• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2013.tde-20092013-113449
Documento
Autor
Nome completo
Joan Neylo da Cruz Rodriguez
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2013
Orientador
Banca examinadora
Bolfarine, Heleno (Presidente)
Geraldo, Héctor Wladimir Gomez
Guzmán, Jorge Luis Bazán
Opazo, Miguel Angel Uribe
Yamamoto, Jorge Kazuo
Título em português
Análise geoestatística multi-pontos
Palavras-chave em português
arvore de busca
estatística multi-pontos
geoestatística
geometria aleatória.
imagem de treinamento
pixels
simulação estocástica
voxels
Resumo em português
Estimativa e simulação baseados na estatística de dois pontos têm sido usadas desde a década de 1960 na análise geoestatístico. Esses métodos dependem do modelo de correlação espacial derivado da bem conhecida função semivariograma. Entretanto, a função semivariograma não pode descrever a heterogeneidade geológica encontrada em depósitos minerais e reservatórios de petróleo. Assim, ao invés de usar a estatística de dois pontos, a geoestatística multi-pontos, baseada em distribuições de probabilidade de múltiplo pontos, tem sido considerada uma alternativa confiável para descrição da heterogeneidade geológica. Nessa tese, o algoritmo multi-ponto é revisado e uma nova solução é proposta. Essa solução é muito melhor que a original, pois evita usar as probabilidades marginais quando um evento que nunca ocorre é encontrado no template. Além disso, para cada realização a zona de incerteza é ressaltada. Uma base de dados sintética foi gerada e usada como imagem de treinamento. A partir dessa base de dados completa, uma amostra com 25 pontos foi extraída. Os resultados mostram que a aproximação proposta proporciona realizações mais confiáveis com zonas de incerteza menores.
Título em inglês
Analysis of multiple-point geostatistics
Palavras-chave em inglês
geostatistics
multiple-point statistic
pixels
random geometry.
search tree
stochastic simulation
training image
voxels
Resumo em inglês
Estimation and simulation based on two-point statistics have been used since 1960's in geostatistical analysis. These methods depend on the spatial correlation model derived from the well known semivariogram function. However, the semivariogram function cannot describe the geological heterogeneity found in mineral deposits and oil reservoirs. Thus, instead of using two-point statistics, multiple-point geostatistics based on probability distributions of multiple-points has been considered as a reliable alternative for describing the geological heterogeneity. In this thesis, the multiple-point algorithm is revisited and a new solution is proposed. This solution is much better than the former one because it avoids using marginal probabilities when a never occurring event is found in a template. Moreover, for each realization the uncertainty zone is highlighted. A synthetic data base was generated and used as training image. From this exhaustive data set, a sample with 25 points was drawn. Results show that the proposed approach provides more reliable realizations with smaller uncertainty zones.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2013-09-25
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.