• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.45.2020.tde-11082020-165440
Documento
Autor
Nome completo
Julia Faria Codas
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2020
Orientador
Banca examinadora
Abadi, Miguel Natalio (Presidente)
Gallo, Alexsandro Giacomo Grimbert
Mora, Erika Alejandra Rada
Título em inglês
Non-asymptotic exact distribution for hitting times
Palavras-chave em inglês
Hitting time
Recurrence relation
Resumo em inglês
The time elapsed until the first occurrence of an observable in a realization of a stochastic process is a classic object of study. It is a known result that the distribution of the hitting time, when properly rescaled, converges to an exponential law. In this work, we present the exact form of the distribution of the hitting time of a fixed finite sequence in an independent and identically distributed process, which is defined over a finite or countable alphabet. That is, we get the result that is not just asymptotic. We show that the exact distribution of the hitting time is a sum of exponentials. We prove that this sum has a dominant term and that the others converge to zero.
Título em português
Distribuição exata não assintótica de tempos de entrada
Palavras-chave em português
Relação de recorrência
Tempo de entrada
Resumo em português
O tempo decorrido até a primeira ocorrência de um observável em uma realização de um processo estocástico é um objeto de estudo clássico. É conhecido que a distribuição do tempo de entrada, quando reescalada adequadamente, converge para uma lei exponencial. Neste trabalho, apresentamos a forma exata da distribuição do tempo de entrada de uma sequência finita fixa em um processo independente e identicamente distribuído, e definido sobre um alfabeto finito ou enumerável. Isto é, obtemos o resultado que não é apenas assintótico. Mostramos que a distribuição exata do tempo de entrada é uma soma de exponenciais. Provamos que esta soma possui um termo dominante e que os demais convergem para zero.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
dissertacao.pdf (571.15 Kbytes)
Data de Publicação
2021-02-04
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.