around zero. The plot of the normal against empirical quantiles indicates that

the residuals are approximately normally distributed, as shown in Figure 3.2(d). The uniformity of

the PIT in Figure 3.2(e) (with J = 10) indicates that the model was correctly adjusted. Finally,

Figure 3.3 shows the observed and �tted values for the CMP-ARMA(1, 0)× (1, 0)12 model.

3.7 Conclusions

The present work proposed the class of Conway-Maxwell-Poisson seasonal autoregressive mov-

ing average model CMP-SARMA (p, q) × (P,Q)s models for time series of counts. This class of

models includes seasonal components in which the class of CMP-ARMA models is a special case,

and the CMP-SARMA model can be used to model overdispersed, equidispersion, and underdis-

persed data. We assumed that the conditional distribution of the response variable follows a CMP

distribution (Huang, 2017). We used the conditional maximum likelihood method to estimate the

parameters of the proposed model and presented closed-form expressions for the conditional score

vector and conditional Fisher information matrix. The asymptotic properties of the ML estimators

were established and evaluated based on MC simulations, showing that the estimators are consistent

and Gaussian for �nite samples. We also discussed practical issues such as diagnostic techniques,

hypothesis testing, interval estimation, model selection, and residual analysis. After choosing an

initial model based on the Akaike and Bayesian information criteria, a complete residual analysis

is necessary to ensure the validity of the assumption that the error is white noise. Finally, we pre-
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Figure 3.2: Diagnostic plots for the �tted CMP-SARMA model; monthly counts of claims data.

sented and investigated an empirical application that illustrated the usefulness and applicability of

the proposed model.
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Chapter 4

Progressive Mean Control Chart for

Monitoring Count Time Series

Several control charts have been proposed to assist the monitoring of public health disease

outbreaks. Memory-type control charts are commonly used to monitor these data because they

e�ciently detect small shifts. In this context, we propose a new memory-type control chart, in

which a progressive mean is used as the plotting statistic for monitoring autocorrelated count data,

typically arising in health surveillance. The development of the new control chart is based on the

randomized quantile residuals obtained from a �tted Conway-Maxwell-Poisson autoregressive mov-

ing average (CMP-ARMA) model. We carry out a Monte Carlo simulation study to evaluate and

compare the performance of the proposed control chart with two traditional approaches in quality

control; Shewhart-type and exponentially weighted moving average (EWMA) control charts. The

results show that the proposal outperforms the two conventional control charts considered. Finally,

we illustrate the applicability of the proposed control chart by monitoring the weekly number of hos-

pitalizations of people older than 60 years due to respiratory diseases in the city of São Paulo, Brazil.

Keywords: Control charts; Progressive mean; Randomized quantile residual; Average run length;

CMP-ARMA

4.1 Introduction

Control charts are often used to signal the occurrence of special causes that can a�ect the quality

of industrial and service processes (Montgomery, 2007). Shewhart (1927, 1926) �rst introduced

control charts to monitor production processes, and since then, they have been applied in several

�elds, such as medicine, marketing, analytical laboratories, health care, and engineering. In public

health surveillance, we are usually interested in detecting changes in the number of cases of a speci�c

disease in order to decide if this morbidity or mortality reached an epidemic level (Albarracin et al.,

2018b).

Shewhart-type control charts are characterized by using only the current process information,

ignoring the previous behavior of the process. For this reason, they are known as memory-less

control charts. The typical Shewhart chart is known to be sensitive only for large process shifts

(Saghir and Lin, 2014c). On the other hand, memory-type control charts, such as the cumulative

51
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sum (CUSUM) (Page, 1954) and exponentially weighted moving average (EWMA) (Roberts, 1959)

control charts, use both the past and current information, which makes them more e�cient in

detecting small to moderate shifts in the process (Abbasi and Miller, 2013).

Modi�cations of these two memory-less charts have been proposed in the literature. See, for

instance, Capizzi and Masarotto (2003), Jiang et al. (2008), Shu and Jiang (2008), Abbas et al.

(2011), Abbasi et al. (2012), Haq et al. (2014), and Haq et al. (2015). Recently, Abbas et al. (2013)

proposed a new memory-type control chart for monitoring the mean of the process using individual

observations. This chart is based on the progressive mean (PM) statistic, which can be viewed as an

adaptive EWMA statistic where the smoothing parameter is updated after every sample (Abbas,

2015). Based on the average run length (ARL) measure, de�ned as the average number of samples

until a signal, Abbas et al. (2013) showed that the PM control chart better detects small and mod-

erate shifts in the process, compared to the Shewhart, EWMA, and CUSUM charts. In addition,

the PM control chart shows good performance for large shifts. Recently, several control charts based

on the PM statistic have been proposed in the literature. See, for instance, Abbasi et al. (2013),

Abbasi (2017), Abbasi et al. (2019), and Alevizakos and Koukouvinos (2019b).

As already mentioned, the progressive mean statistic has received considerable attention in

recent years. Despite this, to the best of our knowledge, applications of this statistic in con-

trol charts for monitoring count time series models have never been considered in the litera-

ture. Therefore, in the present article, we propose a new memory-type control chart based on

the progressive mean statistic for monitoring the count series that may present underdispersion,

equidispersion, or overdispersion. The new chart is used to monitor the time-varying mean re-

sponse using randomized quantile residuals from a �tted Conway-Maxwell-Poisson autoregressive

moving average (CMP-ARMA) model. Several control charts have been developed based on the

CMP distribution. See, for example, Sellers (2012), Saghir and Lin (2014a), Saghir and Lin (2014b),

Aslam et al. (2016), Aslam et al. (2017), Aslam et al. (2018), Alevizakos and Koukouvinos (2019a),

Alevizakos and Koukouvinos (2019b), and Rao et al. (2020).

Although several types of residuals can be employed to evaluate these classes of models, we con-

sider the randomized quantile residual (Dunn and Smyth, 1996) because the Pearson and deviance

residuals may be far from normality in count data with low �tted means (Benjamin et al., 2003).

Recently, Park et al. (2020) proposed Shewhart-type control charts based on randomized quantile

residuals for a wide range of the response variable and Albarracin et al. (2018a) introduced a like-

EWMA control chart to monitor autocorrelated count series based on conditional quantile residuals

from a generalized autoregressive moving average (GARMA) model.

In this article, we evaluate and compare the performance of the proposed control chart with the

Shewhart-type and EWMA control charts through simulation studies. The performance is measured

in terms of ARLs. The rest of the article is organized as follows. Section 4.2 presents a brief

review of CMP-ARMA models. Section 4.3 introduces randomized quantile residuals and details

the construction of the new control chart. In Section 4.4, we conduct a Monte Carlo simulation

study to evaluate the performance of the proposal in terms of run length characteristics. Section 4.5

presents a comparison study of the proposed chart with the Shewhart-type control chart proposed

by Park et al. (2020) and the traditional EWMA chart (Roberts, 1959) in terms of ARL. In Section

4.6, the new control chart is used for monitoring the weekly number of hospital admissions due

to respiratory diseases of people older than 60 years in São Paulo city. Conclusions and future
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directions are discussed in Section 4.7.

4.2 Conway-Maxwell-Poisson autoregressive moving average model

In this section, we shall present the CMP-ARMA model proposed by Melo and Alencar (2020)

for modeling underdispersed, equidispersed, and overdispersed count time series data. This class of

models is very �exible and contains the GARMA models with the Poisson, Geometric, and Bernoulli

distributions as particular cases.

Let Y = (Y1, . . . , Yn)> be a vector of n random variables and assume that the conditional

distribution of each observation yt, conditioned on the past information set Ft−1 = {Yt−1, . . . , Y1},
follows a CMP distribution with conditional probability function given by

Pr(Yt = yt | Ft−1, µt, ν) =
λ(µt, ν)yt

(yt!)νZ(λ(µt, ν), ν)
, yt = 0, 1, 2, . . . , (4.1)

where λ(µt, ν) is a function of µt and ν, given by the solution for

0 =
∞∑
s=0

(s− µt)
λs

(s!)ν
,

and Z(λ(µt, ν), ν) =
∑∞

s=0 λ(µt, ν)s/(s!)ν is a normalization function, and the conditional mean of

Yt is given by E(Yt | Ft−1) = µt. The parameterization in (4.1) was proposed by Huang (2017),

which allows us to model the mean directly, making it possible for the construction of simpler and

more interpretable models.

The CMP-ARMA model is obtained by assuming a linear predictor for the conditional mean of

yt with the following structure

ηt = g(µt) = α+ x>t β +

p∑
j=1

φj{g(yt−j)− x>t−jβ}+

q∑
j=1

θj{g(yt−j)− ηt−j},

where α is an intercept, β = (β1, . . . , βr)
> is the r-dimensional unknown parameter vector, xt =

(x1, . . . , xr)
> is the r-dimensional explanatory variables vector, φ = (φ1, . . . , φp)

> and θ = (θ1, . . . , θq)
>

are the autoregressive and moving average coe�cients, respectively.

Note that in the CMP-ARMA model, as in the GARMA models proposed by Benjamin et al.

(2003), the conditional mean µt is related to the linear predictor containing autoregressive and

moving average terms besides time-varying regressors.

4.3 The PM Control Chart for Regression Models

This section is divided into two subsections. Subsection 4.3.1 presents a brief review of the

randomized quantile residual and Subsection 4.3.2 presents the construction of the proposed control

chart.
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4.3.1 Randomized quantile residual

As already mentioned, the distribution of the deviance and Pearson residuals are usually non-

normally distributed for discrete data with low �tted means. For this reason, Melo and Alencar

(2020) recommend the randomized quantile residual for CMP-ARMA models. Feng et al. (2017)

showed theoretically that the randomized quantile residual follows a standard normal distribution

under the true model. Despite this, this residual has received little attention in the literature.

Let at = F (yt− 1 | θ̂) and bt = F (yt | θ̂), where F is the �tted cumulative distribution function.

For the discrete distribution function, the randomized quantile residual for yt is de�ned as

r
(q)
t = Φ−1(ut), (4.2)

where Φ−1 is the quantile function of the standard normal distribution and ut is a random variable

that is uniformly distributed on (at, bt]. If the model �tted to the data is correctly speci�ed, these

residuals should be independent and normally distributed, with zero mean and unit variance.

4.3.2 Designing of the proposed control chart

In this section, we shall present the construction of the proposed control chart. Let rq1, . . . , r
q
t

be the randomized quantile residuals of the �tted model. The plotting statistic for the PM chart is

given by

PMt =

t∑
i=1

r
(q)
i

t
. (4.3)

As the randomized quantile residuals follow a standard normal distribution under the true model,

we have that the mean and variance of the PMt statistic are given, respectively, by

E(PMt) = µ0,

Var (PMt) =
σ2

0

t
.

Therefore, according to the typical Shewhart control limits, the upper control limit (UCL) and the

lower control limit (LCL) are de�ned as follows

UCLt = µ0 + L

√
σ2

0

t
,

CLt = µ0, (4.4)

LCLt = µ0 − L
√
σ2

0

t
,

where L is a constant that de�nes the width of the control limits. Note that the control limits given

in Equation (4.4) vary over time. Although the control limits become narrower as t increases, they

are too wide relative to the plotting statistic for large values of t, which results in a tiny probability

of detecting a point beyond the control limits. In order to remedy this problem, Abbas et al. (2013)

included a function that penalizes the control limits, that is, larger values of t are associated with
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more penalized limits. The penalized limits for the proposed PMt chart are given by

UCLt = µ0 + L
1

f(t)

√
σ2

0

t
,

CLt = µ0,

LCLt = µ0 − L
1

f(t)

√
σ2

0

t
,

where f(t) is an arbitrary function of t used to control the run lengths (Abbas et al., 2013).

We considered f(t) = t0.2, as in Abbas et al. (2013), Abbasi et al. (2013), Abbasi (2017), and

Alevizakos and Koukouvinos (2019b).

4.4 Performance evaluation

In this section, we investigate the run length distribution and evaluate the performance of the

proposed control chart in terms of ARL. To compare the ARL of the out-of-control process, ARL1,

we consider that the mean parameter is shifted to µ1,t = µ0,t(1±d), with d ∈ {0.05, 0.1, 0.2, 0.4, 0.8},
where µ0,t and µ1,t are the mean of the yt when the process is in control and out of control,

respectively. We ran 5000 Monte Carlo replications. Time series are simulated using a CMP-ARMA

model with mean

ηt = log(µt) = φ1 log(yt−1) + φ2 log(yt−2) + θ1[log(yt−1)− ηt−1], (4.5)

where φ1 = 0.5, φ2 = −0.3, and θ1 = 0.5. We considered three di�erent values of ν ∈ {0.5, 1.0, 2.0},
that is, overdispersion, equidispersion, and underdispersion, respectively.

4.4.1 The run-length distribution

To evaluate the run length distribution and the performance of the proposed control chart, we

conducted an extensive Monte Carlo simulation study using the R software (R Core Team, 2019).

This simulation study is described in the following steps.

1. Phase I

a. Select an initial value for L.

b. Generate time series of size n = 3000 from the CMP-ARMA model with in-control mean,

µ0,t, given by Equation (4.5).

c. Fit the CMP-ARMA model using the simulated observations and obtain the randomized

quantile residuals using Equation (4.2).

d. Compute the PMt statistic as given in Equation (4.3).

e. Calculate the number of samples until we get the �rst out-of-control signal (run length). The

process is declared to be in control if LCLt ≤ PMt ≤ UCLt. Otherwise, declare the process

as out-of-control.
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f. Repeat the above steps 5000 times to obtain the mean of the run length (ARL). Compare the

ARL value obtained with the �xed ARL0 value. If the value found is equal or approximately

equal to the speci�ed ARL0 value, then go to Phase II. Otherwise, go back to Step a.

2. Phase II

a. Generate time series of size n = 3000 from the CMP-ARMA model with parameter µ1,t =

µ0,t(1± d), where d is the mean shift to be detected.

b. Fit the CMP-ARMA model using the simulated observations and obtain the randomized

quantile residuals using Equation (4.2).

c. Compute the PMt statistic as given in Equation (4.3).

d. Calculate the number of samples until we get the �rst out-of-control signal.

e. Repeat the above steps 5000 times to obtain the mean ARL1, standard deviation (SDRL),

and percentile points of the run length distribution.

Table 4.1 presents a summary of the run length characteristics for the proposed control chart.

We observe that the new control chart e�ciently detects small, moderate, and large shifts in the

process mean. In addition, when the shift increases, the ARL, SDRL, and percentile points of the

run length distribution decreases, as expected. We also notice that the run length distribution of

the proposed chart is positively skewed. Note that the proposed control chart detects a change more

quickly when the data exhibit underdispersion, that is, for a �xed value of d, the e�ectiveness of the

new control chart increases as the value of the dispersion parameter increases. For example, when

d = 0.05, the ARL1 values for overdispersed (ν = 0.5), equidispersed (ν = 1.0), and underdispersed

(ν = 2.0) data are 149.55, 138.12, and 120.24, respectively. We also observe that the proposed chart

detects upward shifts more quickly than downward shifts.

4.4.2 Steady-state ARL

The results provided in the previous section are obtained under the assumption that the shifts in

the mean occur at the beginning of the process, that is, at time t = 1, which is known as zero-state

ARL. However, in practice, this does not always happen as most times the process remains in a

control condition for some time before the occurrence of the shift, which is known as the steady-state

ARL (Lucas and Saccucci, 1990). Table 4.2 presents the steady-state ARL values of the proposed

control chart for di�erent values of ν ∈ {0.5, 1.0, 2.0}. We assume that the shift occurs at di�erent

times t ∈ {1, 25, 50, 75, 100}, where t = 1 represents zero-state ARL. Note that, from the table,

the proposed control chart becomes less e�ective at detecting shifts in the mean of the process as t

increases, that is, the ability of the chart to detect shifts is reduced. This happens because the PM

statistic is calculated using both current and past information.
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Table 4.3: Design structures of the control charts.

Control chart Plotting statistic Control limits

Shewhart-type r
(q)
t

UCLt = µ0 + L
√
σ2

0

LCLt = µ0 − L
√
σ2

0

EWMA Wt = (1− λ)Wt−1 + λr
(q)
t

UCLt = µ0 − L
√

λ
2−λ [1− (1− λ)2t]σ2

0

UCLt = µ0 + L
√

λ
2−λ [1− (1− λ)2t]σ2

0

Proposed PMt =

∑t
i=1 r

(q)
i

t

UCLt = µ0 − L
1

f(t)

√
σ2

0

UCLt = µ0 + L
1

f(t)

√
σ2

0

4.5 Comparative study

In this section, we analyze and compare the performance of the proposed control chart with

the traditional Shewhart and EWMA control charts. Table 4.3 summarizes the design structures of

these charts. For the EWMA chart, we considered the smoothing parameter value λ = 0.20.

The performance of the control charts is measured in terms of out-of-control average run lengths

(ARL1). For that, the value of the width of the control limit (L) is set to satisfy an ARL0 equal or

approximately equal to a �xed value (here ARL0 = 200) and then the ARL1 values are calculated

and compared. When the process is in control, a large ARL0 is desirable. Alternatively, when the

process is out of control, we desire the lowest ARL1.

Table 4.4 presents the results for the performance comparison of the three control charts when

ARL0 = 200. As becomes clear from this table, the proposed chart outperforms the other two

charts in all scenarios and shifts considered in the process. We also observe that the Shewhart and

EWMA charts are biased for small downward shifts, that is, the ARL1 values are greater than the

corresponding ARL0 values. For example, when ν = 2.0 and d = −0.05, the ARL1 values for the

Shewhart and EWMA charts are 213.79 and 224.33, respectively, while the proposed control chart

presents an ARL1 value of 150.01.

4.6 Illustrative example

In this section, we illustrate the applicability of the proposed control chart using a real data

example. We consider the dataset of the weekly hospital admissions due to respiratory diseases of

people aged over 60 years in the city of São Paulo�Brazil from January 2010 to December 2015.

The dataset was obtained from the Hospitalization Information System of the Ministry of Health

(available at Datasus website http://datasus.saude.gov.br/) and previously analyzed in

Melo and Alencar (2020). São Paulo is the most populous city of Brazil with 11 million inhab-

itants in 2010, 11% of whom are over 60 years old (http://www.ibge.gov.br/). Given its

relevance, the monitoring and identi�cation of patterns in the weekly number of hospitalizations

due to respiratory problems may be useful to plan health services. For example, based on these

results, governments may create vaccination strategies (Alencar, 2018).

In phase I, we considered the weekly data from January 2010 to December 2014 to estimate the
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Table 4.4: ARL comparison between the Shewhart, EWMA, and proposed charts for di�erent shifts when
ARL0 = 200.

Control charts d
Dispersion

ν = 0.5 ν = 1.0 ν = 2.0

Shewhart-type

−0.80 234.12 160.21 53.42
−0.40 252.09 212.16 137.99
−0.20 244.72 229.70 206.86
−0.10 224.14 222.79 215.05
−0.05 210.28 210.38 213.79

0.00 197.15 197.94 199.18
0.05 177.76 180.66 181.32
0.10 162.90 158.97 160.63
0.20 130.81 123.08 117.09
0.40 74.59 64.92 51.90
0.80 26.42 18.70 11.60

L = 2.807 L = 2.807 L = 2.807

PM statistic

−0.80 17.89 15.67 12.96
−0.40 35.88 28.74 22.04
−0.20 73.94 60.47 46.09
−0.10 129.53 112.40 91.40
−0.05 175.78 169.78 150.01

0.00 199.85 200.96 200.01
0.05 149.55 138.12 120.24
0.10 97.86 84.10 70.36
0.20 52.97 41.21 31.25
0.40 22.63 17.06 12.31
0.80 8.77 6.55 4.51

L = 3.243 L = 3.244 L = 3.244

EWMA

−0.80 66.04 53.44 36.37
−0.40 136.9 111.44 78.76
−0.20 221.16 193.78 155.98
−0.10 237.57 230.22 213.06
−0.05 225.52 232.11 224.33

0.00 200.07 200.27 200.48
0.05 170.08 162.94 154.21
0.10 134.96 125.16 111.05
0.20 82.38 67.98 53.44
0.40 33.38 25.02 17.46
0.80 10.48 7.36 4.88

L = 2.655 L = 2.655 L = 2.655
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Table 4.5: Fitted CMP-ARMA(2, 0) model for the weekly number of hospitalizations data.

Coe�cient Estimate SE p-value

intercept (α) 2.6812 0.3760 < 0.0001
Cosine (β1) −0.1022 0.0180 < 0.0001
φ1 0.3504 0.0631 < 0.0001
φ2 0.1693 0.0629 0.0071
dispersion (ν) 0.3986 0.0327 < 0.0001

model parameters and determine the control limits of the charts. As in Melo and Alencar (2020),

we consider a CMP-ARMA(2, 0) model with mean

log(µt) = α+ β1 cos

(
2πt

52

)
+ φ1 log(yt−1) + φ2 log(yt−2),

where t is the number of each week, t = 1, . . . , 262. Table 4.5 shows the parameter estimates with

corresponding standard errors (SE) and p-values for the �tted model. Note that the estimated dis-

persion parameter was ν = 0.3986, showing that the data are overdispersed. Based on the estimated

parameters, we obtain L to meet an ARL0 = 200 using the simulation algorithm introduced in Sub-

section 4.4.1. The width of the control limits for the Shewhart-type, PM, and EWMA (λ = 0.2)

control charts are, respectively, L = 2.807, L = 3.243, and L = 2.655.

In phase II, we evaluate the e�ciency of the proposed chart by monitoring a series consisting

of 52 observations. The �rst half of the sample contains the �rst 26 observations of the weekly

number of hospitalizations in 2015, thus these observations are assumed to be in control. The

remaining of the series is simulated from a CMP-ARMA(2, 0) model with out-of-control mean

µ1,t = 1.1 exp{α̂ + β̂1 cos(2πt/52) + φ̂1 log(yt−1) + φ̂2 log(yt−2)}, t = 27, . . . , 52, and dispersion

parameter ν̂, where (α̂, β̂, φ̂1, φ̂2, ν̂) are the estimates shown in Table 4.5. That is, we assume that

after the 26th observation we have an increase of 10% in the process mean.

Fugures 4.1, 4.2, and 4.3 display the three control charts based on the randomized quantile

residuals obtained from the �tted model. The red dots correspond to observations that lie outside

the control limits. These �gures show that in the three charts all the �rst 26 points fall inside

the control limits, showing that the process is in control. Note that even when we have an out-of-

control process situation, after the 26th observation, the Shewhart chart cannot detect the shift,

while the PM and EWMA control charts give the �rst out-of-control signal at the 31th and 32th

observations, respectively. Also, note that, in addition to detecting the out-of-control process faster,

the proposed chart provides more out-of-control points compared to the other two charts considered

in this article.
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Figure 4.1: The Shewart-type chart for the illustrative example.
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Figure 4.2: The PM chart (proposed) for the illustrative example.

4.7 Conclusions

In this article, we proposed a new memory-type control chart to detect a shift in the mean

of count times series. The new monitoring procedure is based on randomized quantile residuals

obtained from a �tted CMP-ARMA model. The proposed control chart can be used to monitor

underdispersed, equidispersed, and overdispersed time series count data. We conducted a Monte

Carlo simulation study to evaluate the performance of the proposed control chart. Numerical results

showed that the current proposal presents a good performance and can detect shifts faster than

the EWMA and Shewhart-type control charts in terms of average run lengths. We also investigated
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Figure 4.3: The EWMA chart for the illustrative example.

the steady-state ARL performance of the proposed chart assuming that a shift in the process mean

occurs at di�erent times t. We observed that the chart detects the out-of-control condition in the

process more slowly as t increases. Finally, we illustrated the applicability of the proposed control

chart by monitoring the weekly number of hospitalizations due to respiratory diseases of people

older than 60 years in São Paulo city, where the new chart detected more quickly the shift in the

process mean.
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Chapter 5

Conclusions

In this thesis, we proposed two new dynamic regression models based on the Conway-Maxwell-

Poisson distribution for the analysis of time series of counts. In addition, we introduced a new

memory-type control chart for monitoring this type of data.

The �rst proposed model, named the Conway-Maxwell-Poisson autoregressive moving average

model (CMP-ARMA), is a dynamic model for random variables that assume non-negative integer

values. In the second model proposed, we extend the class of Conway-Maxwell-Poisson autoregres-

sive moving average models by including seasonal components to the model dynamic structure.

In the construction of the models, we assume that the conditional distribution of the dependent

variable, given the past history of the process, is the in CMP (Huang, 2017). This distribution al-

lows the modeling of underdispersed, equidispersed, and overdispersed data. As in Benjamin et al.

(2003), the conditional mean of the distribution is modeled by a dynamic structure containing au-

toregressive and moving average terms, time-varying regressors, and a link function. For the two

models proposed, we discuss methods for parameter estimation, hypothesis testing inference, and

diagnostic analysis; obtaining closed-form expressions for the score vector and Fisher information

matrix. The results of the Monte Carlo simulation study carried out showed that the conditional

maximum likelihood estimators presents a good performance, suggesting that the estimators of the

parameters are unbiased and consistent. The empirical applications show that the proposed models

better accommodated the observations with subdispersion, when compared to the results provided

by the negative binomial GARMA model. When the observations show overdispersion, the models

show similar results.

Finally, we propose a new memory-type control chart based on the progressive mean statistic

for monitoring autocorrelated count. The new is based on randomized quantile residuals obtained

from a �tted Conway-Maxwell-Poisson autoregressive moving average model. A simulation study

is carried out to evaluate the performance of the proposed control chart. The results revealed that

the proposed chart outperformed the tradicional Shewhart and EWMA control charts in terms of

the average run length.

5.1 Suggestions for Future Research

• To develop and study a new class of models for Comway-Maxwell-Poisson conditional distri-

bution with heteroscedasticity.

65
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• To investigate bias correction methods in small samples of the conditional maximum likelihood

estimators of both proposed models CMP-ARMA and CMP-SARMA.
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