• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.45.2020.tde-11032020-211635
Document
Auteur
Nom complet
Shu Wei Chou Chen
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2020
Directeur
Jury
Morettin, Pedro Alberto (Président)
Alencar, Airlane Pereira
Sáfadi, Thelma
Sato, João Ricardo
Souza, Reinaldo Castro de
Titre en anglais
Locally stationary processes with stable and tempered stable innovations
Mots-clés en anglais
Indirect inference
Locally stationary process
Stable distribution
Tempered stable distribution
Two-step estimation
Resumé en anglais
In the literature, the class of locally stationary processes assumes that there is a time-varying spectral representation, i.e. the existence of finite second moment. In this work, we first propose the stable locally stationary process by modifying the innovations into stable distributions, which has heavy tail, and the indirect inference to estimate this type of model. Due to the infinite variance, some of interesting properties such as time-varying autocorrelation cannot be defined. However, since the stable family of distributions, as a generalization of the Gaussian distribution, is closed under linear combination, which includes the possibility of handling asymmetry and thicker tails, the proposed model presents the same tail behavior throughout the time. We carry out simulations to study the performance of the indirect inference and compare it to the existing methodology, blocked Whittle estimation. When the process has stable innovations, the indirect inference presents more promising results than the existing methodology because of infinite variance. Next, we consider the locally stationary process with tempered stable innovations, whose center is similar to that of a stable distribution, but its tails are lighter (semi-heavy tail) and all moments are finite. We present some theoretical results of this model and propose a two-step estimation to estimate the parametric form of the model. Simulations suggest that the time-varying structure can be estimated well, but the parameters related to the innovation are biased for small time series length. However, the bias disappears when time series length increases. Finally, an empirical application is illustrated.
Titre en portugais
Processos localmente estacionários com inovações estáveis e estáveis temperadas
Mots-clés en portugais
Distribuição estável
Distribuição estável temperada
Estimação em dois passos
Inferência indireta
Processo localmente estacionário
Resumé en portugais
Na literatura, a classe dos processos localmente estacionários supõe que existe a representação espectral variando no tempo, i.e. a existência do segundo momento finito. Neste trabalho, propomos primeiro o processo localmente estacionário estável modificando as inovações em distribuição estável, a qual tem cauda pesada, e a inferência indireta para estimar este tipo de modelo. Devido à variância infinita, algumas propriedades interessantes como as autocorrelações variando no tempo não podem ser definidas. Contudo, como a família das distribuições estáveis, como uma generalização da distribuição Gaussiana, é fechada sob combinações lineares, na qual inclui a possibilidade de manipular assimetria e cauda mais pesada, o modelo proposto apresenta o mesmo comportamento de cauda ao longo do tempo. Simulações são feitas para estudar o desempenho da inferência indireta e para compará-lo com uma metodologia existente, estimação de Whittle em blocos. Quando o processo tem inovações estáveis, a inferência indireta apresenta resultados promissores que os métodos existentes porque o modelo tem variância infinita. Em seguida, consideramos o processo localmente estacionário com inovações estáveis temperadas, do qual o centro é similar ao caso estável, mas suas caudas são mais leves (cauda semi-pesada) e todos os seus momentos são finitos. Apresentamos alguns resultados teóricos desse modelo e propomos a estimação em dois passos para estimar a forma paramétrica do modelo. Simulações sugerem que a estrutura variando no tempo pode ser estimada satisfatoriamente, mas os parâmetros relacionados às inovações são viesados para séries temporais curtas. Porém, o viés desaparece quando o comprimento da série aumenta. Finalmente, uma aplicação empírica é ilustrada.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
thesis_final.pdf (2.44 Mbytes)
Date de Publication
2020-08-11
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.