• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2012.tde-14082012-123751
Document
Author
Full name
Gustavo Henrique de Araujo Pereira
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2012
Supervisor
Committee
Botter, Denise Aparecida (President)
Vasconcellos, Klaus Leite Pinto
Artes, Rinaldo
Ferrari, Silvia Lopes de Paula
Martinez, Raydonal Ospina
 
Title in Portuguese
Modelos de regressão beta inflacionados truncados
Keywords in Portuguese
cartão de crédito
estimador de máxima verossimilhança
modelos de regressão beta inflacionados truncados
modelos inflacionados
proporções
regressão beta
Abstract in Portuguese
Os modelos de regressão beta e beta inflacionados conseguem ajustar adequadamente grande parte das variáveis do tipo proporção. No entanto, esses modelos não são úteis quando a variável resposta não pode assumir valores no intervalo (0,c) e assume o valor c com probabilidade positiva. Variáveis relacionadas a algum tipo de pagamento limitado entre dois valores, quando estudadas em relação ao seu valor máximo, possuem essas características. Para ajustar essas variáveis, introduzimos a distribuição beta inflacionada truncada (BIZUT), que é uma mistura de uma distribuição beta com suporte no intervalo (c,1) e uma distribuição trinomial que assume os valores zero, um e c. Propomos ainda um modelo de regressão para as situações em que a variável resposta tem distribuição BIZUT. Admitimos que todos os parâmetros da distribuição podem variar em função de variáveis preditoras. Além disso, o modelo permite que o parâmetro conhecido c varie entre as unidades populacionais. Para esse modelo são desenvolvidos diversos aspectos inferenciais, são obtidos resultados para as situações em que c é variável e são conduzidos estudos de simulação de Monte Carlo. Além disso, discutimos análise de resíduos, desenvolvemos análise de influência local e realizamos uma aplicação a dados reais de cartão de crédito.
 
Title in English
The truncated inflated beta regression
Keywords in English
beta regression
credit card
inflated models
maximum likelihood estimator
proportions
truncated inflated beta regression
Abstract in English
The beta regression model or the inflated beta regression model may be a reasonable choice to fit a proportion in most situations. However, they do not fit well variables that do not assume values in the open interval (0,c), 0 < c < 1 and assume the c value with positive probability. Variables related to a kind of double bounded payment amount when studied as a proportion of the maximum payment amount have this feature. For these variables, we introduce the truncated inflated beta distribution (TBEINF). This proposed distribution is a mixture of the beta distribution bounded in the open interval (c,1) and a trinomial distribution that assumes the values zero, one and c. This work also proposes a regression model where the response variable is TBEINF distributed. The model allows all the unknown parameters of the conditional distribution of the response variable to be modeled as functions of explanatory variables. Moreover, the model allows nonconstant known parameter c across population units. For this model, some inferential aspects are developed, some results when c is not constant are obtained and Monte Carlo simulation studies are performed. In addition, residual and local influence analysis are discussed and an application to credit card data is presented.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
rbizut.pdf (1.34 Mbytes)
Publishing Date
2012-08-23
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.