• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.45.2019.tde-17012020-155414
Documento
Autor
Nome completo
Johnatan Cardona Jiménez
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2019
Orientador
Banca examinadora
Fossaluza, Victor (Presidente)
Barrera, Junior
Jackowski, Marcel Parolin
Pinto Junior, Jony Arrais
Sato, João Ricardo
 
Título em inglês
Fully Bayesian modeling for fMRI group analysis
Resumo em inglês
Functional magnetic resonance imaging or functional MRI (fMRI) is a non-invasive way to assess brain activity by detecting changes associated with blood flow. In this thesis, we propose a fully Bayesian procedure to analyze fMRI data for individual and group stages. For the individual stage, we use a Matrix-Variate Dynamic Linear Model (MDLM), where the temporal dependence is modeled through the state parameters and the spatial dependence is modeled only locally, taking the nearest neighbors of each voxel location. For the group stage, we take advantage of the posterior distribution of the state parameters obtained at the individual stage and create a new posterior distribution that represents the updated beliefs for the group analysis. Since the posterior distribution for the state parameters is indexed by the time t, we propose three options for algorithms that allow on-line estimated curves for the state parameters to be drawn and posterior probabilities to be computed in order to assess brain activation for both individual and group stages. We illustrate our method through two practical examples and offer an assessment using real resting-state data to compute empirical false-positive brain activation rates. Finally, we make available the R package BayesDLMfMRI to perform task-based fMRI data analysis for individual and group stages using the method proposed in this thesis.
 
Título em português
Modelagem totalmente Bayesiana para análise de grupos com dados de fMRI
Palavras-chave em português
Análise Bayesiana
Integração de Monte Carlo
Modelos lineares dinâmicos
Resumo em português
Imagens de ressonância magnética funcional ou MRI funcional (fMRI) é uma forma não invasiva de avaliar a atividade cerebral através da detecção de mudanças relacionadas ao fluxo sanguíneo. Nesta tese propomos uma modelagem Bayesiana completa para analisar dados de fMRI para o caso individual e em grupos. Para a etapa individual, usamos a Modelo Linear Dinâmico Matriz-Variado (MLDMV), onde a dependência temporal é modelada através dos parâmetros de estado e a dependência espacial é modelada apenas localmente, considerando os vizinhos mais próximos de cada voxel. Para a fase de grupos, a partir da distribuição posterior dos parâmetros de estado obtidos no estágio individual criamos uma nova distribuição posterior que representam as crenças atualizadas para a análise de grupo. Como a distribuição posterior dos parâmetros de estado é indexada pelo tempo t, propomos três opções para algoritmos que permitem amostrar curvas estimadas dos parâmetros de estado e calcular probabilidades posteriores para avaliar a ativação cerebral para os estágios individual e de grupo. Ilustramos nosso método por meio de dois exemplos práticos e oferecemos uma avaliação usando dados reais de resting-state para calcular taxas empíricas de ativações falso-positivas. Finalmente, disponibilizamos um pacote de R (BayesDLMfMRI) para executar análises de dados de fMRI baseada em tarefas para etapas individuais e de grupo usandoo método proposto nesta tese.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2020-08-11
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.