• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.45.2012.tde-15082012-233258
Document
Author
Full name
Rafael Braz Azevedo Farias
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2012
Supervisor
Committee
Branco, Marcia D Elia (President)
Bolfarine, Heleno
Guzmán, Jorge Luis Bazán
Loschi, Rosângela Helena
Valle, Reinaldo Boris Arellano
Title in Portuguese
Modelos multivariados binários com funções de ligação assimétricas
Keywords in Portuguese
modelos binários
modelos elípticos-assimétricos
regressão multivariada
Abstract in Portuguese
Conjuntos de dados com respostas multivariadas aparecem frequentemente em pesquisas em que os dados são provenientes de questionários. Exemplos mais comuns são pesquisas de opinião, mais especificamente, pesquisas de marketing em que a preferência do consumidor em potencial é avaliado: pelo produto, marca, preço, praça, promoção e etc. Um tipo pesquisa de opinião que ganha grande destaque no Brasil de dois em dois anos são as pesquisas eleitorais de intenção de votos. Nós introduzimos nesta tese uma classe de modelos de regressão multivariados com funções de ligação assimétricas para o ajuste de conjuntos de dados com respostas multivariadas binárias. As funções de ligação consideradas são bastante flexíveis e robustas, contemplando funções de ligação simétricas como casos particulares. Devido a complexidade do modelo, nós discutimos a sua identificabilidade. A abordagem Bayesiana foi considerada e alguns algoritmos de Monte Carlo via Cadeia de Markov (MCMC) foram desenvolvidos. Nós descrevemos algumas ferramentas de seleção de modelos, os quais incluem o Critério de Informação da Deviance (DIC), a Pseudo-Verossimilhança Marginal e o Pseudo-Fator de Bayes. Adicionalmente, um estudo de simulação foi desenvolvido com dois objetivos; i) verificar a qualidade dos algoritmos desenvolvidos e ii) verificar a importância da escolha da função de ligação . No final da tese uma aplicação em um conjunto de dados real é considerada com o objetivo de ilustrar as metodologias e técnicas apresentadas.
Title in English
Multivariate binary regression models with asymmetric link functions
Keywords in English
binary models
multivariate regression models
skew-elliptical distributions
Abstract in English
Data sets with multivariate responses often appear in surveys where the data came from questionnaires. Opinion poll, sometimes simply referred to as a poll, are common examples of studies in which the responses are multivariate. One type poll that gain great prominence in Brazil in election years, is the survey of vote intent. However, despite the higher visibility of prognostic studies of election, opnion polls is a tool widely used to detect trends and positions of different social segments on various topics, be they political, social or governmental. We introduce in this work a class of multivariate regression models with asymmetric link functions to fit data sets with multivariate binary responses. The link functions here considered are quite flexible and robust, contemplating symmetrical link functions as special cases. Due to the complexity of the model, we discuss its identifiability. The Bayesian approach was considered and some Monte Carlo Markov Chain (MCMC) algorithms have been developed. Simulation studies have been developed with two objectives: i) verify the quality of the algorithms developed and ii) to verify the importance of choosing the link function. At the end of this work an application in a real data set is considered in order to illustrate the methodologies and techniques presented.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
teseRafaelFarias.pdf (1.89 Mbytes)
Publishing Date
2012-08-23
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.