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Abstract

ROJAS, W. G. Identifying jumps variations in high-frequency time series. 2018.
Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São
Paulo, 2018.
Stochastic models based on diffusions are often used to describe complex dynamical systems
in biology, engineering, finance, physics etc. However, these models, when applied in finance,
for example, do not take into account possible price jumps during a business session on a
stock exchange due to the arrival of market information. In diffusion models, price move-
ments are conditionally Gaussian, so large and sudden movements do not occur. On the
other hand, in practice, price jumps can give rise to substantial losses or gains. Therefore,
it is important to analyze the functional volatility for high frequency data, taking into ac-
count the presence of these jumps. This work consist of two parts. The first part refers to
detection of jumps in a time series using wavelets. The second part is devoted to studying a
test statistic of the Cramér-Von Mises type test statistic to identify variations in time series
jumps with high frequency data. The main result and contribution of this study shows that
the distribution function of the proposed test statistic follows approximately a gamma distri-
bution. This is of vital importance because it enables us to determine the critical region for
the rejection of the null hypothesis of interest. We observe better results in comparison with
the Kolmogorov-Smirnov (KS) test. Specifically, we show that the power and the error rate
of the test using Cramér-von Mises (Cv-M) statistic is better than those using the KS test
statistic, showing a higher detection power and lower error rate. We applied the proposed
test to three real data sets, namely, the stock returns of Google, Apple and Goldman Sachs
(GS), and found that the proposed test can capture the dynamics of the series.

Keywords: Itô semimartingale, Activity Jumps, Variation Jumps, Distribution function,
Cramér-von Mises.
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Resumo

ROJAS, W. G. Identificação de variações em séries de tempo com saltos em da-
dos de alta frequência. 2018. Tese (Doutorado) - Instituto de Matemática e Estatística,
Universidade de São Paulo, São Paulo, 2018.
Modelos estocásticos baseados em difusões são usados frequentemente para descrever sis-
temas dinâmicos complexos em biologia, engenharia, finanças, física etc. Contudo, esses
modelos, quando aplicados em finanças, por exemplo, não levam em conta possíveis saltos
nos preços durante uma sessão de negócios em uma bolsa de valores devido à chegada de
informações do mercado. Nos modelos de difusão, os movimentos dos preços são condicional-
mente gaussianos, portanto movimentos grandes e repentinos não ocorrem. Por outro lado,
nos modelos que incorporam saltos, estes podem dar origem a grandes perdas ou ganhos .
Torna-se importante, portanto, a análise da volatilidade funcional para dados de alta fre-
quência, levando-se em conta a presença desses saltos. Este trabalho consiste em duas partes.
A primeira parte refere-se à detecção de saltos em uma série temporal usando wavelets. A se-
gunda parte é dedicada ao estudo de uma estatística de teste do tipo Cramér-von Mises para
identificar variações em séries tempo com saltos em dados de alta freqüência. O principal
resultado e contribuição deste estudo mostra que a função de distribuição da estatística de
teste proposta segue aproximadamente uma distribuição Gamma. Isto é de vital importân-
cia porque permite determinar a região critica para a rejeição da hipotese nula de interesse.
Encontramos melhores resultados em comparação com o teste de Kolmogorov-Smirnov. Es-
pecificamente, mostramos que a taxa de erro e o poder do teste, usando a estatística de teste
Cramér-von Mises (Cv-M) é melhor do que a estatística de teste Kolmogorv-Smirnov (KS),
mostrando um alto poder de detecção e baixa taxa de erro. Aplicamos o teste proposto a três
conjuntos de dados reais, retornos da Google, Apple e Goldman Sachs (GS) e encontramos
que o teste proposto captura a dinâmica das series.

Palavras-chave: Itô semimartingal, Saltos, variação de saltos, função de distribuição, Cramér
von Mises.
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Chapter 1

Introduction

Stochastic models based on diffusions are often used to describe the complex dynamical
systems in biology, engineering, finance, and physics. However, these models, when applied
in finance, do not take into account possible price jumps during a business session on a stock
exchange due to the arrival of market information. In diffusion models, price movements are
conditionally Gaussian, so large and sudden movements do not occur. On the other hand,
in practice, price jumps can give rise to substantial losses or gains.

The volatility of financial time series has been treated in two ways. The first approach is
parametric and postulates a latent variable via conditional heteroscedastic models to describe
the volatility, such as the ARCH (Autoregressive Conditional Heterocedasticity) family mod-
els proposed by Engle (1982) and the stochastic volatility models. There is a huge literature
on this approach and for details, see, for example, Tsay (2005) or Morettin (2017). This
parametric approach is used mainly for low frequency data (daily, weekly, monthly) of finan-
cial asset returns. Recently, with the availability of intraday data (also called high-frequency
data), a second approach, which is nonparametric, was considered. The main motivation
for using the nonparametric approach is because parametric models often fail to adequately
capture the movements of intraday volatility (see Andersen and Labys (2003)).

A nonparametric approach consists of constructing the daily realized volatility (RV)
of a financial series using intraday returns, sampled at intervals ∆t, of the order of 5 or
15 minutes, for example. RV is obtained from sums of squares of intraday returns (see
Andersen and Labys (2003) and Barndorff-Nielsen and Shephard (2002)). Another method
is to construct the realized bi-power variance (RVBP), from the sums of cross products of
absolute adjacent, properly scaled returns (Barndorff-Nielsen and Shephard (2006)). For de-
tails, see Ait-Sahalia and Jacod (2014).

Fan and Wang (2008), Barndorff-Nielsen and Shephard (2006) and Ait-Sahalia and Jacod
(2009b) derived test statistics for detecting the existence of jumps. Other authors estab-
lished tests for the necessity of adding a Brownian force, see Ait-Sahalia and Jacod (2010),
Jing and Liu (2012b), Kong and Jing (2015), Todorov and Tauchen (2014) and Todorov
(2015). Ait-Sahalia and Jacod (2011) studied whether the jump component is of finite activ-
ity when the Brownian force is present. Recently, Kong (2017) studied whether it is necessary
to add an infinite variation jump term in addition to a continuous local martigale, using a
Kolmogorov-Smirnov type test statistic.

In recent years, marked efforts have been devoted to study the distribution function of
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2 INTRODUCTION 1.2

the jump test statistics. Csorgo and Faraway (1996) showed the exact and asymptotic distri-
bution of Cramér-von Mises statistic when the empirical distribution function is a uniform
distribution function. Todorov and Tauchen (2014) suggested using other measures of dis-
crepancy between distributions like the Cramér-von Mises test for the presence of diffusive
component in Xt.

However, finding the distribution function of a jump test statistic is not easy so that
numerical methods are often employed. In this study, we propose a new test statistic of the
modified Cramér-von Mises type.
This work consists of two parts. The first part refers to the detection of jumps in a time
series using wavelets. The second part is devoted to studying a Cramer-von Mises type test
statistic to identify variations in time series jumps with high frequency data.

1.1 Setup 1
Stochastic models based on diffusions are often used to describe complex dynamical systems
as stated above. It follows that there is a growing demand for the development of inferential
methods for these models, for example (Prakasa Rao (1999)).

The problem to consider is

• detect the jumps in the trajectories described by a process of diffusion with jumps,
which can be done by methods that use wavelets (Wang (1995)).

A diffusion process with jumps has the form

Xt = X0 +

∫ t

0

µ̃sds+

∫ t

0

σ̃sdWs +
Nt∑
i=1

Zi, (1.1)

where the second term corresponds to drift, the third to the diffusion, and the fourth to
the jumps of Xt. Here, Nt is a counting process (Poisson, for example), that represents the
number of jumps between 0 and t, Zi represents the size of the "i"-th jump andWs represents
a Wiener process. The log-prices of (1.1) has a quadratic variation

[X,X]t =

∫ t

0

σ̃sdWs+
Nt∑
i=1

Z2
i ,

with two parts: integrated volatility and variation of jumps,

Θ =

∫ t

0

σ̃sdWs, Φ =
Nt∑
i=1

Z2
i .

One purpose is:

• detect jumps and estimate Θ and Φ. For this, we can use techniques via wavelets,
presented by Wang (1995) and Raimondo (1998), techniques for estimating jumps
by Fan and Wang (2007) and the development by Muller and Stadtmuller (2011) for
diffusions.
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1.2 Setup 2
Let (Ω, Ft, F, P ) be a filtered probability space. The standard jump-diffusion model used

for modeling many stochastic processes is an Itô semimartingale given by the following
differential equation:

dXt = αtdt+ σtdWt + dZt, (1.2)

where αt and σt are processes with cadlag paths, Wt is a standard Brownian motion, and
Zt is an Itô semimartingale process of pure-jump type. Todorov and Tauchen (2014) pro-
vide a formal setup and assumptions. They generalize the setup (1.2) to accommodate the
alternative hypothesis in which Xt can be of pure-jump type. Itô semimartingale plays an
important role in stochastic calculus and we make the following assumption:

Assumption 1. Suppose that Yt follows a non-parametric volatility model:

Yt = Xt + εt, t ∈ [0, 1], (1.3)

in which Xt is a continuous Itô semimartingale, that is,

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs + Zt, (1.4)

where
∫ t

0
bsds is the drift term and cadlag process,

∫ t
0
σsdWs is a continuous local martingale

with σs being an adapted process, Ws is a standard Brownian motion, and Zt is a skewed
β-stable Lévy process.

Kong (2017) for the first time provided a theoretical test for the presence of infinite
variation jumps in the simultaneous presence of a diffusion term and a jump component
of finite variation and established the asymptotic theory of the empirical distribution of
the "devolatilized" increments of Itô semimartingales with infinitely active or even infinite
variation jumps. To estimate the volatility, he uses the local method and splits the interval
into non-overlapping shrinking blocks consisting of 2kn intervals of length ∆n, where kn is
some integer depending on n. Here ∆n

iX = Xti − Xti−1
denote the ith one-step increment

for 1 ≤ i ≤ n. The local estimate of σ2
j = σ2jkn∆n is

σ̂2
j (u) = cj(u)− 1

u2kn
(sinh(u2cj(u)))2, (1.5)

where

cj(u) = − 1

u2
log

(
Lj(u) ∨ c√

kn

)
, 0 ≤ j ≤ bn/(2kn)c − 1,

Lj(u) =
1

kn

kn∑
l=1

cos

(
u

∆n
2jkn+2lX −∆n

2jkn+2l−1X√
∆n

)
,

where the subtracted term in (1.5) is used to correct the bias due to the jumps, a ∨ b =
max(a, b), the lower threshold c√

kn
in cj(u) with constant c is to assure that the logarithmic

function is well-defined, and bmc denotes the integer part of m.

There are other methods to estimate the spot volatility. See, for instance, Todorov and Tauchen
(2014) and Fan and Wang (2007). The major advantage of this Laplace-transform-based lo-
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cal estimator is that it can easily separate the effect of the Brownian force and the stable-like
driving force. For properly chosen mn and un the empirical distribution function of the de-
volatilized increments is defined as

F̂n(un, τ) =
1

bn/2kncmn

[n/2kn]∑
j=1

2jkn+mn∑
i=2jkn+1

I

 ∆n
iX√

σ̂2
j (un)∆n

≤ τ

 , (1.6)

for τ ∈ R, for details, see Kong (2017). Furthermore, the author defines the empirical process
as

Ŷn(τ) =
√
bn/2kncmn(F̂n(un, τ)− Φ(τ)), (1.7)

where Φ(τ) denotes the c.d.f. of a standard normal random variable.

In this thesis, we consider the following hypotheses

H0 : ∆n
iX ∼ standard normal model;

H1 : ∆n
iX ∼ jump-diffusion model.

Along the work, we assume that the available data set {Xtj ; 0 ≤ j ≤ n} which are discretely
sampled from X, and are equally spaced in the fixed interval [0, T ], i.e, tj = j∆n with
∆n = T/n for 0 ≤ j ≤ n.

Our aim is to show that the Cramer-Von Mises statistic to be defined in Section (1.3.2)
has better properties in terms of size and power compared to the Kolmogorov Smirnov test.

1.3 Basic concepts

1.3.1 Wavelets

Wavelets are functions that satisfy certain properties. They can be smooth or not and
can have simple mathematical expressions or not. Before starting the basic ideas about the
wavelets, we will make some comments in relation to the analogies and differences between
two analyses, fourier and wavelets. An analogy is that given an integrable square function,
it can be written as a edge overlay of sines and cosines or wavelets. The difference is that
the functions of a base of wavelets are indexed by two parameters, whereas on the basis of
Fourier we have a single parameter, λ, which has the physical interpretation of frequency
(see Morettin (2014)).

By analogy with Fourier analysis, consider the space L2(R) of all measurable square func-
tions integrable on R. Here, the functions f(t) must fall to zero, when |t| → ∞. Therefore,
the exponentials do not belong to this space.

The ψ and ψj,k functions satisfy certain properties, as follows:

•
∫∞
−∞ ψ(t)dt = 0 (Admissibility).

•
∫∞
−∞ |ψ(t)|dt <∞.

• cψ =
∫∞
−∞

|Ψ(ω)|2
|ω| dω < ∞, where Ψ(ω) is the Fourier transform of ψ(t). A required

condition for cψ assert is that Ψ(0) = 0, which is equivalent to the admissibility
property.
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•
∫∞
−∞ |ψ(t)|2dt = 1 or

∫∞
−∞ |Ψ(ω)|2dω = 2π. The first r − 1 moments of ψ cancel out,

that is,
∫∞
−∞ t

jψ(t)dt = 0, j = 0, 1, . . . , r − 1, for some r ≥ 1 and
∫∞
−∞ |t

rψ(t)|dt <∞.

The value of r is linked to the degree of smoothness (regularity) of ψ: The higher r, the
smoother will be ψ. Some wavelets have compact support, as we will see below, which is a
desirable property and have to do with the fact that the wavelets are localized in time. Not
all wavelets generate orthogonal systems, for example the Mexican hat, also defined below.
In the case of wavelets with compact support, the value of r is also related to the wavelet
support. We will see that one way to generate wavelets is by the scale function, or father
wavelet, φ, which is a solution of equation

φ(t) =
√

2
∑
k

lkφ(2t− k). (1.8)

This function generates an orthonormal family in L2(R),

φj,k(t) = 2j/2φ(2jt− k), j, k ∈ Z, Z = {0,±1,±2, . . .}. (1.9)

Under this conditions, ψ can be obtained from φ by

ψ(t) =
√

2
∑
k

hkφ(2t− k), (1.10)

where hk = (−1)kl1−k is called quadrature mirror relation. As a matter of fact, lk and hk are
low-pass and high-pass filter coefficients, respectively, used to calculate the discrete wavelet
transform. These coefficients are given by

lk =
√

2

∫ ∞
−∞

φ(t)φ(2t− k)dt, (1.11)

hk =
√

2

∫ ∞
−∞

ψ(t)φ(2t− k)dt. (1.12)

Equations (1.8) and (1.10) are called expansion equations. The φ wavelets generate cer-
tain subspaces of a multiresolution analysis, for details see Morettin (2014).

It can be shown that
∑

k lk =
√

2,
∑

k hk = 0,
∑

k l
2
k = 1 and

∑
k lkhk−2m = 1 if m = 0,

and equal to zero, otherwise. It is convenient, then, to consider the orthonormal system

{φj0,k(t), ψj,k, j, k ∈ Z, j ≥ j0} (1.13)

so that we can write, for f(t) ∈ L2(R),

f(t) =
∑
k

cj0,kφj0,k(t) +
∑
j≥j0

∑
k

dj,kψj,k(t), (1.14)

in which

cj0,k =

∫ ∞
−∞

f(t)φj0,kdt, (1.15)



6 INTRODUCTION 1.4

dj,k =

∫ ∞
−∞

f(t)ψj,kdt. (1.16)

In (1.14), j0 is the lowest resolution scale (coarsest scale).

1.4 Organization
The rest of the work is organized as follows.

• Chapter 2 is dedicated to study the functional volatility. First, we introduce some
properties to be able to show the asymptotic value of the jump term in the stochastic
differential equation. Second, we present a method of detection of jump, already exist-
ing and its respective estimation. We use Holder’s inequality to prove that |TJ(a, t)|
is bounded.

• Chapter 3 is devoted to presenting the empirical cumulative distribution function
and estimator for the volatility. Specifically, we used the local estimator proposed by
Todorov and Tauchen (2014) to estimate σ2

t . We present two functions of cumulative
distribution with their respective estimators for the variance and we show the perfor-
mance of each one. Then, in Section 3.3, the specific case of the quantile analysis, here
we show our quantile for different sample sizes and α = 5%; our chosen cumulative
distribution function and we show that it is approximately a gamma distribution.

• Chapter 4 is used for our simulation study of both parts of this thesis. First, we use
the method proposed by Wang (1995) to detect and locate jumps at different scales.
In Section 4.2 we present the table for different probability values and sample sizes.
Specifically, we conduct simulations studies to check the performance of the test.

• Finally, Chapter 5 is dedicated to show the real data analysis, for case 1 and 2. In
Section 5.1 we present the application for Google Stock the period considered is from
November 11th to November 12th in 2014 and in Section 5.2 we collet intraday trans-
action price of the Google, Apple and Goldman Sachs Index, from November 11th to
November 12th in 2014, with a sampling frequency up to every 15 seconds.



Chapter 2

Jump Detection

The classical diffusion model, used by Black and Scholes (1973) to model prices, is given
by

dX(t)

X(t)
= µdt+ σdW (t), t ≥ 0, (2.1)

where W (t) is the standard Wiener process (standard Brownian motion), σ > 0 is the
volatility and µ is the term for “drift”, both supposed to be independent of time. This model
is simplified and does not reflect facts observed in the data, for example volatility varying
in time. In addition, prices are not obtained continuously, but in a regular grid of values
tj = j∆, j = 1, 2, . . . [T/∆], being [0, T ] the interval at which the process is observed, for
example ∆ = 5 min. Barndorff-Nielsen and Shephard (2002) suggest the model

d logX(t, ω) = µdt+ βσ2(t, ω)dt+ σ(t, ω)dW (t, ω), (2.2)

where β is the "risk premium", σ is a stationary process (“spot volatility”), that can be
modeled, e.g, by a process of Ornestein-Uhlenbech. Muller and Stadtmuller (2011) propose
a variant of equation (2.2) within the focus of a general diffusion model with random drift,
and the observations constitute a sample of n process realizations

d logX(t, ω) = µ̃i(t, ω)dt+ σ̃i(t, ω)dWi(t, ω), 0 ≤ t ≤ T, i = 1, . . . , n. (2.3)

Here, µ̃i and σ̃i are copies i.i.d of stochastic processes µ̃, σ̃, supposed smooth but not station-
ary and Wi are independent Wiener processes. The availability of multiple copies is crucial
for the application of Functional Data Analysis (FDA) techniques. Let Z∆(t) and W∆(t) the
returns obtained from the prices X(t) and the discretized diffusion terms, respectively. The
model (2.3) can be written as

Z∆(t) =
1√
∆

∫ t+∆

t

µ̃(v)dv +
1√
∆

∫ t+∆

t

σ̃(v)dW (v)

= µ̃(t)
√

∆ + σ̃(t)W∆(t) +R1(t,∆) +R2(t,∆). (2.4)

The authors prove that
Z∆(t) ≈ σ̃(t)W∆(t). (2.5)

The purpose is to estimate the process of functional volatility

V (t) = log[σ̃(t)]2,

7
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from the data Yi,j∆, where

log([Z∆(tj)]
2)− q0 ≈ Y∆(tj) = V (tj) + U∆(tj), (2.6)

with q0 ≈ −1.27, U∆(t) = log([W∆]2)− q0.
The procedure is based on the analysis of principal components applied to the data Yi,j∆
using weighted linear local smoothing. The prediction of future volatilities is made using
functional linear regression (see Muller and Stadtmuller (2011)).

2.1 Asymptotic volatility model
Consider (2.4) plus jumps, that is, letM∆(t) andW∆(t) the returns obtained from prices

X(t) and the discretized diffusion terms, respectively.

M∆(t) =
1√
∆

∫ t+∆

t

µ̃(v)dv +
1√
∆

∫ t+∆

t

σ̃(v)dW (v) +
1√
∆

∫ t+∆

t

Nt∑
i=1

Zids

= µ̃(t)
√

∆ +
1√
∆

∫ t+∆

t

µ̃(v)dv − µ̃(t)
√

∆ + σ̃(t)W∆(t)

+
1√
∆

∫ t+∆

t

σ̃(v)dW (v)− σ̃(t)W∆(t) + ZNt+1

√
∆ +

1√
∆

∫ t+∆

t

Nt∑
i=1

Zids

− ZNt+1

√
∆

= µ̃(t)
√

∆ + σ̃(t)W∆(t) + ZNt+1

√
∆ +R1(t,∆) +R2(t,∆) +R3(t,∆).

The quantity ZNt+1

√
∆ in M∆(t) was obtained as shown in Figure 2.1.

Figure 2.1: Simulation of the jumps in a fixed time grid.

We calculate the area until t,

Z1 ×∆ + (Z1 + Z2)×∆ + . . .+
(
Z1 + . . .+ ZNt+1

)
×∆
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and the area until t+ ∆,

Z1 ×∆ + (Z1 + Z2)×∆ + . . .+
(
Z1 + . . .+ ZNt+1

)
×∆ + ZNt+1∆.

Thus, ∫ t+∆

t

Nt∑
i=1

Zids ≈ ZNt+1 .∆ (2.7)

Multiplying by 1√
∆

on both sides, we have

1√
∆

∫ t+∆

t

Nt∑
i=1

Zids ≈
1√
∆
ZNt+1∆

≈ ZNt+1

√
∆.

The terms R1(t,∆), R2(t,∆) and R3(t,∆) are uniformly small and therefore can be disre-
garded asymptotically.

Assumptions:

(M1) Process (µ̃(t))t∈[0,T ] and (σ̃(t))t∈[0,T ] in (2.3) have trajectories that are uniformly con-
tinuous Lipschitz of order 1, i.e., there are constant L1 > 0 and L2 > 0 such that

|µ̃(t)− µ̃(s)| < L1 |t− s| and
|σ̃(t)− σ̃(s)| < L2 |t− s| .

(M2) Process µ̃ satisfy E
[
supt∈[0,T ] |µ̃(t)|

]
<∞

(M3) Process σ̃ satisfy supt∈[0,T ] E [|σ̃(t)2|] <∞
(M4) Trajectories of the process σ̃ are smooth and the derivative d

dt
σ̃(t) satisfy

E

[
supt∈[0,T ]

∣∣∣∣ ddtσ̃(t)

∣∣∣∣2
]

= O(1).

(M5) The process Zt satisfy E
[
supt∈[0,T ] |Zt|

]
<∞.

Now, let us see that the terms R1(t,∆), R2(t,∆) and R3(t,∆) are uniformly small and there-
fore can be disregarded asymptotically. For R1(t,∆) Muller and Stadtmuller (2011) proved
that under (M1) and (M4):

1) E
[
supt∈[0,T ] |R1(t,∆)|

]
= O

(
∆3/2

)
.

2) R2(t,∆) = O
(
∆1/2

)
.

Proposition 1: For the term R3(t,∆), we have

E
[
supt∈[0,T ] |R3(t,∆)|

]
= O

(
∆1/2

)
.
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Proof:

E
[
supt∈[0,T ] |R3(t,∆)|

]
= E

[
supt∈[0,T ]

∣∣∣∣∣ 1√
∆

∫ t+∆

t

Nt∑
i=1

Zids− ZNt+1

√
∆

∣∣∣∣∣
]
.

Let

Z ′Nt+1

√
∆ =

1√
∆

∫ t+∆

t

Nt∑
i=1

Zids.

Then;

E
[
supt∈[0,T ]

∣∣∣Z ′Nt+1

√
∆− ZNt+1

√
∆
∣∣∣]

Triangular.ineq︷︸︸︷
≤ E

[
supt∈[0,T ]

{∣∣∣Z ′Nt+1

√
∆
∣∣∣+
∣∣∣ZNt+1

√
∆
∣∣∣}]

Sup.property︷︸︸︷
≤ E

[
supt∈[0,T ]

∣∣∣Z ′Nt+1

√
∆
∣∣∣+ supt∈[0,T ]

∣∣∣ZNt+1

√
∆
∣∣∣]

L.mean︷︸︸︷
= E

[
supt∈[0,T ]

∣∣∣Z ′Nt+1

√
∆
∣∣∣]+ E

[
supt∈[0,T ]

∣∣∣ZNt+1

√
∆
∣∣∣]

=
√

∆E
[
supt∈[0,T ]

∣∣Z ′Nt+1

∣∣]+
√

∆E
[
supt∈[0,T ]

∣∣ZNt+1

∣∣] .
Let E

[
supt∈[0,T ]

∣∣Z ′Nt+1

∣∣] = E
[
supt∈[0,T ]

∣∣ZNt+1

∣∣]+ ε(t,∆), thus,

E
[
supt∈[0,T ] |R3(t,∆)|

]
=
√

∆
(
E
[
supt∈[0,T ]

∣∣ZNt+1

∣∣]+ ε(t,∆)
)

+
√

∆E
[
supt∈[0,T ]

∣∣ZNt+1

∣∣]
= 2 ∗

√
∆E

[
supt∈[0,T ]

∣∣ZNt+1

∣∣]+
√

∆ ∗ ε(t,∆).

From (M5) we have to E
[
supt∈[0,T ]

∣∣ZNt+1

∣∣] < ∞ and ∃t∗ : ε(t,∆) ≤ ε(t∗,∆) = f(∆)∀t ∈
[0, T ]. Then,

E
[
supt∈[0,T ] |R3(t,∆)|

]
= O(∆1/2) +O(∆1/2) ∗O(f(∆))

= O(∆1/2) +O(∆1/2f(∆))

= O(max
{

∆1/2,∆1/2f(∆)
}

)

= O(∆1/2max {1, f(∆)}).

Finally,

E
[
supt∈[0,T ] |R3(t,∆)|

]
=

{
O(∆1/2), if f(∆) ≤ 1, ∀∆
O(∆1/2f(∆)), if f(∆) > 1, ∀∆

Note: 1) assuming that Z ∼ N(µ, σ2), then |Z| has Half-normal distribution with E [|Z ′|] <
∞ and E [|Z|] <∞.
2) we can choose ∆ = 5min for example; then ∆ ≤ K where K is a constant. Thus,
f(∆) = O(1).
As we had shown that R1(t,∆), R2(t,∆) and R3(t,∆) are uniformly small, the approximation
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is

M∆(t) ≈ µ̃(t)
√

∆ + σ̃(t)W∆(t) + ZNt+1

√
∆ (2.8)

Assumptions:

• supt∈[0,T ] |µ̃(t)| = Op(1)

• supt∈[0,T ]

∣∣ZNt+1

∣∣ = Op(1).

Thus, we arrive at the same approximation of Muller and Stadtmuller (2011) given in (2.5):

M∆(t) ≈ Op(1) + σ̃(t)W∆(t) +Op(1)

≈ Op(max {1, 1}) + σ̃(t)W∆(t)

≈ σ̃(t)W∆(t) +Op(1)

Therefore, jumps do impact asymptotically in the estimation of volatility.

2.2 Jump analysis
As previously mentioned, one purpose of the thesis is to detect the jumps and for this

we can use techniques via wavelets, presented by Wang (1995) and Raimondo (1998). Let ψ
be a mother wavelet and define

ψab(x) = a1/2ψ

(
x− b
a

)
,

the continuous wavelet transform of f(x) is

Tf(a, b)(x) =

∫
ψa,b

(
x− b
a

)
f(x)dx.

Tf(a, b)(x) is a function of scale or frequency, here a, b are real parameters. On small scales
Tf(a, b)(x) provides localized information about local regularity of f(x); this local regularity
is often measured with Lipschitz exponents.

Definition 3: The function f(x) is said to be Lipschitz α in x0, if there is k > 0, such that
for h→ 0,

|f(x0 + h)− f(x0)| ≤ k |h|α .

If f(x) is Lipschitz at all points of [0, 1], then f(x) is said to be uniformly Lipschitz α on
[0, 1]. The local and global regularity Lipschitz can be characterized by the asymptotic decay
of the wavelet transform in small scales.

2.2.1 Jump detection

A diffusion process with jumps has the form given in M∆(t), and applying the wavelet
transform to the model (2.1) plus the jump component, that is
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dX(t)

X(t)
= µdt+ σdW (t) + J(t), t ≥ 0, (2.9)

we have

TX(a, t) = Tu(a, t) + σTW (a, t) + TJ(a, t),

with J(a, t) =
∑Nt

i=1 Zi. The wavelet transform of the white noise W (ds) is given by

TW (a, t) =

∫
ψa(t− u)W (du),

and the wavelet transform of the jump component is

TJ(a, t) =

∫
ψa(t− u)J(u)du.

Steps to follow:

• At a certain scale a, we will find the orders of convergence of the transforms and verify
the convergence speed, this will be verified making the transforms in fine and coarse
scales;

• then the jumps will be detected by verifying the values of TX(a, t).

Wang (1995), shows the following lemma to find the limiting factor for |TW (a, x)|.

Lemma 1: If ψ is differentiable with probability 1, there is a positive constant K <∞ such
that for all x and a small,

|TW (a, x)| ≤ K |loga|1/2 .

See the Proof in Raimondo (1998).
For the case of the wavelet transformation corresponding to the jumps we have

TJ(a, t) =

∫
ψa(t− u)J(u)du.

We should find a bound for |TJ(a, t)|, for this we use the following Proposition.

Proposition 2: (Holder inequality) Let p > 1 and q < ∞ be, that is, 1
p

+ 1
q

= 1. Let
f : D → R and g : D → R be functions f ∈ Lp, g ∈ Lq and V ⊆ D, then∣∣∣∣∫

V

f(x)g(x)dx

∣∣∣∣ ≤ (∫
V

|f(x)|p dx
)1/p(∫

V

|g(x)|q dx
)1/q

.

We will prove the following proposition.

Proposition 3: Let ψ : D → R and J : D → R be functions ψ ∈ L2, J ∈ L2 and V ⊆ D,
applying the Proposition 2 for p = q = 2 the conditions are satisfied and then |TJ(a, t)| is
bounded.
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Proof: We have, applying the previous proposition,

|TJ(a, t)| =

∣∣∣∣∫ ψa(x− u)J(u)du

∣∣∣∣
≤

(∫
|ψa(x− u)|2 du

)1/2(∫
|J(u)|2 du

)1/2

,

and we know that ∫ ∞
∞
|ψ(t)|2 dt = 1. (2.10)

We have that:∫
|ψa(x− u)|2 du =

∫ ∣∣a1/2ψ(x− u/a)
∣∣2 du = a1/2

∫
|ψ(x− u/a)|2 du.

Therefore, from (2.10) we have
(∫
|ψ(x− u/a)|2 du

)
≤ K1, where K1 is a constant. Thus,

|TJ(a, t)| ≤ a1/2K1

(∫
|J(u)|2 du

)1/2

,

but ∫
|J(u)|2 du =

∫ ∣∣∣∣∣
Nt∑
i=1

Zi

∣∣∣∣∣
2

du ≤ ∆2ZNt+1

or ∫
|J(u)|2 du =

∫ ∣∣∣∣∣
Nt∑
i=1

Zi

∣∣∣∣∣
2

du

=
∑
i

Zi(u)
∑
j

Zj(u) =
∑
i

∑
j

Zi(u)Zj(u)

Finally,

|TJ(a, t)| ≤ K1K2a
1/2 ≤ Ka1/2,

where K2 = ∆2ZNt+1 and K = K1K2. As previously stated, the jumps will be detected by
checking the values of

TX(a, t) = Tu(a, t) + σTW (a, t) + TJ(a, t).

We have:

• |TW (a, t)| = O(|loga|1/2),

• |TJ(a, t)| = O(a1/2).

That is, TW (a, t) and TJ(a, t) are of the orders O(|loga|1/2) and O(a1/2), respectively. Figure
2.2 shows the convergence speed for a = 9.
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Figure 2.2: Convergence speed for a=9.

2.2.2 Jump estimation

To estimate the jump variation Φ, we apply the wavelet method to the observed data and
locate all the jumps in trajectory Xt, then use the estimated jump localizations to estimate
the jump size. Here the variation of the jump is estimated by the sum of the squares of all
sizes of the estimated jumps. Consider the following non-parametric volatility model

Yt = Xt + εt, t ∈ [0, 1]. (2.11)

Here our latent variable is Yt, that is, the logarithm of the transaction value and is observed
in times ti = i/n, with i = 0, ..., n; εt ∼ RB(0, η2) are i.i.d and with the fourth finite moment.
Let Xa,k, Ya,k and εa,k be the wavelet coefficients of Xt, Yt and εt respectively. Then, from
the model (2.11) we obtain that

Ya,k = Xa,k + εa,k, k = 1, ..., 2a, a = 1, ..., log2(n). (2.12)

We used a threshold Tn to adjust |Yan,k| and estimate the jump localizations of the trajectory
Xt by the locations of |Yan,k| that exceed Tn. That is, if |Yan,k| > Tn for some k = 1, ..., 2a,
the corresponding localization of the jump is estimated by β̂ = k2−an . A threshold choice
is the universal threshold given by Dohono and Johnstone (1995), Tn = d

√
2logn, where

d =
|Yan,k|
0,6745

.

2.2.3 Estimation of jump variation

To estimate how the jump of trajectory Xt varies, we need the size of the jump. For each
localization β̂l of Xt we choose a small neighborhood β̂l ± δn for some δn > 0. We denote
by Y β̂l+

and Y β̂l−
the averages of Yti on

[
β̂l, β̂l + δn

]
and

[
β̂l − δn, β̂l

)
respectively. We use
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Ẑl = Y β̂l+
− Y β̂l−

for estimate the true size of the jump Zl = Xβl −Xβl−
. The variation of

the jump Φ =
∑N1

l=1 Z
2
l as stated above is estimated by the sum of the squares of all sizes of

the estimated jumps, that is

Φ̂ =

q̂∑
l=1

(
Y β̂l+

− Y β̂l−

)2

.

For an example of simulation and real data, see Chapter 4 and 5, respectively.
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Chapter 3

Empirical c.d.f. and Estimators for
Volatility

We used the local estimator proposed by Todorov and Tauchen (2014) to estimate σ2
t .

On each of the blocks the local estimator of σ2
t is given by

V̂ n
j =

π

2

n

kn − 1

jkn∑
i=(j−1)kn+2

|∆n
i−1X||∆n

iX|, j = 1, . . . , bn/2knc , (3.1)

which is the bipower variation for measuring the quadratic variation of the diffusion compo-
nent of X. Todorov and Tauchen (2014) remove the high-frequency increments that contain
"big" jumps. The total number of increments used in their statistic is thus given by

Nn(α, w̄) =

bn/2knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

I

(
|∆n

iX| ≤ α
√
V̂ n
j n

w̄

)
,

where α > 0 and w̄ ∈ (0, 1/2). They use a time-varying threshold in the truncation to
account for the time varying σt. The scaling of every high-frequency increment is done after
adjusting V̂ n

j to exclude the contribution of that increment in its formation:

V̂ n
j (i) =


kn−1
kn−3

V̂ n
j − π

2
n

kn−3
|∆n

iX||∆n
i+1X|, for i = (j − 1)kn + 1,

kn−1
kn−3

V̂ n
j − π

2
n

kn−3
(|∆n

i−1X||∆n
iX|+ |∆n

iX||∆n
i+1X|), for i = (j − 1)kn + 2, . . . , jkn − 1

kn−1
kn−3

V̂ n
j − π

2
n

kn−3
|∆n

i−1X||∆n
iX|, for i = jkn.

(3.2)
They then define

F̂n(τ) =
1

Nn(α, w̄)

bn/2knc∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

I

√n∆n
iX√

V̂ n
j (i)

≤ τ

 I(|∆n
i X|≤α

√
V̂ n
j n

w̄
), (3.3)

which is simply the empirical c.d.f. of the devolatilized increments that do not contain any
big jumps. In the jump-diffusion case of (1.2), F̂n(τ) should be approximately the c.d.f. of a
standard normal random variable.

17
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Todorov and Tauchen (2014) use an alternative estimator of the volatility that is the
truncated variation defined as

Ĉn
j =

n

kn

jkn∑
i=(j−1)kn+1

|∆n
iX|2I (|∆n

iX| ≤ αnw̄) , j = 1, . . . , bn/2knc ,

where α > 0 and w̄ ∈ (0, 1/2) and the corresponding one excluding the contribution of the
ith increment for i = (j − 1)kn + 1, . . . , jkn, is

Ĉn
j (i) =

kn
kn − 1

Ĉn
j −

n

kn − 1
|∆n

iX|2I (|∆n
iX| ≤ αnw̄) , j = 1, . . . , bn/2knc . (3.4)

They also define the corresponding empirical c.d.f. of the devolatilized (and truncated) high-
frequency increments as

F̂ ′n(τ) =
1

N ′n(α, w̄)

[n/kn]∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

I

√n∆n
iX√

Ĉn
j (i)

≤ τ

 I(|∆n
i X|≤αnw̄), (3.5)

where α > 0, w̄ ∈ (0, 1/2) and

N ′n(α, w̄) =

[n/kn]∑
j=1

(j−1)kn+mn∑
i=(j−1)kn+1

I (|∆n
iX| ≤ αnw̄) .

3.1 Test Statistic: Cramér-von Mises
We define the empirical process as:

Ŷn(τ) =
√
bn/2kncmn(F̂n(un, τ)− Φ(τ)), (3.6)

where F̂n(un, τ) is an empirical distribution function of the devolatized increments. In this
work we will consider two possible empirical distribution functions in (3.6). Theorem 4
of Todorov and Tauchen (2014) and Theorem 1 of Kong (2017) motivate us to propose a
measure of discrepancy between distributions using the "Cramér-Von Mises" type statistic
as

T nA = d2
√
bn/2kncmn, (3.7)

where A is a compact set in R and

d2 =

∫ ∞
−∞

[Fn(x)− F (x)]2dF (x),

where F (x) is a cumulative distribution function and Fn(x) is an empirical distribution
function. By notation we will replace Fn(x) by F̂ ′n(x) given by (3.5) and F (x) by Φ(x), so
we will have,

d2 =

∫ ∞
−∞

[F̂ ′n(x)− Φ(x)]2dΦ(x).

The choice for this test statistic comes from the fact that it has better power than the KS
statistic that measures the maximum distance. The critial region of the proposed test is
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given by

Cn =
{
d2
√
bn/2kncmn > qn(α,A)

}
,

where qn(α,A) is the (1− α)-quantile of√
[n/(2kn)]mn

∫ ∞
−∞

[F̂ ′n(x)− Φ(x)]2dΦ(x). (3.8)

We evaluate qn(α,A) via simulation. The test rejects H0 if T nA > qn(α,A).

Our simulation study showed that the proposed test statistic follows approximately a known
distribution function. Comparing the respective quantiles at the significance levels of 5% and
10%, the values of the proposed distribution and the sample distribution are very close.

3.2 Performance of the empirical c.d.f.
We consider the cumulative distribution functions with their respective volatility estimators
as described in (3.3) that contains the bipower variation estimator and in (3.5) that contains
the truncated variation estimator. A simulation study was performed with 10, 000 replica-
tions and different values of n, kn and mn. We set the pair of (kn,mn) for n = 1000, 2000
and 5000 to be:

n (kn,mn)
(4,2), (6,3), (8,4), (10,5), (12,5), (14,8), (16,7)

1000 (18,11), (20,9), (22,11), (24,12), (26,13), (28,13), (30,16).
(4,2), (6,3), (8,4), (10,5), (12,5), (14,8), (16,7)

2000 (18,11), (20,9), (22,11), (24,12), (26,13), (28,13), (30,16),
(32,15), (34,18), (36,17), (38,20), (40,20), (42,26), (44,21).

(4,2), (6,3), (8,4), (10,5), (12,5), (14,8), (16,7)
(18,11), (20,9), (22,11), (24,12), (26,13), (28,13), (30,16),

5000 (32,15), (34,18), (36,17), (38,20), (40,20), (42,26), (44,21),
(46,25), (48,23), (50,28), (52,27), (54,34), (56,31), (58,30),

(60,34), (62,33), (64,30), (66,40), (68,35), (70,33).

Figure 3.1 shows the behavior of the test statistic Cv-M against kn for the jump-diffusion
model. From the plots, we observe some outliers indicating the existence of some discrepant
values. Also, the value of the test statistic increases as kn increases. In cases where kn = 4
and kn = 6 the values of the test statistic present some inconsistencies. In these cases we
simply call F the empirical c.d.f F̂n(τ) that contains the local estimator given in (3.2) and F ′
as the empirical c.d.f. F̂ ′n(τ) that contains the truncated variation estimator given in (3.4).
Further, we call the test statistic using F̂n(τ) as TA1 and the test statistic using F̂ ′n(τ) as
TA2. Figure 3.2 shows the behavior of the test statistic Cv-M against kn for the standard
normal model.
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(a) Cv-M using F̂ , n = 1000.
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(b) Cv-M using F̂ ′, n = 1000.
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(c) Cv-M using F̂ , n = 2000.

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

0
5

10
15

kn

C
ra

m
ér

−
vo

n 
M

is
es

(d) Cv-M using F̂ ′, n = 2000.
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(e) Cv-M using F̂ , n = 5000.
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(f) Cv-M using F̂ ′, n = 5000.

Figure 3.1: Left panel: the test statistic Cv-M against kn using F ; Right panel: the test statistic
Cv-M against kn using F ′ for the jump difussion model.
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(a) Cv-M using F̂ , n = 1000.
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(b) Cv-M using F̂ ′, n = 1000.
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(c) Cv-M using F̂ , n = 2000.
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(d) Cv-M using F̂ ′, n = 2000.
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(e) Cv-M using F̂ , n = 5000.
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(f) Cv-M using F̂ ′, n = 5000.

Figure 3.2: Left panel: the test statistic Cv-M against kn using F ; Right panel: the test statistic
Cv-M against kn using F ′ for the standard normal model.
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The first simulations were based on 10, 000 replicas with n = 1000 and the same pairs of
kn and mn as mentioned above. The idea is to observe which test statistic performs better
using the two variance estimators mentioned in the previous section. It can be observed in
Figure 3.3 that for the jump-diffusion model, in average, the quadratic distance of the test
statistic increases as kn increases. On the other hand, for the normal model, in average, the
quadratic distance of the test statistic stabilizes, that is, the values of the test statistics are
close as kn increases.
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Figure 3.3: Mean Squared Distance of the two test statistics for different values of kn, in data
generated from the two models with n = 1000.

We present a method for choosing the "best" critical value. The ROC curve (Receiver
Operating Characteristic Curve) is widely used to determine the cutoff point. We test the
critical value "q" between 1 and 3 and we use the ROC curve to show the cutoff point. We
compare detection and error rates for this value and a fixed value.

q = 1.5 q = 1.2322
Error rate Dectection rate Error rate Dectection rate

kn mn TA1 TA2 TA1 TA2 TA1 TA2 TA1 TA2
4 2 0.2728 0.0002 0.6026 0.0376 0.5286 0.0052 0.8217 0.1453
6 3 0.0029 0.0001 0.0952 0.0193 0.0204 0.0004 0.2378 0.0604
8 4 0.0015 0.0004 0.0805 0.0330 0.0056 0.0010 0.1793 0.0863
10 5 0.0011 0.0003 0.1061 0.0643 0.0057 0.0008 0.2074 0.1402
12 5 0.0042 0.0020 0.1372 0.1088 0.0100 0.0052 0.2324 0.1993
14 8 0.0014 0.0006 0.2071 0.1982 0.0054 0.0028 0.3248 0.3242
16 7 0.0060 0.0040 0.2323 0.2551 0.0164 0.0113 0.3490 0.3833
18 11 0.0039 0.0030 0.3204 0.4066 0.0110 0.0082 0.4578 0.5502
20 9 0.0140 0.0101 0.3381 0.4465 0.0287 0.0213 0.4616 0.5796
22 11 0.0149 0.0113 0.3984 0.5568 0.0306 0.0247 0.5208 0.6814
24 12 0.0164 0.0125 0.4569 0.6501 0.0354 0.0258 0.5795 0.7586
26 13 0.0231 0.0198 0.5094 0.7286 0.0451 0.0378 0.6255 0.8170
28 13 0.0309 0.0258 0.5378 0.7675 0.0585 0.0482 0.6472 0.8477
30 16 0.0305 0.0272 0.5989 0.8390 0.0599 0.0500 0.7057 0.8937

Table 3.1: Detection and error rates for kn values between 4 and 30 for fixed critical value q = 1.5
and simulated the critical value q = 1.2322, in 10000 replicas of data generated with n = 1000.

Table 3.1 shows that for a fixed critical value 1.5, the error rate for kn = 30 with the
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test statistic TA2 is around 2.8% and the detection rate is 84%. In contrast, for the test
statistic TA1, the error rate is around 3% and the detection rate is 60%. It can also be seen
that, for low values of kn in TA1, there are low error rates but with low detection power.
For example for q = 1.5, in the case of kn = 20, there is an error rate around 1.4% and
a detection rate of 34%. In contrast for TA2 we observe 44% of detection. Besides for the
optimal critical value q = 1.2322, with kn = 30 we have an error rate of 5% and a detection
power of 90% for the test statistic TA2 and for the test statistic TA1, we observe an error
rate of 6% and a detection rate of 70%. Figure 3.4 shows the detection and error rates for
a fixed critical value of 1.5. Figure 3.5 shows the detection and error rates of a simulated
critical value q = 1.2322, that was obtained by ROC curve (Figure 3.6).
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Figure 3.4: Detection and error rates with critical value 1.5 and different values of kn
.
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Figure 3.5: Detection and error rates with critical value 1.2322

We repeat our simulation for n = 2000 and the same pairs of kn and mn already men-
tioned above. The conclusion is similar to the case n = 1000 and with respect to the average
quadratic distance of the statistic, as we can see in Figure 3.7.
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Figure 3.6: ROC curve for TA1 and TA2 statistics.

Figure 3.8 shows the detection and error rates for a fixed critical value of 1.5. The Table
3.2 shows the detection and error rates for two different critical values, which lead us to
conclude that TA2 is better. For example, for q = 1.3663 we have an error rate of 5% and a
detection power of 91% for the test statistic TA2. With the test statistic TA1, we observe
an error rate of 5.8% and a detection rate of 66%.
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Figure 3.7: Mean Squared Distance of the two test statistics for different values of kn, in data
generated from the two models with n = 2000.

Figure 3.9 shows the detection and error rates for a fixed q = 1.3663, obtained by
simulation, with the ROC curve (Figure 3.10). It can be seen that as kn increases the error
rate for TA1 is higher than for TA2 and for the detection rate as kn increases and TA2 has
a higher detection rate than TA1. Again TA2 seems to be better than TA1.

We can observe in Figure 3.11 that the quadratic distance of the statistics has a similiar
behavior to the previous analysis. We are interested in the largest quadratic distance, so for
the pairs of kn and mn already mentioned above and n = 5000 we will do our study for the
aforementioned reasons. Figure 3.12 shows the detection and error rates for a fixed critical
value 1.5. Figure 3.13 shows the detection and error rate considering a simulated critical
value obatined by ROC curve (Figure 3.14).

Table 3.3 shows that for a fixed critical value 1.5, we see that, the error rate for kn = 70
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q = 1.5 q = 1.3663
Error rate Detection rate Error rate Detection rate

kn mn TA1 TA2 TA1 TA2 TA1 TA2 TA1 TA2
4 2 0.7289 0.0014 0.8966 0.0449 0.8380 0.0090 0.9519 0.1101
6 3 0.0050 0.0001 0.0877 0.0049 0.0164 0.0002 0.1565 0.0110
8 4 0.0008 0.0000 0.0387 0.0090 0.0018 0.0000 0.0688 0.0162
10 5 0.0004 0.0001 0.0424 0.0168 0.0011 0.0003 0.0681 0.0288
12 5 0.0006 0.0004 0.0530 0.0316 0.0015 0.0008 0.0793 0.0512
14 8 0.0004 0.0002 0.0806 0.0587 0.0006 0.0003 0.1223 0.0892
16 7 0.0010 0.0007 0.1066 0.0926 0.0018 0.0010 0.1471 0.1277
18 11 0.0011 0.0005 0.1572 0.1615 0.0021 0.0008 0.2067 0.2145
20 9 0.0046 0.0029 0.1799 0.1992 0.0063 0.0041 0.2227 0.2533
22 11 0.0044 0.0034 0.2201 0.2779 0.0069 0.0051 0.2713 0.3444
24 12 0.0041 0.0030 0.2596 0.3635 0.0075 0.0056 0.3168 0.4325
26 13 0.0068 0.0049 0.3052 0.4489 0.0110 0.0076 0.3589 0.5166
28 13 0.0103 0.0078 0.3350 0.5095 0.0152 0.0116 0.3876 0.5730
30 16 0.0099 0.0084 0.3908 0.6201 0.0158 0.0125 0.4465 0.6761
32 15 0.0174 0.0145 0.4094 0.6527 0.0249 0.0208 0.4670 0.7058
34 18 0.0151 0.0119 0.4726 0.7428 0.0223 0.0183 0.5326 0.7878
36 17 0.0234 0.0212 0.4911 0.7673 0.0341 0.0295 0.5451 0.8075
38 20 0.0228 0.0199 0.5409 0.8189 0.0310 0.0263 0.5943 0.8515
40 20 0.0311 0.0280 0.5648 0.8483 0.0430 0.0381 0.6188 0.8776
42 26 0.0228 0.0198 0.6370 0.9004 0.0327 0.0274 0.6876 0.9205
44 21 0.0423 0.0377 0.6201 0.8905 0.0576 0.0500 0.6659 0.9118

Table 3.2: Detection and error rates for kn values between 4 and 44 for fixed critical value q = 1.5
and simulated critical value q = 1.3663, in 10000 replicas of data generated with n = 2000.

with the test statistic TA2 is around 3.9% and the detection rate of 90%. In contrast, for
the test statistic TA1, the error rate is around 4.3% and detection rate of 56%. It can also
be seen that, for low values of kn in TA1, there are low error rates but with low detection
power. For example, in the case of kn = 48 with the test statistic TA1, there is an error rate
around 1.2% and a detection rate of 32%.

The critical value obtained by ROC curve is q = 1.3663. With this, we have an error
rate of 4.9% and a detection power of 91% for the test statistic TA2. With the test statistic
using the TA1, we observe an error rate of 5.5% and a detection rate of 59%. We will use
the TA2 test statistic, which uses the truncated variance estimator defined in (3.4), since it
presented better results in relation to low error rate and high detection power. The ideal is
to choose a kn that shows a low error rate and high detection power. In contrast, for the test
statistic TA1, there is high error rate and low detection power for most kn values. Table 3.4
shows a summary of the results for the 3 possible sample sizes.

Note that in Table 3.1, 3.2 and 3.3 for values of kn = 4 and kn = 6 the error and detection
rate shows inconsistent values, this is because it has a high false alarm rate and not so much
detection power. Therefore, we do not recommend using low values of kn.
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Figure 3.8: Detection and error rates with critical value 1.5
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Figure 3.9: Detection and error rates with critical value 1.3663
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Figure 3.10: ROC curve for TA1 and TA2 statistic.



3.2 PERFORMANCE OF THE EMPIRICAL C.D.F. 27

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

10 20 30 40 50 60 70

0
1

2
3

4
5

6

Comparison of the test statistics

kn

M
ea

n 
S

qu
ar

ed
 D

is
ta

nc
e

● Jump−diffusion
Standard normal

Figure 3.11: Mean Squared Distance of the two test statistics for different values of kn, in data
generated from the two models with n = 5000.
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Figure 3.12: Detection and error rates with critical value 1.5
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q = 1.5 q = 1.3943
Error rate Detection rate Error rate Detection rate

kn mn TA1 TA2 TA1 TA2 TA1 TA2 TA1 TA2
4 2 1.0000 0.1851 1.0000 0.3794 1.0000 0.4053 1.0000 0.6061
6 3 0.1101 0.0001 0.2681 0.0005 0.2176 0.0001 0.4208 0.0022
8 4 0.0009 0.0000 0.0226 0.0010 0.0034 0.0000 0.0452 0.0013
10 5 0.0000 0.0000 0.0094 0.0009 0.0001 0.0000 0.0179 0.0019
12 5 0.0001 0.0000 0.0082 0.0031 0.0004 0.0001 0.0145 0.0052
14 8 0.0000 0.0000 0.0150 0.0048 0.0001 0.0000 0.0261 0.0087
16 7 0.0001 0.0001 0.0171 0.0096 0.0004 0.0001 0.0279 0.0159
18 11 0.0000 0.0000 0.0314 0.0177 0.0001 0.0000 0.0481 0.0281
20 9 0.0002 0.0001 0.0387 0.0282 0.0008 0.0004 0.0548 0.0413
22 11 0.0000 0.0000 0.0536 0.0455 0.0006 0.0000 0.0699 0.0613
24 12 0.0005 0.0002 0.0638 0.0602 0.0009 0.0004 0.0875 0.0826
26 13 0.0008 0.0003 0.0815 0.0864 0.0012 0.0006 0.1080 0.1115
28 13 0.0018 0.0010 0.0978 0.1153 0.0028 0.0020 0.1246 0.1479
30 16 0.0020 0.0014 0.1233 0.1597 0.0031 0.0018 0.1538 0.1954
32 15 0.0027 0.0013 0.1432 0.1917 0.0036 0.0023 0.1705 0.2296
34 18 0.0021 0.0017 0.1649 0.2518 0.0030 0.0024 0.2011 0.2998
36 17 0.0053 0.0045 0.1800 0.2860 0.0070 0.0055 0.2174 0.3341
38 20 0.0039 0.0034 0.2135 0.3594 0.0055 0.0046 0.2530 0.4150
40 20 0.0061 0.0049 0.2368 0.4059 0.0093 0.0070 0.2742 0.4615
42 26 0.0031 0.0022 0.2755 0.5076 0.0050 0.0035 0.3185 0.5618
44 21 0.0099 0.0076 0.2806 0.5101 0.0133 0.0110 0.3189 0.5559
46 25 0.0072 0.0057 0.3156 0.5826 0.0108 0.0082 0.3556 0.6267
48 23 0.0129 0.0107 0.3206 0.6058 0.0171 0.0154 0.3626 0.6514
50 28 0.0117 0.0086 0.3629 0.6863 0.0160 0.0127 0.4086 0.7277
52 27 0.0139 0.0122 0.3823 0.7097 0.0193 0.0164 0.4226 0.7437
54 34 0.0109 0.0084 0.4359 0.7863 0.0158 0.0126 0.4834 0.8156
56 31 0.0147 0.0131 0.4448 0.7919 0.0200 0.0169 0.4888 0.8212
58 30 0.0182 0.0161 0.4508 0.8111 0.0252 0.0219 0.4944 0.8371
60 34 0.0208 0.0179 0.4876 0.8437 0.0270 0.0229 0.5301 0.8677
62 33 0.0265 0.0238 0.4999 0.8536 0.0334 0.0299 0.5411 0.8743
64 30 0.0360 0.0334 0.4983 0.8557 0.0451 0.0401 0.5380 0.8770
66 40 0.0235 0.0209 0.5697 0.9022 0.0291 0.0271 0.6127 0.9186
68 35 0.0367 0.0324 0.5480 0.8955 0.0470 0.0417 0.5882 0.9123
70 33 0.0438 0.0394 0.5613 0.8982 0.0552 0.0499 0.5994 0.9140

Table 3.3: Detection and error rates for kn values between 4 and 70 for fixed critical value q = 1.5
and simulated the critical value q = 1.3943, in 10000 replicas of data generated with n = 5000.

q = 1.5 Optimal q
n kn mn Error rate Detection rate Error rate Detection rate

1000 30 16 0.0272 0.8390 0.05 (q = 1.2322) 0.8937
2000 44 21 0.0377 0.8905 0.05 (q = 1.3663) 0.9118
5000 70 33 0.0394 0.8982 0.049 (q = 1.3943) 0.9140

Table 3.4: Error and detection rates of TA2 statistic for a critical value fixed q = 1.5 and optimal
critical values for some scenarios.
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Figure 3.13: Detection and error rates with critical value 1.3943
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3.3 Quantile Analysis

3.3.1 Practical Considerations

The conditions in Theorem 1 and as discussed in Kong (2017), for a finite sample n, kn
should be smaller than

√
n and mn should be smaller than kn, with kn/mn ranging from 1.5

to 2.5 and having an increasing trend. We will use the TA2 test statistic, which uses the
truncated variation estimator defined in (3.4), since it presented better results in relation to
low error rate and high detection power. The ideal is to choose a kn that shows a low error
rate and high detection power. In contrast, for the test statistic TA1, there is high error rate
and low detection power for most kn values.

3.3.2 Quantile

The purpose is to find the theoretical quantile of our test statistic as stated above; for
this we must find the cumulative distribution function of our statistic Cramér-von Mises
given by:

P (T nA ≤ x) = P
(
d2
√
bn/2kncmn ≤ x

)
= P

(√
bn/2kncmn

∫ ∞
−∞

[F̂ ′n(τ)− Φ(τ)]2dΦ(τ) ≤ x

)
, τ ∈ R, x ≥ 0.(3.9)

where F̂ ′n(τ) is the empirical c.d.f. given in (3.5) and Φ(τ) is the c.d.f of standard normal.
Here, Φ′(τ) = dΦ(τ) = φ(τ)dτ . The expression (3.9) does not have a closed form (for details
see the Appendix). So we have to resort to numerical methods to calculate it.

Our simulation study shows that the c.d.f. of our TA2 test statistic is approximately a
gamma distribution with parameters of shape and scale, a and b, respectively. The gamma
distribution has as density

f(x) =
1

baΓ(a)
xa−1 exp−x/b, x ≥ 0, a > 0, and b > 0.

The mean and variance are E[x] = ab and V ar[x] = ab2. Since E[x] = ab then a = E[x]
b
. On

the other hand

V ar[x] = ab2 =
E[x]

b
b2 = E[x]b⇒ b =

V ar[x]

E[x]
.

Thus, the gamma c.d.f. is given by

F (x) =

∫ x

0

f(t)dt =

∫ x

0

1

baΓ(a)
ta−1e−t/bdt =

1

Γ(a)

∫ x

0

ta−1

ba
e−t/bdt

=
1

Γ(a)

∫ x

0

(
t

b

)a−1

e−t/bdt.

Making the transformation y = t/b⇒ dy = dt/b, we have

F (x) =
1

Γ(a)

∫ x

0

ya−1e−ydy.
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The gamma c.d.f. involves the incomplete gamma function given by∫ x

0

ya−1e−ydy = γ(a, x).

So finally,

F (x) =
γ(a, x)

Γ(a)
, a > 0.

Then, TA2 ∼a Gamma(a, b). For large sample sizes, we observe that a ≈ 2 and b ≈ 0.25.

Quantile of Sample
n kn mn a b qgamma(a, b) 0.95 Quantile 0.95
500 18 11 2.254 0.190 0.982 0.970

20 11 2.109 0.238 1.174 1.165
22 12 1.938 0.274 1.273 1.243

1000 26 13 2.083 0.231 1.128 1.116
28 13 1.993 0.267 1.266 1.270
30 19 2.064 0.228 1.106 1.084

2000 40 18 1.922 0.283 1.308 1.296
42 22 1.972 0.267 1.259 1.246
44 22 1.953 0.282 1.320 1.304

5000 66 36 1.993 0.261 1.239 1.251
68 38 1.974 0.264 1.241 1.247
70 34 1.885 0.308 1.403 1.380

10000 96 62 1.947 0.253 1.181 1.179
98 48 1.894 0.301 1.379 1.357
100 54 1.972 0.284 1.334 1.322

Table 3.5: Comparison between sample quantile and gamma quantile.

Hence, approximately

TA2 ∼a Gamma(2, 0.25),

with E[TA2] = 0.5 and V ar[TA2] = 0.125.
In Figure A.1 (See Appendix) we observe that the sampling c.d.f. of TA2 and Gamma

c.d.f. are very close. In Figure 3.15 was plotted the sample density against the gamma density,
we can observe that they are similar.
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(b) kn = 42, n = 2000.
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(c) kn = 44, n = 2000.
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(d) kn = 66, n = 5000.
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(e) kn = 68, n = 5000.
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(f) kn = 70, n = 5000.

Figure 3.15: Histograms of the sample density function for different sizes of kn and n, compared
with the gamma density.



Chapter 4

Simulation study

4.1 Simulation Case 1.

4.1.1 Example

To test the method proposed by Fan and Wang (2007), let’s take a simulated example
in Wang (1995), that is illustrated in Figure 4.1. For our example n = 210 with a = 0, ..., 9.
The function clearly has a jump and a peak. We will perform the detection and localization
of the jumps in different scales.

Figure 4.1: Simulated data from the model yi = f(i/n) + εi, f(x) = 2 − 2 |x− 0.26|1/5 I(x ≤
0.26) − 2 |x− 0.26|3/5 I(x > 0.26) + I(x ≥ 0.78), εi ∼ N(0, σ2), σ = 0.2 e n = 1024; a) real curve
b) curve with noise and c) Absolute value of the wavelet coefficients, scale a = 7.

33
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When checking the wavelet coefficients on the 10 scales, we can find dyadic intervals in some
scales, whose corresponding absolute value of the wavelet coefficient exceeds the threshold,
and are significantly higher than the others. In Figure 4.1 (c), the wavelet coefficients are
significantly large and exceed the threshold line, only where the functions have jump and
peak. With n = 1024 in the example, we increased σ from 0.2 to 1 in steps of 0.2. Detection
works well for values of σ up to 0.4. After that, the jump and the peak become difficult to
detect. The jump and the peak tend to be detected by wavelet coefficients at lower levels
of resolution and thus the detection is increasingly accurate. In particular, the peak is often
located at low resolution levels or it may not be detected. For σ ≥ 1 the method fails and
jumps and spikes are difficult to detect. It can be seen in Table 4.1 that in the scale a = 4

Table 4.1: Estimated values with σ = 0.2 of the number of jumps , jump localization (t), jump size
(Z) and jump variation (Φ)

a (Scale) # Jumps t (Jump Loc) Z (Jump size) Φ
4 1 832 0,02 0,0004
5 1 288 -0,005 0,000025
6 1 272 -0,16 0,0256

the method can detect a jump in the observation 832, note that we have to consider an error
and the value of the observation can be around that value, so for the scales a = 5, 6, one
jump was detected in each scale in the observations 288 and 272 respectively. With σ = 0.2
it was observed that no scale could detect the two jumps together.

Table 4.2: Estimated values with σ = 0.1 of the number of jumps, jump localization (t), jump size
(Z) and jump variation (Φ)

a (Scale) # Jumps t (Jump Loc) Z (Jump size) Φ
4 1 832 0,03 0,0009
5 1 288 -0,38 0,1444
6 1 272 -0,2 0,04
8 2 288 800 -0,30 -0,0066 0,09
9 1 800 0,064 0,004096

For σ = 0.1 in Table 4.2 the method was able to detect the two jumps together in the scale
a = 8. We can say that the function jumped in the observations 288 and 800 as shown in
Figure 4.2 c) of the wavelet coefficients in the a = 8 scale.
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Figure 4.2: Simulated data from the model yi = f(i/n) + εi, f(x) = 2 − 2 |x− 0.26|1/5 I(x ≤
0.26) − 2 |x− 0.26|3/5 I(x > 0.26) + I(x ≥ 0.78), εi ∼ N(0, σ2), σ = 0.1 e n = 1024; a) real curve
b) curve with noise and c) Absolute value of the wavelet coefficients, scale a = 8
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4.1.2 Simulating a jump process

When the Lévy process has a Gaussian component and a jump component of a composite
Poisson process, the two independent components can be simulated separately. Figure 4.3
shows a path of discrete data for such a process. Here, in this example, the jump size has
normal distribution with zero mean and standard deviation 0.5, the jump intensity is 10,
the diffusion volatility is 1 and there is not drift, that is, µ = 0. The discretized trajectory
has the form:

X(ti) = µti +
i∑

k=1

Zk +
N∑
j=1

IUj<tiYj.

Here Zi is a normal random variable with variance V ar(Zi) = (ti− ti−1)σ2, t0 = 0. The third
term is simulated as a compound Poisson process below.

Figure 4.3: Simulating jump of a diffusion process in a fixed time grid

On the other hand we have that the trajectory

X(t) = µt+

N(t)∑
i=1

Yi.

where N(t) = sup
{
k :
∑k

i=1 Ti ≤ t
}
. This is a typical trajectory of a compound Poisson

process. Here the jump size has standard normal distribution, the jump intensity is 10 and
the drift is 3 (See Figure 4.4).
We will see that many infinite activity Lévy processes can be well approximated by a process
of such type: the small jumps are truncated and replaced with a properly renormalized
Brownian motion (see Figure 4.5).
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Figure 4.4: Simulating a compound Poisson process with Brownian Motion.

Figure 4.5: Simulating a compound Poisson process
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4.2 Simulation Case 2.
In this section, we conduct simulations studies to check the performance of the Cv-M test.

We consider the following two models. In the first scenario, we have the following stochastic
volatility model:

Xt = X0 +

∫ t

0

√
csdWs + 0.5Zt, 0 ≤ t ≤ T,

ct = c0 +

∫ t

0

0.03(1.0− cs)ds+ 0.15

∫ t

0

√
csdW

′
s,

where Ws, W ′
s are independent Wiener processes and Zt is a skewed β stable Lévy process.

The volatility ct is a square root diffusion process which is widely used in financial applica-
tions. The parameter in ct is specified as in Jacob and Todorov (2014). The second model
is

X̃t = Xt−1 + at, at ∼ N(0, 1), (4.1)

where X0 is the initial value that should defined.
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(a) Xt, jump diffusion model.
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(b) X̃t, standard normal model.

Figure 4.6: Example of time series generate with the two models.

We considered 10, 000 replicas for sample sizes n = 500, 1, 000, 2, 000, 5, 000 and 10, 000.
For the truncation of the increments, as is typical in the literature, we set α = 3.0 and
w̄ = 0.49. Hence for the sampling frequencies mentioned above, we set the pair of (kn,mn)
to be (22, 12), (30, 19), (44, 22), (70, 34) and (100, 54) with kn/mn ranging from 1.5 to 2.15
and having an increasing trend.

In Table 4.3 we can observe that the test power increases as the sample size increases,
and also for a fixed n the test power is bigger for largest kn values. The test power was
calculated with the gamma quantile values, and we note that these values are very close to
the sample quantile.

To evaluate the performance of our test, we compare with another test that also measures
driscrepancy between distributions, the Kolmorogov-Smirnov (KS) test. In Table 4.4 we note
that our test shows better results. Besides, the KS test power decreases and the error rate
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Quantile of Sample Test
n kn mn a b gamma(a, b) 0.95 Quantile 0.95 Power
500 4 2 6.323 0.087 0.962 0.905 0.564

6 3 2.302 0.165 0.865 0.689 0.615
8 4 3.592 0.096 0.693 0.684 0.818
18 11 2.254 0.190 0.982 0.968 0.956
20 11 2.109 0.238 1.174 1.165 0.928
22 12 1.938 0.274 1.273 1.243 0.930

1000 4 2 13.991 0.049 1.017 1.004 0.875
6 3 6.924 0.060 0.709 0.680 0.958
8 4 5.350 0.064 0.623 0.621 0.981
26 13 2.083 0.231 1.128 1.116 0.999
28 13 1.993 0.267 1.266 1.270 0.997
30 19 2.064 0.228 1.106 1.084 0.999

2000 4 2 27.702 0.032 1.202 1.196 0.990
6 3 14.850 0.033 0.736 0.731 0.999
8 4 9.147 0.041 0.612 0.607 0.999
40 18 1.922 0.283 1.308 1.296 1
42 22 1.972 0.267 1.259 1.246 1
44 22 1.953 0.282 1.320 1.304 1

5000 4 2 69.609 0.019 1.633 1.631 1
6 3 35.490 0.020 0.921 0.920 1
8 4 21.383 0.023 0.694 0.694 1
66 36 1.993 0.261 1.239 1.251 1
68 38 1.974 0.264 1.241 1.247 1
70 34 1.885 0.308 1.403 1.380 1

10000 4 2 132.233 0.014 2.155 2.154 1
6 3 70.155 0.013 1.171 1.170 1
8 4 41.810 0.015 0.839 0.838 1
96 62 1.947 0.253 1.181 1.179 1
98 48 1.894 0.301 1.379 1.357 1
100 54 1.972 0.284 1.334 1.322 1

Table 4.3: Comparison between the sampling and theoretical quantiles for TA2.

increases as n increases. For n = 500 the KS test power is bigger than TA2 power, however
TA2 has error rate 5% and the KS test has an error rate bigger than 76%. For larger sample
sizes, TA2 shows better power with low error rate.

In Table 4.5 we can find the quantile values of gamma and sample distribuiton for differ-
ent probabilities. Therefore, note that the theoretical quantiles compared with the sample
quantiles are closer for probabilities higher than 0.90. Often in hypotheses test it is used a
significance level less than 0.10, so we can use the gamma distribution to choose a critical
value for the test.
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Quantile of Sample Test Test Error
n kn mn a b gamma(a, b) 0.95 Quantile 0.95 Power Power KS Rate KS
500 4 2 6.323 0.087 0.962 0.905 0.564 0.958 0.763

6 3 2.302 0.165 0.865 0.689 0.615 0.958 0.963
8 4 3.592 0.096 0.693 0.684 0.818 0.959 0.987
18 11 2.254 0.190 0.982 0.968 0.956 0.960 0.999
20 11 2.109 0.238 1.174 1.165 0.928 0.958 1
22 12 1.938 0.274 1.273 1.243 0.930 0.960 1

1000 4 2 13.991 0.049 1.017 1.004 0.875 0.911 0.691
6 3 6.924 0.060 0.709 0.680 0.958 0.912 0.913
8 4 5.350 0.064 0.623 0.621 0.981 0.911 0.974
26 13 2.083 0.231 1.128 1.116 0.999 0.913 1
28 13 1.993 0.267 1.266 1.270 0.997 0.914 1
30 19 2.064 0.228 1.106 1.084 0.999 0.913 1

2000 4 2 27.702 0.032 1.202 1.196 0.990 0.836 0.528
6 3 14.850 0.033 0.736 0.731 0.999 0.836 0.897
8 4 9.147 0.041 0.612 0.607 0.999 0.836 0.977
40 18 1.922 0.283 1.308 1.296 1 0.836 1
42 22 1.972 0.267 1.259 1.246 1 0.838 1
44 22 1.953 0.282 1.320 1.304 1 0.837 1

5000 4 2 69.609 0.019 1.633 1.631 1 0.635 0.462
6 3 35.490 0.020 0.921 0.920 1 0.635 0.818
8 4 21.383 0.023 0.694 0.694 1 0.635 0.959
66 36 1.993 0.261 1.239 1.251 1 0.638 1
68 38 1.974 0.264 1.241 1.247 1 0.637 1
70 34 1.885 0.308 1.403 1.380 1 0.637 1

Table 4.4: Comparison between our test statistic TA2 and KS test.
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Chapter 5

Real Data Analysis

5.1 Real Data Analysis, Case 1
The application was made for the Google Stock. The period considered is November 11th to
November 12th in 2014, for a total of 27.511 observations. For this analysis we will choose
the first 1024 observations. The price studied was the price of daily closing of the index.
The following is the graph of the wavelet coefficients (see Figure 5.2). Here the number of
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Figure 5.1: Series of the Google and Log-return in the period November 11th to November 12th in
2014.

coefficients is given by 2a = 210 = 1024, so we would have 10 resolution levels, a = 0, ..., 9.
The coefficients will not be shown, since the vector d has 1024 components and the matrix
W also will not be shown, since it has dimension 1024×1024. The following table shows the
different jumps that were detected in the series by means of the wavelet method. In Figure
5.3 the wavelet coefficients for the scale a = 3 are significantly large and exceed the threshold
line, it is visible where the function detected a jump in observation 896. The jumps tend
to be detected by wavelet coefficients at lower levels of resolution and thus the detection
is increasingly accurate. In particular, the estimation of the jump 896 was detected in two
scales, for a = 3, 4 and for the estimation of the jump 832 was also detected in two scales
a = 4, 5 (see Figure 5.5).

43



44 REAL DATA ANALYSIS 5.2

Wavelet Decomposition Coefficients

Standard transform Haar wavelet
Translate

R
es

ol
ut

io
n 

Le
ve

l

5
4

3
2

1
0

0 8 16 24 32

Figure 5.2: Wavelet coefficients for Google stock

Table 5.1: Estimated values of number jumps, jump localization (t), jump size (Z) and jump vari-
ation (Φ) at different scales.

a (Scale) # Jumps t (Jump Loc) Φ

3 1 896 3.742584e-10
4 2 832 896 2.520881e-08
5 7 32 320 480 640 2.664882e-07
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Figure 5.3: Google Stock and wavelet coefficients, a = 3.
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Figure 5.4: Google Stock and wavelet coefficients, a = 4.
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Figure 5.5: Google Stock and wavelet coefficients, a = 5.

5.2 Real Data Analysis, Case 2
In this section, we collect intraday transaction prices of the Google, Apple and Goldman
Sachs (GS) stocks, respectively, from November 11th to November 12th in 2014, with a
sampling frequency to every 15 seconds. The transaction records are excluded if they are
outside the ranges of quotes, in our case the range is 9:30 a.m to 4:00 p.m. There are in total
3122, 2898 and 2819 stock prices, respectively. We aim to plot the observed test statistics
against different values of kn and mn.
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Figure 5.6: Time series of the data from 9 : 30 a.m to 4 : 00 p.m.

Figure 5.6 shows for three differents stock market data. Figure 5.7 shows the values of
our test statistic, compared to the values of kn. Additionally, we illustrate the quantile values
at the significance level of 5% and 10%. The graphics on the right of Figure 5.7 consider
the values of kn between [4, 55], [4, 54] and [4, 53] respectively. The graphics on the left
show kn values starting from 44. It can be observed that at a level of significance of 5%,
Apple stock rejects null hypotheses 88%, Google and GS stocks also reject with 98% and
84% respectively. On the other hand, when we increase the level of significance to 10%, the
percentage increases for all stocks, with Apple still rejecting with 92%, Google reject with
90% and GS also reject with 80%. This using all kn values.

Stock n kn mn α = 5%(q = 1.361) α = 10%(q = 1.112)
Apple 3122 [4,55] [2,27] 88% 92%
Google 2989 [4,54] [2,27] 98% 90%
GS 2819 [4,53] [2,26] 84% 80%

Table 5.2: Rejection rate of the test, considering all possible kn values.

As might be expected, when we use more subdivisions of our interval, that is; the value
of kn, and the greater the value of kn, our test statistic tends to detect more precisely the
dynamics of the series. This can be seen in Table 5.3.

We construct a test statistic that capture the dynamics of a series using high frequency
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Figure 5.7: TA2 statistic for different kn.

transaction prices. We compare the test power of our statistic with the KS test statistic and
the performance of TA2 show better results. The simulation show that we can approximate
our c.d.f. of the test statistic TA2 with the gamma distribution, so we can use it in practice
to apply the test.

The empirical data analysis shows that our statistic TA2 is useful to identify if the
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Stock n kn mn α = 5%(q = 1.361) α = 10%(q = 1.112)
Apple 3122 [44,55] [22,27] 100% 100%
Google 2989 [44,54] [22,27] 91% 73%
GS 2819 [44,53] [22,26] 30% 20%

Table 5.3: Rejection rate of the test, considering kn values that are at least 44.

variation in the series is different from a standard normal variation in high frequency data
of prices. For Apple and GS stock, our test indicates that there is not a standard normal
variation for the largest kn values.



Chapter 6

Conclusion

In this work, we first discussed a method proposed by Fan and Wang (2007) for detection
and localization of the jumps in different scales. We also show that the jumps tend to be
detected by wavelet coeffients at lower levels of resolution and thus detection is increasingly
accurate. When checking the wavelet coefficients on the differents scales, we can find dyadic
intervals in some scales, whose corresponding absolute value of the wavelet coefficient ex-
ceeds the threshold, and are significantly higher than the others. We applied the procedure
for the Google Stock, and we detected 3 scales for the estimation of the jumps.

In Chapter 2 a volatility model with jumps is entertained and a wavelet analysis is
proposed.

We also construct a test statistic that capture the dynamics of a series using high fre-
quency transaction prices. We compare the test power of our statistic with the Kolmogorov-
Smirvov test statistic and TA2 shows better results.
The simulation show that we can approximate the c.d.f. of the test statistic TA2 with the
gamma distribution, so we can use it in practice to apply the test. The empirical data anal-
ysis shows that the statistic TA2 is useful to identify if the variation in the series is different
from a standard normal variation in high frequency data of prices. For Apple and GS stock,
the test indicates that there is not a standard normal variation for the largest kn values.

Also, it can be observed that at a level of significance of 5%, Apple stock rejects null
hypotheses 88%, Google and GS stocks also reject with 98% and 84% respectively. On the
other hand, when we increase the level of significance to 10%, the percentage increases for
all stocks, with Apple still rejecting with 92%, Google reject with 90% and GS also does not
reject with 80%. This using all kn values.

Future research topics include the following:

• Consider other estimators for variance and also other cumulative distribution function.

• In the hypothesis test consider other types of models for H0 and H1.

• In this work our test was compared with the Kolmogorov-Smirnov test, so we can
compare the performance of our test statistic with other tests.

• Study the sensitivity of the variables kn and mn.

• As a challenge we might consider finding the closed form of our test statistic.
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Appendix A
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(a) kn = 22, n = 500.
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(b) kn = 30, n = 1000.
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(c) kn = 44, n = 2000.
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(d) kn = 70, n = 5000.
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(e) kn = 100, n = 10000.

Figure A.1: Comparison between Sampling cumulative distribution function and Gamma cumula-
tive distribution function.
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Figure A.2: Histograms of the sample density function for different sizes of kn and n, compared
with the gamma density.
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Histogram of TA2
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(a) kn = 96, n = 10000.
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Figure A.3: Histograms of the sample density function for different sizes of kn and n, compared
with the gamma density.
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