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Abstract

FERREIRA, A. R., LEONARDI, F. G., SOUSA, A. R. S Estimation of knots location and
number in the splines regression models using an optimization approach. 2022. Disser-
tation (Master’s degree) - Institute of Mathematics and Statistics, University of São Paulo, São
Paulo, 2022.

In many practical problems related to supervised statistical learning, we are interested in pre-
dicting a continuous target. Frequently, the relationship between the explanatory variable and the
target variable is nonlinear, so models that introduce nonlinearity for this purpose tend to obtain
better performances in general. A statistical model that addresses this problem called the regression
splines model has received considerable attention in recent years. This is due to its great predictive
power and good fits incorporated by its flexibility. However, the splines regression model has a
significant disadvantage: one of its main components, called knots, related to the change points,
are usually chosen before the estimation process. They are considered pre-specified values, which in
some situations can present severe problems in practical problems. In this work, we propose a new
methodology that tries to solve this considering the knots location and knots number as parameters,
and we solve this problem as an optimization approach using the nonlinear optimization algorithm
BFGS. Furthermore, we introduce new regularization methods to penalize variables with irrelevant
knots and avoid overfitting. The proposed methodology obtained many advantages compared to
the approach used in the literature, such as automatic estimation of the number and location of
knots, regularization methods that avoids overfitting, and selection of irrelevant knots. Our ap-
proach obtained several gains in predictive performance and knots estimation in the simulations,
thus obtaining better results than the usual procedure.

Keywords: splines regression model, knots location estimation, knots number estimation, regu-
larization methods, BFGS.
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Chapter 1

Introduction

In many practical problems related to supervised statistical learning, we are interested in predicting
a continuous target. Often the relationship between the explanatory variable and the target variable
is non-linear. Hence, models that introduce nonlinearity for this purpose tend to obtain better per-
formances in general. A statistical model that addresses this type of problem called the regression
splines model has received considerable attention in recent years. It is a non-parametric model and
tries to balance the interpretability and flexibility provided by additive models[10], which are a
generalization of linear models that allow non-linear relationships between the explanatory variable
and the response variable. This is due to its great predictive power and good fits due to its flexibility.

Also, regression splines is an extension of polynomial regression models. It involves splitting the
range of each explanatory variable into a few different regions. Within each region, a polynomial
function is fitted to the data [14]. However, we have to worry about overfitting because if the model
is too flexible, the estimates can have big variance and not predict well observations of a set that it
has not yet seen. Because of this, regularization methods are of fundamental importance to have a
trade-off between bias and model variance.

The splines regression model has a significant disadvantage: one of its main components, called
knots, related to the change points are usually chosen before the estimation process. They are
considered pre-specified values, which in some situations can present severe problems in practical
problems. In this work, we propose a new methodology that tries to solve this considering the knots
location and knots number as parameters, and we solve this problem as an optimization approach
using the non-linear optimization algorithm BFGS. Furthermore, we introduce new regularization
methods to penalize variables with irrelevant knots and avoid overfitting.

The proposed methodology obtained many advantages compared to the approach used in the litera-
ture, such as automatic location knot estimation, automatic number knot estimation, regularization
method that avoids overfitting or underfitting, and selection of irrelevant knots. In the simulations
performed, our approach obtained several gains in predictive performance and knots estimation,
thus obtaining good results compared to the approach used in the usual literature and many well-
known predictive models in the literature.

This dissertation has the following structure: chapter 1 introduces some additive models, includ-
ing the spline regression model, which will be the focus of the dissertation. It also presents the
main methods for choosing knots and its disadvantages. Chapter 3 presents the proposed cost func-
tions, our main contributions to the splines regression model, the motivation behind the estimation
method used, and the knots number estimation method. Chapter 4 tests our proposed methods in
simulations and several real data sets how the proposed methods behave against several machine
learning algorithms known in the literature.

1
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Chapter 2

Models Based on Knots

Statistical models are often a powerful tool for various purposes, such as making predictions, ob-
taining estimates, checking which variables are significant to the problem, and understanding the
relationship between the explanatory and response variables.

Frequently, the relationship between the explanatory variable and the response variable is non-
linear, and thus some traditional models, despite having the advantages of simplicity, may fail to
obtain a proper fit. Therefore, a flexible alternative for this objective is to use additive models [10],
which is a class of models defined by:

Yi = β0 +

p∑
j=1

fj(xij) + ϵi,∀i = 1, . . . , n

where the erros have E[ϵi] = 0, ∀i = 1, . . . , n.

Additive models are non-parametric models, since the functions fj , j = 1, ..., p are not specified. In
practice, these functions are smooth for each variable, and the parameters can be estimated by the
backfitting algorithm or simply by the least squares method, depending on the functions fj used in
the functional form of the additive model.

When we fit a linear regression model, we usually do not believe that the model is correct. In-
stead, we believe that it will be a simple approximation to the true model and that we can uncover
the important predictors and their roles using this approximation[10]. Additive models are more
general approximations where we can obtain relations more realistic in most of the datasets.

2.1 Fitting additive models

There are several ways to approach the formulation and estimation of additive models. Normally,
these methods change through the constraints and the smoothness of the functions in the model.
A few approaches that handle the estimation can be as follows:

1. The simplest possible model using the additive models approach is the multiple linear re-
gression model with several possible tools such as confidence intervals, prediction intervals,
hypothesis tests, and estimates of the variances of well-defined estimators, which can be used
when it is a reasonable model. It is a simple but powerful modeling tool as a first attempt at
modeling data and perform predictions.

2. More general versions than multiple linear regression can be incorporated. These approaches
can add flexibility and predictive power and can be classified as parametric non-linear additive
models. Some examples are the addition of non-linear explanatory variable transformations,
such as logarithmic function, square root function, and mainly polynomials, which are the

3



4 MODELS BASED ON KNOTS 2.1

most used.

Another possibility would be an orthogonal polynomial approach, which creates a set of poly-
nomials as a function of the explanatory variables to avoid approximate multicollinearity.

3. Also, there are models called generic splines that use a particular set of functions. Each specific
model uses a different type of base. For example, the splines regression fits a polynomial
regression in some regions of the explanatory variable range. This model uses an important
component called knots. In the literature, knots are pre-chosen, which can be a significant
disadvantage. This dissertation will explore this model more in the next sections. The prevalent
choice is B-Splines[4].

4. The most general algorithm for estimating additive models allows us to estimate each func-
tion separately by any smoother. Some examples of these models are cubic smoothing splines,
locally weighted and kernel smoothers. The algorithm that estimates these models parameters
is called backfitting, which uses conditional expectations and an iterative process.

The main idea is to estimate each function by fitting the new target like being the resid-
uals. For example, fitting the target Yi − β0 −

∑p
j=1

j ̸=k

fj(xij) as a function of the variable xij

to estimate fk,∀k = 1, . . . , p

The algorithm called backfitting has an objective to estimate the parameters of each function
fj ,∀j = 1, . . . , p. However, the biggest problem in this algorithm is identifiability, which occurs
because we can add or subtract a constant from functions f and still obtain the same value of the
functional form. Thus, a way to avoid this problem is to fix the estimate of β0 = Ȳ and add the
following constraint

∑n
i=1 fj(xij) = 0. More details about the mathematical tricks of the backfitting

and estimations of specific models can be found in [7],[13],[10].

The pseudocode of the backfitting algorithm is given below:

Algorithm 1 Backfitting algorithm
Input: Training data X, y.
Initialize: β0 = ȳ and generate intial guesses for f̂j(X),∀j = 1, . . . , p.
while f̂j does not converge ∀k = 1, . . . , p do

for k = 1, . . . , p do

1. Compute Ỹi = Y−β̂0 −
∑p

j=1
j ̸=k

f̂j(xij), ∀i = 1, . . . , n

2. Estimate fk with the target Ỹ and the explanatory variable Xj .

3. Uptade f̂k(X) = f̂k(X)− 1
n

∑n
i=1 f̂k(xij)

end for
end while



2.2 PIECEWISE POLYNOMIALS 5

2.2 Piecewise Polynomials

Over the years, the amount of data has only grown significantly. Statistical models must follow
this evolution to obtain a good fit and relevant results, such as predictions, model selection, inter-
pretability, confidence intervals, and hypothesis tests.

One possible model that is a particular case of the non-parametric additive models is piecewise
polynomial models. Instead of fitting a polynomial model to the entire dataset, a polynomial model
is fitted to subsets of data to be more flexible and predict better future observations.

We start simply with a polynomial regression, for example, with a cubic degree.

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ϵi (2.1)

However, the coefficients β0, β1, β2, β3 change by some specified value of x.
More specifically:

yi =

{
β01 + β11xi + β21x

2
i + β31x

3
i + ϵi if xi ≤ c

β02 + β12xi + β22x
2
i + β32x

3
i + ϵi if xi > c

(2.2)

In other words, we fit two different polynomial functions to the data, one in the subset of obser-
vations with xi ≤ c, and one in the subset of the observations with xi > c. The first polynomial
function has coefficients β01, β11, β21, β31, and the second has the coefficients β02, β12, β22, β32[14].
These polynomial models can be fitted simply using the least squares estimator, thus obtaining
estimates for each subset of the data. The change points are called knots. In the previous example,
they are equal to c and are an important component in this type of model and the models studied
in this dissertation. From now on, all models presented that have these change points will be refer-
enced in this way.

An important observation is that using more knots can lead to very flexible models since we will
fit polynomial statistical models by regions, making the fit as flexible as possible. In practice, the
knots number is pre-specified and may vary depending on the data set. This approach in additive
models will be explained in the following sections of this dissertation.

For instance, 200 observations of the curve in the figure below were generated, and then we com-
pared how a polynomial regression and a piecewise polynomial behave for non-linear relationships.

Figure 2.1: Simulated nonlinear fit
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Figure 2.2: Comparison between piecewise and polynomial regression

The Figure 2.2 shows the piecewise model(left side) with c=50 and polynomial regression(right
side) fitted the simulated data. We can see that the piecewise polynomial model obtains a better
fit than a single polynomial model, which is expected in non-linear situations since, as previously
mentioned, this model is more flexible and can capture more non-linear fit possibilities.

The biggest problem with this model is that the piecewise model fitted is not continuous and
has many more parameters than necessary, which makes this model not attractive.

One way to solve this problem is to use the same idea of fitting polynomials in regions of the
range of the explanatory variables, but now with the constraint that the fit is continuous. This
is the primary motivation for constructing the Regression Splines statistical model, which will be
widely studied in this dissertation.

2.3 Regression Splines

The Splines Regression model can be considered the evolution of the piecewise polynomial models
presented in the previous section. This is due to the reason of having the same idea of the piecewise
models, which is fitting polynomials in some regions of the interval for each numerical explanatory
variable. However, now with the condition of being a continuous fit and because of this, it is likely
to estimate fewer parameters and has less computational cost.

Also, just as piecewise models have pre-specified knots, spline regression models make use of this
unique component, but now with a big difference, these knots are explicitly used in the functional
form of the splines regression. This way, continuity is guaranteed through functions that involve
these change points called truncated power basis. The splines regression model is defined as follows:

Yi = β0 +

p∑
j=1

fj(xij) + ϵi, ∀i = 1, 2, . . . , n (2.3)

where the fj(xij) are given bellow

fj(xij) =

Kj∑
k=1

β(j,k)x
k
ij +

αj∑
m=1

β(j,m+Kj)(xij − tjm)KjI(xij > tjm), (2.4)
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where p is the total number of explanatory variables, Kj is the polynomial degree of each variable
and αj is the knots number of each explanatory variable with index j and ϵi is the source of varia-
tion typically associated with the error that cannot be controlled, with E[ϵi] = 0, ∀i = 1, . . . , n and
I is the indicator function.

The parameters will be defined by the vector θ = [β0, β(1,1), . . . , β(p,αp+K)] ∈ R
∑p

j=1[αj+Kj ]+1.
The knots are pre-specified and denoted by tjm for j-th explanatory variable and m-th knot in this
specific variable. For example, if we consider a single numerical explanatory variable, K=3 and two
knots, the model given in (2.3) can be summarized by:

Yi = β0 + f1(xij) + ϵi (2.5)

where

f1(xi1) = β(1,1)xi1 + β(1,2)x
2
i1 + β(1,3)x

3
i1 + β(1,4)(xi1 − t11)

3I(xi1 > t11) + β(1,5)(xi1 − t12)
3I(xi1 > t12)

(2.6)

A possible example of a fit with two knots is the figure below.

Figure 2.3: Regression splides fitted with two knots: t11 = 18 and t12 = 85

The knots are specified before the parameter estimation, in this simulation case, the values of knots
are respectively t11 = 10 and t12 = 85. With this type of approach, we can see a fit that makes
sense, and it is pretty reasonable since only the change points in the estimated curve are close to
the previously established knots.

An important component in the splines regression model is the second sum of the equation given in
(2.4). We can realize that in each function fj , there is a polynomial regression with the truncated
power basis. Therefore, it is essential to verify what happens with the addition of these functions,
the estimates of their respective parameters and interpretations that we can provide to clearly ex-
plain the likely increase in flexibility and predictive power.

In practice, the splines regression model fits polynomials in pre-established regions through the
knots. The best way to realize this is through parameter estimates. Returning to the example given
in (2.5), with the fit made we will have the following estimates β̂0, β̂(1,1), β̂(1,2), β̂(1,3), β̂(1,4), β̂(1,5).

In this case, we have 2 knots, so we will have three regions. The first region is given by the ob-
servations that are smaller than the first knot(t11). The second region is given by the observations
that are between the first(t11) and the second knot(t12) and the third given by the observations
that are larger than the second knot(t12). In this way, we can write the estimates for each region
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to understand better how the fit is obtained. So we have:

ŷi =


β̂0 + β̂(1,1)xi + β̂(1,2)x

2
i + β̂(1,3)x

3
i if xi ≤ 12

β̂0 + β̂(1,1)xi + β̂(1,2)x
2
i + β̂(1,3)x

3
i + β̂(1,4)(xi − 12)3 if 12 < xi ≤ 88

β̂0 + β̂(1,1)xi + β̂(1,2)x
2
i + β̂(1,3)x

3
i + β̂(1,4)(xi − 12)3 + β̂(1,5)(xi − 88)3 if xi > 88

(2.7)

Through the expression (2.7) we can see that we have different prediction functions for each of
the three regions. In other words, the splines regression model estimates its parameters based on
observations in different regions in order to increase flexibility and predictive power. Furthermore,
we can see that the higher the values of the explanatory variable, an estimate is added to predict
the observations.

It may be more natural for some people to use the piecewise model rather than the spline re-
gression model. However, the piecewise model does not guarantee continuity. It has many more
parameters than the spline regression model because it fits a polynomial by regions separately and
does not have the advantages of the spline regression model discussed in the following sections.

In practice, we have more than one explanatory variable and consequently more parameters to
estimate in the splines regression model. The number of prediction equations grows with the in-
crease in the knots number of the variables and, consequently, the flexibility of the model and its
predictions.

Let us consider two explanatory variables, the first with only one knot and the second with three
knots. In this way, the functional form of the model would be given by:

Yi = β0 + f1(xi1) + f2(xi2) + ϵi (2.8)

where

f1(xi1) = β(1,1)xi1 + β(1,2)(xi1 − t11)I(xi1 > t11) (2.9)

and

f2(xi2) = β(2,1)xi2 + β(2,2)(xi2 − t21)I(xi2 > t21) + β(2,3)(xi2 − t22)I(xi2 > t22) (2.10)

+ β(2,4)(xi2 − t23)I(xi2 > t23) (2.11)

As in the previous example, knots are pre-specified before the estimation process, in this case
t11 = 88 while t21 = 19, t22 = 44 and t23 = 78. Now, since we have eight different regions in our
set, we will have eight prediction equations based on the knots number of the two variables. The
number of regions for the generic case of p variables is calculated by

∏p
j=1(αj + 1).
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The prediction equations provided for each region are given below:

ŷi =



β̂0 + β̂(1,1)xi1 + β̂(2,1)xi2 if xi1 ≤ 88 and xi2 ≤ 19

β̂0 + β̂(1,1)xi1 + β̂(2,1)xi2 + β̂(1,2)(xi1 − 88) if xi1 > 88 and xi2 ≤ 19

β̂0 + β̂(1,1)xi1 + β̂(2,1)xi2 + β̂(2,2)(xi2 − 19) if xi1 ≤ 88 and 19 < xi2 ≤ 44

β̂0 + β̂(1,1)xi1 + β̂(2,1)xi2 + β̂(1,2)(xi1 − 88) + β̂(2,2)(xi2 − 19) if xi1 > 88 and 19 < xi2 ≤ 44

β̂0 + β̂(1,1)xi1 + β̂(2,1)xi2 + β̂(2,2)(xi2 − 19) + β̂(2,3)(xi2 − 44) if xi1 ≤ 88 and 44 < xi2 ≤ 78

β̂0 + β̂(1,1)xi1 + β̂(2,1)xi2 + β̂(1,2)(xi1 − 88) + β̂(2,2)(xi2 − 19)

+β̂(2,3)(xi2 − 44) if xi1 > 88 and 44 < xi2 ≤ 78

β̂0 + β̂(1,1)xi1 + β̂(2,1)xi2 + β̂(2,2)(xi2 − 19) + β̂(2,3)(xi2 − 44)

+β̂(2,4)(xi2 − 78) if xi1 ≤ 88 and xi2 > 78

β̂0 + β̂(1,1)xi1 + β̂(2,1)xi2 + β̂(1,2)(xi1 − 88) + β̂(2,2)(xi2 − 19)

+β̂(2,3)(xi2 − 44) + β̂(2,4)(xi2 − 78) if xi1 > 88 and xi2 > 78

(2.12)

The prediction equations for each region possibly provide more flexible predictions that contem-
plate more possibilities of the non-linear relationship between the variables. Thus, eight prediction
equations for each region may seem a bit exaggerated. However, in some situations, it becomes
necessary due to the complexity of the data set involved, and it is crucial to have some model
selection criteria for this case or it can lead to the problem of overfitting.

One way to solve this issue is through regularization methods. Among the most commonly used
are those used in ridge regression[12] through a L2 regularization, lasso regression[20] through a
L1 regularization and the elastic net[21] that combines the two regularizations with some extra
advantages over the lasso and ridge.

The least-squares estimation method uses no regularization and can lead to overfitting. There-
fore, using some regularizations is vital for this type of estimation to avoid overfitting, where we
have many parameters to be estimated. One of the goals of this dissertation is to propose flexi-
ble regularization alternatives for this case. In addition to other advantages, more details will be
explained in detail in the following sections.

2.4 Disadvantages of Regression Splines

Despite often improving the quality of the fit when there are non-linear relationships between the
explanatory variable and the response variable, the splines regression model can present some prob-
lems in data sets in practice. It is essential to verify in which situations we can use this statistical
model without having negative impacts or minimizing them as much as possible.

Often, statistical models that are more flexible than traditional models are likely to pay the price for
nonlinearity, which is expected because no model is perfect and can be used in 100% of situations.
The problem that can occur most in practice is overfitting, which is the model capacity to fit beyond
what is necessary to the data set and not understand the behavior of these same data. This is quite
common in models with many parameters and when there is no regularization on the estimation
process for this type of situation. Furthermore, with the increase in the number of parameters,
another prevalent problem in this situation is the increase in the variance of the estimates and,
consequently, wrong predictions, as it leads to the prediction intervals becoming much wider than
they should be.

In the splines regression model, the knots number chosen for each variable is of fundamental im-
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portance, as the knots number increases the number of parameters, which can lead to a wrong
specification of the model and consequent overfitting. Furthermore, if the knots number chosen is
less than necessary or in deficient regions, underfitting can occur, which is the model capacity of
not capturing the behavior of the data and not generate good fits or predictions.[19] Thus, to solve
these problems referred to as overfitting or underfitting, the model selection area is beneficial to
select an ideal knots number in practice.

Finally, the main disadvantage of the spline regression model is often related to the fact that the
knots are pre-specified before the parameter estimation. They are not considered parameters, but
they are considered "easy" values to be obtained in the usual literature, which is not always true.
A wrong choice of the location of the knots, together with the number of the knots, can generate
fits that do not represent reality and lead to problems in practice.

This dissertation’s main contributions and motivations, which will be explained in detail in the
following sections, try to solve some problems that will be discussed to make the studied models
even better and more robust to real dataset situations. Therefore, we can summarize the disadvan-
tages of the splines regression model, and then we will explore each of them in examples in situations
where the model is negatively affected and the possible solutions proposed by this dissertation.

1. Manual choose of the knots number

2. Manual choose of the knots location

3. Increase in estimated standard errors

4. Overfitting/Underfitting possibilities

There are two most common practices in choosing the number and knots location. The first is simply
manually choosing these values and checking which situations are better. The second, popularly used
in statistical software such as the R language, is to use the knots in uniform regions of each variable
and the choice of knots number is not well defined.

2.4.1 Manual choose

A first idea to specify the knots location would be through an expert manually checking each scatter
plot between the explanatory and response variables. A possible choice would be a value close to
the change points of the behavior present in the graph. However, human choices have limitations,
even if made by specialists, and differences between decimal digits can make a big difference in the
quality of the fit model.

For example, if the possible range of an explanatory variable is between 0 and 1, and there is
only one change point. Decimal places limit the choice made by the human, and there is no way to
have reasonable confidence in this choice, even if made by someone who perfectly understands the
nature of the sample data.

In addition, an idea for manual choice of the knots number would be to check how many change
points there are in the scatter plot. However, generally in the splines regression model, as we esti-
mate a polynomial fit in regions with the continuity constraint, there is a good possibility of needing
fewer knots to estimate the dataset correctly. For example, if a graph perfectly shows six change
points, it may only need to take three knots to fit the model with fewer parameters properly and
possibly have better interpretations and predictions.

The following example shows this perfectly. The model that generated the data has four knots,
but an estimated model with two knots fits the data correctly, at least visually.
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Figure 2.4: Proper fit with fewer parameters

More specifically, the real model has the following functional form:

Yi = 0.41 + 0.98xi1 − 0.05x2i1 + 0.0002x3i1 + 0.03(xi1 − 12.83)3 − 0.01(xi1 − 28.68)3 (2.13)

−0.05(xi1 − 69.86)3 + 0.09(xi1 − 88.70)3 + ϵi (2.14)

whereas the estimated model has the following functional form:

ŷi = 2.18 + 0.60xi1 − 0.03x2i1 + 0.0003x3i1 − 0.0007(xi1 − 50)3 + 0.002(xi1 − 80)3 (2.15)

If this happens with more variables, more unnecessary parameters will be added to the estimated
model and consequently can lead to overfitting. A proper procedure would be to avoid this type of
problem, thus discarding parameters that do not contribute to the adjustment.

Furthermore, the manual choice would have to be performed for each numerical variable, and nowa-
days, there are many datasets in practice that have many variables. Therefore, in some situations,
this procedure manually is impractical.

2.4.2 Uniform choose

The second procedure used to estimate the knots location is performed through a uniform choice of
the range of possible values of the explanatory variable and a manual choice of the knots number.
This method suffers from the same problems as the first method given in Section 2.4.1. It considers
the proper choice of knots, which may not always be easy in practice.

Furthermore, the uniform choice of knots can lead to some problems, such as a wrong model
specification. It is not difficult to imagine situations in which we have knots in regions that are not
uniform. The simplest example would be if all change points were located at the beginning or end
of the data. The next example illustrates this idea very well:
More specifically, the real model has the following functional form:

Yi = 0.73 + 0.03xi1 − 0.9(xi1 − 92.06) + ϵi (2.16)

while the estimated model has the following functional form:

ŷi = 1.09 + 0.03xi1 − 0.05(xi1 − 50) (2.17)

In Figure 2.5 there is only a single change point that is very near the end. In this case, the uniform
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Figure 2.5: Incompatible fit using uniform knots choice

choice of knot location, even if the knots number is appropriately chosen, will probably suffer from
some adjustment problem, as it should lead to an inadequate model specification.

This procedure is even more problematic to choose the number of knots when we have many ex-
planatory variables. A possible commonly used strategy is choosing some possible values and testing
which one best fits the problem. In [14], the author says that "One option is to try out different num-
bers of knots and see which produces the best looking curve", using cross-validation. This approach
can lead to a simplistic or unrealistic fit and occasionally lead to overfitting or underfitting problems.

Even if the fit is reasonable, either by obtaining good predictions or having a low loss function,
intuitively, there are ways to improve the fit and consequently improve the predictions consider-
ably. Therefore, we will see some examples using these approaches, and then we will make some
considerations and possible improvements that can be made.

Unlike the previous method, choosing knots uniformly can provide better results when there is
not much information about the change points or difficult choices. On the other hand, this proce-
dure depends on a reasonable choice of the knots number.

2.5 Disadvantages of Linear Splines

We will see how the mentioned disadvantages can affect some simulated data using K=1. In this
case, we will have linear splines, which is linear regression by parts. We will look at how poor knot
numbers and location choices can negatively impact model fit.

Let us look at three different situations: the first will be when the knots number is much larger than
it should be, the second will be when the knots number chosen is close to the real knots number,
and the third will be when the knots number chosen is equal to the real knots number. For each
one, we will see the two methods mentioned: the manual choice and the uniform choice of the knots
location, explained in Sections 2.4.1 and 2.4.2.

The simulated dataset will be divided into training and testing in all analyses, with 140 obser-
vations for training and 60 for testing to calculate the mean square error and standard deviation
using the generated and estimated models. The generated model will always have two knots, and
with that, we will compare in which situations the approach can be used and when it is likely to
be the wrong choice. Also, in the graphs presented, black dots refer to training observations, while
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green dots refer to test observations, and the knots location will be represented in the figure as
dashed lines. As examples, we will consider just a single explanatory variable to analyze how the
usual approach fits these models.

The analysis will compare the mean square error (MSE) and standard deviation for the test set of
the generating model with the estimated model. In addition, we will compare the curves visually
to understand if, in fact, the estimated model adequately understood the behavior of the data and
consequently making realistic predictions. Also, all pre-established knots choices will be based on
possible situations in practice, chosen based on some software, by specialists, or by someone trying
to understand the splines regression model.

The model that generated the data is provided below:

Yi = 1.48 + 0.19xi1 − 0.28(xi1 − 18.21)I(xi1 > 18.21) + 0.32(xi1 − 88.81)I(xi1 > 88.81) + ϵi
(2.18)

where the errors have ϵi ∼ Normal(0, 2).
The model curve that generated the data is given below, as well as the training and testing data.

Figure 2.6: Linear Splines Simulated

For this model, the pre-specified knots are equal to 18.21 and 88.81, as shown in the figure. The
MSE and standard deviation for the test set are equal to 3.84 and 5.31, respectively. Therefore,
the metrics of all models estimated with K=1 will be compared with these values. We will look at
several examples of how the two methods used in the literature behave with the generated data.

2.5.1 Manual choose

For the manual choice method, we will see the three situations mentioned above.
The first situation will be analyzed when the knots number is greater than two.
In Figure 2.7, the knots number chosen for the fit was eight, six knots more than the rea knots
number. The pre-specified knot locations are 10, 22, 30, 41, 50, 71, 81, and 90. The MSE and the
standard deviation of the test set for the estimated model are equal to 4.88 and 6.42, respectively.
These metrics are more or less a unit away from the generated model metrics, and despite obtain-
ing an estimated curve close to the real curve, improvements should be made, such as decreasing
the number of parameters and choosing the knots location more conveniently, thus improving the
predictions.

The second situation will be when the estimated knots number is close to the number of the
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Figure 2.7: Linear Splines with Manual Choice First Situation

real knots.

Figure 2.8: Linear Splines with Manual Choice Second Situation

In Figure 2.8, the knots number chosen for the fit was one, one knot less than the actual knots
number. The pre-specified knot location is 10, a reasonable choice based visually on the change
points of the scatter plot. The MSE and standard deviation for the test set of the estimated model
are equal to 4.58 and 5.94, respectively. The test MSE of the estimated model is a little higher
than the real model, and the standard deviation is relatively close to the standard deviation of
the generated model. However, the estimated curve presents a visible error: it did not detect the
second point of change of the real model, and it will probably return more considerable errors when
the explanatory variable is close to this region. Therefore, if the estimated model had correctly
estimated the knots number, it would perform better for the simulated data.

The third situation will be when the knots number in the estimated model is equal to the knots
number in the real model.
In Figure 2.9, the knots number chosen for the fit was two, the same knots number as the real model.
The locations of the pre-specified knots are at 30 and 63, plausible choices for this case. The MSE
and standard deviation for the estimated model test set are equal to 5.2 and 7.31, respectively. The
test MSE of the estimated model is much larger than the real model, and the standard deviation
for the test set is much larger than the standard deviation (exactly two units larger) of the real
model. Despite the knots number in the estimated model being the same as in the real model, the
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Figure 2.9: Linear Splines with Manual Choice Third Situation

locations made the fit much worse, causing the model not to perform predictions efficiently. So, this
is an excellent example that even with the knots number being adequate, it is useless if the knots
location is terrible.

In conclusion, when we are dealing with linear splines, the manual choice of both the location
and the knots number is essential because, through it, the fit may be able to present an ade-
quate performance or not. Furthermore, even if reasonable choices are made, they have limitations
and cause serious problems. Therefore, a methodology capable of overcoming this problem must
undoubtedly be considered to make predictions more suitable for practical problems.

2.5.2 Uniform choose

Now, let us look at the three situations again with the uniform choice method.
The first situation will be when the knots number used is much higher than the knots number in
the real model.
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Figure 2.10: Linear Splines with Uniform Choice First Situation

In Figure 2.10, the knots number chosen for the fit was eight, six knots more than the actual model’s
knots number. The locations of the pre-specified knots are: 12.28, 22.05, 36.35, 46.01, 55.89, 65.49,
75.54, and 84.70. The MSE and standard deviation for the test set of the estimated model are equal
to 4.98 and 6.64, respectively. The test MSE of the estimated model is greater than the real model,
with more than one unit of difference, and the standard deviation for the test set is greater than
the standard deviation of the real model, with more than one unit of difference as well. Although
the estimated curve is relatively close to the real curve, the knots number in the estimated model is
much higher than the real model, leading to some problems such as interpretability and an increase
in the variance of the estimate. Therefore, if the model had the most suitable knots number, the
performance could improve.

The second situation will be when the knots number of the estimated model is close to the real
model.

Figure 2.11: Linear Splines with Uniform Choice Second Situation

In Figure 2.11, the knots number chosen for the fit was three, only one knot more than the ac-
tual model’s knots number. The locations of the pre-specified knots are 27.01, 51.01, and 73.49.
The MSE and standard deviation for the test set of the estimated model are equal to 5.36 and
7.82, respectively. The test MSE of the estimated model is much larger than the real model, about
one and a half units larger, and the standard deviation for the test set is much larger than the
standard deviation of the real model, with more than two units larger as well. Although the knots
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number in the estimated model is close to the real model, the knots location made the fit worse,
leading to some problems with error variance. Therefore, even the knots number of the estimated
model is adequate, and the performance could improve with the knots location being more assertive.

The third situation will be when the knots number used is equal to the knots number in the
real model.

Figure 2.12: Linear Splines with Uniform Choice Third Situation

In Figure 2.12, the knots number chosen for the fit was two, the same knots number as the knots
number in the real model. The pre-specified knot locations are 36.35 and 65.49. The MSE and
standard deviation for the estimated model test set are equal to 5.53 and 7.97, respectively. The
estimated model’s test MSE is much larger than the real model, almost two units larger, and the
standard deviation for the test set is much larger than the standard deviation of the actual model,
with more than two and a half units larger than the standard deviation of the real model. There-
fore, although the knots number in the estimated model is the same as the real model, the knots
location did not achieve good performance, leading to some error variance problems. So this is an-
other example where knot location negatively impacts even the number of estimated model knots
is adequate. Again, predictive performance could improve if knots locations were more accurate.

These examples showed that uniform choices for this type of model do not work very well, as
they make a big difference in the fit and can affect predictions. The results showed that the error
and standard deviation metrics were not close enough to be considered satisfactory. Therefore, we
have the intuition that the choice of location and knots number can be improved.

In summary, six examples of the linear spline regression model were shown where six different
situations were verified: three different situations where the knots number used in comparison to
the knots number in the real model and also using two methods, the first choosing the knots loca-
tion manually and the second choosing the knots location uniformly. These examples can happen
in practice, and we must be cautious when making this choice, as the model can perform poorly
because of poor choices. This dissertation proposes a new methodology to consider knots and the
knots number as the parameters. This way, it will obtain them numerically concerning a specific
cost function. More details will be covered in the methodology proposed in the next section.

2.6 Disadvantages on Cubic Splines

We will see how the mentioned disadvantages can affect some simulated data using K = 3. In this
case, we will have cubic splines. Let us see how poor knot number and location choices can nega-
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tively impact model fit.

As in the previous section, we will see the same three situations illustrated: when the knots number
is much larger than it should be when the knots number chosen is close to the real knots number,
and when the knots number chosen is equal to the real knots number. We will see the two methods
mentioned for each: the manual choice and the uniform choice of knot location explained in sections
2.4.1 and 2.4.2.

The simulated dataset will be divided into training and testing in all analyses, with 140 obser-
vations for training and 60 for testing to calculate mean square error and standard deviation using
the estimated model. The generated model will always have two knots, and with that, let us com-
pare in which situations the approach can be used and when it is likely to be the wrong choice.
Also, in the graphs presented, black dots refer to training observations while green dots refer to test
observations, and the knots location will be represented in the figure as dashed lines.

The analysis will compare the mean square error (MSE) and standard deviation for the test set
of the generation model with the estimated model. Also, let us compare the curves visually to
understand if, in fact, the estimated model adequately understood the behavior of the data and
therefore making realistic predictions. In addition, all pre-set knots choices will be based on possible
situations in practice, chosen based on some software or reasonable user choices.

The fit that generated the data is provided below:

Yi = 0.33 + 0.56xi1 − 0.02x2i1 + 0.02(xi1 − 13.64)3I(xi1 > 13.64) + 0.01(xi1 − 82.63)3I(xi1 > 82.63) + ϵi
(2.19)

where the errors have ϵi ∼ Normal(0, 2).
The fit curve that generated the data is given below, as well as the training and testing data.

Figure 2.13: Cubic Splines Simulated

For this fit, the pre-specified knots are equal to 13.64 and 82.63, as shown in the Figure 2.13. The
MSE and standard deviation for the test set are equal to 3.68 and 4.94, respectively. Therefore,
the metrics of all models estimated with K=3 will be compared with these values. We will look at
several examples of how the two methods used in the literature behave with the generated data.
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2.6.1 Manual choose

For the manual choice method, we will see the three situations mentioned above. The first situation
will be analyzed when the knots number is greater than two.

Figure 2.14: Cubic Splines with Manual Choice First Situation

In Figure 2.14, the knots number chosen was eight, six more than the knots number in the real
model. The locations of the pre-specified knots are at 10, 22, 30, 41, 50, 71, 81 and 90. The MSE and
standard deviation in the test set were 4.42 and 5.7, respectively. Both metrics are larger than the
real model but not so much. This is due to the flexibility introduced by the nonlinearity, even if the
number and knots location are not adequate. However, there are problems with this approach: first,
there are more parameters than necessary. In the estimated model, there are twelve parameters,
while in the real model, there are only six parameters, twice as many parameters, which leads to
prediction variance problems. Also, this can lead to overfitting if we consider that there will be
more variables and consequently more parameters to be estimated.

The second situation will be when the estimated knots number is close to the number of the
real knots.

Figure 2.15: Cubic Splines with Manual Choice Second Situation

In Figure 2.15, the knots number chosen was three, one more than the actual model knots. The
pre-specified knot locations are 5, 50, and 95. The MSE and standard deviation in the test set were
4.45 and 5.86, respectively. The estimated curve is close to the curve that generated the data and
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has excellent performance. However, it may be possible for the fit to be much better with the knots
number better. Also, knots were not well chosen for the problem, e.g. knot at 50 is unnecessary. So
it is intuitive what changes can be made to improve predictive performance.

The third situation will be when the knots number in the estimated model is equal to the the
knots number in the real model.

Figure 2.16: Cubic Splines with Manual Choice Third Situation

In the Figure 2.16, the knots number chosen was two, the same knots number as the model that
generated the data. The pre-specified knot locations are 8 and 91. The MSE and standard devi-
ation for the test set were 4.28 and 5.65, respectively. The estimated model performs well in the
predictive sense, and the estimated curve is very close to the real curve. The flexibility helped the
model enough not to need the knot locations close to the actual knots. That way, if the model had
the pre-specified knots closer to the real knots, the predictions would be even better.

For being suitable for non-linear problems, the model in question generally presents better results
than linear splines. Although the number and knots location are not assertive, they are comfortable
allocating any amount of knots and presenting a result that is not bad.

2.6.2 Uniform choose

Let us look at the three situations again with the uniform choice method.
The first situation will be when the knots number used is much higher than the knots number in
the real model.



2.6 DISADVANTAGES ON CUBIC SPLINES 21

Figure 2.17: Cubic Splines with Uniform Choice First Situation

In the Figure 2.17, the knots number chosen was eight, six knots more than the model that generated
the data. Pre-specified knot locations are 10.78, 24.06, 33.84, 45.39, 55.50, 67.00, 78.95, and 88.72.
The MSE and standard deviation for the test set are 4.42 and 5.63, respectively. These metrics
indicate that the estimated model obtained an adequate predictive performance. Despite having an
excellent approximation to the real model, there are some problems, such as increasing unnecessary
parameters. The estimated model uses twelve parameters, while the real model uses only six, twice
as much. The excess of estimated parameters can lead to overfitting on some occasions, especially
when we have more parameters of other variables. Also, the variance of predictions is constantly a
problem when we have more parameters than necessary.

The second situation will be when the estimated knots number is close to the number of the
real knots.

Figure 2.18: Cubic Splines with Uniform Choice Second Situation

In the Figure 2.18, the knots number chosen was one, one knot less than the model that generated
the data. The pre-specified knot location is at 50.25. The MSE and standard deviation for the test
set are 4.36 and 5.79, respectively. Close to the metrics of the real model, thus obtaining stunning
results, even with one not less than the real model. In this case, the nonlinearity helps a lot the
performance of the model, making it not necessary that the knots number is equal to the real model
to obtain satisfactory performance.
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The third situation will be when the knots number in the estimated model is equal to the knots
number in the real model.

Figure 2.19: Cubic Splines with Uniform Choice Third Situation

In the Figure 2.19, the knots number chosen was two, the same knots number in the model that
generated the data. The locations of the pre-specified knots are at 33.84 and 67.00. The MSE and
standard deviation for the test set are 4.35 and 5.6, respectively. The nonlinearity allows for ade-
quate performance, even with the knots location not being close to real knots.

Therefore, there is always a doubt whether it is possible to improve this specific component or
not. The knots location does not significantly worsen the performance of the model when it is non-
linear, but in some cases, it can make much difference, so the ideal choice of the knots location
is essential for the spline regression model and should be studied in detail to obtain significant
improvements in the predictions.

In this dissertation, we want to improve the performance of the regression splines model to present
even better results. We developed a method for this purpose considering the number and knots
location as parameters, covered in detail in the next section.



Chapter 3

Estimation of the Number and Location
of Knots

The splines regression model has numerous advantages in its use for prediction purposes. However,
as seen in Section 2.4, some clear disadvantages can make its use difficult or inefficient. Traditional
methods use location of knots as fixed values, pre-specified before the estimation process. These
methods can lead to a wrong specification of the model and consequently lead to overfitting or
models that can be improved.

This dissertation proposes an increase in the flexibility of the splines regression model to work
around the problems of the usual methodology. The most significant difference in the methodology
of this dissertation is that we consider both the location of knots and the number of knots of each
variable as parameters. In this way, we have the chance to improve predictions and parameter in-
terpretations significantly. Also, we introduce new cost functions for this problem to solve the bias
and variance model problem and, consequently, solve the overfitting/underfitting.

The functional form of the proposed model is the same defined in (2.3). However, now we have
more parameters to estimate due to the number and location of knots are parameters.

The parameters will be defined by the vector θ = [β0, β(1,1), . . . , β(p,αp+K), t11, . . . , tpαp , α1, . . . , αp] ∈
R
∑p

j=1[2αj+Kj ]+1XNp. The knots are denoted by tjm for j-th explanatory variable and m-th knot
in this specific variable. Now knots will be estimated like any other parameter. We believe that this
approach should lead to improvements in predictions and interpretability of the change points.

3.1 Cost functions

As with any complex model, there is a need to select the number of knots appropriately and pe-
nalize variables that have a lot of irrelevant knots or that harm the modeling in some way. If we
simply choose the number of knots without a regularization, the model will choose as many knots
as possible, leading to overfitting.

Therefore, it is essential to study some regularizations to make the model viable and choose the bias
and variance accordingly. We propose two regularization functions for a quadratic cost function,
chosen based on analytic facilities.

The two cost functions are provided below:

23
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J1(θ) =
1

n

n∑
i=1

yi − β0 −
p∑

j=1

fj(xij)

2

+

p∑
j=1

αjλj

αj∑
m=1

∣∣β(j,m+K)

∣∣ (3.1)

and

J2(θ) =
1

n

n∑
i=1

yi − β0 −
p∑

j=1

fj(xij)

2

+
λ
∑p

j=1 αj

log(n)
(3.2)

The two functions have a quadratic loss, but they have different regularizations, suitable for each
situation we are dealing with. The first cost function given in (3.1) deals in more detail with bias
and variance of the model, as hyperparameters control these components. The hyperparameters
λj ,∀j = 1, . . . , p deal directly with each variable, and we can have different biases and variances
for each different combination of these hyperparameters. Note that this regularization includes the
numbers of knots denoted by αj , such that variables containing many knots are penalized accord-
ingly and penalize the β(j,m+K)∀j = 1, . . . , p,m = 1, . . . , αj by the L1 regularization. It is important
to note that the only parameters that are penalized are related to knots, which are the parameters
that multiply the base truncation functions, as discussed in [17].

Furthermore, the behavior of the regularization is very similar to other regularizations known in
the literature. If λ → 0, the cost function penalizes fewer variables with many knots and tends
to choose as many knots as possible, leading to overfitting. In this case, the model will have less
bias and a greater variance. On the other hand, if λ → ∞ the cost function penalizes the variables
with many knots and tends to choose the smallest number of knots possible. As we are dealing
with an optimization problem to compensate for this value, the first part of the sum would tend to
zero and thus cause underfitting. In this case, the model will have a higher bias and a lower variance.

To illustrate, let us show an example with three knots and then estimate the model with three
different λ, equal to 0.01, 10, and 1000 to see how the estimation is performed based on the bias
and variance of each curve.

Figure 3.1: Estimated curves using J1(θ) with differents λ values

In Figure 3.1 we can see that the estimation does exactly what was mentioned in relation to bias
and variance. The higher the λ, the more the model has a higher bias and lower variance. The curve
in the dark blue, with λ = 0.01 shows a fair estimate of the real model, with slight bias and a larger
variance, since the green curve with λ = 10 dramatically reduces the bias in the price of increasing
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the variance, the light blue curve, with λ = 1000, is almost a straight line, with low variance and
high bias, thus occuring underfitting.

The second cost function given in (3.2), introduced in [19], deals directly with the total num-
ber of knots and with a single hyperparameter λ. In this way, this cost function tries to select the
model based only on the number of knots and not deals with bias and variance of the model. It is
divided by log(n) because the scale of the regularization matches the scale of the quadratic cost
function and penalizes the model accordingly. Also, in the same way as the last regularization, the
higher the λ, the less the cost function penalizes variables with many knots. Therefore, if λ → 0
the cost function penalizes less the variables with many knots. On the other hand, if λ → ∞, the
cost function penalizes more the variables with many knots.

Figure 3.2: Estimated curves using J2(θ) with differents λ values

In Figure 3.2, as mentioned earlier this regularization deals exclusively with the selection of the
number of knots, and as the regularization does not deal with the parameter estimates if we change
the value of λ, it will not have much difference in the parameter estimates. Consequently, we will
have similar estimated curves.

The first attempt to estimate the parameters is to find some analytical solution through the deriva-
tives. There are three possibilities for the two cost functions of the derivative to any parameter for
the two cost functions.

For J1(θ), we have:

1. 2
∑n

i=1

[(
yi − β0 −

∑p
j=1 fj(xij)

)
xkij

]
2. 2

∑n
i=1

[(
yi − β0 −

∑p
j=1 fj(xij)

)
(xij − tjm)KjI(xij > tjm)

]
+αjλjsignal(β(j,m+Kj))

3. −2
∑n

i=1

[(
yi − β0 −

∑p
j=1 fj(xij)

)
Kjβ(j,m+Kj)(xij − tjm)Kj−1I(xij > tjm)

]
The signal function is the derivative of the module function.
For J2(θ), we have:

1. 2
∑n

i=1

[(
yi − β0 −

∑p
j=1 fj(xij)

)
xkij

]
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2. 2
∑n

i=1

[(
yi − β0 −

∑p
j=1 fj(xij)

)
(xij − tjm)KjI(xij > tjm)

]
3. −2

∑n
i=1

[(
yi − β0 −

∑p
j=1 fj(xij)

)
Kjβ(j,m+Kj)(xij − tjm)Kj−1I(xij > tjm)

]
Unfortunately, these functions have no analytical solution and need to be solved numerically through
some optimization algorithm. Several algorithms can perform this task, such as Newton’s Method,
Quasi-Newton methods such as BFGS, L-BFGS-B, Broyden, Broyden family, DFP, and SR1, and
methods based only on the gradient as a linear approximation such as the gradient descent and
conjugate gradient method.

These methods have advantages and disadvantages like any standard algorithm. However, for our
problem of minimizing the cost functions given in (3.1) and (3.2), there is an algorithm that stands
out from the rest and therefore will be used for our purpose, which will be explained in detail the
reasons why we decided to use it instead of any other optimization algorithm.

3.2 Motivation

The first alternative to solve our optimization problem would be the gradient descent optimization
algorithm, widely used as a first attempt to optimization problems. It is a standard first-order itera-
tive optimization algorithm. We will denote θ our vector of m parameters. The iterative estimation
process is provided below:

θt+1 = θt − η∇J(θt) (3.3)
= θt − ηIm∇J(θt) (3.4)

where t represents the iteration, η > 0 represents the learning rate and ∇J(θt) represents the vector
of the first derivative of the cost function with respect to θt.

Its great advantage is often easy to implement because it is a first-order algorithm. However, the
gradient descent algorithm has some significant disadvantages:

1. It is a first-order approximation algorithm.

2. It does not consider the Hessian matrix.

3. In practice, it is quite inefficient, even with an adequate learning rate.

We are only working with minimal local information in each iteration by approaching our objective
function linearly at each point, so we have to be careful and restrict ourselves to small steps in each
iteration. Perhaps we can improve our optimization process by obtaining more local information
from the cost function at each iteration to take more accurate steps. The natural solution would be
to check the second-order behavior of the cost function.

The best known and widely studied second-order algorithm for this purpose is Newton’s Method,
whose main added component in relation to gradient descent is the inverse of the Hessian matrix,
thus using a quadratic approximation and consequently using more local information for each iter-
ation. It is a better approximation than simply the linear approximation provided by the gradient
descent algorithm. The estimation process provided by its damped version is given below:

θt+1 = θt − η[∇2J(θt)]
−1∇J(θt) (3.5)

where t represents the iteration of the estimation process, η is the learning rate, ∇2J(θt) is the
Hessian matrix, matrix of second derivatives of J(θt) with respect to θt and ∇J(θt) is the usual
gradient of the cost function with respect to θt.
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The main advantages of Newton’s method over gradient descent are that its convergence is su-
perior, quadratic, whereas gradient descent is linear. However, there are still two disadvantages:

1. Calculation of the Hessian matrix in each iteration

2. High computational cost in each iteration

In our case, the exact calculation of the Hessian matrix is challenging. There are many different
combinations of parameters, which makes Newton’s method impractical. Furthermore, if it were
possible to calculate this matrix somehow, we would have to calculate it and then invert it in each
iteration and still calculate the gradient. As the number of parameters increases, this process be-
comes quite computationally costly.

These two methods can potentially be used for various problems. However, they are hardly prac-
tical for our problem, but they can help choose another non-linear optimization algorithm using
classical optimization ideas. The main component of this goal is the Hessian matrix, which is highly
impractical to calculate. Let us see how the two methods behave in computational cost to help us
choose a method that fits appropriately for estimating the parameters of our model in question.

3.2.1 Newton’s Method vs Gradient Descent: Computational Comparison

There are two ways to evaluate these methods: their efficiency in finding the optimal solution as
quickly as possible and the computational time needed to find the solution for each iteration. First,
as already mentioned, Newton’s Method is much more efficient than the gradient descent algorithm
since it uses a better approximation at each iteration, so it will probably reach the optimal solution
in much fewer iterations than the gradient descent.

For example, using an arbitrary cost function to find the ideal two-dimensional solution, we have
the following level curve results for both methods:

Figure 3.3: Level curves comparison between gradient descent and Newton’s method

The initial guess was at θ0 = (−5, 5), a reasonable choice of the learning rate for the gradient
descent algorithm and the undamped version of Newton’s Method(η = 1), we have the following:
the gradient descent took 229 iterations to reach the optimal solution, while Newton’s method took
only six iterations. This is an example where the second approximation made a lot of difference,
expected from most optimization problems: Newton’s method is much more efficient than gradient
descent.

Newton’s method is expected to take more time in the calculations for each iteration, as it makes a
better approximation, which makes total sense. On the other hand, the gradient descent algorithm
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only calculates the gradient in each iteration, which makes an optimization algorithm with much
less computational time, which can sometimes be the most viable for some problems. Let us look
carefully at the computational complexity of each method.

For the gradient descent algorithm, we have to calculate only the gradient at each iteration, which
takes m operations. For Newton’s method, in addition to calculating the same gradient as the
gradient descent, we have to calculate the Hessian matrix, as it is a symmetric matrix, we have
to calculate only half of the matrix values along with the diagonal elements that are precisely:
m2−m

2 +m = m2+m
2 = m(m+1)

2 , which can be considered a relatively large amount for our problem.
For example, if we have six explanatory variables, each with 2 knots and we consider Kj = 3, we
have

∑p
j=1[2αj +Kj ] + p+ 1 = 6 ∗ (2 ∗ 2 + 3) + 6 + 1 = 49 parameters to estimate, and this would

be a more straightforward problem, with few knots in the variables, so we would have 49∗50
2 = 1225

operations only to calculate the Hessian in each iteration.

In addition, we have the computation of the inverse of the Hessian matrix, which gives approxi-
mately more m3 operations. In the previous example, we would have to calculate more 493 = 117649
operations.
Thus, the computational complexities of each method are given below:

1. Gradient Descent: O(m), due to the gradient vector addition.

2. Newton’s Method: O(m3), due to the calculation of the Hessian matrix, then invert it.

Therefore, an optimization method that is as efficient as Newton’s method but not as computation-
ally expensive is an excellent choice for our problem. Fortunately, there is a class of optimization
methods for this purpose called Quasi-Newton methods, which will be widely studied and applied
to our optimization problems.

3.3 Quasi Newton Methods

Quasi-Newton methods are among the most widely used methods for non-linear optimization. They
are incorporated in many software libraries, and they are effective in solving a wide variety of small
to mid-size problems, in particular when the Hessian is hard to compute[9]. They are an optimiza-
tion model class that aims to be as efficient as Newton’s method but without the difficulties faced
by this method. The great trick of this class of models is that instead of calculating the Hessian
matrix, quasi Newton methods simply approximate it, doing much fewer operations and therefore
being computationally faster.

For our problem, being fast is of fundamental importance, as in most cases, we will have a consid-
erable amount of parameters to estimate. Therefore, this method fits our estimation problem very
well mainly for two reasons:

1. It solves our difficulty in calculating the Hessian matrix by approximating it.

2. It is as efficient as Newton’s method and requires less computational time in each iteration.

Let us describe the iterative estimation process in detail. The quasi Newton method makes use
of the second-order approximation, also used by the Newton method, but now we will replace the
exact Hessian matrix ∇2J(θt) with its approximate matrix Bt. Therefore, we will make use of the
Taylor series with multiple variables. Our objective is to approximate our cost function J(θ) in the
second order to obtain the iteration process of the estimation of the quasi-Newton methods.

We approximate our cost function around d.

J(θt + d) ≈ mt(d) (3.6)
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where mt(d) is a second order approximation, provided below:

mt(d) = J(θt) +∇J(θt)
Td+

1

2
dTBtd (3.7)

To find our estimation process, we have to derive mt(d) with respect to d and equal to 0, so we will
approximate the minimum and discover the iterative process.

Let us recall some derivatives involving matrices that we will use in the next step to accomplish
this. The derivatives used will be:

∂∇J(θt)
Td

∂d
=

∂dT∇J(θt)

∂d
= ∇J(θt) (3.8)

and

∂dTBtd

∂d
= (Bt +BT

t )d = 2Btd (3.9)

The Hessian matrix is symmetric, and therefore the quasi Newton methods also require Bt to be
symmetric, and each algorithm varies in how it requires it to be symmetric.
Thus, we have the following expression for the derivative of mt(d):

∂mt(d)

∂d
= ∇J(θt) +Btd (3.10)

Equating the expression (3.10) to 0:

∂mt(d)

∂d
= 0 ⇔ ∇J(θt) +Btd = 0 (3.11)

and isolating d, the iteration will be given by:

d = −B−1
t ∇J(θt) (3.12)

The iteration of the quasi Newton methods is almost identical to the Newton’s method, except that
we now have the matrix that approximates the Hessian matrix. Finally, the iterative procedure of
a quasi Newton algorithm is given by:

θt+1 = θt − ηtB
−1
t ∇J(θt) (3.13)

The ηt is found by the backtracking line search method [16]. The backtracking line search starts
with a large ηt estimate and iteratively shrinks it. The shrinking continues until a value is found
that is small enough to provide a decrease in the objective function that adequately matches the
decrease that is expected to be achieved, based on the local function gradient ∇J(θt).

The numerous quasi-Newton methods differ in how to estimate Bt. Moreover, Bt is also estimated
iteratively, after estimating θt. There are several advantages to this approach. First, an approx-
imation Bt can be found using only first-derivative information. Second, the complexity time of
the quasi Newton methods is only O(m2) while Newton’s method is O(m3). Therefore, the time
to reach the minimum will be faster and, consequently, more efficient in most situations. There
are also disadvantages, but they are minor. The methods do not converge quadratically, but they
can converge superlinearly. At the precision of computer arithmetic, there is not much practical
difference between these two convergence rates [9].

Now that we obtain the generic iterative estimation process for quasi Newton methods, we would
like to provide the advantages in detail over Newton’s method and construct the approximation
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of Bt reasonably enough to estimate θt plausibly. These advantages are on the ease of calculation
in each iteration and the iterative approximation of Bt, so the algorithms of this class will be as
efficient as Newton’s method and adequately solve our non-linear optimization problem.

Therefore, these requirements can be summarized in two main objectives:

1. The calculation of B−1
t ∇J(θt) should be easier to calculate than Newton’s method, so we

have a computational advantage.

2. The second-order approximation mt(d) should capture the curvature information of J(θ) along
the iterations.

The first requirement concerns the computational time needed in each iteration to be easier than
Newton’s method. The second considers the approximation of the exact Hessian matrix to obtain
the information necessary for our estimation without calculating it.

We will focus on the second requirement, while the computational advantages will be explained
soon.
The main idea for this condition is to construct a procedure such that mt+1(d) corresponds to
the gradient of J(θt+1) of the last two iterations using second order approximation given by
J(θt+1 + d) ≈ mt+1(d). Therefore, we would like the gradient of mt+1(d) at point 0 to be ex-
actly equal to the gradient of our cost function J(θt+1) and also, we wish that the gradient of
mt+1(d) corresponds to the gradient of J(θt), which is exactly a previous iteration, and we do this
by evaluating efficiently in the corresponding update given by ηtB

−1
t ∇J(θt).

Specifically, we require the following two conditions:

1. ∇mt+1(0) = ∇J(θt+1)

2. ∇mt+1(ηtB
−1
t ∇J(θt)) = ∇J(θt)

Let us carefully check what these conditions imply in the iterative estimation process.
Using (3.7) and (3.10) we have that the first condition implies:

∇mt+1(0) = ∇J(θt+1) +Bt+10 = ∇J(θt+1) (3.14)

Therefore, the first condition is automatically satisfied.
The second condition is given by:

∇mt+1(ηtB
−1
t ∇J(θt)) = ∇J(θt+1) +Bt+1ηtB

−1
t ∇J(θt) = ∇J(θt) (3.15)

= ∇J(θt+1)−∇J(θt) = −Bt+1ηtB
−1
t ∇J(θt) (3.16)

Using the iterative estimation process given in (3.13), we have the following result:

θt+1 = θt − ηtB
−1
t ∇J(θt) ⇔ θt+1 − θt = −ηtB

−1
t ∇J(θt) (3.17)

Thus, replacing (3.17) in (3.15) we have:

∇J(θt+1)−∇J(θt) = −Bt+1ηtB
−1
t ∇J(θt) (3.18)

∇J(θt+1)−∇J(θt) = Bt+1(θt+1 − θt) (3.19)
J̄t = Bt+1θ̄t (3.20)

Where J̄t = ∇J(θt+1)−∇J(θt) and θ̄t = (θt+1 − θt).
That is a non-trivial condition, and therefore it should be used as a constraint in obtaining the
matrix Bt+1 by all the algorithms of the quasi-Newton class. This condition is popularly known
in non-linear optimization by the secant equation. Furthermore, the secant equation requires that
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Bt+1 be positive definite, and each method enforces it differently.

A specific condition to make Bt+1 positive defined can be satisfied if:

θ̄t
T
Bt+1θ̄t = θ̄t

T
J̄t > 0 (3.21)

This condition is known as the curvature condition. We are using that θ̄t is a particular case of
a non-zero vector and satisfies a particular condition to be positive definite. Therefore, each quasi
Newton method requires that Bt+1 be positive definite so that it is also symmetric requiring (3.21)
to be satisfied.

The simplest case for the condition (3.19) is when we are estimating only one parameter(m = 1),
and for this case, we can obtain an exact approximation for the Hessian matrix given by the secant
equation:

J
′
(θt)− J

′
(θt−1) = J

′′
(θt)(θt − θt−1) (3.22)

Isolating J
′′
(θt), we obtain:

J
′′
(θt) =

J
′
(θt)− J

′
(θt−1)

θt − θt−1
(3.23)

Therefore, if we consider ηt = 1 the iterative estimation process provided in (3.13) is given by:

θt+1 = θt −
J

′
(θt)

J ′′(θt)
(3.24)

Replacing (3.22) in (3.24), we obtain the following iterative process:

θt+1 = θt −
J

′
(θt)(θt − θt−1)

J ′(θt)− J ′(θt−1)
(3.25)

Thus, we use only the gradient and estimates from the last two iterations and efficiently obtain a
second-order estimation process. However, it takes two initial guesses instead of just one, which is
not a problem.

Let us apply this method to minimize the function J(θ) = sin(θ). Thus, the specific estimation
process for this function is given by:

θt+1 = θt −
cos(θt)(θt − θt−1)

cos(θt)− cos(θt−1)
(3.26)

The first two initial guesses are θ1 = 0 and θ2 = −1.

Estimates of θ over the iterations are given below:
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Figure 3.4: θ estimate over the iterations

The estimate converged at θ̂ = −1.570796 ≈ −π

2
.

The values of sin(θ) over the course of the estimates are given below:

Figure 3.5: sin(θ) over the iterations

Since sin(θ) ∈ [−1, 1], ∀θ ∈ R, then the minimum was found correctly.

Nevertheless, this method cannot be generalized to the case of m > 1 dimensions. This is be-
cause in the general case, we have to estimate all the elements of the matrix Bt which are exactly
m(m+1)

2 elements, but the constraint (3.19) has m equations, so this is a system of equations not
determined, since we have more elements to estimate than equations available. In the case of m = 1,
we have 1(1+1)

2 = 1, and we also only have one equation to solve it without problems. In general,
we cannot solve this problem precisely for more than one dimension.

Fortunately, the quasi-Newton methods here handle very well to solve this problem of estimat-
ing Bt properly. Each method has its particularities and properties to estimate it, differentiating
each class algorithm. Additionally, all algorithms usually are faster computationally than Newton’s
method because they only use gradient information from the two iterations to estimate it.

Another remarkable observation to make is about the convergence of Bt. An excellent wish for
our problem is that as Bt passes through the iterations Bt stays close enough to the exact Hessian
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matrix. Thus, it would indicate that the estimate of θ was adequate for our problem. For a quadratic
convex J(θ), Bt should approach the exact Hessian as t → ∞ (i.e., as we apply our iterative eval-
uation update for many points and many gradients, approaching the minimum). In practice, what
can typically be proved [8], [2], [6] is that for a quadratic convex J(θ), the quasi Newton method
gives the exact minimum and the exact Hessian in n steps(in exact arithmetic), which is a powerful
and highly beneficial mathematical result.

More specifically, each algorithm has its speed of convergence, situations for the proper use, and
estimation of Bt. The generic algorithm is given below so that we will then provide details about a
particular one.

Algorithm 2 Generic quasi-Newton
Input: Initial guess θ1, a nonsingular B1(often the choice is B1 = Im), and a termination tolerance
ε > 0.
t = 1
while ∥∇J(θt)∥ > ε do

1. Compute B−1
t ∇J(θt) by some quasi Newton algorithm.

2. Perform a practical line-search for the minimization to find ηt.

3. Estimate θt+1 iteratively through θt+1 = θt − ηtB
−1
t ∇J(θt)

4. Compute the new approximate Hessian Bt+1 according to the specified rule.

5. t = t+ 1

end while

Let us carefully analyze a particular quasi Newton algorithm for handling the estimation.

3.4 The BFGS algorithm

For estimating the parameters of our model, we chose the most popular method that best fits our
cost function. The most popular quasi-Newton algorithm is the BFGS method, named for its dis-
coverers Broyden, Fletcher, Goldfarb, and Shanno [3], [5], [8], [18] who developed it independently.

It is based on the estimation of Bt through the last two iterations using only information from
the estimates and the gradient, ensuring optimal properties, such as Bt being definite positive and
minimizing J(θ) adequately, by superlinear convergence.

We will now detail this algorithm, a particular case of quasi-Newton methods. Therefore, we will
need the first advantage of the quasi Newton methods mentioned earlier, which is: The calculation
of B−1

t ∇J(θt) should be easier to calculate than Newton’s method, so we have a computational
advantage. This component can be summarized in calculating B−1

t because ∇J(θt) is easier to
compute, as there is a fast and straightforward function, requiring only m inputs.

Therefore, our focus will be to define how the BFGS algorithm estimates B−1
t iteratively. An-

other desired property is that Bt+1 is close enough to Bt. The most usual way to do this is through
a normal matrix. We will then do this by imposing the restrictions of quasi-Newton methods.

Thus, a first attempt is to elaborate the optimization problem written below:
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Bt+1 = argmin
B

∥B −Bt∥ (3.27)

subject to:

B = BT and J̄t = Bθ̄t (3.28)

Which also ensures that B is positive definite. Details will be explained shortly. The choice of
the norm is of fundamental importance, through it which we can differentiate the quasi Newton
methods. BFGS uses a specific normal called the weighted Frobenius norm, which uses the Frobenius
norm. The definitions are provided below.
Frobenius norm:

∥A∥F =

√√√√ m∑
i=1

m∑
j=1

A2
ij (3.29)

Weighted Frobenius norm:

∥A∥W =
∥∥∥W 1/2AW 1/2

∥∥∥
F

(3.30)

The weight matrix W can be chosen as any matrix satisfying the relation
WJ̄t = θ̄t. The BFGS chooses a specific W provided in [9] and [15] derive the iterative process
solving (3.27),(3.28) and arrive at the following result for Bt+1:

Bt+1 = Bt + Ut + Vt (3.31)

where the matrices Ut and Vt have rank 1, and therefore there is a result that guarantees that they
can be written as follows:

Ut = autu
T
t and Vt = bvtv

T
t (3.32)

where uT v = 0(linearly independent) and a, b are scalar and will be found shortly. This process is
known in the literature as rank 2 update, which guarantees both symmetry and definite positivity
that will be discussed soon.
Replacing (3.32) in (3.31), we have the following:

Bt+1 = Bt + autu
T
t + bvtv

T
t (3.33)

Furthermore, we have to impose the quasi-Newton condition (3.19) in (3.33). Therefore, we have:

J̄t = Bt+1θ̄t (3.34)

J̄t = (Bt + autu
T
t + bvtv

T
t )θ̄t (3.35)

J̄t = Btθ̄t + autu
T
t θ̄t + bvtv

T
t θ̄t (3.36)

The BFGS uses particular choices for ut and vt, specifically it uses ut = J̄t and vt = Btθ̄t.
So, replacing we have the following:

J̄t = Btθ̄t + aJ̄tJ̄t
T
θ̄t + bBtθ̄tθ̄t

T
BT

t θ̄t (3.37)

Organizing the terms to find a and b, we obtain the following result:
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J̄t − aJ̄tJ̄t
T
θ̄t = Btθ̄t + bBtθ̄tθ̄t

T
BT

t θ̄t (3.38)

J̄t[1− aJ̄t
T
θ̄t] = Btθ̄t[1 + bθ̄t

T
BT

t θ̄t] (3.39)

Therefore, the values of a and b result in:

1. a =
1

J̄t
T
θ̄t

2. b = − 1

θ̄t
T
BT

t θ̄t

Finally, with all this mathematical procedure, replacing the values of ut, vt, a and b in (3.33), we
arrive at the final result of the iterative process of Bt+1.

Bt+1 = Bt +
J̄tJ̄t

T

J̄t
T
θ̄t

− Btθ̄tθ̄t
T
BT

t

θ̄t
T
BT

t θ̄t
(3.40)

We can see that we only use gradient and estimation information. Therefore, this makes the esti-
mation process faster than the usual procedure.
Let us show a significant result of the iterative process of Bt+1 given in [9]:

Let Bt be a symmetric positive-definite matrix, and that Bt+1 is obtained from Bt using the BFGS
update given in (3.40). Then Bt+1 is positive definite if and only if θ̄t

T
J̄t > 0.

BFGS requires an initial guess for B1, which is often assigned the identity matrix, which is sym-
metric and positive definite. Also, Bt+1 is symmetric in all iterations because it will always be a
sum of symmetric and positive definitive matrices due to the previous result because θ̄t

T
J̄t > 0

occurs in all iterations.. Consequently, B−1
t+1 will always exist because it will always be symmetric

and positive definite. We are just using a known result in matrix algebra.

More specifically :
If A is a positive definite symmetric matrix, then A−1 always exists and is also a positive definite
symmetric matrix.

Therefore, we never need to worry about Bt+1 having the inverse, as it will always exist in all
iterations. Now, we need to quickly find B−1

t+1 to compute in each iteration. Fortunately, there is
a mathematical formula to calculate it related to the iterative process. This formula is known in
matrix algebra as The Woodbury matrix identity [11], given below:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1 (3.41)

Let us organize the iterative process of Bt+1 to fit (3.41) so that we can calculate its inverse.

Bt+1 = Bt +
J̄tJ̄t

T

J̄t
T
θ̄t

− Btθ̄tθ̄t
T
BT

t

θ̄t
T
BT

t θ̄t
(3.42)

= Bt + [Btθ̄t, J̄t]

−
1

θ̄t
T
BT

t θ̄t
0

0
1

J̄t
T
θ̄t


[
θ̄t

T
BT

t

J̄t
T

]
(3.43)

= A+ UCV, (3.44)
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where A = Bt, U = [Btθ̄t, J̄t], V =

[
θ̄t

T
BT

t

J̄t
T

]
and C =

−
1

θ̄t
T
BT

t θ̄t
0

0
1

J̄t
T
θ̄t


Now, with the determination of the necessary matrices, let us use The Woodbury matrix iden-
tity (3.41).

B−1
t+1 = (A+ UCV )−1 (3.45)

= A−1 −A−1U(C−1 + V A−1U)−1V A−1 (3.46)

First, solving A−1U and V A−1:

A−1U = B−1
t [Btθ̄t, J̄t] (3.47)

= [B−1
t Btθ̄t, B

−1
t J̄t] (3.48)

= [θ̄t, B
−1
t J̄t] (3.49)

V A−1 =

[
θ̄t

T
BT

t

J̄t
T

]
B−1

t (3.50)

=

[
θ̄t

T
BT

t B
−1
t

J̄t
T
B−1

t

]
(3.51)

=

[
θ̄t

T

J̄t
T
B−1

t

]
(3.52)

Now we solve V A−1U and C−1, and then add them up:

V A−1U =

[
θ̄t

T
BT

t

J̄t
T

]
B−1

t [Btθ̄t, J̄t] (3.53)

=

[
θ̄t

T
BT

t B
−1
t

J̄t
T
B−1

t

]
[Btθ̄t, J̄t] (3.54)

=

[
θ̄t

T

J̄t
T
B−1

t

]
[Btθ̄t, J̄t] (3.55)

=

[
θ̄t

T
Btθ̄t θ̄t

T
J̄t

J̄t
T
B−1

t Btθ̄t J̄t
T
B−1

t J̄t

]
(3.56)

=

[
θ̄t

T
Btθ̄t θ̄t

T
J̄t

J̄t
T
θ̄t J̄t

T
B−1

t J̄t

]
(3.57)

Let us use the following matrix result to calculate the inverse of a 2x2 dimensional matrix to cal-
culate C−1 and (C−1 + V A−1U)−1:
If a matrix D has dimension 2x2 and det(D) ̸= 0, then:

D−1 =
1

det(D)

[
d22 −d12
−d21 d11

]
for D =

[
d11 d12
d21 d22

]
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Using that det(C) = − 1

θ̄t
T
BT

t θ̄tJ̄t
T
θ̄t

, we have:

C−1 =

−
1

θ̄t
T
BT

t θ̄t
0

0
1

J̄t
T
θ̄t


−1

(3.58)

=
1

det(C)


1

J̄t
T
θ̄t

0

0 − 1

θ̄t
T
BT

t θ̄t

 (3.59)

= θ̄t
T
BT

t θ̄tJ̄t
T
θ̄t


1

J̄t
T
θ̄t

0

0 − 1

θ̄t
T
BT

t θ̄t

 (3.60)

=


−θ̄t

T
BT

t θ̄tJ̄t
T
θ̄t

J̄t
T
θ̄t

0

0
θ̄t

T
BT

t θ̄tJ̄t
T
θ̄t

θ̄t
T
BT

t θ̄t

 (3.61)

=

[
−θ̄t

T
BT

t θ̄t 0

0 J̄t
T
θ̄t

]
(3.62)

C−1 + V A−1U =

[
−θ̄t

T
BT

t θ̄t 0

0 J̄t
T
θ̄t

]
+

[
θ̄t

T
Btθ̄t θ̄t

T
J̄t

J̄t
T
θ̄t J̄t

T
B−1

t J̄t

]
(3.63)

=

[
0 θ̄t

T
J̄t

J̄t
T
θ̄t J̄t

T
θ̄t + J̄t

T
B−1

t J̄t

]
(3.64)

Now, let us calculate (C−1 + V A−1U)−1:

Using det(C−1 + V A−1U) = −θ̄t
T
J̄tJ̄t

T
θ̄t, we have:

(C−1 + V A−1U)−1 =

[
0 θ̄t

T
J̄t

J̄t
T
θ̄t J̄t

T
θ̄t + J̄t

T
B−1

t J̄t

]−1

(3.65)

=
1

det(C−1 + V A−1U)

[
J̄t

T
θ̄t + J̄t

T
B−1

t J̄t −θ̄t
T
J̄t

−J̄t
T
θ̄t 0

]
(3.66)

= − 1

θ̄t
T
J̄tJ̄t

T
θ̄t

[
J̄t

T
θ̄t + J̄t

T
B−1

t J̄t −θ̄t
T
J̄t

−J̄t
T
θ̄t 0

]
(3.67)

=


− J̄t

T
θ̄t + J̄t

T
B−1

t J̄t

θ̄t
T
J̄tJ̄t

T
θ̄t

θ̄t
T
J̄t

θ̄t
T
J̄tJ̄t

T
θ̄t

J̄t
T
θ̄t

θ̄t
T
J̄tJ̄t

T
θ̄t

0

 (3.68)

Finally, we will put all the parts together and calculate B−1
t+1:
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B−1
t+1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1 (3.69)

= B−1
t − [θ̄t, B

−1
t J̄t]


− J̄t

T
θ̄t + J̄t

T
B−1

t J̄t

θ̄t
T
J̄tJ̄t

T
θ̄t

θ̄t
T
J̄t

θ̄t
T
J̄tJ̄t

T
θ̄t

J̄t
T
θ̄t

θ̄t
T
J̄tJ̄t

T
θ̄t

0


[

θ̄t
T

J̄t
T
B−1

t

]
(3.70)

= B−1
t −

[
− θ̄t(J̄t

T
θ̄t + J̄t

T
B−1

t J̄t)

θ̄t
T
J̄tJ̄t

T
θ̄t

+
B−1

t J̄tJ̄t
T
θ̄t

θ̄t
T
J̄tJ̄t

T
θ̄t

,
θ̄tθ̄t

T
J̄t

θ̄t
T
J̄tJ̄t

T
θ̄t

][
θ̄t

T

J̄t
T
B−1

t

]
(3.71)

= B−1
t −

(
− θ̄t(J̄t

T
θ̄t + J̄t

T
B−1

t J̄t)

θ̄t
T
J̄tJ̄t

T
θ̄t

+
B−1

t J̄tJ̄t
T
θ̄t

θ̄t
T
J̄tJ̄t

T
θ̄t

)
θ̄t

T − θ̄tθ̄t
T
J̄tJ̄t

T
B−1

t

θ̄t
T
J̄tJ̄t

T
θ̄t

(3.72)

= B−1
t +

θ̄tJ̄t
T
θ̄tθ̄t

T

θ̄t
T
J̄tJ̄t

T
θ̄t

+
θ̄tJ̄t

T
B−1

t J̄tθ̄t
T

θ̄t
T
J̄tJ̄t

T
θ̄t

− B−1
t J̄tJ̄t

T
θ̄tθ̄t

T

θ̄t
T
J̄tJ̄t

T
θ̄t

− θ̄tθ̄t
T
J̄tJ̄t

T
B−1

t

θ̄t
T
J̄tJ̄t

T
θ̄t

(3.73)

We can reorganize (3.73) to make it easier to calculate and make the procedure faster. We can
note that θ̄t

T
J̄t is a scalar and therefore θ̄t

T
J̄tJ̄t

T
θ̄t = θ̄t

T
J̄t(θ̄t

T
J̄t)

T = (θ̄t
T
J̄t)

2.

Therefore:

B−1
t = ImB−1

t Im (3.74)

θ̄tJ̄t
T
θ̄tθ̄t

T

θ̄t
T
J̄tJ̄t

T
θ̄t

=
θ̄tJ̄t

T
θ̄tθ̄t

T

(θ̄t
T
J̄t)2

=
θ̄tθ̄t

T

θ̄t
T
J̄t

(3.75)

θ̄tJ̄t
T
B−1

t J̄tθ̄t
T

θ̄t
T
J̄tJ̄t

T
θ̄t

=
θ̄tJ̄t

T

θ̄t
T
J̄t
B−1

t

J̄tθ̄t
T

θ̄t
T
J̄t

(3.76)

B−1
t J̄tJ̄t

T
θ̄tθ̄t

T

θ̄t
T
J̄tJ̄t

T
θ̄t

=
B−1

t J̄tJ̄t
T
θ̄tθ̄t

T

(θ̄t
T
J̄t)2

=
B−1

t J̄tθ̄t
T

θ̄t
T
J̄t

= ImB−1
t

J̄tθ̄t
T

θ̄t
T
J̄t

(3.77)

θ̄tθ̄t
T
J̄tJ̄t

T
B−1

t

θ̄t
T
J̄tJ̄t

T
θ̄t

=
θ̄tθ̄t

T
J̄tJ̄t

T
B−1

t

(θ̄t
T
J̄t)2

=
θ̄tJ̄t

T
B−1

t

θ̄t
T
J̄t

=
θ̄tJ̄t

T

θ̄t
T
J̄t
B−1

t Im (3.78)

Finally, using (3.74), (3.75), (3.76), (3.77), (3.78), we can put B−1
t in evidence and thus arrive

at the final iterative process for B−1
t+1.

B−1
t+1 =

[
Im − θ̄tJ̄t

T

θ̄t
T
J̄t

]
B−1

t

[
Im − J̄tθ̄t

T

θ̄t
T
J̄t

]
+

θ̄tθ̄t
T

θ̄t
T
J̄t

(3.79)

In this way, we can calculate B−1
t+1 from B−1

t and the gradient information and estimates of the last
two iterations. A fundamental observation to be made is its great computational advantage over
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Newton’s method, we calculate B−1
t without ever calculate Bt. Consequently, this makes BFGS

much faster over the iterations.

Thus, after all the mathematical procedures for constructing the algorithm, we now have how
to write the pseudo-code for the BFGS implementation, given below:

Algorithm 3 The BFGS algorithm
Input: Initial guess θ1, a nonsingular B1(often the choice is B1 = Im), ∇J(.) and a termination
tolerance ε > 0.
t = 1
while ∥∇J(θt)∥ > ε do

1. Perform a backtracking line search to find ηt.

2. Calculate ∇J(θt).

3. Estimate θt+1 iteratively through θt+1 = θt − ηtB
−1
t ∇J(θt)

4. Compute B−1
t+1 =

[
Im − θ̄tJ̄t

T

θ̄t
T
J̄t

]
B−1

t

[
Im − J̄tθ̄t

T

θ̄t
T
J̄t

]
+

θ̄tθ̄t
T

θ̄t
T
J̄t

5. t = t+ 1

end while

To illustrate, we will use the BFGS algorithm to estimate the parameters of the model developed
for the following simulated data:

Figure 3.6: Generated curve example

The real model has the following functional form:

Yi = 0.67 + 0.03xi − 0.48(xi − 84.74) + ϵi (3.80)

The BFGS is an iterative algorithm, estimates are expected to improve as the iterations progress,
and this should be true mainly for knot estimation, which is mainly a change from the original
model. In this specific case, 150 iterations were specified. Let us look carefully at iterations 1, 50,
120, and 150(last iteration).
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Figure 3.7: Estimated curves at four iterations

In Figure 3.7 we can see that the estimated curve is close to the curve that generated the data
along with the iterations, and consequently, we can infer that the estimates have also improved.
On the upper left side, the curve estimated in the first iteration is well away from the actual curve.
On the upper right side, the estimated curve for iteration 50 has improved a little, but it still has
problems estimating the knot. On the lower left side, the curve estimated at iteration 120 has im-
proved considerably, with the estimated knot close to the actual knot. Finally, on the lower right
side, the last iteration presents the curve estimated adequately, with the knot estimate very close
to the real knot. The final knot estimate was 84.28, while the knot that generated the data is 84.77,
really very close. This example showed in more detail that BFGS does what it should do with the
development model, improve knot estimates over the iterations.

We will see the knot estimates over all iterations:

Figure 3.8: Knot convergence over the iterations

We can see that the estimates have improved towards the real knot 84.74.
Now we will see that the cost function behaved throughout the iterations:
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Figure 3.9: Cost function over the iterations

As expected, a cost function decreased over the iterations. In this way, parameter estimates were
improved to predict observations better.

3.5 Estimation of Number of Knots

The parameters estimate β, and the knots t depend on the number of knots of each variable, which
are parameters as well. Therefore, the number of knots are estimated before estimating all β and
t. For this estimation, we will look carefully at how the cost functions behave as the number of
knots in a unit increases. More specifically, let’s do a detailed evaluation on λ = 0.1, 0.3, 1, 3 and
α = 0, 1, 2, 3, 4, 5 in 6 different models. This analysis aims to verify how the cost functions behave on
average when the number of knots tested is around the rea number of knots that generated the data.

The explained analysis is given below:

1. We generate 100 samples of the same size with a λ and a number of knots α using the two
cost functions.

2. We performed the above step for λ = 0.1, 0.3, 1, 3 and α = 0, 1, 2, 3, 4, 5, 6.

3. Now, we take the mean of the cost functions values from these 100 samples for each combi-
nation of λ and α.

4. We performed this entire process for six different models that generated the data.

Let us look at how the cost functions behave for each of the six models. The first three models are
with K = 1, and the last three are with K = 3.
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The first model is with one knot and K=1:

Figure 3.10: Generated curve with one knot and K=1

The average cost functions for this model are given below:

λ|α 0 1 2 3 4 5
0.1 5.756 4.045 4.086 4.129 4.171 4.211
0.3 5.756 4.132 4.256 4.364 4.463 4.559

1 5.756 4.396 4.720 4.935 5.128 5.292
3 5.756 4.941 5.403 5.664 5.746 5.757

Table 3.1: Average cost functions for J1(θ)

λ|α 0 1 2 3 4 5
0.1 5.756 4.015 4.025 4.035 4.045 4.052
0.3 5.756 4.045 4.085 4.125 4.164 4.202

1 5.756 4.150 4.295 4.439 4.583 4.726
3 5.756 4.449 4.893 5.337 5.780 6.222

Table 3.2: Average cost functions for J2(θ)

We can notice that the two cost functions obtained their minimum value for all λ values when
α = 1. Therefore, this suggests that the estimate of α is one, and models with α > 1 need not to
performed based on the cost function value.

The second model is with two knots and K=1:
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Figure 3.11: Generated curve with two knots and K=1

The average cost functions for this model are given below:

λ|α 0 1 2 3 4 5
0.1 4.959 4.366 4.132 4.168 4.220 4.258
0.3 4.959 4.420 4.314 4.428 4.508 4.591

1 4.959 4.584 4.694 4.814 4.892 4.931
3 4.959 4.899 4.951 4.959 4.959 4.959

Table 3.3: Average cost functions for J1(θ)

λ|α 0 1 2 3 4 5
0.1 4.959 4.363 4.049 4.033 4.042 4.049
0.3 4.959 4.393 4.109 4.123 4.161 4.199

1 4.959 4.497 4.318 4.437 4.580 4.722
3 4.959 4.797 4.916 5.334 5.778 6.219

Table 3.4: Average cost functions for J2(θ)

For J1(θ) the models estimated with λ = 0.1, 0.3 obtained the smallest average cost function when
the number of knots is equal to 2, and for λ = 1, 3 the model penalized more than it should, thus
having the smallest cost function for a α = 1. For J2(θ) the models that obtained the smallest
average cost function when α = 2 was with λ = 0.3, 1. Therefore, this suggests for the two cost
functions two values of λ adequately estimated the α that generated the data, so we should not
estimate models for α > 2 to avoid computational cost.

The third model is with three knots and K=1:
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Figure 3.12: Generated curve with three knots and K=1

The cost functions means for this model are given below:

λ|α 0 1 2 3 4 5
0.1 7.767 7.665 4.748 4.487 4.642 4.794
0.3 7.767 7.674 5.202 5.329 5.681 5.988

1 7.767 7.701 6.749 7.046 7.458 7.665
3 7.767 7.753 7.767 7.767 7.767 7.767

Table 3.5: Average cost functions for J1(θ)

λ|α 0 1 2 3 4 5
0.1 7.767 7.676 4.531 4.026 4.036 4.044
0.3 7.767 7.706 4.591 4.116 4.156 4.193

1 7.767 7.810 4.801 4.430 4.575 4.717
3 7.767 8.110 5.399 5.328 5.772 6.213

Table 3.6: Average cost functions for J2(θ)

For J1(θ) the only estimated model that obtained the most minor average cost function in the
α = 3 was with λ = 0.1, the smallest value of lambda, suggesting smaller lambdas should be tested.
For J2(θ) all λ values obtained the smallest average cost function, suggesting in this case the cost
function is better than J1(θ) for estimating the number of knots.

In the three models seen, for some λ, at least one λ values for the two cost functions matches
the number of knots that generated the data, which is very good as it suggests an estimation pro-
cess for the number of knots that is faster instead of simply testing with various values of α with
fixed λ and checking which one fits best. Therefore, this suggests we can develop some estimation
with the forward structure. We check the cost function with the increase in one unit in the number
of knots, and from the moment that the cost function increases, we must stop, and the number of
knots will be estimated where it obtained the smallest cost function value.

The fourth model is with three knots and K=3:
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Figure 3.13: Generated curve with one knot and K=3

The average cost functions for this model are given below:

λ|α 0 1 2 3 4 5
0.1 4.152 4.013 3.989 3.986 3.981 3.976
0.3 4.152 4.014 3.989 3.986 3.981 3.978

1 4.152 4.013 3.990 3.987 3.984 3.983
3 4.152 4.013 3.991 3.990 3.989 3.990

Table 3.7: Average cost functions for J1(θ)

λ|α 0 1 2 3 4 5
0.1 4.152 4.029 4.019 4.031 4.041 4.049
0.3 4.152 4.059 4.079 4.121 4.161 4.199

1 4.152 4.163 4.288 4.435 4.580 4.722
3 4.152 4.463 4.887 5.333 5.776 6.219

Table 3.8: Average cost functions for J2(θ)

For J1(θ) no model obtained the smallest average cost function at α = 1, with the average cost
function always being in much larger values of λ. Therefore, values larger than λ tend to obtain
better results in estimating α in this situation. For J2(θ) the models with λ = 0.3, 1 obtained the
smallest values of the average cost function at α = 1. In this case, models with α > 1 do not need
to be estimated based on the cost function.

The fifth model is with two knots and K=3:
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Figure 3.14: Generated curve with two knots and K=3

The cost functions means for this model are given below:

λ|α 0 1 2 3 4 5
0.1 4.095 4.081 3.992 3.985 3.981 3.976
0.3 4.095 4.079 3.992 3.985 3.982 3.979

1 4.095 4.080 3.993 3.987 3.985 3.984
3 4.095 4.081 3.995 3.991 3.992 3.993

Table 3.9: Average cost functions for J1(θ)

λ|α 0 1 2 3 4 5
0.1 4.095 4.095 4.022 4.030 4.041 4.050
0.3 4.095 4.125 4.082 4.120 4.161 4.200

1 4.095 4.230 4.291 4.434 4.579 4.723
3 4.095 4.529 4.890 5.331 5.776 6.220

Table 3.10: Average cost functions for J2(θ)

For J1(θ) no model obtained the smallest mean cost function in α = 1, the most suitable α was
three with λ = 3, thus suggesting that larger values of λ should be tested. For J2(θ), the average
cost function with the smallest value at α = 2 was with λ = 0.1, 0.3. Again, models with α > 2
should not be tested, making choosing number of knots faster.

The sixth model is with three knots and K=3:
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Figure 3.15: Generated curve with three knots and K=3

The average cost functions for this model are given below:

λ|α 0 1 2 3 4 5
0.1 7.395 4.068 3.994 3.983 3.979 3.976
0.3 7.395 4.068 3.994 3.983 3.980 3.979

1 7.395 4.066 3.995 3.986 3.987 3.986
3 7.395 4.067 3.999 3.994 3.999 4.003

Table 3.11: Average cost functions for J1(θ)

λ|α 0 1 2 3 4 5
0.1 7.395 4.082 4.024 4.026 4.038 4.049
0.3 7.395 4.112 4.084 4.116 4.158 4.199

1 7.395 4.220 4.293 4.430 4.578 4.723
3 7.395 4.521 4.892 5.328 5.775 6.219

Table 3.12: Average cost functions for J2(θ)

For J1(θ) the models with λ = 1, 3 obtained the smallest values of the average cost function at
α = 3. For J2(θ) the models with λ = 0.1, 0.3 obtained the smallest values of the average cost
function at α = 2, one knot less than the number of knots that generated the data.

In all the models presented, we can observe that in several situations for the two cost functions at
some value of λ, the average cost function is close to the number of knots that generated the data.
Therefore, it makes sense to think of an estimation method for number of knots that considers the
cost function and the addition of knot number in a unit. Then check whether it is worth increasing
the number of knots based on the value of the cost function.

The number of knots estimation used in this dissertation makes use of the forward process. Models
are estimated with the addition of α in one unit until the cost function increases, at this point the
number of knots is estimated.

The estimation method is given below:
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Algorithm 4 number of knots estimation algorithm
Input: Training data X, y, α max L, features number p and cost function J(θ).
for j = 1, . . . , p do

J = [ ]
for m = 0, 1, 2 . . . , L do

αj = m
Fit Y with Xj with α̂j = αj using J(θ)

J [m+ 1] = J(θ̂)
if J(θ̂) > min(J) then
α̂j = αj − 1
stop the inner loop

end if
end for

end for

3.6 Summary of the parameter estimation procedure

Now, we can estimate all the parameters of the proposed models. The summary for estimating all
parameters is given below:

1. The hyperparameter vectors K and λ must be fixed to estimate the parameters.

2. All αj are estimated by Algorithm 4.

3. With all knot numbers estimated, we now estimate all parameters of our model with the
BFGS method given by Algorithm 3.

The hyperparameters of the models are chosen through the two most common methods: grid search
or random search. The grid search method is more used when we have a few hyperparameters.
In our case, the random search method is more commonly used because it is faster since we will
probably have many hyperparameters and generally obtain good results.

3.7 Loss functions comparasion

A big question for this dissertation is to find out in which situations the two developed models given
in (3.1) and (3.2) are better, either by adequately estimating the number of knots or by predicting
the observations well and also analyzing as the hyperparameters λ are chosen in each situation,
provide an interpretation and suggest possible reasonable λ values for future uses of the proposed
models. A model with a cost function that predicts observations well but does not estimate number
of knotss well is not attractive, as well as a model that predicts observations well but does not
estimate knots well is not attractive either. So, we must check how each cost function behaves in
different situations to know when to expect better results.

For this purpose, we tested the two proposed models in different situations of sample size, λ values,
number of knots, and models that generated the data. More specifically, we generate six different
models varying the knots from 1 to 3 and K equal to 1 or 3, which are the models from the pre-
vious section given in (3.10), (3.11), (3.12), (3.13), (3.14), (3.15). For each model, we test different
scenarios:

• n = 300, 900, 1500, 3000

• 100 samples for each sample size
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• λ = 0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30

• 5 knots as a maximum number for estimating the number of knots.

At this point, in all situations, the number of knots will be estimated according to the method given
in Algorithm 4. For each situation, we carry out the following procedure:

• We split the sample into 70% for train and 30% for test.

• For each λ, we estimate the knot number.

• The λ and α̂ chosen will be the one to obtain the most minor mean square error through a
5-fold cross-validation.

• We estimate the model in the training sample with final λ and α, then predict the test set
observations and check some metrics like mean square error and standard deviation.

• We performed the entire process above for 100 different samples and checked the proportion
of final α̂ and λ and the mean of the mean square error and standard deviation of the test
set.

First, let us analyze how knot number estimates behave for the six models presented. We will present
graphs of the proportion of the estimated α.

3.7.1 Knot number estimation and hyperparameter chosen

The first model, with one knot and K=1, given in 3.10:

Figure 3.16: α̂ proportion comparison with one knot and K = 1

For the two cost functions, α̂ = 1 mainly was chosen, and also the proportion increases as the
sample size grows. Furthermore, even with the smaller sample size, it already estimates the knot
number correctly, suggesting that the sample size is not a problem. The two models estimated the
knot number well and there is no significant difference for this purpose.



50 ESTIMATION OF THE NUMBER AND LOCATION OF KNOTS 3.7

n|λ 0 0.01 0.03 0.1 0.3 1 3 10 30
300 0.13 0.22 0.23 0.20 0.21 0.01 0.00 0.00 0.00
900 0.10 0.30 0.26 0.21 0.13 0.00 0.00 0.00 0.00

1500 0.10 0.29 0.29 0.26 0.06 0.00 0.00 0.00 0.00
3000 0.06 0.41 0.29 0.22 0.02 0.00 0.00 0.00 0.00

Table 3.13: λ proportion chosen for J1(θ)

n|λ 0 0.01 0.03 0.1 0.3 1 3 10 30
300 0.33 0.14 0.07 0.19 0.14 0.03 0.05 0.05 0.00
900 0.18 0.29 0.12 0.19 0.03 0.06 0.07 0.06 0.00

1500 0.15 0.33 0.11 0.13 0.01 0.04 0.03 0.20 0.00
3000 0.11 0.38 0.12 0.03 0.00 0.07 0.08 0.21 0.00

Table 3.14: λ proportion chosen for J2(θ)

In this case, the two cost functions performed better with smaller λ, with the most chosen being
λ = 0.01. This makes sense because it is a simple functional form with just one knot and because
the model estimated the knot number most of the time.
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The second model, with two knots and K=1, given in 3.11:

Figure 3.17: α̂ proportion comparison with two knots and K = 1

For the two cost functions, mostly α̂ = 2 was chosen. However, with a sample size of 300, the models
estimated another α̂ ̸= 2 in similar proportions. As the sample size increases, the models estimate
the knot number better, suggesting that the larger the sample, the better the estimate. The two
models had similar behavior, estimating the knot number better with the sample sizes of 1500 and
3000. Therefore, there is no significant difference between them.

n|λ 0 0.01 0.03 0.1 0.3 1 3 10 30
300 0.14 0.29 0.23 0.18 0.16 0.00 0.00 0.00 0.00
900 0.31 0.35 0.24 0.10 0.00 0.00 0.00 0.00 0.00

1500 0.29 0.50 0.15 0.06 0.00 0.00 0.00 0.00 0.00
3000 0.25 0.53 0.21 0.01 0.00 0.00 0.00 0.00 0.00

Table 3.15: λ proportion chosen for J1(θ)

n|λ 0 0.01 0.03 0.1 0.3 1 3 10 30
300 0.53 0.06 0.07 0.12 0.12 0.10 0.00 0.00 0.00
900 0.52 0.07 0.11 0.22 0.06 0.02 0.00 0.00 0.00

1500 0.47 0.28 0.09 0.11 0.03 0.02 0.00 0.00 0.00
3000 0.33 0.28 0.28 0.06 0.01 0.04 0.00 0.00 0.00

Table 3.16: λ proportion chosen for J2(θ)

In this case, the two cost functions performed better with smaller λ, with the most chosen being
0.01 or 0. As shown in Figure 3.17, the knot number was estimated correctly most of the time,
suggesting that it is a more straightforward model to estimate.



52 ESTIMATION OF THE NUMBER AND LOCATION OF KNOTS 3.7

The third model, with three knots and K=1, given in 3.12:

Figure 3.18: α̂ proportion comparison with three knots and K = 1

For the two cost functions, mainly α̂ = 3 was chosen. The only estimated number of knotss were 3,
4, and 5. As the sample size increases, the models better estimate the number of knots, but it is not
as important because even with the smallest sample size (300) both models estimate the correct
knot number the vast majority of the time. The two models had very similar behavior, estimating
the knot number well at all sample sizes, only a slight advantage for J1(θ) with the sample size of
300. Therefore, there is no significant difference between them.

n|λ 0 0.01 0.03 0.1 0.3 1 3 10 30
300 0.21 0.32 0.33 0.14 0.00 0.00 0.00 0.00 0.00
900 0.32 0.45 0.21 0.02 0.00 0.00 0.00 0.00 0.00

1500 0.33 0.41 0.26 0.00 0.00 0.00 0.00 0.00 0.00
3000 0.32 0.65 0.03 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.17: λ proportion chosen for J1(θ)

n|λ 0 0.01 0.03 0.1 0.3 1 3 10 30
300 0.55 0.04 0.02 0.14 0.16 0.09 0.00 0.00 0.00
900 0.40 0.17 0.14 0.15 0.06 0.08 0.00 0.00 0.00

1500 0.43 0.21 0.17 0.12 0.07 0.00 0.00 0.00 0.00
3000 0.40 0.38 0.16 0.02 0.04 0.00 0.00 0.00 0.00

Table 3.18: λ proportion chosen for J2(θ)

In both cost functions, smaller λ performed better. As shown in Figure 3.18, the model estimated
the knot number most of the time and with this it may have helped to estimate the location of
knots .
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The fourth model, with one knot and K=3, given in 3.13:

Figure 3.19: α̂ proportion comparison with one knot and K = 3

For both models, mostly α̂ = 2, 3 were chosen, which are greater than the knot number that gener-
ated the data, which is not expected to happen in practice. One possible reason for this is λ values
are not suitable for this case, only with the smallest sample size that J2(θ) obtained the largest
proportion at α̂ = 1

n|λ 0 0.01 0.03 0.1 0.3 1 3 10 30
300 0.04 0.01 0.04 0.03 0.05 0.04 0.15 0.25 0.39
900 0.08 0.03 0.02 0.02 0.07 0.07 0.07 0.23 0.41

1500 0.06 0.05 0.01 0.02 0.06 0.08 0.16 0.25 0.31
3000 0.06 0.01 0.02 0.07 0.03 0.17 0.21 0.15 0.28

Table 3.19: λ proportion chosen for J1(θ)

n|λ 0 0.01 0.03 0.1 0.3 1 3 10 30
300 0.27 0.05 0.10 0.29 0.18 0.09 0.02 0.00 0.00
900 0.43 0.11 0.15 0.20 0.10 0.01 0.00 0.00 0.00

1500 0.47 0.11 0.17 0.21 0.02 0.02 0.00 0.00 0.00
3000 0.44 0.23 0.21 0.12 0.00 0.00 0.00 0.00 0.00

Table 3.20: λ proportion chosen for J2(θ)
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The fifth model, with two knots and K=3, given in 3.14:

Figure 3.20: α̂ proportion comparison with two knots and K = 3

For the two cost functions, mainly α̂ = 2 was chosen. For J2(θ) the smallest sample size(300)
obtained the highest proportion with no knots. This is probably due to insufficient sample size for
the model complexity or α larger than it should be for this case. As the sample grows, the proportion
of correctly estimated number knots increases. Therefore, the larger the sample, the better the knot
number estimate. For smaller sample sizes, J1(θ) is more suitable for estimating the knot number
much better while there is not so much difference for larger sizes.

n|λ 0 0.01 0.03 0.1 0.3 1 3 10 30
300 0.05 0.02 0.03 0.04 0.03 0.08 0.18 0.24 0.33
900 0.05 0.01 0.04 0.03 0.04 0.09 0.22 0.30 0.22

1500 0.07 0.04 0.04 0.06 0.13 0.16 0.26 0.19 0.05
3000 0.11 0.03 0.05 0.07 0.08 0.20 0.25 0.21 0.00

Table 3.21: λ proportion chosen for J1(θ)

n|λ 0 0.01 0.03 0.1 0.3 1 3 10 30
300 0.23 0.24 0.15 0.26 0.10 0.02 0.00 0.00 0.00
900 0.64 0.15 0.08 0.13 0.00 0.00 0.00 0.00 0.00

1500 0.68 0.16 0.11 0.05 0.00 0.00 0.00 0.00 0.00
3000 0.82 0.07 0.10 0.01 0.00 0.00 0.00 0.00 0.00

Table 3.22: λ proportion chosen for J2(θ)

For J1(θ), the biggest λ performed better. This may have been caused by the increase in flexibility
caused by non-linearity. For J2(θ), most of the time the smallest possible λ(0) was chosen, only for
the smallest sample size(300) that another λ was chosen, which may be the main cause of the knot
number was not estimated correctly as shown in Figure 3.20.



3.7 LOSS FUNCTIONS COMPARASION 55

The sixth model, with three knots and K=3, given in 3.15:

Figure 3.21: α̂ proportion comparison with three knots and K = 3

For the two cost functions, mainly α̂ = 2 was chosen, one knot less than the knot number that
generated the data, which is not a problem in this case because it is a non-linear fit. When K ≥ 2,
the number of knots is not a problem if it is smaller than the real knot number, since the added
flexibility of non-linearity overcomes this problem. As the sample grows, the proportion of correctly
estimated knot number increases but is still less than that of α̂ = 2. The two models have very
similar behavior, hence there is no superiority between them for this purpose.

n|λ 0 0.01 0.03 0.1 0.3 1 3 10 30
300 0.04 0.06 0.04 0.04 0.06 0.10 0.15 0.25 0.26
900 0.08 0.04 0.07 0.03 0.08 0.12 0.16 0.25 0.17

1500 0.09 0.06 0.07 0.07 0.11 0.14 0.19 0.23 0.04
3000 0.10 0.09 0.04 0.04 0.04 0.16 0.25 0.21 0.07

Table 3.23: λ proportion chosen for J1(θ)

n|λ 0 0.01 0.03 0.1 0.3 1 3 10 30
300 0.26 0.10 0.07 0.17 0.10 0.05 0.11 0.14 0.00
900 0.62 0.07 0.05 0.11 0.05 0.05 0.01 0.04 0.00

1500 0.34 0.11 0.16 0.30 0.05 0.02 0.00 0.02 0.00
3000 0.36 0.12 0.26 0.18 0.03 0.05 0.00 0.00 0.00

Table 3.24: λ proportion chosen for J2(θ)

For J1(θ), the biggest λ performed better. This may have been caused by the increase in flexibility
caused by non-linearity. For J2(θ), every time the smallest possible λ(0) has been chosen.
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3.7.2 Predictive performance

Let us analyze how well the models predicted the observations by checking the mean of the mean
square error and standard deviation. We will do this through a table with the mean square error
and the standard deviation between parentheses. The smallest mean square error between the two
cost functions will be bold. Also, in some situations, the errors are equal but have been rounded
to three decimal places. In these cases, the error in bold is the smallest with all decimal places.
Although the six generated models are different, they will have the same mean square error and
standard deviation because their noise is the same.

For the first model, with one knot and K=1, given in 3.10:

Models | n 300 900 1500 3000
Real 3.975(5.578) 4.021(5.691) 4.000(5.687 ) 4.007(5.667)
J1(θ) 4.107(5.730) 4.066(5.751) 4.020(5.718) 4.015(5.677)
J2(θ) 4.109(5.727) 4.064(5.749) 4.020(5.716) 4.016(5.678)

Table 3.25: Predictive performance comparison between cost functions

For the second model, with two knots and K=1, given in 3.11:

Models | n 300 900 1500 3000
Real 3.975(5.578) 4.021(5.691) 4.000(5.687) 4.007(5.667)
J1(θ) 4.173(5.860) 4.109(5.801) 4.032(5.734) 4.023(5.690)
J2(θ) 4.186(5.863) 4.108(5.795) 4.033(5.731) 4.023(5.692)

Table 3.26: Predictive performance comparison between cost functions

For the third model, with three knots and K=1, given in 3.12:

Models | n 300 900 1500 3000
Real 3.975(5.578) 4.021(5.691) 4.000(5.687) 4.007(5.667)
J1(θ) 4.168(5.845) 4.106(5.800) 4.034(5.733) 4.024(5.691)
J2(θ) 4.168(5.847) 4.101(5.796) 4.035(5.733) 4.026(5.693)

Table 3.27: Predictive performance comparison between cost functions

For the fourth model, with one knot and K=3, given in 3.13:

Models | n 300 900 1500 3000
Real 3.975(5.578) 4.021(5.691) 4.000(5.687) 4.007(5.667)
J1(θ) 4.120(5.766) 4.082(5.778) 4.028(5.728) 4.021(5.686)
J2(θ) 4.153(5.794) 4.098(5.803) 4.031(5.733) 4.021(5.686)

Table 3.28: Predictive performance comparison between cost functions

For the fifth model, with two knots and K=3, given in 3.14:

Models | n 300 900 1500 3000
Real 3.975(5.578) 4.021(5.691) 4.000(5.687) 4.007(5.667)
J1(θ) 4.136(5.781) 4.076(5.764) 4.028(5.725) 4.021(5.684)
J2(θ) 4.145(5.775) 4.093(5.817) 4.031(5.730) 4.021(5.684)

Table 3.29: Predictive performance comparison between cost functions

For the sixth model, with three knots and K=3, given in 3.15:



3.7 LOSS FUNCTIONS COMPARASION 57

Models | n 300 900 1500 3000
Real 3.975(5.578) 4.021(5.691) 4.000(5.687) 4.007(5.667)
J1(θ) 4.135(5.790) 4.089(5.786) 4.033(5.732) 4.023(5.687)
J2(θ) 4.146(5.820) 4.087(5.781) 4.035(5.732) 4.023(5.687)

Table 3.30: Predictive performance comparison between cost functions

In all six generated models, both cost functions obtained a predictive performance close to the
model that generated the data, which was expected since the generated models have the same
functional form as the tested models. The big question is to know when one model is better than
another in some aspects. There was no significant difference between the two proposed models
in predictive performance because in both, as the sample size increases, the difference between the
real and estimated models stays closer, better predicting the observations. Furthermore, the models’
performance is very close to that of all sample sizes, so in these cases, there is no superiority between
them.
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Chapter 4

Predictive Performance with p variables

One of the main objectives of this dissertation is to verify if the proposed models are applicable to
make predictions in practice. To do this, we performed two types of analysis, one with simulations
and the other with several real data. In the simulations, tests were carried out in different scenarios,
with different sample sizes and noise variances. For performances on real data, we tested several
models on six datasets with different sample sizes and number of features.

For both analyses, we carry out the following procedure:

• We split the sample into 70% for train and 30% for test.

• We performed the random search method with 30 iterations using 5-fold cross-validation to
optimize the hyperparameters of the models in the training set.

• For each combination of hyperparameters, we estimate the knots number.

• All hyperparameters chosen will be the one to obtain the smallest mean square error of the
cross-validation from the random search method.

• We estimate the model parameters in the training sample with final hyperparameters, then
predict the test set observations and check the metrics like mean square error and standard
deviation of the square error.

We compared the two proposed models with several predictive methods well known in the literature.
The models chosen are of different functional forms, containing neural network structures, boosting,
regression trees, regularization methods, and a model that uses the same knot structure. The model
that uses the structure very similar to the proposed models and more known in the literature is the
B-splines model.
The models tested were:

1. The proposed model with cost function J1(θ);

2. The proposed model with cost function J2(θ);

3. B-Splines;

4. Ridge Regression;

5. Random Forest;

6. Adaboost tree;

7. Neural Network Multilayer Perceptron.
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The chosen hyperparameters and details for all models are given below:

The proposed model with cost function J1(θ)

1. λj ∈ [0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30], j = 1, ..., p

2. Kj ∈ [1, 2, 3], j = 1, ..., p

3. αj max = 3, j = 1, ..., p

The proposed model with cost function J2(θ)

1. λ ∈ [0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]

2. Kj ∈ [1, 2, 3], j = 1, ..., p

3. αj max = 3, j = 1, ..., p

B-Splines

1. Polynomial degree of each variable ∈ [1, 2, 3]

2. Knot number of each variable ∈ [0, 1, 2, 3]

Ridge Regression

1. The regularization hyperparameter ∈ (0, 10)

Random Forest

1. Tree number ∈ [50, 80, 100, 150]

2. Max depth ∈ [2, 3, 4]

3. The minimum number of samples required to split an internal node ∈ [10, 15, 20, 30]

4. The minimum number of samples required to be at a leaf node ∈ [5, 10, 15, 20, 25, 30, 50]

Adaboost tree

1. Each regression tree has a max depth equals to 3.

2. Tree number ∈ [50, 80, 100, 150]

3. Learning rate ∈ (0.9, 1.5)

Neural Network Multilayer Perceptron

1. The backpropagation optimization method was LBFGS

2. Size and number of the hidden layers ∈ [(10), (30), (50), (10, 10), (30, 30), (50, 50)]

3. Activation function is identity or relu

4. Learning rate ∈ [0.01, 0.03, 0.1, 0.3]

The results are presented with the mean square error and standard deviation of the square error
in parentheses from the test set. The model that obtained the best performance will be marked in
bold, and when the proposed models are not the best but have competitive results, they will be
marked in blue.
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4.1 Simulations

In the simulations, the tests were always performed with the same functional form, given below:

Yi = 1.27 + f1(xi1) + f2(xi2) + f3(xi3) + ϵi, ϵi ∼ Normal(0, σ2) (4.1)

The first variable has K1 = 3 and two knots at 17.87 and 76.59.

f1(xi1) = 0.65xi1 − 0.03x2i1 + 0.0006x3i1 − 0.0006(xi1 − 17.87)3I(xi1 > 17.87) (4.2)

+0.0003(xi1 − 76.59)3I(xi1 > 76.59) (4.3)

Its structure has the following form:

Figure 4.1: x1 form

The second variable has K2 = 1 and one knot at 90.63.

f2(xi2) = 0.02xi1 − 1.03(xi1 − 90.63)I(xi1 > 90.63) (4.4)

Its structure has the following form:

Figure 4.2: x2 form
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The third variable has K3 = 1 with no knots.

f3(xi3) = 0.04xi3 (4.5)

Its structure has the following form:

Figure 4.3: x3 form

All models were tested in some scenarios given below:

1. n = 300, 900, 1500, 3000

2. The noise variance σ2 = 1, 2, 3

4.1.1 Predictive results with σ2 = 1

Models | n 300 900 1500 3000
J1(θ) 1.06(1.52) 1.03(1.44) 0.94(1.39) 1.01(1.42)
J2(θ) 1.06(1.55) 1.01(1.43) 0.95(1.42) 1.02(1.43)
B-Splines 1.07(1.55) 0.99(1.40) 0.96(1.43) 1.02(1.45)
Ridge 2.31(3.35) 2.68(4.62) 2.38(4.05) 2.57(4.36)
Random Forest 1.03(1.41) 1.05(1.44) 0.95(1.43) 1.03(1.48)
Adaboost 1.18(1.69) 1.00(1.41) 0.97(1.45) 1.05(1.47)
MLP 1.91(2.72) 1.71(2.93) 1.42(1.97) 1.52(2.28)

Table 4.1: Simulations predictive results with σ2 = 1

The two proposed methods had the best performance in all sample sizes or were competitive enough
in the mean square error. The B-Splines model obtained very similar results to the proposed models
and the best result when the sample size is 900, so there is no reason to choose one in this problem.
The parameterization of the knots was not so worthwhile about predictions. It may be because the
polynomial can capture the data structure without the knots location being improved. Also, the
proposed models obtained better results most of the time concerning the Ridge, Adaboosting, and
Neural Networks models. This is expected due to the nature of the simulated data. However, the
random forest model obtained the best result when the sample size is 300, thus indicating that
models with the knot structure may not always be the best.
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4.1.2 Predictive results with σ2 = 2

Models | n 300 900 1500 3000
J1(θ) 4.21(6.24) 3.95(5.49) 3.74(5.58) 3.97(5.58)
J2(θ) 4.34(6.69) 3.94(5.48) 3.74(5.57) 3.97(5.60)
B Splines 4.23(6.52) 3.95(5.51) 3.80(5.68) 3.98(5.61)
Ridge 5.46(7.85) 5.77(8.14) 5.20(7.7) 5.70(8.62)
Random Forest 4.23(6.07) 4.07(5.39) 3.79(5.71) 3.99(5.62)
Adaboost 4.58(7.19) 4.31(5.5) 3.78(5.88) 4.10(5.75)
MLP 5.31(7.34) 4.89(6.75) 4.39(5.97) 4.70(6.73)

Table 4.2: Simulations predictive results with σ2 = 2

The proposed models obtained the best results in all sample sizes. However, the B-Splines model
had very similar results in the mean square error, so there is no reason to choose any of them.
Furthermore, the proposed models had better results than the ridge, random forest, adaboosting,
and neural networks predictive models.

4.1.3 Predictive results with σ2 = 3

Models | n 300 900 1500 3000
J1(θ) 9.92(16.06) 8.83(12.27) 8.43(12.59) 8.89(12.57)
J2(θ) 9.41(14.46) 8.78(12.13) 8.47(12.57) 8.89(12.55)
B Splines 9.36(14.45) 8.94(12.37) 8.55(12.71) 8.91(12.57)
Ridge 10.75(15.9) 10.80(14.64) 9.90(14.48) 10.76(15.75)
Random Forest 9.24(13.53) 9.05(12.27) 8.58(12.98) 8.99(12.55)
Adaboost 10.39(15.38) 9.19(12.12) 8.76(13.86) 9.04(12.83)
MLP 10.75(15.9) 10.07(13.61) 8.96(12.58) 9.59(13.52)

Table 4.3: Simulations predictive results with σ2 = 3

The proposed models obtained the best results in almost all sample sizes. However, the B-Splines
model again had similar results in the mean squared error, thus having no reason to choose any of
them. Furthermore, the proposed models generally had better results than the ridge, random forest,
adaboosting, and neural networks predictive models. However, the random forest was better when
the sample size was 300.

4.2 Performance on Real Data

The best way to know if the proposed models are advantageous in practice is by testing them on real
data with some of the most famous machine learning models. In this section, we test the models on
six real datasets with different sample sizes, features, and various areas, such as civil engineering,
biology, automobiles, and house prices. The data sets chosen are simple in pre-processing, obser-
vations with at least one missing data were excluded, and we used only numerical variables as the
explanatory variables. All datasets were obtained from the UCI Machine Learning Repository [1].
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The information about each dataset is presented below:

4.2.1 Airfoil Self-Noise Data Set

This dataset1. has 1503 observations, five explanatory variables, and a target variable. This data
set is about a series of aerodynamic and acoustic tests of two and three-dimensional airfoil blade
sections conducted in an anechoic wind tunnel. The objective is to predict the scaled sound pressure
level in decibels.

The details are given below:

Variables Meaning
x1 Frequency
x2 Angle of attack
x3 Chord length
x4 Free-stream velocity
x5 Suction side displacement thickness
y Scaled sound pressure level

Table 4.4: Details airfoil dataset

4.2.2 Auto MPG Data Set

This dataset2. has 398 observations, four explanatory variables, and a target variable. The data is
for city cycle fuel consumption in miles per gallon, predicted in terms of some continuous attributes.

The details are given below:

Variables Meaning
x1 Displacement
x2 Horsepower
x3 Weight
x4 Acceleration
y Consumption in miles per gallon

Table 4.5: Details auto mpg dataset

4.2.3 Concrete Compressive Strength Data Set

This dataset3. has 1030 observations, eight explanatory variables, and a target variable. The target
variable is concrete compressive strength which is the most important material in civil engineering
and is a highly nonlinear function of a few attributes.

The details are given below:

1Airfoil Self-Noise Data Set: https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
2Auto MPG Data Set: https://archive.ics.uci.edu/ml/datasets/auto+mpg
3Concrete Compressive Strength Data Set: https://archive.ics.uci.edu/ml/datasets/concrete+compressive+

strength

https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
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Variables Meaning
x1 Cement
x2 Blast Furnace Slag
x3 Fly Ash
x4 Water
x5 Superplasticizer
x6 Coarse Aggregate
x7 Fine Aggregate
x8 Age
y Concrete compressive strength

Table 4.6: Details concrete dataset

4.2.4 Combined Cycle Power Plant Data Set

This dataset4. has 9568 observations, four explanatory variables, and a target variable. The dataset
was collected from a Combined Cycle Power Plant over six years (2006-2011), when the power plant
was configured to work at full load. The features consist of hourly average environmental variables
Temperature, Ambient Pressure, Relative Humidity, and Exhaust Vacuum to predict the plant’s
net hourly electrical energy output.

The details are given below:

Variables Meaning
x1 Temperature
x2 Ambient Pressure
x3 Relative Humidity
x4 Exhaust Vacuum
y Net hourly electrical energy

Table 4.7: Details cycle power dataset

4.2.5 QSAR aquatic toxicity Data Set

This dataset5. has 546 observations, five explanatory variables, and a target variable. This dataset
was used to develop quantitative regression QSAR models to predict acute aquatic toxicity towards
the fish Pimephales promelas (fathead minnow) on a set of 908 chemicals to predict acute aquatic
toxicity towards Daphnia Magna. LC50 data(target) is the concentration that causes death in 50%
of test D magna over a test duration of 48 hours. The features are about molecular descriptors, such
as TPSA(Tot) (Molecular properties), SAacc (Molecular properties), MLOGP (Molecular proper-
ties), RDCHI (Connectivity indices) e GATS1p (2D autocorrelations).

The details are given below:

4Combined Cycle Power Plant Data Set: https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
5QSAR aquatic toxicity Data Set: https://archive.ics.uci.edu/ml/datasets/QSAR+aquatic+toxicity

https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
https://archive.ics.uci.edu/ml/datasets/QSAR+aquatic+toxicity
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Variables Meaning
x1 Molecular descriptor TPSA
x2 Molecular descriptor SAacc
x3 Molecular descriptor MLOGP
x4 Molecular descriptor RDCHI
x5 Molecular descriptor GATS1p
y LC50

Table 4.8: Details qsar dataset

4.2.6 Real estate valuation data set Data Set

This dataset6. has 414 observations, five explanatory variables, and a target variable. Data set of
real estate valuation collected from Taiwan to predict house prices.

The details are given below:

Variables Meaning
x1 House age
x2 Distance to the nearest MRT station
x3 Number of convenience stores in the living circle on foot
x4 Latitude
x5 Longitude
y House price of unit area

Table 4.9: Details valuation dataset

4.2.7 Predictive Results

Models | Datasets airfoil auto mpg concrete folds qsar valuation
J1(θ) 20.12(34.31) 15.29(36.17) 36.7(63.3) 17.23(31.72) 1.27(1.96) 38.02(75.6)
J2(θ) 20.94(34.74) 13.91(33.66) 40.71(70.92) 17.03(31.95) 1.31(2.19) 37.19(75.35)
B-Splines 18.8(30.55) 13.81(35.2) 55.78(86.9) 17.50(31.7) 1.34(1.85) 55.24(81.66)
Ridge 21.76(32.63) 15.83(28.73) 105.13(147.98) 20.09(34.32) 1.29(1.81) 53.25(94.34)
Random Forest 15.73(23.69) 14.44(37.78) 68.46(135.13) 18.83(34.17) 1.25(1.85) 33.07(75.45)
Adaboost 12.53(16.02) 17.15(36.93) 55.99(98.93) 29.98(44.35) 1.43(2.05) 42.6(74.31)
MLP 44.46(58.48) 17.2(28.13) 43.64(74.83) 22.5(37.73) 1.32(2.48) 48.71(111.1)

Table 4.10: Real data predictive results

The results in real data sets were quite attractive. To begin with, the proposed models were com-
petitive in almost all datasets or were the ones with the best predictive performance. The random
forest model was the best in the airfoil dataset, and the proposed models were not competitive
enough. Secondly, the proposed models obtained the best predictive result than the other tested
models in the concrete and fold datasets, suggesting that the models proposed in this dissertation
can be chosen for some problems in practice, as they were better than well-structured models in
the literature. Contrary to the simulations in the previous section, there were situations where the
proposed models were superior to the B-Splines model, suggesting the proposal to add knots as
parameters can make much difference in practice to improve the predictive performance.

6Real estate valuation data set Data Set: https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+
set

https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set
https://archive.ics.uci.edu/ml/datasets/Real+estate+valuation+data+set
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Now, let us carefully check the proportion of datasets where the proposed models were superior
in predictive performance than the other models.

Models J1(θ) J2(θ)

B-Splines 4/6 4/6
Ridge 6/6 5/6
Random Forest 2/6 3/6
Adaboost 5/6 6/6
MLP 6/6 6/6

Table 4.11: Predictice performance comparison

A great accomplishment is that the proposed models were superior in 4 of the 6 data sets than the
most famous model with knots(B-Splines) structure. Of the four datasets, the valuation and con-
crete sets showed the most significant difference, suggesting that considering knots as parameters
can make a difference in practice.

Another significant achievement is that the proposed models were superior in most sets than the
ridge, neural networks, and boosting models. It was also superior to neural networks and AdaBoost
in almost all datasets except one. This shows that our approach can be used in practice against
these known algorithms once again.

Undoubtedly, the most competitive algorithm against our proposed models was the random forest,
but even so, we gained predictive power in half of the datasets, making it feasible to compare against
this model in practice.



68 PREDICTIVE PERFORMANCE WITH P VARIABLES 4.2



Chapter 5

Conclusion

Models and statistical techniques must always follow the complexity of the data. The proposed
models proved to be highly competitive with the parameterization of knots because they obtain the
best performances in real sets against well-known machine learning methods.

In this dissertation, we mainly contribute to the field of predictive models, first by introducing
new penalties for this type of model and using the BFGS algorithm’s optimization methodology to
estimate the parameters of the proposed models.

Also, the addition of knots location and number proved to be worthwhile to improve the per-
formance of predictive power in general. For example, it won most of the times the most used
methods in the literature that use the structure of knots.

The proposed models can be flexible enough to predict observations from the simplest to the most
challenging cases, with many variables or observations, without overfitting and adequately selecting
the knots number. In the case of many variables, the model can adjust to this case, giving simplicity
to the most straightforward variables, either with few knots or lower K, and giving more complexity
to variables with high importance for the model and doing it efficiently with the BFGS method.

The proposed models did not show much difference between the performances, both in the sim-
ulations and in the real dataset. In some situations, a model was superior in selecting the knot
number but this did not affect the predictions at all. The two can be tested in practice to predict
observations most of the time.

The convergence of knots is also something to work on in the future. The BFGS helps a lot,
and we will study if when the sample increases, the estimate stays closer and closer to the true
value of the parameters, which may suggest probability or almost sure convergence.

To conclude, in future works, we hope to offer the method’s R package for any real dataset, and the
user will be able to work on the predictions with greater freedom with the cost functions proposed
in this dissertation.
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Appendix A

Code

All the codes of this dissertation are in the following GitHub repository: � link

71

https://github.com/AlbertoRodrigues/estimating_knots_regression_splines_model
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