• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.45.2014.tde-18032015-170430
Documento
Autor
Nombre completo
José Javier Cerda Hernández
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2014
Director
Tribunal
Soukhov, Iouri Mikhailovich (Presidente)
Fontes, Luiz Renato Goncalves
Marchetti, Domingos Humberto Urbano
Proença, Rodrigo Bissacot
Zohren, Stefan
Título en inglés
Ising and Potts model coupled to Lorentzian triangulations
Resumen en inglés
The main objective of the present thesis is to investigate: What are the properties of the Ising and Potts model coupled to a CDT emsemble? For that objective, we used two methods: (1) transfer matrix formalism and Krein-Rutman theory. (2) FK representation of the q -state Potts model on CDTs and dual CDTs. Transfer matrix formalism permite us to obtain spectral properties of the transfer matrix using the Krein-Rutman theorem [KR48] on operators preserving the cone of positive func- tions. This yields results on convergence and asymptotic properties of the partition function and the Gibbs measure and allows us to determine regions in the parameter quarter-plane where the free energy converges. Second methods permite us to determine a region in the quadrant of parameters , > 0 where the critical curve for the classical model can be located. We also provide lower and upper bounds for the innite-volume free energy. Finally, using arguments of duality on graph theory and hight-T expansion we study the Potts model coupled to CDTs. This approach permite us to improve the results obtained for Ising model and obtain lower and upper bounds for the critical curve and free energy. Moreover, we obtain an approximation of the maximal eigenvalue of the transfer matrix at lower temperature.
Título en portugués
Modelos de Ising e Potts acoplados as triangulações de Lorentz
Palabras clave en portugués
Dinâmica de triangulações causais
Medida de Gibbs
Modelo de Ising
Modelo de Ising quântico
Modelo de Potts
Representação FK
Teorema de Krein-Rutman
Resumen en portugués
O objetivo principal da presente tese é pesquisar : Quais são as propriedades do modelo de Ising e Potts acoplado ao emsemble de CDT? Para estudar o modelo usamos dois métodos: (1) Matriz de transferência e Teorema de Krein-Rutman. (2) Representação FK para o modelo de Potts sobre CDT e dual de CDT. Matriz de transferência permite obter propriedades espectrais da Matriz de transferência utilizando o Teorema de Krein-Rutman [KR48] sobre operadores que conservam o cone de funções positivas. Também obtemos propriedades asintóticas da função de partição e das medidas de Gibbs. Esses propriedades permitem obter uma região onde a energia livre converge. O segundo método permite obter uma região onde a curva crítica do modelo pode estar localizada. Além disso, também obtemos uma cota superior e inferior para a energia livre a volume infinito. Finalmente, utilizando argumentos de dualidade em grafos e expansão em alta temperatura estudamos o modelo de Potts acoplado as triangulações causais. Essa abordagem permite generalizar o modelo, melhorar os resultados obtidos para o modelo de Ising e obter novas cotas, superior e inferior, para a energia livre e para a curva crítica. Além disso, obtemos uma aproximação do autovalor maximal do operador de transferência a baixa temperatura.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2015-03-19
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.