• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2013.tde-19062013-135858
Documento
Autor
Nome completo
Rodrigo de Souza Bulhões
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2013
Orientador
Banca examinadora
Barroso, Lucia Pereira (Presidente)
Botter, Denise Aparecida
Sena Junior, Manoel Raimundo de
Título em português
Contribuições à análise de outliers em modelos de equações estruturais
Palavras-chave em português
AGFI
Estimador de Gnanadesikan-Kettenring Ortogonalizado
GFI
Índice Corrigido da Qualidade do Ajuste
Índice da Qualidade do Ajuste
Matrizes de Covariâncias Robustas
Modelo de Equações Estruturais
Outliers
Resumo em português
O Modelo de Equações Estruturais (MEE) é habitualmente ajustado para realizar uma análise confirmatória sobre as conjecturas de um pesquisador acerca do relacionamento entre as variáveis observadas e latentes de algum estudo. Na prática, a maneira mais recorrente de avaliar a qualidade das estimativas de um MEE é a partir de medidas que buscam mensurar o quanto a usual matriz de covariâncias clássicas ou ordinárias se distancia da matriz de covariâncias do modelo ajustado, ou a magnitude do afastamento entre as funções de discrepância do modelo hipotético e do modelo saturado. Entretanto, elas podem não captar problemas no ajuste quando há muitos parâmetros a estimar ou bastantes observações. A fim de detectar irregularidades no ajustamento resultantes do impacto provocado pela presença de outliers no conjunto de dados, este trabalho contemplou alguns indicadores conhecidos na literatura, como também considerou alterações no Índice da Qualidade do Ajuste (ou GFI, de Goodness-of-Fit Index) e no Índice Corrigido da Qualidade do Ajuste (ou AGFI, de Ajusted Goodness-of-Fit Index), ambos nas expressões para estimação de parâmetros pelo método de Máxima Verossimilhança, que consistiram em substituir a tradicional matriz de covariâncias pelas matrizes de covariâncias computadas com os seguintes estimadores: Elipsoide de Volume Mínimo, Covariância de Determinante Mínimo, S, MM e Gnanadesikan-Kettenring Ortogonalizado (GKO). Através de estudos de simulação sobre perturbações de desvio de simetria e excesso de curtose, em baixa e alta frações de contaminação, em diferentes tamanhos de amostra e quantidades de variáveis observadas afetadas, foi possível constatar que as propostas de modificação do GFI e do AGFI adaptadas pelo estimador GKO foram as únicas que conseguiram ser informativas em todas essas situações, devendo-se escolher a primeira ou a segunda respectivamente quando a quantidade de parâmetros a serem estimados é baixa ou elevada.
Título em inglês
Contributions to the analysis of outliers in structural equation models
Palavras-chave em inglês
Adjusted Goodness-of-Fit Index
AGFI
GFI
Goodness-of-Fit Index
Orthogonalized Gnanadesikan-Kettenring Estimator
Outliers
Robust Covariance Matrices
Structural Equation Model
Resumo em inglês
The Structural Equation Model (SEM) is usually set to perform a confirmatory analysis on the assumptions of a researcher about the relationship between the observed variables and the latent variables of such a study. In practice, the most iterant way of evaluating the quality of the estimates of a SEM comes either from procedures of measuring how distant the usual classic or ordinary covariance matrix is from the covariance matrix of the adjusted model, or from the magnitude of the hiatus in discrepancy functions of both the hypothetical model and the saturated model. Nevertheless, they may fail to capture problems in the adjustment in the occurrence of either several parameters to estimate or several observations. This study included indicators known in the literature in order to detect irregularities in the adjustment resulting from the impact caused by the presence of outliers in the data set. This study has also considered changes in both the Goodness-of-Fit Index (GFI) and the Adjusted Goodness-of-Fit Index (AGFI) in the expressions for parameter estimation by Maximum Likelihood method, which consisted in replacing the traditional covariance matrix by the robust covariance matrices computed through the following estimators: Minimum Volume Ellipsoid, Minimum Covariance Determinant, S, MM and Orthogonalized Gnanadesikan-Kettenring (OGK). Through simulation studies on disturbances of both symmetry deviations and excess kurtosis in both low and high fractions of contamination in different sample sizes and quantities of affected observed variables it has become clear that the proposals of modification of both the GFI and the AGFI adapted by the OGK estimator were the only ones able to be informative in all these situations. It must be considered that GFI or AGFI must be used when the number of parameters to be estimated is either low or high, respectively.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2013-06-26
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.