• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2007.tde-18072012-191725
Documento
Autor
Nome completo
Paulo Henrique de Souza Lima
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2007
Orientador
Banca examinadora
Fontes, Luiz Renato Goncalves (Presidente)
Machado, Fabio Prates
Vachkovskaia, Marina
Título em português
Convergência de modelos de armadilhas no hipercubo
Palavras-chave em português
envelhecimento
k-processo
limite de escala
modelo de armadilhas de Bouchaud
Resumo em português
Derivamos resultados para o Modelo de Armadilhas de Bouchaud no hipercubo a baixa temperatura. Este é um passeio aleatório simples simétrico em tempo contínuo que espera um tempo exponencial com taxa aleatória com distribuição no domínio de atração de uma lei estável de expoente menor do que 1. Os resultados recaem sobre o processo limite chamado K-processo, basicamente, um processo markoviano em um espaço de estados enumerável que entra em qualquer conjunto finito com distribuição uniforme.
Título em inglês
Convergence of trap models in the hypercube
Palavras-chave em inglês
aging
Bouchaud trap model
k-process
scaling limit
Resumo em inglês
We derive results for the Bouchaud trap model in the hypercube at low temperature. This is a continuous-time simple symmetric random walk on hypercube that waits a exponetial time with a random rate with distribution in the domain of attraction of a stable law of exponent lower than 1. The results arise to a scaling limit called k-process, roughly, a Markov process in a denumerable state space which enters finite sets with uniform distribution.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
dissertacao.pdf (688.17 Kbytes)
Data de Publicação
2014-09-30
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.