
Long Short Time Memory in
the forecast of financial indices

in the Brazilian market (Ibovespa)

Marco Antonio Zavaleta Sanchez

Dissertation presented
to

the Institute of Mathematics and Statistics
of

the University of São Paulo
to

obtain the title
of

Master of Science

Program: Statistics
Advisor: Airlane Pereira Alencar

December - 2022

Long Short Time Memory in
the forecast of financial indices

in the Brazilian market (Ibovespa)

This is the original version of the dissertation prepared

by candidate Marco Antonio Zavaleta Sanchez,

as submitted to the Judging Commission

Judging Commission:

• Marcelo Lauretto - Escola de Artes, Ciências e Humanidades da

Universidade de São Paulo - EACH-USP

• Thelma Sáfadi - Unversidade Federal de Lavras - UFLA

Abstract

The present investigation seeks to evaluate different models of recurrent neural

networks such as Long Short-Term Memory (LSTM), Bidirectional Long Short-Term

Memory (BLSTM) and Gated Recurrent Units (GRU) in comparison with the

ARIMA model, whose purpose is to find which of these models is capable of

making a better forecast for the closing price of 5 steps forward in the stock index

of the Sao Paulo Stock Index (IBOVESPA). The optimization of the parameters

makes it possible to reduce the cost function (minimum square error). Based on 8

configurations with more than 720 simulations, we discovered that the ADAMAX

optimizer has performed better compared to the NADAM and ADAM optimizers,

presenting a lower cost function. In the simulations of the different configurations,

the average and the standard deviation of different models have been considered.

The GRU model with the ADAMAX optimizer was more efficient in more than

90% of the results obtained. The final configuration was the GRU model with a

batch size equal to 5, with 250 epochs, a learning ratio equal to 0.001 and with

30 neurons. This configuration presented a lower mean square error and therefore

better forecasts. Therefore, the LSTM and BLSTM models did not present a lower

cost function compared to the GRU model. Also, the ARIMA model did not have

an optimal result compared to recurrent neural network models..

Keywords. LSTM, Neural Network, ARIMA model, Ibovespa.

I

Resumo

A presente investigação busca avaliar diferentes modelos de redes neurais recorrentes

como Long Short-Term Memory (LSTM), Bidirecional Long Short-Term Memory

(BLSTM) e Gated Recurrent Units (GRU) em comparação com o modelo ARIMA,

cuja finalidade é determinar qual desses modelos é capaz de fazer uma melhor

previsão no preço de fechamento de 5 passos à frente no índice de ações da Bolsa

de Valores de São Paulo (IBOVESPA). A otimização dos parâmetros permite

reduzir a função custo, por isso, foram estudadas 8 configurações com mais de

720 simulações, descobrindo que o otimizador ADAMAX tem funcionado melhor

em relação aos demais otimizadores, apresentando uma função custo menor (erro

quadrado médio). Nas simulações das diferentes configurações, foram considerados

a média e o desvio padrão nos diferentes modelos. O modelo GRU com o otimizador

ADAMAX foi mais eficiente em mais de 90% dos resultados obtidos. A configuração

final foi o modelo GRU com tamanho de lote igual a 5, com 250 épocas, taxa

de aprendizado igual a 0,001 e com 30 neurônios. Essa configuração apresentou

um erro quadrático médio menor e, portanto, melhores previsões. Portanto, os

modelos LSTM e BLSTM não apresentaram menor custo função em comparação

com o modelo GRU. Além disso, o modelo ARIMA não teve um resultado ótimo

em comparação com modelos de redes neurais recorrentes.

Keywords. LSTM, Rede neural, modelo ARIMA, ibovespa.

I

Acknowledgements

I thank God for allowing me to move forward

to achieve my goals. . .

II

I dedicate this work to my dear son

Alexander, for your understanding

and affection during my absence. . .

III

Abreviation

ANN Holaaaa Artificial Neural Networks.

IA Holaaaa Artificial intelligence.

RNN Holaaaa Recurrent Neural Networks.

LSTM Holaaaa Long Short-Term Memory.

ML Holaaaa Machine Learning.

BLSTM Holaaaa Bidirectional Long Short-Term Memory..

BPTT Holaaaa Backpropagation through time.

RTRL Holaaaa Recurring real time learning.

MLP Holaaaa Multilayer Perceptron.

MSE Holaaaa Mean Square Error.

CEC Holaaaa Constant Error Carousel.

ARIMA Holaaaa Autoregressive Integrated Moving Average.

GRU Holaaaa Gated Recurrent Unit.

LR Holaaaa Learning rate.

IV

List of Symbols

η Holaa Learning rate of the network.

τ Holaa Time unit.

u Holaa Output of a unit.

Pre(u) Holaa Predecessors of u.

Suc(u) Holaa Successors of u.

yu Holaa Activation of u.

u, v, l, k Holaa Units of the network ∈ N .

W[u,v] Holaa The weight that connects the unit v to the unit u.

X[u,v] Holaa The input of a unit u coming from a unit v.

zu Holaa The weighted input of the unit u.

bu Holaa The bias of the unit u.

su Holaa The state of the unit u.

fu Holaa The squashing function of the unit u.

eu Holaa The error of the unit u.

ϑu Holaa The error signal of the unit u.

V

Contents

Abreviation IV

List of Symbols V

List of Tables IX

List of Figures XI

1 Introduction 1

2 Artificial neural networks 4

2.1 Introduction . 4

2.2 Feedforward Neural Networks (FFNN) 7

2.3 Backpropagation Neural Networks (BPNN) 8

2.4 Recurrent neural networks . 11

2.5 Training of recurrent neural networks 12

2.5.1 Backpropagation through time (BPTT) 13

2.5.2 Recurring real-time learning algorithm (RTRL) 16

2.6 Solving the Vanishing Error Problem 18

2.7 Bidirectional Recurrent Neural Networks 19

3 ARIMA Models 21

VI

CONTENTS VII

4 Long Short-Term Memory 25

4.1 Architecture LSTM . 25

4.2 Constant Error Carousel (CEC) . 26

4.3 Memory Blocks . 27

4.4 Backpropagation LSTM . 27

4.4.1 The Forward Pass . 27

4.4.2 Forget Gates . 29

4.4.3 Backward Pass . 29

4.5 Bidirectional LSTM . 30

4.6 Gated Recurrent Unit (GRU) . 30

5 Real data analysis 33

5.1 Introduction . 33

5.2 Financial index in the Brazilian market

(IBOVESPA) . 40

6 Conclusions 60

Bibliography 67

List of Tables

2.1 Analogy between biological and artificial neurons.Table extracted

from Daniel S. Yeung and Ng 2009. 6

5.1 Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size

=50, and 6000 epochs with 30 and 50 neurons and the estimated

MSE (×10−6) of the ARIMA model (5,2,0). 44

5.2 Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size

=20, and 2000 epochs with 30 and 50 neurons and the estimated

MSE (×10−6) of the ARIMA model (5,2,0). 46

5.3 Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size

=10, and 1000 epochs with 30 and 50 neurons and the estimated

MSE (×10−6) of the ARIMA model (5,2,0). 47

5.4 Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size

=5, and 1000 epochs with 30 and 50 neurons and the estimated

MSE (×10−6) of the ARIMA model (5,2,0). 49

VIII

LIST OF TABLES IX

5.5 Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size

=5, and 500 epochs with 30 and 50 neurons and the estimated MSE

(×10−6) of the ARIMA model (5,2,0). 51

5.6 Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size

=10, and 500 epochs with 30 and 50 neurons and the estimated

MSE (×10−6) of the ARIMA model (5,2,0). 53

5.7 Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size

=10, and 250 epochs with 30 and 50 neurons and the estimated

MSE (×10−6) of the ARIMA model (5,2,0). 54

5.8 Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size

=5, and 250 epochs with 30 and 50 neurons and the estimated MSE

(×10−6) of the ARIMA model (5,2,0). 56

5.9 Performance of the 3 best GRU models 58

5.10 Forecasts of the GRU Model for the next 5 days 58

List of Figures

2.1 Biological neurons. Figure of Daniel S. Yeung and Ng 2009 4

2.2 Perceptron. Figure of Staudemeyer and Morris 2019. 5

2.3 Folded RNN.Figure of Salehinejad et al. 2017 12

2.4 Unfolded RNN through time. Figure of Salehinejad et al. 2017 . . . 13

4.1 A standard LSTM memory block. The block contains (at least) one

cell with a recurrent self-connection (CEC) and weight of ’1’. The

state of the cell is denoted as sc. The internal cell state is calculated

by multiplying the result of the squashed input, g, by the result of

the input gate, yin, and then adding the state of the last time step,

sc(t− 1) Figure of Staudemeyer and Morris 2019 28

5.1 Daily IBOVESPA index from 2010 to 2019. 41

5.2 Daily IBOVESPA index from 2010 to 2019. 42

5.3 Sequence of real data and test data of the ARIMA, LSTM,

BLSTM and GRU models, with lr=0.001, batch size=20, number

of epochs=2000 with 30 neurons of the Ibovespa index in the period

of 21-12-2018 to 23-12-2019. 46

X

LIST OF FIGURES XI

5.4 Sequence of real data and test data of the ARIMA, LSTM, BLSTM

and GRU models, with lr=0.001, batch size=10, number of epochs

= 1000 and 30 neurons of the four models for the Ibovespa index in

the period from 21-12-2018 to 23-12-2019. 48

5.5 Sequence of real data and test data of the LSTM, BLSTM and GRU

models, with lr=0.001, batch size=5, number of epochs = 1000 and

30 neurons of the four models for the Ibovespa index in the period

from 21-12-2018 to 23-12-2019. 50

5.6 Sequence of the loss function of the training and validation group

according to the number of epochs 50

5.7 Sequence of real data and test data of the LSTM, BLSTM and GRU

models, with lr=0.001, batch size=5, number of epochs = 500 and

30 neurons of the four models for the Ibovespa index in the period

from 21-12-2018 to 23-12-2019. 52

5.8 Sequence of real data and test data of the LSTM, BLSTM and GRU

models, with lr=0.001, batch size=10, number of epochs = 500 and

30 neurons of the four models for the Ibovespa index in the period

from 21-12-2018 to 23-12-2019. 53

5.9 Sequence of real data and test data of the LSTM, BLSTM and GRU

models, with lr=0.001, batch size=10, number of epochs = 250 and

30 neurons of the four models for the Ibovespa index in the period

from 21-12-2018 to 23-12-2019. 55

5.10 Sequence of real data and test data of the LSTM, BLSTM and GRU

models, with lr=0.001, batch size=5, number of epochs = 250 and

30 neurons of the four models for the Ibovespa index in the period

from 21-12-2018 to 23-12-2019. 57

Chapter 1

Introduction

The Stock Exchange is a market that facilitates the trading of stocks, bonds and

securities. The operation of stock markets can reflect positively or negatively on the

economy of a country. The official Brazilian stock exchange is IBOVESPA, which

is negotiated by B3, which is one of the largest financial market infrastructure

companies in the world, whose objective is to provide a safe and efficient environment

for people and organizations (Castro et al. 2019).

Trading on the Ibovespa index is done electronically through indexed products

such as ETF - Equity, Ibovespa Futures, Ibovespa Mini Futures Option on Ibovespa,

etc. In addition, Ibovespa is the largest stock trading center in Latin America and

at the end of 2021, the B3 registered an increase of 1.5 million individual investors

in the capital market, a growth of 56% compared to the previous year (Alves 2019).

As we mentioned, there are several main alternatives to invest in the Stock

Market, one of the purposes being to value the assets of the financial market in

order to determine their future price. In other words, knowing or knowing how

an asset will behave in the future. For this, it is important to accept the premise

1

CHAPTER 1. INTRODUCTION 2

that the markets have trends and it is necessary to foresee this trend under certain

models that allow reducing risk.

To reduce the risk it is necessary to do a technical analysis focusing on the study

of market movements to determine the direction in which prices will move in the

market. Technical analysis plays a very important role in making economic or

other forecasts, where it is adaptable and applicable to any operating environment

and time frame. In this analysis, it is possible to evaluate the markets in active

and inactive periods, considering the absence or presence of trends. This analysis

is carried out to have an overview of all markets, since it is important to know the

price in the market since it gives valuable indications regarding the future direction

of another market (Murphy 2000).

From the appearance of autoregressive models to the appearance of computational

models, all of them make increasingly precise estimates to reduce risk in decision

making. Autoregressive models have been studied for many years and these

have a marked limitation since they are only applied in stationary series, later

the Generalized AutoRegressive Conditional Heteroscedasticity models (GARCH)

appeared. These models consider recent and historical observations, in the same

way this variance varies depending on the observations, that is, its future variance

depends on the historical variance with some variants that are capable of predicting

volatility in the short and medium term, with less error than the ARIMA models.

However, in the early 1970s, recurrent neural networks suitable for processing

sequential or time-series data were developed.

LSTM networks are a special type of RRN and were developed by Hochreiter

Schmidhuber in 1997. These types of networks are designed to handle long-term

CHAPTER 1. INTRODUCTION 3

dependency that traditional RNNs do not. This type of network produces quite

satisfactory results, however, over the years new models have been appearing with

more satisfactory results such as the GRU models among others.

Chapter 2

Artificial neural networks

2.1 Introduction

Artificial neural networks (ANN), or commonly called neural networks, are

successfully applied to various fields of human knowledge. Since the publication

by McCulloch and Pitts 1943, "A Logical Calculus of Ideas Immanent in

Nervous Activity", about the mathematical formalism of neuronal events and the

relationships between them, several theoretical studies have been developed about

the learning mechanism of biological neurons, which have served as inspiration for

the proposal of a computational model through the creation of artificial neurons

and artificial neural networks. Fig.2.1

Figure 2.1: Biological neurons. Figure of Daniel S. Yeung and Ng 2009

4

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 5

In 1958 Rosenblatt 1958 developed a hypothetical nervous system called

"Perceptron". This system was designed with some fundamental properties of

intelligent systems without considering certain special or unknown conditions that

occur in some biological organisms.

The most basic type of artificial neuron is called a perceptron. This neural

network contains a single input layer and an output node. The perceptron

expresses the working of a neural network in mathematical terms. In turn, it

follows a learning rule where it initially receives an input vector of real values,

whose values are weighted by a multiplier. In a pre-training step, the perceptron

learns these weights based on the training data. It then adds all the weighted

input values and fires a result value. This output value is always boolean, and it

is considered activated if the perceptron output is ’1’, deactivated if its value is

’-1’, considering that the threshold value is, in most cases, ’0’. Perceptrons consist

of several external input links, a threshold, and a single external output link.

Likewise, the perceptrons have an internal input b, called bias, which represents

the first weight of the neuron allowing the activation threshold of the perceptron

to be learned. The perceptron in its most basic form is shown in Figure 2.2

(Staudemeyer and Morris 2019).

Figure 2.2: Perceptron. Figure of Staudemeyer and Morris 2019.

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 6

The analogy between biological neurons and artificial neurons is shown in Table

2.1. Artificial neural networks are fairly simple models to represent brain models

at the cellular level, though they help to develop information processing models

(Daniel S. Yeung and Ng 2009).

Biological Neurons Artificial Neurons
Sum Sum + Activation Function
Dendrite Input
Axon Output
Synapse Weight

Table 2.1: Analogy between biological and artificial neurons.Table extracted from
Daniel S. Yeung and Ng 2009.

Artificial Neural Networks, as mentioned initially, will generate a structure

similar to biological neural networks. This analogy has the purpose of obtaining

a similar functionality. This artificial neural network considers that the nodes

are connected by means of synapses (weights). (Haykin 2001) These synaptic

connections are directional, therefore information can only travel in one direction.

Likewise, synaptic connections present a "Shallow network" that has an input

layer, an output layer and at least one hidden layer without recurrent connection.

Similarly, it should be noted that as the number of layers increases, the complexity

of the network also increases. Therefore, when a greater number of layers or

recurring connections are connected, the depth of the network often increases and

this allows providing multiple levels of data representation and resource extraction.

These networks are usually made up of simple nonlinear units, with upper layers

providing a more abstract representation of the data and removing particular

unwanted variability. (Salehinejad et al. 2017).

It is important to consider the architecture of the artificial neural network.

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 7

The architecture is thus called the topology that is the structure or pattern of

connection in a neural network. This topology consists of the organization and

arrangement of neurons in the network, forming layers or groups of neurons. An

artificial neural network comprises three types of layers: input layers, output

layers, and hidden layers. Therefore, taking into consideration certain concepts,

different architectures of neural networks can be established. When it is composed

of a single layer, it is called monolayer networks, if it is organized in several

layers, it is called multilayer networks. In addition, if we consider the data flow,

we can distinguish unidirectional networks (feedforward) and recurrent networks

(feedback) (Larranaga, Inza, and Moujahid 1997). Likewise, Sazli 2006, points

out that there are two main categories of network architectures according to the

type of connections between neurons, "feed-forward neural networks (FFNN)"

and "recurrent neural networks (RNN)". Before presenting the recurrent neural

networks, we present first the backpropagation training method.

In a neural network, the architecture is represented by the connection weight

matrix W = [wij], where wij indicates the weight of node i connected to node

j. When wij = 0, there is no connection between nodes i and j. However, by

defining some weights wij as zero, different network types are described than those

presented in the previous paragraph (Du and Swamy 2013).

2.2 Feedforward Neural Networks (FFNN)

The feedforward neural networks (FFNN), also called multilayer perceptrons (MLP)

consist of a group of neurons properly structured in one or several layers. In

addition, a neuron in a particular layer is connected to all or a subset of neurons in

the subsequent layer. The neurons in the input layer do not perform any processing

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 8

on the received data, but simply pass it on to the next layer. When input data is

placed in the input layer of an FFNN, it is passed to connected neurons that process

the inputs and generate the outputs. These networks allow only one directional

signal flow. (Iba and Noman 2020).

Feedforward neural networks do not have free loops and are fully connected.

This means that each neuron contribute as an input to each neuron in the following

layer. (Staudemeyer and Morris 2019).

2.3 Backpropagation Neural Networks (BPNN)

Backpropagation refers to a set of artificial neural networks (ANN), whose architecture

is composed of several interconnected layers (Buscema 1998), with bidirectional

connections. The most common learning technique for neural networks is the error

backpropagation algorithm, which relies on the gradient descent method to learn

weights in multilayer networks. This algorithm works in small iterative steps,

starting from the output layer back to the input layer. An important condition

is that the activation function of the neuron is differentiable.(Staudemeyer and

Morris 2019)

In feed-forward neural network, sets of neurons are ordered in layers, where

each neuron is calculated as a weighted sum of its inputs. This means that each

neuron contribute as an input to each neuron of the next layer, and that none of

the weights give an input to a neuron in a previous layer. The notation used is

from Staudemeyer and Morris 2019, who has unified the notation from the primary

concepts of neural networks to LSTM.

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 9

To model the external input received by the neural network, the external input

vector is the vector x = (x1, x2, ...xn). For each component of the external input

vector, we find a corresponding input unit that models it, so the output of the ith

input unit should be equal to the ith component of the input to the network. For

a non-input unit u ∈ U , the output of u (also called the activation of u), written

as yu, is a single value and is defined using the sigmoid activation function given

by the equation (2.1):

yu =
1

1 + e−su
(2.1)

where su is the state of the unit u and it is defined by the equation (2.2):

su = zu + bu (2.2)

where bu is called the bias of u, and zu is the weighted input of u, defined by

the equation (2.3):

zu =
∑
v

W[v,u]yv with v ∈ Pre(u) (2.3)

where yv = X[u,v] is the information that v passes as input to u, and Pre(u) is

the set of units v that precede u, containing all input units and hidden units that

provide their outputs yv.

Starting at the input layer, the inputs forward and backward propagate through

the network until they reach the output units at the output layer. So, the output

units produce an observable output (the output of the network) y. More precisely,

for the output units o ∈ O, its output yo corresponds to the oth component of

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 10

y. Then, the backpropagation learning algorithm propagates the error backwards,

and the weights and biases are updated in such a way to reduce the error in

the training sample. Starting from the output layer, the algorithm compares the

output of the network yo with the output of the desired target value do. Then the

error eo is calculated for each output neuron using some function that minimizes

the error. The error for each output neuron eo is calculated as eo = (do − yo) and

the overall network error is given by the equation (2.4):

E =
1

2

∑
o∈O

e2o. (2.4)

The update of the weights is given by the equation (2.5):

∆W[u, v] = −η
∂E

∂W[u, v]
, (2.5)

where η is the learning rate. Then we apply an artifice to calculate the update of

the weight by deriving the error with respect to the activation, and the activation

with respect to the state and the state with respect to the weights is

∆W[u, v] = −η
∂E

∂yu
· ∂yu
∂su

· ∂su
∂W[u, v]

.

For the output unit o, the error signal is defined by the equation (2.6):

ϑo =
∂E

∂yo

∂yo
∂so

. (2.6)

Therefore, the error of the ouputs units is represented by the equation (2.7):

ϑo = (do − yo)yo(1− yo). (2.7)

We can update the weight between the hidden unit h and the output unit o by

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 11

the equation (2.8):

∆W[u, v] = ηϑoyh. (2.8)

When we are in the hidden unit h, if we consider to what extent the production

error of a defective output contributed, we can backpropagate the error of the

output units to which h sends signals, with greater precision for an input unit i.

Therefore, we see that we can update the weight between the input unit i and the

hidden unit h by the equation (2.9):

∆W[i, h] = −η
∂E

∂W[i, h]
. (2.9)

This expression can be represented by the equation (2.10):

∆W[i, h] = η
∑
o

(ϑoW[h, o])yh(1− yh)yi. (2.10)

Therefore, the standardized expression for the change in each weight is the

equation (2.11):

∆W[v, u] = ηϑoyv (2.11)

2.4 Recurrent neural networks

Recurrent Neural Networks (RNN) are a type of neural network architecture that

is primarily used to detect patterns in a sequence of data.(Schmidt 2019).The

most basic way of a simple neural network is one that has three layers, one input

layer, a recurrent hidden layer and an output layer, which is shown in Figure 2.3

(Salehinejad et al. 2017).

In Figure 2.3, the input layer has N input units. The inputs to this layer

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 12

Figure 2.3: Folded RNN.Figure of Salehinejad et al. 2017

is a sequence of vectors through time t such as ...,xt−1,xt,xt+1, ..., where xt =

(x1, x2, ..., xN). These RNN units are fully connected to the hidden units in the

hidden layer, where the connections are defined with a weight matrix WIH . The

hidden layer has M hidden units ht = (h1, h2, ..., hM). These recurring connections

shown in Figure 2.4 present their structure unfolded through time T, where each

arrow shows the connection of the units between the layers. The hidden layer

defines the state space or "memory" of the system. Finally the output layer has

P units, where the output layer with weighted connections WHO are connected to

the hidden units (Salehinejad et al. 2017).

2.5 Training of recurrent neural networks

There are several approaches to train RNNs in order to optimize an algorithm that

accelerates convergence and decrease complexity in training algorithms (Sutskever

2013).

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 13

Figure 2.4: Unfolded RNN through time. Figure of Salehinejad et al. 2017

The most common methods to train recurrent neural networks are Backpropagation

Through Time (BPTT) and Real-Time Recurrent Learning (RTRL) (Staudemeyer

and Morris 2019).

2.5.1 Backpropagation through time (BPTT)

In procedures where learning converts a network that evolves through time into

a network whose activation flows through a series of layers, translating time into

space is called backpropagation through time or BPTT (Pearlmutter 1995).

The BPTT algorithm considers the fact that, during a finite period of time,

there is an FFNN with identical behavior for each RNN. To obtain this FFNN,

the RNN needs to be displayed in time. The unfolded network can be trained

using the backpropagation algorithm where at the end of a training sequence, the

network is deployed over time and the error is calculated for the output units with

existing target values using some error measure or cost function. The most used

error measures are the mean square error (MSE), the mean absolute error (MAE)

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 14

and the crossed entropy. This measure of the error propagates backward through

the network and the weight is updated for all calculated time steps. Likewise, the

error signal is then calculated for one unit for all time steps in a single pass, using

the following iterative backpropagation algorithm (Staudemeyer and Morris 2019).

Subsequently, it is considered discrete time steps 1, 2, 3... which is indexed by

the variable τ . The network starts at time t′ and run until one last time t. This

period of time between t′ and t is called an epoch.

In equation (2.3) we have the weights of the input of u and applying a function

that is normally not linear we can define the following.. Let U be the set of units

that are not input, and let fu be the differentiable nonlinear squashing function

of the unit u ∈ U , the output yu(τ) of u at the unit time τ is given by the

equation (2.12):

yu(τ) = fu(zu(τ)), (2.12)

with weighted input in the equation (2.13):

zu(τ + 1) =
∑
v

W[u,v]yv(τ) +
∑
i

W[u,i]yi(τ + 1). (2.13)

In equation (2.13) the inputs for u at time τ + 1 are of two types: the

environmental input that arrives at time τ + 1 through the input units, and the

recurring output of all the non-units of entry into the network produced at that

time τ . The cost function is the summed error Etotal(t
′, t) for the epoch t′, t′+1, ..., t

that we want to minimize using the learning algorithm and is defined by the

equation (2.14):

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 15

Etotal(t
′, t) =

t∑
τ=t′

E(τ), (2.14)

where E(τ) is given in the equation (2.15):

E(τ) =
1

2

∑
u∈U

(eu(τ))
2 (2.15)

and the error eu(τ) of the non-input unit u at time τ is defined by the

equation (2.16):

eu(τ) =

du(τ)− yu(τ) , if u ∈ T (τ)

0 , if otherwise.
(2.16)

.

In a similar way to equation (2.6) to adjust the weights we can define the signal

error ϑu(τ) of a non-input unit u at a time τ as follows in equation (2.17):

ϑu(τ) =
∂E(τ)

∂zu(τ)
(2.17)

after unrolling ϑu(τ) in time, we obtain the following equality shown in

equation (2.18):

ϑu(τ) =

f ′
u(zu(τ))eu(τ) , if τ = t

f ′
u(zu(τ))(

∑
k∈U W[k,u]ϑk(τ + 1)) , if t′ ≤ τ < t.

(2.18)

Then, the calculation of the update of the weights ∆W[u,v] of a recurring network

is done by adding the corresponding weight updates for all time steps shown in

equation (2.19):

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 16

∆W[u,v] = −η
∂Etotal(t

′, t)

∂W[u,v]

, (2.19)

where

∂Etotal(t
′, t)

∂W[u,v]

=
t∑

τ=t′

ϑu(τ)
∂z(τ)

∂W[u,v]

,

∂Etotal(t
′, t)

∂W[u,v]

=
t∑

τ=t′

ϑu(τ)X[u,v](τ).

2.5.2 Recurring real-time learning algorithm (RTRL)

In the RTRL algorithm, it considers the assumption that the weights do not

remain fixed along the trajectory, it allows the training in real time of behaviors

of indefinite duration in order to make weight changes while the network is in

operation (Williams and Zipser 1989).

The RTRL algorithm does not require error propagation. This algorithm has a

significant computational cost per update cycle considering that the information

stored is not local; that is, we consider an additional idea called sensitivity of the

output of a unit of the network k ∈ U and the time steps t′ ≤ τ ≤ t. (Staudemeyer

and Morris 2019)

In RTRL we assume the existence of a label dk(τ) at every time τ for every

non-input unit k, whose objective is to minimize the general error of the network,

which occurs in the time step τ by the equation (2.20):

E(τ) =
1

2

∑
k∈U

(dk(τ)− yk(τ))
2. (2.20)

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 17

Therefore, in equation (2.14) the gradient of the total error is also the sum of

the gradient for all previous time steps and the current time step which is shown

in equation (2.21):

∇WEtotal(t
′, t+ 1) = ∇WEtotal(t

′, t) +∇WEtotal(t+ 1). (2.21)

In the network time series, it is necessary to accumulate the gradient values at

each time step to follow the change of weights ∆W[u,v](τ) where the overall weight

change is given by the equation (2.22):

∆W[u,v] =
t∑

τ=t′+1

∆W[u,v](τ). (2.22)

For the change of weights it is necessary to calculate the expression (2.23):

∆W[u,v](τ) = −η
∂E(τ)

∂W[u,v]

. (2.23)

For each time step t and after expanding through the gradient descent and

applying equation (2.14), we find that the overall change in weights is given by

the equation (2.24):

∆W[u,v](τ) = −η
∑
k=U

(dk(τ)− yk(τ))

(
∂yk(τ)

∂W[u,v]

)
. (2.24)

In RTRL, the gradient information is forward-propagated. Using Equations

(2.12) and (2.13), the output yk(t + 1) at time step t + 1 is given by the

equation (2.25):

yk(t+ 1) = fk(zk(t+ 1)), (2.25)

with the weighted input is given by the equation (2.26):

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 18

zk(t+ 1) =
∑
v∈U

W[k,v]yv(t) +
∑
i∈I

W[k,i]yi(t+ 1). (2.26)

2.6 Solving the Vanishing Error Problem

In the theoretical analysis of the flow of errors with methods of recurrent learning

based on gradients, he had to overcome difficulties related to problems of long

delays by finding the problem of the disappearing gradient. Several models were

presented where the Long Short Term Memory(LSTM) model performed well on

long time delay problems involving 1000 step time delays (S. Hochreiter 1998).

As mentioned, the problem exists over many time steps, where the error usually

explodes or vanishing. Increased error signals lead directly to oscillating weights,

whereas with a vanishing error, learning takes an unacceptable amount of time or

does not work at all (Staudemeyer and Morris 2019).

The calculation of the gradients using the back-propagation algorithm for the

analysis of the fading error when we update the weights after the network has been

trained from time t′ to time t is given by the equation (2.27):

∆W[u,v] = −η
∂Etotal(t

′, t)

∂W[u,v]

, (2.27)

with

∂Etotal(t
′, t)

∂W[u,v]

=
t∑

τ=t′

ϑv(τ)X[u,v](τ). (2.28)

At an arbitrary time τ < t, where the back-propagated error signal of the unit

u is

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 19

ϑv(τ) = f ′
k(zu(τ))

(∑
u∈U

Wvuϑv(τ + 1)

)
. (2.29)

In consequence the Error flow scaling factor backpropagating is an error

occurring at an unit u at time step t to an unit v for t − t′ time steps, and it

is given by the equation (2.30):

∂ϑv(t
′)

∂ϑo(t)
=


f ′
k(zu(τ))W[o,v] , if t− t′ = 1

f ′
k(zu(τ))

(∑
u∈U

∂ϑv(t
′ + 1)

∂ϑo(t)
W[u,v]

)
, if t− t′ > 1.

(2.30)

In this scheme of analysis by (J. Hochreiter 1991), it is assumed that you

have a fully connected network whose non-input unit indices range from 1 to n

(S. Hochreiter and Schmidhuber 1997).

2.7 Bidirectional Recurrent Neural Networks

Recurrent bidirectional neural networks (or bidirectional RNNs) were invented to

overcome the limitations of RNNs (Schuster and Paliwal 1997).

In a bidirectional recurrent neural network (BRNN) can be trained without

limitation using all the input information available in the past and future of a

specific time frame.In BRNN, the main idea is to divide the state neurons of a

regular RNN into a part that is responsible for the positive time direction (forward

states) and a part for the negative time direction (backward states). The outputs

of the forward states are not connected to the inputs of the backward states and

vice versa. In BRNN it can be trained mainly with the same algorithms as a

unidirectional RNN because there are no interaction between the two types of

CHAPTER 2. ARTIFICIAL NEURAL NETWORKS 20

state neurons, and therefore it can be deployed in a general feedback network.

However, if the BPTT is used, the backward and forward step procedure is a bit

more complicated since updating the state and output neurons can no longer be

done one at a time (Schuster and Paliwal 1997).

Chapter 3

ARIMA Models

In the 1970s, George Box and Gwilym Jenkins, developed the well known

Box-Jenkins methodology (George E. P. Box and Liung 2016; Morettin and Toloi

2006) to fit the ARIMA (Autoregressive Integrated Moving Average) time series

models. A time series is a sequence of observations taken sequentially in time.

A stochastic process is a sequence of random variables, that can be indexed in

time. A stochastic process is known as weakly stationary, or stationary of second

order, if it presents constant mean, a finite variance, which is also constant for all

time points, and its covariance function may depend only on the lag. This latter

property means that the covariance of Zt and Zt−k, depends only on k.

For a stationary process Zt, t = 1, 2, . . ., the autoregressive and moving average

model (ARMA(p,q)) is defined as:

Zt = ϕ0 +

p∑
i=1

ϕiZt−i +

q∑
j=0

θjat−j + at, (3.1)

where at are non-correlated, zero mean, homoscedastic random variables, known

as white noise, ϕi is an autoregressive parameter, and θj is a moving average

parameter. In general, this model is fitted by the maximum likelihood method,

21

CHAPTER 3. ARIMA MODELS 22

assuming that the errors at are Gaussian. The methods to identify the autoregressive

and moving average orders (p and q) are well described in Morettin and Toloi

2006, along all the diagnostic analysis to check all the model assumptions and the

methods to calculate the forecasts and their corresponding confidence intervals.

For this model, the expected value E(Zt) = ϕ0

1−
∑p

i=1 ϕi
. From now on, we will

consider the centered variable Z̃t = Zt − E(Zt).

It is simpler to define the ARMA(p,q) model using the backshift operator B that

may be applied to any random variable Yt, where BYt = Yt−1, BkYt = Yt−k. Using

this notation and sending the autoregressive terms to the left side, the ARMA(p,q)

model may be written as

Z̃t −
p∑

i=1

ϕiZ̃t−i = at +

q∑
j=0

θjat−j

Z̃t −
p∑

i=1

ϕiB
iZ̃t = at +

q∑
j=0

θjB
jat,

(1−
p∑

i=1

ϕiB
i)Z̃t = (1 +

q∑
j=0

θjB
j)at,

Some time series are not stationary and may present some stochastic trend.

An extension of the ARMA model is the ARIMA(p,d,q) model, which consists

of calculating d differences of the original time series Zt until the series become

stationary. We may calculate one difference ∆Zt or two differences ∆2Zt using the

polynomial notation as

∆Zt = (1−B)Zt = Zt − Zt−1

∆2Zt = (1−B)2Zt = (1−B)(Zt − Zt−1) = Zt − Zt−1 − (Zt−1 − Zt−2) =

= Zt − 2Zt−1 + Zt−2.

CHAPTER 3. ARIMA MODELS 23

In general, it is necessary only one difference to obtain a stationary series, but

sometimes it is necessary to calculate the second difference.

After calculating d differences to achieve the stationarity, the ARIMA(p,d,q)

model may be defined as(
1−

p∑
i=1

ϕiB
i

)
(1−B)dZ̃t =

(
1 +

q∑
j=0

θjB
j

)
at,

where again at is a white noise sequence with constant variance σ2
a. This means

that after calculating d differences, the differenced process (1−B)dZt is stationary

and follows an ARMA(p,q) model. The maximum likelihood method is used to

estimate all parameters {ϕ0, ϕ1, . . . , ϕp, θ1, . . . , θq, σ
2
a}.

This ARIMA model is considered appropriate only after a complete residual

analysis, including:

• a residual plot to verify if the residual mean and variance are constant over

time;

• a residual correlogram and a Ljung-Box test (George E. P. Box and Ljung

2016) to check if the residuals are not correlated ; and

• a qq plot and a normality test to evaluate if the residuals follow a Gaussian

distribution.

The asymptotic variance of the maximum likelihood estimators may be obtained

using the information matrix, based on the hessian matrix of the conditional

log-likelihood function (details in Morettin and Toloi 2006).

For the process Zt, the ARIMA model may be used to calculate forecasts of

horizont h, ie for Zt+h. The forecasts may be obtained writing the model for Zt as

function of all lagged Zt−k, at and lagged errors at−1. To calculate the variance of

CHAPTER 3. ARIMA MODELS 24

forecasts, it is necessary to write the model depending only on at and the previous

errors and the variance depends on the coefficients of these errors. Assuming that

the errors follow a Gaussian distribution, it is possible to calculate the forecasts’

intervals. Details on obtaining forecasts, their variance and intervals may be found

in (Morettin and Toloi 2006).

An natural extension of the ARIMA model is the SARIMA model, that introduces

the seasonality including lagged observations and errors. For example, for monthly

data and seasonality of 12 months, the effects of Zt−12 and at−12 are also included

in the seasonal autoregressive polynomial and in the moving average polynomial.

Another important extension includes explanatory variables in the model. It

is like a regression model with errors ARMA(p,q), what can be called ARMAX

model. Details about this last model may be found for example in (Hyndman and

Athanasopoulos 2018) and (Shumway and Stoffer 2017).

Chapter 4

Long Short-Term Memory

The problem of the BPTT or RTRL algorithms when the error signals flow

backwards tend to explode or disappear. In the first case the explosion can lead to

oscillating weights and in the second case learning to overcome long delays takes

a prohibitive amount of time or does not work at all. According to (Hochreiter

1991) the temporal evolution of the backpropagated error depends exponentially

on the size of the weights. (S. Hochreiter and Schmidhuber 1997)

One solution to dealing with the disappearing error problem is the gradient-based

method called long short-term memory (LSTM). The LSTM can learn to overcome

minimal time delays of more than 1000 discrete time steps. This solution method

uses constant error carousels (CEC), which enforce a constant error stream within

special cells (Staudemeyer and Morris 2019).

4.1 Architecture LSTM

The architecture of LSTM networks consists of the grouping of subnets connected

on a recurring basis, called memory blocks. Each memory block contains one or

25

CHAPTER 4. LONG SHORT-TERM MEMORY 26

more self-connected cells and three multiplicative units: the entry gates (admits

new elements to memory), exit (allows creating the updated hidden state) and

forgetting (permit deleting elements from memory). Multiplicative gates allow

LSTM memory cells to store and access information for long periods of time, thus

mitigating the vanishing gradient problem (Graves 2012).

4.2 Constant Error Carousel (CEC)

When we want to preserve the error, meaning that it does not explode or vanish

in time, it is necessary to create an identity function in the squashing function fu

equating the weights that connect u with itself (Staudemeyer and Morris 2019).

The return flow of the local error of u in a single time step follows from equation

(2.19) and is given by:

ϑv(τ) = f ′
k(zu(τ))

(∑
u∈U

W[vu]ϑv(τ + 1)

)
. (4.1)

To ensure a constant error flow through the u unit, we need to have

f ′
u(zu(τ))W[u,u] = 1. (4.2)

Now integrating this expression, we obtain

fu(zu(τ)) =
zu(τ)

W[u,u]

. (4.3)

From this, it follows that fu must be linear and that the activation of u must

remain constant over time; therefore we have

yu(τ + 1) = fu(zu(τ + 1)) = fu(yu(τ + 1))W[u,u] = yu(τ). (4.4)

CHAPTER 4. LONG SHORT-TERM MEMORY 27

4.3 Memory Blocks

In defining the architecture of an LSTM network, the idea of memory block cells

was conceptualized. This block contains a memory cell and three multiplicative

gate units: the gate of input, output and forget. The purpose of the gates is to

prevent the rest of the network from changing the memory cell value in multiple

time stages. This is what allows the model to retain information for much longer

than in an RNN. In practice, memory blocks can have even more gates where

the input to the memory block is multiplied by the activation of the input gate,

then the output is multiplied by the exit gate, and the previous cell values are

multiplied. through the door of oblivion. It should be noted that the gates control

the flow of information into and out of the memory cell(Lewis 2017).Figure. 4.1

4.4 Backpropagation LSTM

4.4.1 The Forward Pass

The Forward pass is referred to the process of calculating the values of the output

layers of the input data, that is, it crosses all the neurons from the first to the last

layer. For this process, M is defined as the set of memory blocks, mc the c − th

memory cell in the memory block m and W[u;v] is a connection of the LSTM models,

each memory block m is associated with an input port inm and an output port

outm. The internal state of a memory cell mc in time τ +1 is updated according to

its state smc(τ) and according to the weighted input zmc(τ + 1) multiplied by the

activation of the input gate yinm(τ + 1) then we use the activation of the output

gate zoutm(τ + 1) to calculate the cell activation ymc(τ + 1) (Staudemeyer and

Morris 2019).

CHAPTER 4. LONG SHORT-TERM MEMORY 28

To calculate the activation yinm of the imput gate inm we have the following

expression:

yinm(τ + 1) = finm(zinm(τ + 1)) (4.5)

Figure 4.1: A standard LSTM memory block. The block contains (at least) one
cell with a recurrent self-connection (CEC) and weight of ’1’. The state of the cell
is denoted as sc. The internal cell state is calculated by multiplying the result of
the squashed input, g, by the result of the input gate, yin, and then adding the
state of the last time step, sc(t− 1) Figure of Staudemeyer and Morris 2019

CHAPTER 4. LONG SHORT-TERM MEMORY 29

4.4.2 Forget Gates

Unfortunately, the cell states sm tend to grow linearly during the progression of a

time series presented in a continuous input sequence. The main negative effect is

that the entire memory cell loses its memorising capability, and begins to function

like an ordinary RNN network neuron. To address this problem, proposed that

an adaptive forget gate could be attached to the self-connection. Forget gates can

learn to reset the internal state of the memory cell when the stored information is

no longer needed (Staudemeyer and Morris 2019).

To this end, we replace the weight ‘1.0’ of the self-connection from the CEC

with a multiplicative, forget gate activation yφ which is computed using a similar

method as for the other gates:

yφm(τ + 1) = fφm(zφm(τ + 1) + (bφm), (4.6)

where f is the squashing function from f(c) = 1
1+e(−s)

with a range [0, 1], bφm is

the bias of the forget gate, and

zφm(τ + 1) =
∑
u

W[φm,u]X[u,φm](τ + 1) with u ∈ Pre(φm)

=
∑
v∈U

W[φm,v]yv(τ) +
∑
i∈I

W[φm,i]yi(τ + 1)
(4.7)

4.4.3 Backward Pass

LSTM networks incorporate elements from both BPTT and RTRL. Thus, we split

units into two types: those units whose weight changes are calculated using a

variation of BPTT and those whose weight changes are calculated using a variation

of RTRL.(Staudemeyer and Morris 2019).

CHAPTER 4. LONG SHORT-TERM MEMORY 30

Using Equations (2.14) and (2.16), the overall network error at time step is

E =
1

2

∑
o∈O

(do(τ)− yo(τ))
2. (4.8)

4.5 Bidirectional LSTM

Bidirectional LSTM (BLSTM) networks have two independent recursive hidden

layers, these layers connect to the same input and output layers. This type of

networks use past and future information, this being an essential requirement

(Fernández, Graves, and Schmidhuber 2008). It must be kept in mind that these

networks have strict communication in the entire data sequence in any time step

t, and at the same time provide access in relation to the long-range bidirectional

aspect (Graves et al. 2007).

When we train bidirectional LSTM neural networks, they have architectural

superiority under unidirectional training if it is used to classify phonemes.Bidirectional

LSTM removes the one-step truncation originally present in LSTM, and implements

a full error gradient computing. (Staudemeyer and Morris 2019).

4.6 Gated Recurrent Unit (GRU)

As mentioned, the LSTM model is composed of the entrance gate, the exit gate

and the forgetting gate. This design allows processing the data of a time series.

The GRU model is a variant of the LSTM neural network where the structure

of the LSTM neurons is optimized and it combines the three activation units of

the LSTM into two activation units, which are the update gate and the reset

CHAPTER 4. LONG SHORT-TERM MEMORY 31

gate.(Wang et al. 2019). The GRU is a variant of the LSTM and reduces the

activation signals to those of the LSTM model (Dey and Salem 2017).

The Gated Recurrent Unit (GRU) architecture for RNN as an alternative to

LSTM. GRU has practically been found to outperform LSTM in almost all tasks,

with the exception of language modelling with naive initialization. Staudemeyer

and Morris 2019).

According to (Staudemeyer and Morris 2019), GRU units do not have a memory

cell, although they do have a reset gate and an update gate. Specifically, the H

makes up the set of GRU units,if u ∈ H, then we define the activation yresu(τ +1)

of the reset gate resu at time τ + 1 by

yresu(τ + 1) = fresu(sresu(τ + 1)), (4.9)

where fresu is the squashing function of the reset gate (usually a sigmoid function),

and sresu(τ + 1) is the state of the reset gate resu at time τ + 1, which is defined

by

sresu(τ + 1) = zresu(τ + 1) + bresu , (4.10)

with bresu is the bias of the reset gate, and zresu(τ +1) is the weighted input of the

reset gate at time τ + 1.

Similarly, we define the activation yupdu(τ +1) of the update gate updu at time

(τ + 1) by the equation (4.11)

yupdu(τ + 1) = fupdu(supdu(τ + 1)), (4.11)

CHAPTER 4. LONG SHORT-TERM MEMORY 32

where fupdu is the squashing function of the update gate (again, usually a sigmoid

function), and supdu(τ + 1) is the state of the update gate updu at time τ + 1,

defined by

supdu(τ + 1) = zupdu(τ + 1) + bupdu (4.12)

where bupdu is the bias of the update gate, and zupdu(τ + 1) is the weighted input

of the update gate at time τ + 1.

In the GRU model the reset and input ports work as normal units in a recurrent

network. The most important feature of the GRU model is the way the activation

of the GRU units is defined (Staudemeyer and Morris 2019).

Chapter 5

Real data analysis

5.1 Introduction

There is an extensive literature on the analysis of time series of financial data and

its application with a technical approach that allows analyzing the behavior of the

evolution of the data in a certain period of time, for future forecasts related to an

investment. The most used model for time series analysis is the Autoregressive

Integrated Moving Average (ARIMA).

In the financial market, it is well known that stock prices behave as a random

walk and it is not possible to forecast prices due to the non-arbitrage hypothesis.

But in our study, the ARIMA model is adopted to obtain naive forecasts for the

prices as a reference to evaluate the performance of all other methods. Likewise, in

recent decades other techniques such as machine learning and artificial intelligence

have been developed, particularly recurrent neural network models. In this section,

a comparative analysis of the ARIMA, LSTM (Unidirectional, Bidirectional) and

GRU models is carried out, which were developed in chapter 3 and chapter 4.

33

CHAPTER 5. REAL DATA ANALYSIS 34

From the perspective of deep learning, the computer learns from a program in

several steps and deep learning can be safely considered as the study of models that

involve a larger number of learned functions or learned concepts than traditional

machine learning. (Goodfellow, Bengio, and Courville 2016). In the case of neural

networks, there are several important issues associated with neural network setup,

preprocessing, and initialization. (Aggarwal 2018).

We are going to compare the results of the ARIMA, LSTM (Unidirectional,

Bidirectional) and GRU models considering different configurations of the hyperparameters.

For the construction of these configurations, it begins with the design of the

network topology and then the multiple hyperparameters that are included in

the training which established appropriately. Also, it should be considered that

these hyperparameters interact in a complex way (Galiano 2018)

• Neurons. From the computational point of view, the neuron is considered

as a node. The connections between neurons form a neural network

that implicitly represents knowledge, through the weights with which the

connections between neurons are modeled. The choice of the number of

neurons is taken into account minimizing the number of these to reduce

the computational load of training and use of additional neurons. Each

additional neuron adds unnecessary load to the CPU (or GPU).

• Learning rate. The learning rate allows you to control the size of the

updates that are made on the parameters of the model that are being

trained. A small value is usually chosen so that it does not cause convergence

problems. Likewise, the learning rate does not affect the computational time.

• Batch size. It is defined as batch training which allows defining how often

the weights are updated within each epoch. It should be noted that batch

learning guarantees the convergence of the learning algorithm as long as the

CHAPTER 5. REAL DATA ANALYSIS 35

learning rate η < 2, as long as the mean square error is used. Also, batch

training allows a formal analysis of the dynamic properties of the learning

process and its convergence.

• Number of epochs. It is the number of times the model is exposed to

the entire training dataset. This means that each sample in the training

dataset updates the parameters in the model internally. Therefore, this

hyperparameter defines the number of times the learning algorithm will run

on the training data.

• Optimization Algorithms. These algorithms involve an optimization

process whose purpose is to gradually decrease the learning rate used by

the descending gradient, that is, instead of using a fixed learning rate, η,

a variable learning rate is used, η(t), which decreases as the optimization

process based on the descending gradient progresses. Over the years, various

techniques for adaptive adjustment of learning rates have been developed.

The most common optimizers are presented below.

– AdaGrad (Adaptive Gradient). The AdaGrad algorithm accumulates

the sum of the squares of the gradients of the error function, for each

parameter of the network throughout the algorithm. This optimizer

may have certain desirable properties from a theoretical point of view,

however, the accumulation of squared gradients in the denominator may

give rise to an early decrease in effective learning rates.

– RMSPro. The Root Mean Square Propagation is a variant of the

adaptive learning rate gradient descent method, which is obtained

if the gradient is divided by a moving average of its magnitude.

The magnitude of the gradient can be very different for different

parameters of a neural network. The RMSprop algorithm only changes

CHAPTER 5. REAL DATA ANALYSIS 36

the AdaGrad gradient buildup to an exponentially smoothed moving

average.

– Adam (Adaptive Moment estimation). This optimizer is inspired

by the combination of AdaGrad and RMSprop. The method uses

the estimation of the first and second moments of the gradient using

exponential moving averages and then applies some bias correction.

This algorithm preserves two moving averages of the gradients:

m(t) = β1m(t− 1) + (1− β1)gt

v(t) = β2v(t− 1) + (1− β2)(gt)
2

where m(t) is an estimate of the first moment of the gradient (its mean)

and v(t) is an estimate of the second moment of the gradient (its

variance). The parameters that control the moving averages, β1 and

β2 , have values close to 1, eg β1 = 0.9 and β2 = 0.999. Adam is usually

considered quite robust with respect to the values of its hyperparameters

(η, β1 and β2), although sometimes we will have to manually adjust the

reference learning rate, η.

– AdaMax. The Adaptive Maximum method is a variant of the Adam

algorithm based on the infinite norm. Norms with large values tend

to be numerically unstable, hence we almost always use the L1 or L2

norms. However, the norm L∞, is also numerically stable. If we use

this norm, we can calculate the moving average.

CHAPTER 5. REAL DATA ANALYSIS 37

The algorithm is defined by the following set of iterations:

mt = β1mt−1 + (1− β1)gt

ut = max(β2mt−1, |gt|)

xt = xt−1 −
η

1− β1
t

mt

ut−1

– Nadam (Nesterov-accelerated adaptive moment estimation). This

optimizer uses the concept of the Nesterov moment. This type of

moment is based on correcting an error after it has been made and

helps to accelerate the convergence of the optimization algorithm

based on moments, offering a better rate of convergence in the

optimization of convex functions. Nesterov moments perform slightly

better than standard moments , although without providing asymptotic

improvements in the rate of convergence of the descending gradient.

∆x = −η
1√
v̂ + ϵ

(
β1m̂t +

(1− β1)gt
1− βt

1

)

Where:

m̂t =
mt

1−β1
t estimate of the first moment of the gradient (mean)

v̂t =
mt

1−β2
t estimation of the second moment of the gradient (variance)

After having established the hyperparameters, it is necessary to decide which is

the best model under the pre-established configurations and for this it is necessary

to consider one or more metrics to determine the best model. There is a set of

metrics that allow evaluating the quality of the model in time series forecasting

models. The three most used metrics according to (Botchkarev 2018) are the mean

square error (MSE) (or root MSE (RMSE)), mean absolute error (MAE) and mean

absolute percentage error (MAPE).

CHAPTER 5. REAL DATA ANALYSIS 38

From this group of metrics, the MSE has been considered as it better explains

the differences in the model’s performance. Also, the errors follow a normal

distribution and are not biased (Chai and Draxler 2014).

The MSE that will be presented after the application corresponds to the forecast

data set. Of equal importance, when executing the program code, the error of the

model is obtained for both the training set and the validation set, they are called

training loss and validation loss respectively. Also, we should mention that the

training loss is calculated during each epoch, but the validation loss is calculated

at the end of each epoch (Brownlee 2017).

It is important to define the loss function which is calculated by means of a cost

function and this should be a value as low as possible. This loss function seeks to

minimize the error and is calculated to the validation and test training group.

• Training Loss (loss).- The loss function on the training set is used to

evaluate how well a learning model fits the training data. That is, this

function evaluates the model error on this set.

• Validation Loss (val loss).-The loss function on the validation set is

used to evaluate the performance of a learning model on the validation set.

The validation set is a part of the data set reserved for validating model

performance.

It is important to indicate that the loss function is used to evaluate and diagnose

the optimization of the model and the metric is used to evaluate and choose a

certain model.

CHAPTER 5. REAL DATA ANALYSIS 39

After presenting the concepts related to hyperparametrics, metrics and loss

functions, we evaluate different methods and configurations for the forecast of the

main performance indicator of the shares traded on B3 (IBOVESPA). The study

of these models is to determine which of them has a better performance when

investing in shares in the financial market. The choice of the model will contribute

to the projections of the aforementioned index and at the same time minimize or

reduce the risk in investments.

To obtain the results of the different models, the code was developed in the

Python programming language using the pmdarima, Numpy, Pandas, Seaborn,

Matplotlib, Scikit-lear, Keras and Tensorflow libraries.

In most deep learning problems, computational algorithms that work at various

levels are used. Deep Learning models have a complex architecture and require a

large amount of data to train. For the execution of the simulations and working

only with a CPU it is unlikely that certain results will be obtained. Therefore, it

is convenient to use a hardware architecture with GPUs because if we work with

a complex network, it can take too long to train the networks, so it is necessary

to use a state-of-the-art computer. In this investigation we used a personal laptop

with relatively modern features, a Ryzen 7 5800H 8 cores and 16 threads with 32

GB of RAM and an NVIDIA RTX 3050Ti video card. This general consumption

card optimizes time when performing simulations.

For the adjustment in the learning of the neural network, it is necessary to

consider different architectures for the training of the network in search of an

optimal structure. (Lara-Benıtez, Carranza-Garcıa, and Riquelme 2021). For the

prediction of our target in the LSTM, BLSTM and GRU models, the following

CHAPTER 5. REAL DATA ANALYSIS 40

hyperparameters are considered:

• learning rate, which was fixed as lr=0.001 for all configurations;

• number of neurons can be 30 or 50 neurons;

• batch size, that considered as 5, 10, 20 and 60;

• number of epochs, which were 250, 500, 1000, 2000, and 6000.

Considering all combinations of these hyperparameters and optimizer, the

number of all configurations were 720, taking into account that 5 replications

of each configuration were made and the average of these was presented as the

final result of each determined configuration.

5.2 Financial index in the Brazilian market

(IBOVESPA)

Futures contracts are versatile and dynamic tools that have been used with some

effectiveness by investors seeking to benefit from fluctuations in asset prices. These

are basically traded in four main segments: interest rates, currencies, stock indices

and commodities. All contracts are standardized and listed in the stock market.

The IBOVESPA is the most important stock market index and tracks the

performance of around the 50 most liquid stocks traded on the São Paulo stock

market in Brazil, called B3. In short, this index is calculated based on the average

performance of the most traded shares on the official Brazilian Stock Exchange.

The IBOVESPA series analyzed here was obtained from the yahoo finance site and

corresponds to the daily index from January 2010 to December 2019.

CHAPTER 5. REAL DATA ANALYSIS 41

Figure 5.1 shows the IBOVESPA stock market index from January 2010 to

December 2019. In the period between January 2010 and the beginning of 2016,

the Ibovespa index shows a downward trend. In that period the prices were quite

irregular and the smallest drop was registered on December 26, 2016 with 37 947

points. As of that date, the index has exhibited a growing trend. However, from

February 26, with 87 653 points, the index was in decline until June 18 of the same

year, when it had its biggest drop with 69 815 points. Since then, the IBOVESPA

index has shown a growing trend. This analysis has been carried out until the end

of 2019 since with the appearance of COVID-19 it generated many changes and we

can find non-real results. However, we must point out that these models showed

quite satisfactory results.

Figure 5.1: Daily IBOVESPA index from 2010 to 2019.

Before starting the simulations under the different configurations, the database

must be prepared, taking into account the elimination of the missing data and

the partition of the data base. This partition is made into three groups, the first

training group that corresponds to 80% of the first observations (1972 observations)

from January 4, 2010 to December 20, 2017, this data for validation is used to

train the algorithm and the adjustment of the weights. The second, the validation

CHAPTER 5. REAL DATA ANALYSIS 42

data, which corresponds to 10% (246), starts on December 21, 2017 and ends on

December 20, 2018 and this second group is used to adjust the hyperparameters,

evaluate the accuracy of the algorithm with unknown data during training, and

check its performance. If the results are not satisfactory we can adjust the

hyperparameters of the algorithm and repeat the process again. Finally, the

last 10% (248 observations) whose period is between December 21, 2018 and

December 23, 2019 and corresponds to the Test group (see Figure 5.2). This

last set is similar to the validation set since the algorithm has not used it during

training. However, when we strive to improve the algorithm on the validation

data, we may unexpectedly introduce a bias that distorts the results in favor of

the validation group and does not reflect actual performance, since we use the

test alone. However, this procedure provides a more objective measurement, since

this data set is used to test the model after the training is finished. Therefore, it

provides a better performance of the metric in terms of accuracy and precision,

that is, a better performance of the model.

Figure 5.2: Daily IBOVESPA index from 2010 to 2019.

In the application of recurrent neural network models, it is essential to prepare

CHAPTER 5. REAL DATA ANALYSIS 43

the data before implementing the time series model (LSTM, BLSTM and GRU).

For the correct training of the networks it is necessary to normalize the three

groups of data in the interval between 0 and 1, where the minimum value is

subtracted and divided by the range of the series, this is achieved using the minmax

scale function of the scikit-learn library. Carrying out this procedure guarantees

better results in network training under the different configurations in the different

models. (Aggarwal 2018).

According to (Bao, Yue, and Rao 2017), there is no rule to select the number of

delays and hidden layers. Therefore, to obtain the least mean squared error in this

first configuration, we initialize with the same values considered in his investigation

where the learning rate, the batch size and the number of epochs are 0.001, 50 and

6000 respectively.

It is important to point out that the comparison of the mean square error

of both the ARIMA model and the LSTM, BLSTM and GRU models will be

carried out. The Python package Pdarima, allowed to calculate the estimation of

the parameters of the ARIMA(5,2,0) model. In the case of the neural network

models (LSTM, BLSTM and GRU), the combination of the ADAM, NADAM and

ADAMAX optimizers with 30 and 50 neurons has been considered. In the table

5.1, it shows the result of the average of the simulations of the neural network

models and in the case of the ARIMA(5,2,0) model, it only shows the results of a

single output.

In this first simulation under the mentioned configuration, the best average of

the MSE obtained in the GRU model was with the ADAMAX optimizer and 30

neurons, which is 406.1 ∗ 10−6.

CHAPTER 5. REAL DATA ANALYSIS 44

30 Neurons 50 Neurons
MSE Adam Nadam Adamax Adam Nadam Adamax

LSTM mean 10154 726 222 730 4645 1339
LSTM sd 800 11275 121 5400 293 1008
BLSTM mean 79284 248 743 749 60320 2963
BLSTM sd 176513 151 806 118023 129387 1080
GRU mean 1304 1234 406 666 1018 1461
GRU sd 775 712 496 155 514 719
ARIMA mean 9186 9186 9186 9186 9186 9186

Table 5.1: Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size =50, and 6000

epochs with 30 and 50 neurons and the estimated MSE (×10−6) of the ARIMA

model (5,2,0).

In the MSE estimation of the GRU model with 50 neurons, there were no

vanishing or blow-up problems, however, the MSE values are higher compared to

the same model with 30 neurons.

In the LSTM model, the lowest mean square error was with the ADAMAX

optimizer and 30 neurons whose value is 221.8 ∗ 10−6. However, in the first

and second simulations with the ADAM optimizer and 30 neurons, the gradients

blows-up, that is, became extremely large. Likewise, in the fourth simulation of this

configuration, the problem of gradient vanishing was presented. These scenarios

generated problems in the calculation of the MSE. Therefore it is not possible to

make a comparison, this configuration. In the case of the ADAMAX optimizer

with 50 neurons, no blows-up or vanishing problems were present, however, the

average MSE presented high values.

Finally, in the BLSTM model with 30 neurons and the NADAM optimizer, there

CHAPTER 5. REAL DATA ANALYSIS 45

were no problem in calculating the average of the MSE. However when we use the

ADAM optimizer one of the simulations presented the gradient blows-up problem

and the ADAMAX optimizer presented high values. Likewise, when 50 neurons

were considered in the configuration, it presented various problems with the three

optimizers, either due to fading problems, and blows-up or high values in the MSE.

This configuration has presented various problems in the neural network models,

therefore it is necessary to establish a new configuration in order to obtain a better

performance of the MSE.

Table 5.2 shows the second configuration for learning the networks where the

batch size is 20 and the number of epochs is 2000. This configuration did not

present any problems in any of the neural network models. The GRU model

performed better with the ADAMAX optimizer and 30 neurons with an average

MSE of 32.6 ∗ 10−6 and a standard deviation of 38 ∗ 10−6.

The LSTM model with the best performance was with the ADAMAX optimizer

and 30 neurons, with an average MSE of 64∗ 10−6 and a standard deviation of the

MSE of 34.6∗10−6. This model was superior to the LSTM model with 50 neurons.

Figure 5.3 shows that in this second configuration the LSTM BLSTM and

GRU models improve significantly and follow the historical behavior of the series,

likewise the ARIMA model does not compete in its performance with these models.

The graph shown shows that the models were trained with 30 neurons and a

learning rate of 0.001. These models have a good fit in the Test group, however,

another configuration will be considered to evaluate if the mean square error is

reduced.

CHAPTER 5. REAL DATA ANALYSIS 46

30 Neurons 50 Neurons
MSE Adam Nadam Adamax Adam Nadam Adamax

LSTM mean 228 402 64 611 874 221
LSTM sd 96 77 34 548 26 91
BLSTM mean 434 346 155 663 936 303
BLSTM sd 161 219 75 526 279 138
GRU mean 218 467 33 886 910 211
GRU sd 293 153 37 193 425 108
ARIMA mean 9186 9186 9186 9186 9186 9186
ARIMA sd 0 0 0 0 0 0

Table 5.2: Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size =20, and 2000

epochs with 30 and 50 neurons and the estimated MSE (×10−6) of the ARIMA

model (5,2,0).

Figure 5.3: Sequence of real data and test data of the ARIMA, LSTM, BLSTM
and GRU models, with lr=0.001, batch size=20, number of epochs=2000 with 30
neurons of the Ibovespa index in the period of 21-12-2018 to 23-12-2019.

Table 5.3 shows the results of the third configuration where the mean and

standard deviation of the MSE of all the neural network models showed an evident

decrease in the mean of the MSE compared to the previous configurations.

CHAPTER 5. REAL DATA ANALYSIS 47

30 Neurons 50 Neurons
MSE Adam Nadam Adamax Adam Nadam Adamax

LSTM mean 21 41 22 99 96 67
LSTM sd 20 38 16 37 32 52
BLSTM mean 71 100 59 112 116 38
BLSTM sd 14 39 42 33 53 18
GRU mean 18 11 12 19 28 14
GRU sd 12 4 9 9 39 7
ARIMA mean 9186 9186 9186 9186 9186 9186
ARIMA sd 0 0 0 0 0 0

Table 5.3: Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size =10, and 1000

epochs with 30 and 50 neurons and the estimated MSE (×10−6) of the ARIMA

model (5,2,0).

The lowest average of the MSE 10.5 ∗ 10−6 corresponds to the GRU model with

30 neurons and the NADAM optimizer. Likewise, the results of the simulations

were more homogeneous with a standard deviation of the MSE of 3.8. ∗ 10−6. On

the other hand, the LSTM networks had a better performance with the ADAMAX

optimizer and 30 neurons.

Finally, in this third configuration, the BLSTM networks also showed better

performance with the use of the ADAMAX optimizer and 50 neurons. The application

of this third configuration leads us to think that it is necessary to establish other

configurations to achieve better network performance. To achieve better network

performance, it is necessary to vary one or more hyperparameters in order to

optimize the low cost function in the shortest time possible under some other

configuration.

CHAPTER 5. REAL DATA ANALYSIS 48

Figure 5.4 shows the history of the IBOVESPA series, the predictions of the

ARIMA model and the predictions of the neural network models (LSTM, BLSTM

and GRU). It is observed that in this configuration, all the models of neural

networks follow the same behavior of the original series. In the same way, it

is observed that in the LSTM, BLTSM and GRU models they present a better

behavior and this is evidenced by superimposing the original series. However, it is

necessary to establish other configurations with a lower cost function.

Figure 5.4: Sequence of real data and test data of the ARIMA, LSTM, BLSTM
and GRU models, with lr=0.001, batch size=10, number of epochs = 1000 and 30
neurons of the four models for the Ibovespa index in the period from 21-12-2018
to 23-12-2019.

Table 5.4 presents the fourth configuration where the batch size, the number of

epochs and the learning rate were 5, 1000 and 0.001 respectively. The GRU model

with 30 neurons and the ADAMAX optimizer had the lowest average mean square

error (7.2∗10−6) and the lowest MSE standard deviation (5.4∗10−6). Likewise, in

the LSTM model with the ADAMAX optimizer and 30 neurons, the average mean

square error and standard deviation of the MSE also improved with 13.9 ∗ 10−6

CHAPTER 5. REAL DATA ANALYSIS 49

and 6.7 ∗ 10−6, respectively. Finally, the BLSTM model also improved, however,

it is still inferior to the other neural network models. In the BLSTM models, the

average root mean square error (16.9 ∗ 10−6) and standard deviation of the MSE

(2.5 ∗ 10−6) obtained are smaller when works with 50 neurons.

30 Neurons 50 Neurons
MSE Adam Nadam Adamax Adam Nadam Adamax

LSTM mean 27 21 14 46 38 20
LSTM sd 8 9 7 23 15 23
BLSTM mean 40 30 42 64 50 17
BLSTM sd 19 15 49 33 21 3
GRU mean 11 18 8 8 17 15
GRU sd 6 18 6 9 4 16
ARIMA mean 9186 9186 9186 9186 9186 9186
ARIMA sd 0 0 0 0 0 0

Table 5.4: Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size =5, and 1000

epochs with 30 and 50 neurons and the estimated MSE (×10−6) of the ARIMA

model (5,2,0).

Figure 5.5 shows the IBOVESPA series together with the predictions of the

LSTM, BLSTM and GRU and ARIMA models. According to the image shown,

it is observed that the ARIMA model shows a lower performance compared to

the recurrent neural network models. However, it is necessary to make other

configurations to establish if it is possible to obtain a better model for the calculation

of the forecasts.

It is important to evaluate how the modification of the hyperparameters generates

a decrease in the mean square error, Figure 5.6 shows the results that the loss

function of the training group converges in 444.84∗ 10−6. and the validation group

CHAPTER 5. REAL DATA ANALYSIS 50

Figure 5.5: Sequence of real data and test data of the LSTM, BLSTM and GRU
models, with lr=0.001, batch size=5, number of epochs = 1000 and 30 neurons of
the four models for the Ibovespa index in the period from 21-12-2018 to 23-12-2019.

converges to 3300 ∗ 10−6.

Figure 5.6: Sequence of the loss function of the training and validation group
according to the number of epochs

The evaluation of a fifth configuration considers reducing the number of epochs

while keeping the same the learning rate, the batch size of the optimizers and

CHAPTER 5. REAL DATA ANALYSIS 51

the number of neurons as indicated above. Table 5.5 shows the results of this

configuration. The GRU model had little improvement in 30-neuron configurations

as well as 50-neuron configurations with the ADAMAX optimizer. However, the

model performed better with 50 neurons calculating an average root mean square

error of 6.1∗10−6 and a standard deviation of the MSE of 3.9∗10−6, values slightly

lower than the model with 30 neurons. The BLSTM model performed better when

50 neurons and the NADAM optimizer were considered with an average mean

square error of 22.9 ∗ 10−6 and a standard deviation of the MSE of 6 ∗ 10−6..

Considering that the results of the fifth configuration and fourth configuration

were similar, it is necessary to search for a new configuration to minimize the cost

function.

30 Neurons 50 Neurons
MSE Adam Nadam Adamax Adam Nadam Adamax

LSTM mean 25 29 98 42 23 40
LSTM sd 13 38 53 41 12 23
BLSTM mean 32 36 31 30 23 31
BLSTM sd 24 25 30 18 6 18
GRU mean 21 19 7 19 9 6
GRU sd 20 20 4 15 6 4
ARIMA mean 9186 9186 9186 9186 9186 9186
ARIMA sd 0 0 0 0 0 0

Table 5.5: Estimation of the average of the MSE (×10−6) and SD of the MSE

(×10−6) of the LSTM, BLSTM and GRU models with batch size =5, and 500

epochs with 30 and 50 neurons and the estimated MSE (×10−6) of the ARIMA

model (5,2,0).

The series in Figure 5.5 and 5.7 are similar, however, this difference can be seen

in Tables 5.4 and5.5. Both models follow the same pattern of the historical series.

The sixth configuration shown in table 5.6 was made with a minimum variation

CHAPTER 5. REAL DATA ANALYSIS 52

Figure 5.7: Sequence of real data and test data of the LSTM, BLSTM and GRU
models, with lr=0.001, batch size=5, number of epochs = 500 and 30 neurons of
the four models for the Ibovespa index in the period from 21-12-2018 to 23-12-2019.

where the batch size = 10 and the same number of epochs = 500 was considered,

preserving the same hyperparameters established in the previous configurations.

The GRU model with 30 neurons and the ADAMAX optimizer presented a better

performance obtaining the average value of the mean square error of 5.8∗10−6 and

the standard deviation of the MSE of 4.8 ∗ 10−6. This model has calculated on

average the smallest mean squared error compared to the previous configurations.

The LSTM model did not exceed previous configurations. However, when we

consider 30 neurons and the ADAMAX optimizer, the average of the mean square

error was 16.7 ∗ 10−6 and the MSE standard deviation was 10.2 ∗ 10−6. Likewise,

the BLSTM model did not outperform previous configurations. However, when

considering 50 neurons and the ADAMAX optimizer, the average root mean square

error is 43.2 ∗ 10−6. and the standard deviation of the MSE is 11.1 ∗ 10−6.

Figure 5.8 presents the ARIMA, LSTM, BLSTM and GRU models and it

is observed that there is no clear difference in the LSTM, BLSTM and GRU

CHAPTER 5. REAL DATA ANALYSIS 53

30 Neurons 50 Neurons
MSE Adam Nadam Adamax Adam Nadam Adamax

LSTM mean 45 28 17 45 43 33
LSTM sd 44 25 10 25 26 17
BLSTM mean 61 72 46 46 50 43
BLSTM sd 66 86 46 43 33 43
GRU mean 11 20 6 14 11 15
GRU sd 4 20 5 8 7 7
ARIMA mean 9186 9186 9186 9186 9186 9186
ARIMA sd 0 0 0 0 0 0

Table 5.6: Estimation of the average of the MSE (×10−6) and SD of the MSE
(×10−6) of the LSTM, BLSTM and GRU models with batch size =10, and 500
epochs with 30 and 50 neurons and the estimated MSE (×10−6) of the ARIMA
model (5,2,0).

models and they follow the same historical behavior of the IBOVESPA series.

These configurations make a good fit and we can only distinguish these differences

through the mean square error.

Figure 5.8: Sequence of real data and test data of the LSTM, BLSTM and GRU
models, with lr=0.001, batch size=10, number of epochs = 500 and 30 neurons of
the four models for the Ibovespa index in the period from 21-12-2018 to 23-12-2019.

This seventh configuration shown in table 5.7 search to reduce the execution

CHAPTER 5. REAL DATA ANALYSIS 54

time and considers the same batch size of number = 10 but with a number of

epochs = 250, preserving the same hyperparameters established in the previous

configurations. . The GRU model in none of the configurations had a better

performance considering the designed combinations. The LSTM model obtained

the same mean square error 16.7*10-6 but a lower standard deviation of the MSE

with a value of 3.5 ∗ 10−6 and the NADAM optimizer. In the BLSTM model, it

was inferior to the other recurrent neural network models.

30 Neurons 50 Neurons
MSE Adam Nadam Adamax Adam Nadam Adamax

LSTM mean 21 40 22 66 16 17
LSTM sd 20 38 15 40 11 4
BLSTM mean 19 73 44 80 39 25
BLSTM sd 9 59 19 46 19 8
GRU mean 15 69 16 43 12 19
GRU sd 15 95 12 53 11 31
ARIMA mean 9186 9186 9186 9186 9186 9186
ARIMA sd 0 0 0 0 0 0

Table 5.7: Estimation of the average of the MSE (×10−6) and SD of the MSE
(×10−6) of the LSTM, BLSTM and GRU models with batch size =10, and 250
epochs with 30 and 50 neurons and the estimated MSE (×10−6) of the ARIMA
model (5,2,0).

In the execution of this seventh configuration in figure 5.9, the historical or

real data of the IBOVESPA series is observed together with the predictions of

the four models (ARIMA; LSTM, BLSTM and GRU) under study, where It is

observed that the predictions of the proposed models follow the same behavior

and, as mentioned, who shows the greatest displacement in the ARIMA model.

Therefore, as in figures 5.7 and 5.8, we state that to distinguish these differences

and determine the best model, it is necessary to see the smallest mean square error

(table 5.7).

CHAPTER 5. REAL DATA ANALYSIS 55

Figure 5.9: Sequence of real data and test data of the LSTM, BLSTM and GRU
models, with lr=0.001, batch size=10, number of epochs = 250 and 30 neurons of
the four models for the Ibovespa index in the period from 21-12-2018 to 23-12-2019.

According to the results found in the last two configurations, see table 5.6,and

table 5.7, there is not much difference in the values of the mean squared error

average. However, a final configuration will be calculated considering a smaller

number of epochs and batch size to evaluate if by reducing the execution time and

preserving the same hyperparameters established in previous configurations, the

performance of the considered cost function can be improved.

This last configuration shown in table 5.8, has considered reducing the number

of epochs to 250 and a batch size equal to 5. The GRU model with the ADAM

optimizer and 30 neurons improved its performance in comparison to the other

models of recurrent neural networks. However, it was slightly lower in mean square

error at the sixth configuration calculating the mean square error value at 6.2∗10−6

and a standard deviation of the MSE of 3.4∗10−6. The LSTM and BLSTM models

did not show an improvement in any of the preset configurations, on the contrary,

in some of the configurations they had a lower performance.

CHAPTER 5. REAL DATA ANALYSIS 56

30 Neurons 50 Neurons
MSE Adam Nadam Adamax Adam Nadam Adamax

LSTM mean 24 29 97 13 29 37
LSTM sd 13 38 53 7 39 9
BLSTM mean 19 73 44 80 39 25
BLSTM sd 9 59 19 46 19 8
GRU mean 15 69 16 43 12 19
GRU sd 15 95 12 53 11 31
ARIMA mean 9186 9186 9186 9186 9186 9186
ARIMA sd 0 0 0 0 0 0

Table 5.8: Estimation of the average of the MSE (×10−6) and SD of the MSE
(×10−6) of the LSTM, BLSTM and GRU models with batch size =5, and 250
epochs with 30 and 50 neurons and the estimated MSE (×10−6) of the ARIMA
model (5,2,0).

Figure 5.10 presents the ARIMA, LSTM, BLSTM and GRU models and, as in

figure 5.9, it is observed that there is no clear difference in these models. Likewise,

they maintain the same historical behavior of the IBOVESPA series. These neural

network configurations have a good fit and can only be distinguished through the

mean square error.

In the study of these models there are 3 configurations where the value of the

mean square error was smaller. The choice of these models corresponds to the

GRU model where there is a minimal difference between them. Table 5.9 shows

the 3 most relevant models of the research.

In one of the three resulting models, when we modify the dimensionality of

the output space, similar results are obtained. In this configuration with 50

neurons, it presented a mean square error similar to the previous ones. However,

we must choose one of these models and consider the convergence, dispersion and

CHAPTER 5. REAL DATA ANALYSIS 57

Figure 5.10: Sequence of real data and test data of the LSTM, BLSTM and GRU
models, with lr=0.001, batch size=5, number of epochs = 250 and 30 neurons of
the four models for the Ibovespa index in the period from 21-12-2018 to 23-12-2019.

execution time obtained in the simulations. The convergence of RNNs is an initial

and essential step towards their successful applications. In the choice of the 3

final models, they show the same convergence when executing the replicas in the

different groups where the loss function of the validation group in each of them

was 0.0033, where approximately 64 weight updates were needed to optimize The

learning. However, it can be thought that we would only need at most 100 epochs

but this is not entirely true since the number of epochs is related to the shape

of the data and when running 100, 150 and 200 epochs, the average error mean

square and standard deviation were higher in these configurations.

Below we show in Table 5.10 the percentage difference between the actual data

and the forecast data.

Taking into consideration the predictive capacity of these models, it is necessary

to remember that under these configurations it was possible to minimize the mean

CHAPTER 5. REAL DATA ANALYSIS 58

Holaaaaaaaaa GRUH Model
CFG 1 CFG 2 CFG 3

Opt. Adamax 0.001 0.001 0.001
Batch Size 5 5 10
Epochs 250 500 500
Neurons 30 50 30
Average MSE (×10−6) 6.2 6.1 5.8
SD MSE (×10−6) 3.4 3.9 4.8
Average time (secs.) 29.7 83.3 110.3

Table 5.9: Performance of the 3 best GRU models

square error in the predictors. Likewise, these configurations will minimize the

mean square error in the predictions or forecasts at any horizon.

Table 5.10 shows that the first forecast value is not always the one with the most

precision. It should be reminded that these methods, even though they provide

better forecasts than the ARIMA model or other forecasting techniques, they are

quite limited, for this reason new models are being explored to achieve a better

forecast in the results of a given problem.

Holaaaaaaaaaaaaa GRUH Model
Real Forcasts Difference %

Day 1 118573.00 115749.83 2.38
Day 2 117707.00 115652.14 1.75
Day 3 116878.00 115540.22 1.14
Day 4 116662.00 115434.55 1.05
Day 5 116247.00 115340.57 0.78

Table 5.10: Forecasts of the GRU Model for the next 5 days

The proposed final model and its prediction results generated certain concerns,

since we expect the first forecast value to have a lower percentage error between

the real value and the predicted value. However, this result did not occur and we

CHAPTER 5. REAL DATA ANALYSIS 59

found a slight decrease in the following days. These results did not improve with

increasing or decreasing the number of data.

Chapter 6

Conclusions

The present investigation seeks to evaluate different models of recurrent neural

networks (LSTM, BLSTM and GRU) in comparison to the ARIMA model, in

order to determine which model is capable of better forecasting the closing price

of 5 steps forward of the IBOVESPA stock market index. In the search to optimize

the weights of the parameters minimizing the loss function, we can affirm that the

ADAMAX optimizer has worked better compared to the other optimizers, since in

approximately 80% of the simulations it has presented a lower mean square error.

However, in the literature reviewed, most authors work with the ADAM optimizer.

This first conclusion leads us to think that it is necessary to work simultaneously

with other optimizers to reduce the risk and make better estimates in the forecasts.

In the review of articles and books, it was found that they mostly work with the

ADAM optimizer. This optimizer offers good results when it comes to improving

learning, however, when contrasting with other optimizers, it was found that there

is a difference between them. Therefore, we can conclude that of the group of

optimizers evaluated, the ADAMAX optimizer offers more satisfactory results in

the different configurations. These results were more stable and it is because when

60

CHAPTER 6. CONCLUSIONS 61

working with embedded models, this optimizer is superior.

It is important to keep in mind that from the fourth configuration the root

mean square error has decreased a minimal amount and it has been found that

there is not much difference in the following configurations. Likewise, it is possible

to evaluate other configurations where the proportionality between the batch size

and the number of neurons can be evaluated with the purpose of a faster training

of the neural network.

When estimating the adequate number of neurons, we try to avoid difficulties

and limitations in training, since considering a greater number of neurons increases

time and cost, therefore it is necessary to reduce the number of neurons to achieve

better performance in the training final model. The investigation showed that

in all configurations of the GRU model with 30 neurons they presented better

results than the GRU model with 50 neurons. On the other hand, the learning

algorithm of the training data runs less than 1000 epochs, this model has a better

performance than the LSTM and BLSTM models.

In the LSTM model of the different simulated configurations, the best performance

was shown with a batch size of 5 and 1000 epochs and 30 neurons. Likewise, the

BLSTM model presented better performance when considering a batch size of 5

and 500 epochs and 30 neurons. In conclusion, in all neural network models it

performed better when 30 neurons were considered, and the GRU model is better

than the LSTM and BLSTM models. However, models with better performance

have been obtained where the configuration simulation considers 50 neurons.

In neural network models we fix the learning rate, since the lower the learning

CHAPTER 6. CONCLUSIONS 62

rate, the more training epochs will be required. Initially, 0.01, 0.001 and 0.0001

were considered and after carrying out some simulations it was decided to set it

at 0.001 since it did not affect the computational time.

As previously mentioned, there are multiple hyperparameters for network training

and the batch size is the number of samples between updates of the model weights,

that is, it is used to balance the learning speed and computational efficiency. From

the different configurations executed, we can conclude that when the batch size

was reduced, performance improved and this is seen in the three GRU models

selected at the end of the simulations.

The backpropagation algorithm requires the training of the network for a

suitable and specific number of epochs in the training data set. The proper number

of epochs ensures that too many input patterns are not loaded into memory at

once in the optimization process. We can conclude that the GRU model does

not require a large number of epochs to achieve good performance in an attained

model.

Bibliography

[1] Charu C. Aggarwal. Neural Networks and Deep Learning. Ed. by Springer.

2018, 2018.

[2] C Alves. “B3 atinge 4,2 milhões de investidores pessoas físicas em renda

variável”. In: Brazilian Review of Finance 17.3 (2019), pp. 47–65.

[3] Wei Bao, Jun Yue, and Yulei Rao. “A deep learning framework for financial

time series using stacked autoencoders and long-short term memory”. In:

PloS one 12.7 (2017), e0180944.

[4] Alexei Botchkarev. “Performance metrics (error measures) in machine

learning regression, forecasting and prognostics: Properties and typology”.

In: arXiv preprint arXiv:1809.03006 (2018).

[5] Jason Brownlee. Redes Neuronales Deep Learning. Ed. by Independently

published. 2017, 2017.

[6] Massimo Buscema. “Back propagation neural networks”. In: Substance use

& misuse 33.2 (1998), pp. 233–270.

[7] F Henrique Castro et al. “Fifty-year History of the Ibovespa”. In: Brazilian

Review of Finance 17.3 (2019), pp. 47–65.

[8] Tianfeng Chai and Roland R Draxler. “Root mean square error (RMSE)

or mean absolute error (MAE)?–Arguments against avoiding RMSE in the

literature”. In: Geoscientific model development 7.3 (2014), pp. 1247–1250.

63

BIBLIOGRAPHY 64

[9] Daming Shi Daniel S. Yeung Ian Cloete and Wing W.Y. Ng. Sensitivity

Analysis for Neural Network. Ed. by Springer. 2009.

[10] Rahul Dey and Fathi M Salem. “Gate-variants of gated recurrent unit (GRU)

neural networks”. In: 2017 IEEE 60th international midwest symposium on

circuits and systems (MWSCAS). IEEE. 2017, pp. 1597–1600.

[11] Ke-Lin Du and Madisetti NS Swamy. Neural networks and statistical

learning. Springer Science & Business Media, 2013.

[12] Santiago Fernández, Alex Graves, and Jürgen Schmidhuber. “Phoneme recognition

in TIMIT with BLSTM-CTC”. In: arXiv preprint arXiv:0804.3269 (2008).

[13] Fernando Berzal Galiano. Long Short-Term Memory Networks With Python.

Ed. by Machine Learning Mastery. 2018, 2018.

[14] Gregory C. Reinsel George E. P. Box Gwilym M. Jenkins and Greta M.

Liung. Time series analysis : forecasting and control. Ed. by John Wiley

Sons. Fifth edition. 2016, 2016.

[15] Gregory C. Reinsel George E. P. Box Gwilym M. Jenkins and Greta M.

Ljung. Time series Analysis. Ed. by Wiley. Fifth edition. 2016, 2016.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning [pre-pub

version]. Ed. by MIT Press. 2016, 2016.

[17] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks.

Ed. by Springer. 2012, 2012.

[18] Alex Graves et al. “Unconstrained on-line handwriting recognition with

recurrent neural networks”. In: Advances in neural information processing

systems 20 (2007).

[19] Simon Haykin. Redes neurais: princıpios e prática. Bookman Editora, 2001.

BIBLIOGRAPHY 65

[20] J. Hochreiter. “Untersuchungen zu dynamischen neuronalen Netzen”. Diploma

thesis,Institut fur Informatik, Lehrstuhl Prof.Brauer,Technische Universitat

Munchen. www7.informatik.tu-muenchen.de/ hochreit., 1991.

[21] Sepp Hochreiter. “The vanishing gradient problem during learning recurrent

neural nets and problem solutions”. In: International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems 6.02 (1998), pp. 107–116.

[22] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:

Neural computation 9.8 (1997), pp. 1735–1780.

[23] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and

practice. Ed. by Amazon. Second edition. 2018, 2018.

[24] Hitoshi Iba and Nasimul Noman. Deep Neural Evolution: Deep Learning with

Evolutionary Computation. Ed. by Springer. 2020, 2020.

[25] Pedro Lara-Benıtez, Manuel Carranza-Garcıa, and José C Riquelme. “An

experimental review on deep learning architectures for time series forecasting”.

In: International journal of neural systems 31.03 (2021), p. 2130001.

[26] Pedro Larranaga, Inaki Inza, and Abdelmalik Moujahid. “Tema 8. redes

neuronales”. In: Redes Neuronales, U. del P. Vasco 12 (1997), p. 17.

[27] N.D Lewis. Deep Time Series Forecating with Python: An Intuitive Introduction

to Deep Learning for Applied Time Series Modeling. Ed. by Springer. 2016,

2017.

[28] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas

immanent in nervous activity. Bulletin of mathematical biophysics, vol. 5,

pp. 115–133”. In: Journal of Symbolic Logic 9.2 (1943).

[29] Pedro A. Morettin and Clélia M. C. Toloi. Análise de Séries Temporais.

Ed. by Blucher. Segunda edição. 2006, 2006.

BIBLIOGRAPHY 66

[30] John Murphy. Trading Strategies - John Murphy’S Ten Laws Of Technical

Trading. Ed. by Gestion 2000. Primera edição. 2000, 2000.

[31] Barak A Pearlmutter. “Gradient calculations for dynamic recurrent neural

networks: A survey”. In: IEEE Transactions on Neural networks 6.5 (1995),

pp. 1212–1228.

[32] Frank Rosenblatt. “The perceptron: a probabilistic model for information

storage and organization in the brain.” In: Psychological review 65.6 (1958),

p. 386.

[33] Hojjat Salehinejad et al. “Recent advances in recurrent neural networks”. In:

arXiv preprint arXiv:1801.01078 (2017).

[34] Murat H Sazli. “A brief review of feed-forward neural networks”. In:

Communications Faculty of Sciences University of Ankara Series A2-A3

Physical Sciences and Engineering 50.01 (2006).

[35] Robin M Schmidt. “Recurrent neural networks (rnns): A gentle introduction

and overview”. In: arXiv preprint arXiv:1912.05911 (2019).

[36] Mike Schuster and Kuldip K Paliwal. “Bidirectional recurrent neural networks”.

In: IEEE transactions on Signal Processing 45.11 (1997), pp. 2673–2681.

[37] Robert H. Shumway and David S. Stoffer. Time Series Analysis and Its

Applications. Ed. by Springer. Fourth Edition. 2017, 2017.

[38] Ralf C Staudemeyer and Eric Rothstein Morris. “Understanding LSTM–a

tutorial into Long Short-Term Memory Recurrent Neural Networks”. In:

arXiv preprint arXiv:1909.09586 (2019).

[39] Ilya Sutskever. Training recurrent neural networks. University of Toronto

Toronto, Canada, 2013.

BIBLIOGRAPHY 67

[40] Xin Wang et al. “OGRU: An optimized gated recurrent unit neural network”.

In: Journal of Physics: Conference Series. Vol. 1325. 1. IOP Publishing. 2019,

p. 012089.

[41] Ronald J. Williams and David Zipser. “A Learning Algorithm for Continually

Running Fully Recurrent Neural Networks”. In: Neural Computation 1.2

(June 1989), pp. 270–280. issn: 0899-7667. doi: 10 . 1162 / neco . 1989 .

1.2.270. eprint: https://direct.mit.edu/neco/article-pdf/1/2/270/

811849/neco.1989.1.2.270.pdf. url: https://doi.org/10.1162/neco.

1989.1.2.270.

https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://direct.mit.edu/neco/article-pdf/1/2/270/811849/neco.1989.1.2.270.pdf
https://direct.mit.edu/neco/article-pdf/1/2/270/811849/neco.1989.1.2.270.pdf
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270

	 Abreviation
	List of Symbols
	List of Tables
	List of Figures
	Introduction
	Artificial neural networks
	Introduction
	Feedforward Neural Networks (FFNN)
	Backpropagation Neural Networks (BPNN)
	Recurrent neural networks
	Training of recurrent neural networks
	Backpropagation through time (BPTT)
	Recurring real-time learning algorithm (RTRL)

	Solving the Vanishing Error Problem
	Bidirectional Recurrent Neural Networks

	ARIMA Models
	Long Short-Term Memory
	Architecture LSTM
	Constant Error Carousel (CEC)
	Memory Blocks
	Backpropagation LSTM
	The Forward Pass
	Forget Gates
	Backward Pass

	Bidirectional LSTM
	Gated Recurrent Unit (GRU)

	Real data analysis
	Introduction
	Financial index in the Brazilian market (IBOVESPA)

	Conclusions
	Bibliography

