Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2009.tde-08032013-141153
Document
Author
Full name
Cléber da Costa Figueiredo
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2009
Supervisor
Committee
Bolfarine, Heleno (President)
Geraldo, Héctor Wladimir Gomez
Labra, Filidor Edilfonso Vilca
Lima, Claudia Regina Oliveira de Paiva
Sandoval, Monica Carneiro
Title in Portuguese
Calibração linear assimétrica
Keywords in Portuguese
algoritmo EM
amostrador de Gibbs
critérios de informação
distribuições normal e t-normal assimétricas
singularidade da matriz de informação de Fisher
Abstract in Portuguese
A presente tese aborda aspectos teóricos e aplicados da estimação dos parâmetros do modelo de calibração linear com erros distribuídos conforme a distribuição normal-assimétrica (Azzalini, 1985) e t-normal-assimétrica (Gómez, Venegas e Bolfarine, 2007). Aplicando um modelo assimétrico, não é necessário transformar as variáveis a fim de obter erros simétricos. A estimação dos parâmetros e das variâncias dos estimadores do modelo de calibração foram estudadas através da visão freqüentista e bayesiana, desenvolvendo algoritmos tipo EM e amostradores de Gibbs, respectivamente. Um dos pontos relevantes do trabalho, na óptica freqüentista, é a apresentação de uma reparametrização para evitar a singularidade da matriz de informação de Fisher sob o modelo de calibração normal-assimétrico na vizinhança de lambda = 0. Outro interessante aspecto é que a reparametrização não modifica o parâmetro de interesse. Já na óptica bayesiana, o ponto forte do trabalho está no desenvolvimento de medidas para verificar a qualidade do ajuste e que levam em consideração a assimetria do conjunto de dados. São propostas duas medidas para medir a qualidade do ajuste: o ADIC (Asymmetric Deviance Information Criterion) e o EDIC (Evident Deviance Information Criterion), que são extensões da ideia de Spiegelhalter et al. (2002) que propôs o DIC ordinário que só deve ser usado em modelos simétricos.
Title in English
Asymmetric Linear Calibration
Keywords in English
EM algorithm
Gibbs sampler
information criteria
singularity of the information matrix
skew-normal and skew-t-normal distributions
Abstract in English
This thesis focuses on theoretical and applied estimation aspects of the linear calibration model with skew-normal (Azzalini, 1985) and skew-t-normal (Gómez, Venegas e Bolfarine, 2007) error distributions. Applying the asymmetrical distributed error methodology, it is not necessary to transform the variables in order to have symmetrical errors. The frequentist and the Bayesian solution are presented. The parameter estimation and its variance estimation were studied using the EM algorithm and the Gibbs sampler, respectively, in each approach. The main point, in the frequentist approach, is the presentation of a new parameterization to avoid singularity of the information matrix under the skew-normal calibration model in a neighborhood of lambda = 0. Another interesting aspect is that the reparameterization developed to make the information matrix nonsingular, when the skewness parameter is near to zero, leaves the parameter of interest unchanged. The main point, in the Bayesian framework, is the presentation of two measures of goodness-of-fit: ADIC (Asymmetric Deviance Information Criterion) and EDIC (Evident Deviance Information Criterion ). They are natural extensions of the ordinary DIC developed by Spiegelhalter et al. (2002).
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2013-03-19