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• Prof. Dr. Lúıs Gustavo Esteves - IME-USP

• Prof. Dr. Adriano Polpo de Campos - UWA

• Prof. Dr. Rafael Bassi Stern - UFSCar

• Prof. Dr. Eduardo Yoshio Nakano - UnB



Agradecimentos

Expresso minha eterna gratidão aos meus professores Carlos Alberto de Bragança Pereira e
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Abstract

PATIÑO HOYOS, A.E. Adaptive significance levels in linear regression models.

2019. Doctoral thesis - Institute of Mathematics and Statistics, São Paulo, 2019.

The Full Bayesian Significance Test (FBST) for precise hypotheses is presented by

Pereira and Stern (1999) as a Bayesian alternative to the traditional significance tests based

on p-values. With the FBST the authors introduce the e-value as an evidence index in favor

of the null hypothesis (H). An important practical issue for the implementation of the FBST

is to establish how small the evidence against H must be in order to decide for its rejection.

In this work we present a method to find a cutoff value for the evidence in the FBST by

minimizing the linear combination of the averaged type-I and type-II error probabilities for

a given sample size and also for a given dimensionality of the parameter space. Further-

more, we compare our methodology with the results obtained from the test proposed by

Pereira et al. (2017) and Gannon et al. (2019) which presents the P -value as a decision-

making evidence measure and includes an adaptive significance level. For that purpose, the

scenario of linear regression models under the Bayesian approach is considered.

Keywords: Adaptive significance levels, Bayesian test, e-value, P -value, Linear regression,

Predictive distribution, Bayes Factor, Significance test.
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Resumo

PATIÑO HOYOS, A.E. Nı́veis de significância adaptativos em modelos de regressão

linear. 2019. Tese de Doutorado - Instituto de Matemática e Estat́ıstica, São Paulo, 2019.

O Teste de Significância Totalmente Bayesiano (FBST) para hipóteses precisas foi apre-

sentado por Pereira and Stern (1999) como uma alternativa Bayesiana aos testes de sig-

nificância tradicionais baseados no p-value. Com o FBST, os autores introduzem o e-value

como um ı́ndice de evidência em favor da hipótese nula (H). Uma questão prática impor-

tante para a implementação do FBST é estabelecer quão pequena deve ser a evidência contra

H para decidir pela sua rejeição. Neste trabalho apresentamos um método para encontrar

um valor de corte para a evidência no FBST minimizando a combinação linear das proba-

bilidades ponderadas de erro tipo I e tipo II para um determinado tamanho de amostra e

também para uma certa dimensão do espaço paramétrico. Além disso, comparamos nossa

metodologia com os resultados obtidos usando o teste proposto por Pereira et al. (2017) e

Gannon et al. (2019) que apresenta o P -value como medida de evidência e inclui um ńıvel

de significância adaptativo. Para isso, é considerado o cenário de modelos de regressão linear

sob a abordagem Bayesiana.

Palavras-chave: Nı́veis de significância adaptativos, Teste Bayesiano, e-value, P -value,

Regressão linear, Distribuição preditiva, Factor de Bayes, Teste de Significância.
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Chapter 1
Introduction

1.1 About this work

The Full Bayesian Significance Test (FBST) for precise hypotheses is presented by

Pereira and Stern (1999) as a Bayesian alternative to the traditional significance tests based

on p-values. With the FBST the authors introduce the e-value as an evidence index in fa-

vor of the null hypothesis (H). An important practical issue for the implementation of the

FBST is to establish how small the evidence must be to decide to reject H. In that sense,

Madruga et al. (2001) present loss functions such that the minimization of their posterior

expected value gives “Bayesianity” to the FBST, having a characterization within the Deci-

sion Theory approach. This procedure provides a cutoff point for the evidence that depends

on the severity of the error for deciding whether to reject or accept H.

In the frequentist significance-test context, it is known that the p-value decreases as sam-

ple size increases, so by setting a single significance level, it usually leads to rejection of the

null hypothesis. In the FBST procedure, the e-value exhibits similar behavior to the p-value

when the sample size increases, which suggests that the cutoff point to define the rejection of

H should be a function of sample size. However, in the proposal of Madruga et al. (2001),

no loss functions that explicitly take into account the sample size are studied.

In order to solve the problem of testing hypotheses in the usual way, in which chang-

ing the sample size influences the probability of rejecting or accepting the null hypothesis,

Oliveira (2014) motivated by Pereira (1985), suggests that the level of significance in hy-

pothesis testing should be a function of sample size. Instead of setting a single level of

1
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significance, Oliveira (2014) proposes fixing the ratio of severity between type I and type II

error probabilities based on the incurred losses in each case, and thus, given a sample size,

defining the level of significance that minimizes the linear combination of the decision error

probabilities. Oliveira (2014) shows that, by increasing the sample size, the probabilities of

both kind of errors and their linear combination decrease, when in most cases, setting a single

level of significance independent of sample size, only type-II error probability decreases. The

tests proposed by Oliveira (2014) takes the same conceptual grounds of the usual tests for

simple hypotheses based on the Neyman-Pearson Lemma as presented in DeGroot (1986).

Oliveira (2014) extends the idea to composite and sharp hypotheses, according to the initial

work of Pereira (1985).

Following the same line of work, Pereira et al. (2017) and Gannon et al. (2019)

present a new hypothesis-testing procedure formulated from the ideas developed in

previous works (Irony and Pereira, 1995; Montoya-Delgado et al., 2001; Pereira, 1985;

Pereira and Wechsler, 1993) and using a mixture of frequentist and Bayesian tools. This

procedure introduces the P -value as a decision-making evidence measure and also includes

an adaptive significance level, i.e., a significance level that is function of sample size. Such

an adaptive significance level is obtained from the generalized form of the Neyman–Pearson

Lemma where the linear combination of the type-I and type-II error probabilities is min-

imized. According to Gannon et al. (2019), the resulting hypothesis tests do not violate

the Likelihood Principle and do not require any constraints on the dimensionalities of the

sample space and parameter space.

Linear models are probably the most used statistical models to establish the influence of a

set of covariates on a response variable. In that sense, the proper identification of the relevant

variables in the model is an important issue in any scientific investigation, being a more

challenging task in the context of Big-Data problems. In addition to high dimensionality,

in recent statistical learning problems, it is common to find large datasets with thousands

of observations. This fact may cause the hypothesis of nullity of the regression coefficients

to be rejected, most of the time, due to the large sample size when the significance level is

fixed.

The main goal of our work is to determine how small the Bayesian evidence in the FBST
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should be in order to reject the null hypothesis. Therefore, taking into account the concepts

in DeGroot (1986) and Pereira (1985) associated with optimal hypothesis tests, as well as

the conclusions of Oliveira (2014) about the relationship between the significance levels and

the sample size, and finally, considering the ideas developed recently by Pereira et al. (2017)

and Gannon et al. (2019) related to adaptive significance levels, we present a method to

find a cutoff point for the e-value by minimizing a linear combination of the averaged type-I

and type-II error probabilities for a given sample size and also for a given dimensionality of

the parameter space. For that purpose, the scenario of linear regression models under the

Bayesian approach is considered. So, by providing an adaptive level for decision making and

controlling the probabilities of both kind of errors, we intend to avoid the problems associated

with the rejection of the hypotheses on the regression coefficients when the sample size is

very large. In addition to the e-value, we calculate the P -value as well as its corresponding

adaptive significance levels in order to compare the decision that can be made by performing

the tests with each of these measures.

1.2 Organization of the thesis

In chapter 2, we present the basic definitions of hypothesis testing under the frequentist

and Bayesian approaches, the concepts related to the adaptive significance levels as well

as the description of the hypothesis-testing procedure given by Pereira et al. (2017) and

Gannon et al. (2019). Lastly in this chapter, the proposed methodology to find a cutoff value

for the evidence in the FBST is presented. Two simple examples illustrating the suggested

methodology and comparisons with the results derived from the P -value are shown in chapter

3. In chapter 4 we extend both procedures to the context of linear regression models under

the Bayesian point of view. For that purpose, we develop a simulation study with different

scenarios and present two applications with real data. Finally, in chapter 5 the conclusions

obtained in this work are discussed.
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Chapter 2
Basic Concepts

2.1 Hypothesis testing

A problem of statistical inference consists of making statements about unknown quanti-

ties that may be unobservable in a given context. An unknown quantity is usually called a

parameter, denoted by θ. We suppose that θ lies in a certain known parameter space Θ. In

order to make affirmations about θ, an experiment that allows the observation of a realiza-

tion x of a set Ω (x ∈ Ω) associated with a random vector X = (X1, . . . , Xn) is performed,

where Ω is the set in which this random vector takes values, called the sample space, and

n is the sample size. In general, the points of the sample space will be represented by x

and a particular observation of the experiment by x0. Given knowledge of θ, it is assumed

that the random vector X has known distribution Pθ ∈ P , where P = {Pθ : θ ∈ Θ} is

the set of distributions indexed by θ. For each x0 ∈ Ω, the function Lx0 : Θ −→ R+ that

associates Lx0(θ) = P (X = x0| θ) (or f(x0| θ), in the case where X is absolutely continuous)

with each θ ∈ Θ, is called the likelihood function of θ, resulting from the observation x0,

and is the function that describes the relation between the parameter θ (unknown) and the

experimental result x0 (known) (Fossaluza, 2008).

A statistical hypothesis is a statement about a parameter θ. In the most usual scenario,

we have two hypotheses, H : θ ∈ ΘH, called the null hypothesis, and A : θ ∈ ΘA, called the

alternative hypothesis. Thus, the parameter space is divided into complementary subsets,

ΘH and ΘA = Θc
H, with Θ = ΘH

·
∪ ΘA. A decision problem in which we must choose one

of two (or more) hypotheses is called a problem of hypothesis testing. A procedure to decide

5
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whether to accept the hypothesis H or to accept the hypothesis A is called a test procedure.

2.1.1 Frequentist hypothesis testing

Definition 1 A hypothesis test ϕ : Ω −→ {0, 1} is a decision rule that specifies for which

points x ∈ Ω, the hypothesis H : θ ∈ ΘH must be rejected (ϕ(x) = 1) or accepted (ϕ(x) = 0).

The subset of the sample space which contains the points leading to rejection of H, that is,

ϕ−1(1) = {x ∈ Ω : ϕ(x) = 1}, is called the critical region (CR) or rejection region of

the test.

Once the hypothesis-test procedure ϕ is determined, its characteristics can be described

by specifying, for each value of θ ∈ Θ, the probability πϕ(θ) that the procedure will lead to

the rejection of H or the probability 1− πϕ(θ) that it will lead to the acceptance of H. The

function πϕ(θ) is called the power function of the test ϕ and is defined as follows:

Definition 2 The power function of a hypothesis test ϕ is the function

πϕ : Θ −→ [0, 1]

θ 7−→ πϕ(θ) = P ({x ∈ Ω : ϕ(x) = 1}| θ)

= P (ϕ−1({1})| θ)

= P (X ∈ CR| θ), θ ∈ Θ.

The ideal power function would be one for which πϕ(θ) = 0 for every value θ ∈ ΘH and

πϕ(θ) = 1 for every value of θ ∈ ΘA. In a practical problem, however, these rarely exists any

test procedure having this ideal power function (DeGroot, 1986).

Whenever a hypothesis test is performed, there is a possibility of error in the decision,

more precisely, two types of errors that can be committed must be considered

Error of Type I = {Rejecting H|H is true} = {ϕ(x) = 1| θ ∈ ΘH},

Error of Type II = {Accepting H|A is true} = {ϕ(x) = 0| θ ∈ ΘA}.

In terms of the power function, for each θ ∈ ΘH, πϕ(θ) is the probability of committing

a type-I error, and for each θ ∈ ΘA, 1 − πϕ(θ) would be the probability of committing
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a type-II error. The error probabilities will be denoted as αϕ = P (Error of Type I) and

βϕ = P (Error of Type II).

Note that when ΘH = {θH} and ΘA = {θA} (simple hypotheses), αϕ =

P ({Rejecting H}|ΘH) = πϕ(θH) and βϕ = P ({Accepting H}|ΘA) = 1 − πϕ(θA) are the

probabilities of committing a type-I error and a type-II error respectively.

In the case of composite hypotheses, an alternative definition of αϕ and βϕ is needed. In

the frequentist approach, αϕ is considered as the size of a given test, that is,

sup
H
πϕ(θ) = αϕ.

It is desirable to find a test procedure for which the probabilities αϕ and βϕ of the two

types of error are small. However, for a given sample size, it is typically not possible to find

a test procedure for which both αϕ and βϕ are arbitrarily small (DeGroot, 1986).

According to the approach proposed by Neyman and Pearson, one way to find a rea-

sonable test is to fix the maximum probability of a type-I error that the decision maker is

willing to commit and try to find a test with the lowest probability of a type-II error. In this

sense, the tests of interest are those in which the probability of a type-I error is less than

or equal to a fixed value αϕ, 0 ≤ αϕ ≤ 1, for all θ ∈ ΘH, denoted as the tests with level of

significance αϕ. Once the level of significance is fixed, one can determine the critical region

of the test, finding the critical value k such that

αϕ = sup
H
πϕ(θ) = sup

H
P ({X ∈ Ω : ϕ(X) = 1}| θ) = sup

H
P (W (X) ≥ k| θ) = αϕ(k),

where W (X) is called test statistic. It is generally a function of a sufficient statistics and is

used to sort the sample space such that large values of W indicate points more unfavorable

to H.

From the fact that a good test should have a power function close to 0 when θ ∈ ΘH and

close to 1 when θ ∈ ΘA, it is possible to seek in the class of tests of smaller or equal size

αϕ the one that presents the greatest power function and, consequently, lower probability

of a type-II error for each θ ∈ ΘA. These tests are called uniformly most powerful tests

(UMP) and they are considered as optimal procedures from the frequentist point of view.
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In the case where both hypotheses are simple, it can be obtained by a well-known result

called the Neyman-Pearson Lemma (DeGroot, 1986). To find UMP tests is not always a

trivial task, and therefore, a more general procedure known as a generalized likelihood ratio

test was constructed providing reasonable results in most cases and having good asymptotic

properties. For more details on these tests see Casella and Berger (2002).

Another way to report the result of a hypothesis test is to present the value of a statistic

suggested by Fisher called a “ p-value”.

Definition 3 A p-value p(X) is a test statistic satisfying 0 ≤ p(x) ≤ 1 for every sampling

point x ∈ Ω. Let W (X) be a test statistic such that large values of W provide evidence

against the hypothesis H : θ ∈ ΘH. For each x0 ∈ Ω, we define

p-value = p(x0) = sup
H
P (W (X) ≥ W (x0)| θ).

We say that a p-value is valid if, for all θ ∈ ΘH and all αϕ ∈ [0, 1],

P (p(X) ≤ αϕ| θ) ≤ αϕ.

“Small” values of p(X) provide evidence against the hypothesis H. The p-value p(x0) can be

interpreted as the lowest level of significance for which the test would lead to the rejection

of H based on observation x0 (Schervish, 1995). An alternative definition of the p-value for

an observation x0 is described in Pereira and Wechsler (1993) as follows:

Definition 4 The p-value is the probability, under H, of the event composed by all sample

points that are at least as extreme as x0 is.

The tests based on p-value are commonly called significance tests and propose the use

of a measure of evidence in favor the null hypothesis (Schervish, 1995).

2.1.2 Bayesian hypothesis testing

In the Bayesian context, Bayes’ Theorem is used to join the information brought by

observation x0, expressed in the likelihood function Lx0(θ), with the prior distribution g(θ),
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in order to update the known information about θ to generate the posterior distribution,

f(θ|x0) =
g(θ)Lx0(θ)∫

Θ
g(θ)Lx0(θ) dθ

∝ g(θ)Lx0(θ), (2.1)

for θ ∈ Θ and x0 ∈ Ω.

The posterior distribution incorporates all the available information about θ, and there-

fore all Bayesian inference procedures will be based exclusively on f(θ|x). Under this ap-

proach, θ is considered a random variable because it is something unknown, and, within the

subjectivist perspective, should receive probability (DeGroot, 1986).

From the Bayesian point of view, estimation and hypothesis-testing procedures can be

constructed based on Decision Theory. In the context of hypothesis testing, it is basically

tested through the posterior probability of the hypotheses, choosing under some criterion

the one with the highest probability.

Among the alternatives for testing non-precise hypotheses we can find the Bayes Test. In

this procedure, the expected loss (or risk) is minimized, and its advantage is the simplicity

both in the formulation and in the interpretation of the results. Another proposal is the

procedures based on the Bayes Factor (BF), which is a measure of the evidence favoring

H over A, formulated as the ratio of the prior expectation of the likelihood under the

two sets of hypotheses. In cases where ΘH has zero Lebesgue measure (precise hypothesis),

the tests mentioned are not suitable (DeGroot, 1970). The search for a solution to this

type of testing has been a controversial and longstanding problem in statistical inference

(Pereira et al., 2008). One of the proposed solutions is through the Jeffreys test, in which a

positive probability is given over the set ΘH which is considered in the construction of the

prior for θ. However, the use of a point mass prior on the null hypothesis, as in this case,

can be considered as an ad hoc assumption (Pereira and Stern, 2001), and also generates the

effect of Lindley’s Paradox (Lindley, 1957). The FBST (Pereira and Stern, 1999) appears

as a completely Bayesian alternative to test precise hypotheses, attempting to solve some

of the inconsistencies arising from standard tests, both Frequentist and Bayesian. This is a

test of interest in our work, so we will present it in detail in next section.
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2.2 FBST

The Full Bayesian Significance Test (FBST) was proposed by Pereira and Stern (1999)

for precise or “sharp” hypotheses (subsets of Θ with fewer dimensions than the dimension

of the whole parameter space, and therefore, with null Lebesgue measure) based on the

evidence in favor of H, calculated as the complement of the posterior probability of the

HPD (Highest Posterior Density) region, which is tangent to the set that defines the null

hypothesis. The following is the formal definition of FBST (Madruga and Pereira, 2005):

Definition 5 Consider a standard parametric statistical model, i.e., for an integer m, θ ∈

Θ ⊂ Rm is the parameter, g(θ) a prior probability density over Θ, x0 is the observed data,

and Lx0(θ) is the likelihood generated by x0. After data x0 have been observed, the posterior

probability density for θ given x0 is denoted by f(θ|x0) ∝ Lx0(θ) g(θ).

Consider a null hypothesis H : θ ∈ ΘH (sharp hypothesis, i.e., dim(ΘH) < dim(Θ)). The

tangential set to H is given by

Tx0 =

{
θ ∈ Θ : f(θ|x0) > sup

H
f(θ|x0)

}
.

The measure of evidence (e-value) in favor of H is defined as the posterior probability of the

complement of Tx0, that is,

ev (H;x0) = 1− P (θ ∈ Tx0|x0) = 1−
∫
Tx0

f(θ|x0) dθ.

The FBST is the procedure that rejects H whenever ev (H;x0) is small (Pereira et al.,

2008).

The evidence index, e-value, in favor of a precise hypothesis, considers all points of

the parameter space which are less “probable” than some point in ΘH. A large value of

ev (H;x0) means that the subset ΘH lies in a high-probability region of Θ, and therefore,

the data support the null hypothesis; on the other hand, a small value of ev (H;x0) means

that ΘH is in a low-probability region of Θ and the data would make us discredit the null

hypothesis (Madruga and Pereira, 2005).

According to Pereira and Stern (1999), the FBST has the following properties:
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i) Gives an intuitive and simple measure of significance for the null hypothesis, a proba-

bility in the parameter space, besides being able to be characterized geometrically.

ii) Can be easily implemented using numerical integration and optimization techniques.

iii) Is fully Bayesian, only requiring knowledge of the parameter space represented in the

posterior distribution.

iv) Considers only the observed sample, allowing no ad hoc artifice, like a positive prior

probability distribution on the precise hypothesis as in the common Bayesian tests

using Bayes Factor.

v) Considers the alternative hypothesis in equal standing with the null hypothesis.

2.2.1 FBST cutoff value under Decision Theory approach

A major practical issue for the implementation of the FBST is the determination of how

small the Bayesian evidence in favor of H must be in order to decide for its rejection. The

formal identification of the FBST as a Bayes hypothesis test yields critical values derived

from the loss functions allowing such identification. In this sense, Madruga et al. (2001)

present loss functions such that minimization of their posterior expected values confers

“Bayesianity” to the FBST, having in this way a characterization within the Decision Theory

approach (Pereira et al., 2008). The authors describe the problem as follows:

The FBST procedure is given by the criterion according to which

• H is to be rejected if ev (H;x0) ≤ k.

• H is to be accepted if ev (H;x0) > k.

Formally, consider D = {Acceptance of H (d0), Rejection of H (d1)} the decision space

of a statistical hypothesis test problem, and let L : D × Θ −→ R+ be the loss function

defined by

L(Rejection of H, θ) = a[1− 1(θ ∈ Tx0)] and

L(Acceptance of H, θ) = b+ c1(θ ∈ Tx0),
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where a, b and d are positive real numbers. Madruga et al. (2001) prove that minimization

of a posterior expected-L loss function is a FBST procedure. In addition, Madruga et al.

(2001) prove that, for this loss function, the FBST cutoff value is k = (b+ c)/(a+ c).

Note that L is a loss function which depends on the action (acceptance or rejection), on

the parameter θ and on the tangential set Tx0 , therefore, it is a loss function dependent on

the observed sample point x0 and on the prior density for θ. In practice, it is not simple

to make a choice for the a, b, and c values because that involves the researcher’s opinion

about how damaging an error in the decision would be, making them particular values for

each problem. There are other loss functions whose minimization is equivalent to the FBST

procedure, but they are only minor variations of the L function. However, loss functions that

explicitly take into account the sample size have not yet been studied.

2.3 Significance index: P-value

A significance index is a real function over the sample space that is used as an evidence

measure for decision-making with respect to accepting or rejecting the null hypothesis H

(Pereira et al., 2017). The most well-known significance index is the p-value, stated in a

previous section. In order to define a p-value which regards the alternative hypothesis A,

contrasting the idea given by definitions like Definition 4, which could be problematic in the

sense of its calculation or even in its interpretation, Pereira and Wechsler (1993) present

an alternative point of view for the p-value and define a quantity called “P -value”, written

with capital P with the aim of making a distinction between both quantities.

Definition 6 The P-value is the probability, under H, of the event composed by all sample

points that favor A (against H) at least as much as x0 does.

This new index, the P -value, can be calculated for arbitrarily complex hypotheses that

lead to complex rejection regions, like those where the null hypotheses will be rejected if the

experimental observation were to occur there, as explained by Gannon et al. (2019), which

is an advantage over the small-p p-value. However, to do so, it is necessary to establish an

ordering of all the points in the sample space according to how much each possible obser-

vation favors one of the hypotheses over the other. In that way, Pereira et al. (2017) and
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Gannon et al. (2019) formalize a Bayesian definition for the P -value adopting the approach

from Montoya-Delgado et al. (2001), which suggests the use of the Bayes factor values of

all sample points to induce the necessary order. Then the Bayes factor takes the place of the

likelihood ratio and the average value of the likelihood function replaces its maximum value.

The mean of the likelihood function under the null hypotheses will be the density used in

the calculation of the new index.

Definition 7 With the prior density g(θ) defined over the two pieces of the parameter space

ΘH and ΘA, let fH(x) and fA(x) be the Bayesian prior predictive densities under the respec-

tive hypotheses. Both are probability density functions over the sample space Ω, and they are

calculated as the following conditional expectations:

fH(x) = f(x|H) = Eθ [ f(x|θ)|H ]

=

∫
Θ

f(x|θ) dPH(θ)
(2.2)

and

fA(x) = f(x|A) = Eθ [ f(x|θ)|A ]

=

∫
Θ

f(x|θ) dPA(θ),
(2.3)

where PH and PA are the prior probability measure of θ restricted to the sets H and A

respectively.

The ratio between the two functions is known as the Bayes factor,

BF(x) =
fH(x)

fA(x)
. (2.4)

If an experiment yields a result x0, the P-value is calculated as the probability, given

probability (density) function fH(x), of a point in the sample space favoring A as much as

or more than x0 does. That is, it is the sum or integral of the probability (density) function

fH(x) over the part of the sample space where the Bayes factor BF(x) is less than or equal

to the Bayes factor calculated at x0, BF(x0). Calling that part of the sample space ΨP , it is

defined as
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ΨP = {x ∈ Ω : BF(x) ≤ BF(x0)} (2.5)

and the P-value is

P -value (x0) = P ({X ∈ Ω : BF(X) ≤ BF(x0)} |H) (2.6)

i.e.,

P -value (x0) =


∑
ΨP

fH(x) if Ω is discrete∫
ΨP

fH(x) dx if Ω is continuous.
(2.7)

In the absolutely continuous case for which the parametric subspaces defined by the

hypotheses have different dimensionalities, the definition of a prior density under the subset

of smaller dimension, say H, is obtained from the following expression

gH(θ) =


0 if θ ∈ ΘA

g(θ)1(θ ∈ ΘH)∮
H
g(t) dt

if θ ∈ ΘH.
(2.8)

The denominator is the surface integral over the subspace ΘH (subject to the condition

that can be defined). When ΘH consists of a single point, it is not necessary to calculate the

integral (Pereira et al., 2017).

2.4 Adaptive significance levels

In the search for optimal tests, DeGroot (1986) showed that in the simple hypotheses

cases, it is possible to construct a procedure for which the value of a specific linear combi-

nation of αϕ and βϕ (weighted sum), say aαϕ + bβϕ, with a, b > 0, is minimized. DeGroot

(1986) proved that the test ϕ∗(x) which minimizes a linear combination of the type I and
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type II error probabilities, aαϕ + bβϕ, is given by:

ϕ∗(x) =


0, if afH(x) ≥ bfA(x)

1, if afH(x) < bfA(x)

⇒ ϕ∗(x) =


0, if

fH(x)

fA(x)
≥ b

a

1, if
fH(x)

fA(x)
<
b

a
.

Then, for any other test ϕ,

aαϕ + bβϕ ≥ aαϕ∗ + bβϕ∗ . (2.9)

This is the generalized Neyman-Pearson Lemma in its Bayesian form. According

to Pereira (1985), this result involves interesting aspects of the sample space, since both βϕ

and αϕ values could vary with the sample size. So, under this concept, instead of αϕ being

fixed and βϕ tending to decrease with increasing sample size, both error probabilities depend

on the sample size. The a and b values represent the relative seriousness of errors of the two

types or, equivalently, relative prior preferences for the competing hypoteses. For example if

b/a = 1 it is said that βϕ and αϕ are equally severe, whereas if b/a < 1, then αϕ undergoes

a more intense minimization than βϕ, which means that type-I error is considered more

serious than type II error and also indicates a prior preference for H. Note that minimizing

aαϕ + bβϕ is equivalent to minimizing αϕ + wβϕ when w = b/a, which makes the Neyman-

Pearson Lemma a Corollary of this result. Even so, both have a very different practical

interpretation. Pereira (1985) proves that the ϕ∗(x) test is also a Bayesian solution to the

problem of testing simple versus simple hypotheses, and furthermore, proposes a method

under the same approach to test hypotheses involving spaces of different dimensionalities that

can receive a frequentist and Bayesian interpretation and has no restriction of applicability.

Oliveira (2014) motivated by Pereira (1985), proposes a test where the ratio of severity

between type-I and type-II error probabilities is fixed based on the incurred losses in each

case, and thus, given a sample size, an ideal level of significance that minimizes the linear

combination of the decision errors is defined. This test is extended to composite and sharp

hypotheses. On the other hand, Pericchi and Pereira (2016) generalize the error-weighting

approach by defining the expected type-I and type-II error probabilities, and find that the
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optimal region is given by the ratio of evidence, i.e., the ratio of averaged likelihoods (in

relation to a prior measure) and a fixed threshold.

Following the same line of work, Pereira et al. (2017) and Gannon et al. (2019) present

a new hypothesis-testing procedure using a mixture of frequentist and Bayesian tools. This

procedure introduces the P -value as a decision-making evidence measure and also includes

an adaptive significance level which is function of the sample size. To describe the procedure,

consider the test

ϕ∗P (x) =


0 if BF(x) >

b

a

1 if BF(x) ≤ b

a
.

(2.10)

ϕ∗P (x) minimizes the linear combination aαϕ + bβϕ. Here, the Bayes factor is compared

to the ratio of the coefficients b/a . The power function of ϕ∗P is given by

πϕ∗P (θ) = P ({X ∈ Ω : ϕ∗P (X) = 1}| θ) = P

({
X ∈ Ω : BF(X) ≤ b

a

} ∣∣∣ θ) . (2.11)

Therefore, the optimal averaged error probabilities from the generalized Neyman-Pearson

Lemma, that will depend on the sample size, are

αϕ∗P = Eθ [πϕP
(θ)|H] , (2.12)

βϕ∗P = Eθ [1− πϕP
(θ)|A] , (2.13)

which can also be calculated as

αϕ∗P = P ({X ∈ Ω : ϕ∗P (X) = 1}|H) = P

({
X ∈ Ω : BF(X) ≤ b

a

} ∣∣∣ H

)
, (2.14)

βϕ∗P = P ({X ∈ Ω : ϕ∗P (X) = 0}|A) = P

({
X ∈ Ω : BF(X) >

b

a

} ∣∣∣ A

)
. (2.15)
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Consequently,

αϕ∗P =


∑
x∈Ψ∗P

fH(x) if Ω is discrete∫
x∈Ψ∗P

fH(x) dx if Ω is continuous.
(2.16)

βϕ∗P =


∑
x/∈Ψ∗P

fA(x) if Ω discrete∫
x/∈Ψ∗P

fA(x) dx if Ω continuous,
(2.17)

where Ψ∗P is the set defined as

Ψ∗P =

{
x ∈ Ω : BF(x) ≤ b

a

}
. (2.18)

In order to make a decision, the P -value, computed as shown in Section 2.3, is compared

to the optimal adaptive significance level αϕ∗P . Then, the hypothesis H will be rejected when

x0 is observed if P -value (x0) < αϕ∗P .

According to Gannon et al. (2019), once a significance level or cutoff for the P -value is

determined, a corresponding cutoff for Bayes factors at the same significance level can be

determined, and this is because of the one-to-one correspondence between them.

2.5 Adaptive cutoff values for evidence in the FBST

Considering the concepts in Pereira (1985), in Oliveira (2014) and the recent work of

Pereira et al. (2017) and Gannon et al. (2019) related to adaptive significance levels, we

propose to establish a cutoff value k∗ for the ev (H;x0) in the FBST as a function of the

sample size n and the dimensionality of the parameter space d, i.e., k∗ = k∗(n, d) with

k∗ ∈ [0, 1], such that k∗ minimizes the linear combination of the averaged type-I and type-II

error probabilities, aαϕe + bβϕe . To describe the procedure, consider the test
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ϕe(x) =


0 if ev (H;x) > k

1 if ev (H;x) ≤ k.

(2.19)

Thus, the power function and the averaged error probabilities are respectively

πϕe(θ) = P ({X ∈ Ω : ϕe(X) = 1}| θ) = P
(
{X ∈ Ω : ev (H;X) ≤ k}

∣∣∣ θ) , (2.20)

αϕe = Eθ [πϕe(θ)|H] , (2.21)

βϕe = Eθ [1− πϕe(θ)|A] . (2.22)

Alternatively, it is possible to calculate (2.21) and (2.22) as

αϕe = P ({X ∈ Ω : ϕe(X) = 1}|H) = P
(
{X ∈ Ω : ev (H;X) ≤ k}

∣∣∣ H
)
, (2.23)

βϕe = P ({X ∈ Ω : ϕe(X) = 0}|A) = P
(
{X ∈ Ω : ev (H;X) > k}

∣∣∣ A
)
. (2.24)

The averaged error probabilities can also be expressed in terms of the Bayesian prior

predictive densities under the respective hypotheses defined in (2.2) and (2.3), as follows

αϕe =


∑
x∈Ψe

fH(x) if Ω is discrete∫
x∈Ψe

fH(x) dx if Ω is continuous.
(2.25)

βϕe =


∑
x/∈Ψe

fA(x) if Ω is discrete∫
x/∈Ψe

fA(x) dx if Ω is continuous,
(2.26)

where Ψe is the set

Ψe = {x ∈ Ω : ev (H;x) ≤ k} . (2.27)

So the adaptive cutoff value k∗ for ev (H;x) will be the value of k that minimizes aαϕe +

bβϕe , for fixed a, b > 0.
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Finally, consider the test

ϕ∗e(x) =


0 if ev (H;x) > k∗

1 if ev (H;x) ≤ k∗.

(2.28)

Then the optimal averaged error probabilities that depend on the sample size will be

α∗ϕ∗e = P ({X ∈ Ω : ϕ∗e(X) = 1}|H) = P
(
{X ∈ Ω : ev (H;X) ≤ k∗}

∣∣∣ H
)

(2.29)

β∗ϕ∗e = P ({X ∈ Ω : ϕ∗e(X) = 0}|A) = P
(
{X ∈ Ω : ev (H;X) > k∗}

∣∣∣ A
)
. (2.30)
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Chapter 3
Simple Illustrative Examples

In this chapter, two examples of bilateral hypothesis testing for θ (H : θ = θ0 vs.

A : θ 6= θ0) are presented, where a precise or “sharp” hypothesis against a composite

alternative is tested and also a one-dimensional parameter space is defined. The objective

is to illustrate the proposed methodology in the previous chapter to determine the adaptive

cutoff value k∗ for ev (H;x0) that minimizes the linear combination of the averaged error

probabilities aαϕe + bβϕe . On the other hand, the adaptive significance levels for decisions

using P -values are presented in order to compare and also to establish a possible relationship

with the results from FBST. In the first example, a discrete distribution for X is considered,

X|θ ∼ Bernoulli(θ), so the parameter of interest in the test is a proportion. In the second

one, X obeys a continuous distribution, X|θ ∼ Normal(θ, σ2), so the test is related to the

mean. Furthermore, conjugate priors are taken into account to make calculations easier (see

Paulino et al., 2003). In both situations the values of a and b, which represent the relative

seriousness of errors, are a = b = 1, that is, the two types of errors are equally severe.

3.1 Adaptive significance levels in proportion hypoth-

esis testing

Consider conditionally independent and identically distributed random variables (c.i.i.d)

X1, ..., Xn| θ from a Bernoulli distribution with unknown parameter θ ∈ [0, 1], and define

X = (X1, ..., Xn). Consider also that θ ∼ Beta(γ, δ) (γ > 0 and δ > 0) is a prior for θ. Then

21
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the posterior distribution of θ given that X = x can be calculated as

f(θ|x) ∝ P (X = x|θ) g(θ)

∝ θ

n∑
i=1

xi
(1− θ)

n−
n∑

i=1
xi
θγ−1 (1− θ)δ−1

∝ θ
γ+

n∑
i=1

xi−1
(1− θ)

δ+n−
n∑

i=1
xi−1

, θ ∈ (0, 1), xi = {0, 1}.

Therefore, the posterior distribution is

θ|x ∼ Beta

(
γ +

n∑
i=1

xi, δ + n−
n∑
i=1

xi

)
.

The hypotheses to be tested are given by

H : θ = θ0

A : θ 6= θ0,

where θ0 ∈ (0, 1).

Let X∗ = T (X) =
∑n

i=1 Xi be the sufficient statistic and also let Ω∗ = {0, 1, ..., n} be the

space induced by X∗. Then, X∗|θ ∼ Binomial(n, θ) and f(θ|x) = f(θ|x∗), where x∗ = T (x).

3.1.1 Evidence index: e-value

With ΘH = {θ0}, the tangential set to the null hypothesis and the evidence in favor of

H for x∗0 ∈ Ω∗ are, respectively,

Tx∗0 =

{
θ ∈ Θ : f(θ|x∗0) > sup

H
f(θ|x∗0)

}
= {θ ∈ Θ : f(θ|x∗0) > f(θ0|x∗0)} ,

ev (H;x∗0) = 1− P (θ ∈ Tx∗0 |x
∗
0).

Let ϕe(x
∗) be the test given by
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ϕe(x
∗) =


0 if ev (H;x∗) > k

1 if ev (H;x∗) ≤ k.

So the power function and the averaged error probabilities are, respectively,

πϕe(θ) = P ({X∗ ∈ Ω∗ : ϕ∗e(X
∗) = 1}|θ)

= P ({X∗ ∈ Ω∗ : ev (H;X∗) ≤ k} |θ)

=
n∑

x∗=0

P (X∗ = x∗|θ)1(ev (H;x∗) ≤ k)

=
n∑

x∗=0

(
n

x∗

)
θx
∗

(1− θ)n−x∗ 1(ev (H;x∗) ≤ k).

αϕe = P ({X∗ ∈ Ω∗ : ϕ∗e(X
∗) = 1}|H)

= P ({X∗ ∈ Ω∗ : ev (H;X∗) ≤ k} |H)

=
n∑

x∗=0

P (X∗ = x∗|θ = θ0)1(ev (H;x∗) ≤ k)

=
n∑

x∗=0

(
n

x∗

)
θx
∗

0 (1− θ0)n−x
∗
1(ev (H;x∗) ≤ k).

βϕe = Eθ [1− πϕe(θ)|A]

=

∫
A

[1− πϕe(θ)] g(θ) dθ.

For example, taking the particular case in which n = 2 and the prior θ ∼ Beta(1, 1)

(Uniform(0, 1)), then X∗|θ ∼ Binomial(2, θ) and θ|x∗ ∼ Beta (1 + x∗, 3− x∗). Consider

the hypotheses

H : θ = 0.5

A : θ 6= 0.5.

Below, according to the value that the random variable x∗ takes, the procedure to cal-

culate the evidence is presented.
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• When x∗ = 0,

θ|x ∼ Beta (1, 3) ⇒ f(θ|x∗ = 0) =
Γ(1 + 3)

Γ(1)Γ(3)
(1− θ)2

= 3 (1− θ)2, θ ∈ (0, 1),

where Γ is the Gamma function.

The evidence in favor of H is calculated as

ev(0.5; 0) = 1− P (θ ∈ Tx∗0 |x
∗ = x∗0)

= 1− P (θ < 0.5|x∗ = 0)

= 1− 3

∫ 0.5

0

(1− θ)2dθ

= 0.125.

Figure 3.1: Tangential set to H : θ = 0.5, with
θ|x∗ ∼ Beta (1, 3).

• When x∗ = 1,

θ|x ∼ Beta (2, 2) ⇒ f(θ|x∗ = 1) =
Γ(2 + 2)

Γ(2)Γ(2)
θ (1− θ)

= 6 θ (1− θ), θ ∈ (0, 1).

The evidence in favor of H is calculated as

ev(0.5; 1) = 1− P (θ ∈ Tx∗0 |x
∗ = x∗0)

= 1− 0

= 1.

Figure 3.2: Tangential set to H : θ = 0.5, with
θ|x∗ ∼ Beta (2, 2).
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• When x∗ = 2,

θ|x ∼ Beta (3, 1) ⇒ f(θ|x∗ = 2) =
Γ(1 + 3)

Γ(1)Γ(3)
θ2

= 3 θ2, θ ∈ (0, 1).

The evidence in favor of H is calculated as

ev(0.5; 2) = 1− P (θ ∈ Tx∗0 |x
∗ = x∗0)

= 1− P (θ > 0.5|x∗ = 2)

= 1− 3

∫ 1

0.5

θ2dθ

= 0.125.

Figure 3.3: Tangential set to H : θ = 0.5, with
θ|x∗ ∼ Beta (3, 1).

In this way, the power function and the averaged error probabilities can be calculated as

follows

πϕe(θ) = P ({X∗ ∈ Ω∗ : ev (0.5;X∗) ≤ k} |θ)

=
n∑

x∗=0

P (X∗ = x∗|θ)1(ev (0.5;x∗) ≤ k)

=
2∑

x∗=0

(
2

x∗

)
θx
∗

(1− θ)2−x∗
1(ev (0.5;x∗) ≤ k)

= (1− θ)2
1(ev (0.5; 0) ≤ k) + 2θ(1− θ)1(ev (0.5; 1) ≤ k) + θ2

1(ev (0.5; 2) ≤ k)

= (1− θ)2
1(k ≥ 0.125) + 2θ(1− θ)1(k ≥ 1) + θ2

1(k ≥ 0.125).

αϕe = P ({X∗ ∈ Ω∗ : ev (0.5;X∗) ≤ k} |H)

=
n∑

x∗=0

P (X∗ = x∗|θ0 = 0.5)1(ev (0.5;x∗) ≤ k)

=
2∑

x∗=0

(
2

x∗

)
θx
∗

0 (1− θ0)2−x∗
1(ev (0.5;x∗) ≤ k)
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= (1− θ0)2
1(ev (0.5; 0) ≤ k) + 2θ0(1− θ0)1(ev (0.5; 1) ≤ k) + θ2

0 1(ev (0.5; 2) ≤ k)

= (0.5)2
1(k ≥ 0.125) + 2(0.5)2

1(k ≥ 1) + (0.5)2
1(k ≥ 0.125).

βϕe = Eθ [1− πϕe(θ)|A]

=

∫
A

[1− πϕe(θ)] g(θ)dθ

=

∫
A

[1− πϕe(θ)] 1 dθ

= 1−
∫ 1

0

(1− θ)2
1(k ≥ 0.125) dθ +

∫ 1

0

2θ(1− θ)1(k ≥ 1) dθ +

∫ 1

0

θ2
1(k ≥ 0.125) dθ

= 1−
[

Γ(1)Γ(3)

Γ(1 + 3)
1(k ≥ 0.125) + 2

Γ(2)Γ(2)

Γ(2 + 2)
1(k ≥ 1) +

Γ(1)Γ(3)

Γ(1 + 3)
1(k ≥ 0.125)

]
= 1−

[
1

3
1(k ≥ 0.125) +

2

6
1(k ≥ 1) +

1

3
1(k ≥ 0.125)

]
.

Therefore, the averaged type-I and type-II error probabilities are given by

αϕe =


0, 0 ≤ k < 0.125

0.5, 0.125 ≤ k < 1

1, k = 1.

βϕe =


1, 0 ≤ k < 0.125

0.333, 0.125 ≤ k < 1

0, k = 1.

In Figures 3.4. (a) and 3.4. (b) respectively, the averaged error probabilities as a function

of k and the power function for a fixed k are plotted.

Because of the discrete nature of X∗, the probabilities of both kind of errors and their

linear combination as function of k are simple functions, that is, can be written as g(k) =∑r
i=1 ai1(k ∈ Ai), where ai ∈ R+, ∀ i, and A1, . . . , Ar form a partition of [0, 1]. Therefore,

αϕe + βϕe is minimized in a range of values of k, i.e., is minimized by any value of k∗ such

that k∗ ∈ [k∗inf, k
∗
sup].



ADAPTIVE SIGNIFICANCE LEVELS IN PROPORTION HYPOTHESIS TESTING 27

(a) (b)

Figure 3.4: (a) Averaged error probabilities (αϕe, βϕe and αϕe + βϕe) as functions of k, with
n = 2 and θ ∼ Beta(1, 1). (b) Power function for k = 0.1, k = 0.5 and k = 0.8, with n = 2 e
θ ∼ Beta(1, 1).

Table 3.1 and Figure 3.5 show the minimum k∗, middle k∗ and maximum k∗ values that

minimize the sum of the error probabilities.

minimum k∗ (k∗inf) 0.1251

middle k∗ (k̄∗) 0.5625

maximum k∗ (k∗sup) 0.9999

Table 3.1: Cutoff values k∗ for ev (0.5;x∗0), with
n = 2 and θ ∼ Beta(1, 1).

Figure 3.5: Linear combination of averaged er-
ror probabilities (αϕe +βϕe) as function of k, with
n = 2 and θ ∼ Beta(1, 1).

In order to evaluate how much the choice of the prior affects the cutoff value that we

are looking for, consider beyond the Uniform prior, two informative distributions for θ,

θ ∼ Beta(1, 3) and θ ∼ Beta(10, 10) (Figure 3.6).
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Figure 3.6: Prior distributions θ ∼ Beta(1, 1), θ ∼ Beta(1, 3) and θ ∼ Beta(10, 10).

In Figure 3.7 and 3.8 are plotted for the three priors and a sample size n = 40, the

averaged error probabilities as a function of k (Figures 3.7.(a), 3.7.(c) and 3.7.(e)), the

power function for a fixed k (Figures 3.7.(b), 3.7.(d) and 3.7.(f)) and the minimum k∗,

middle k∗ and maximum k∗ values that minimize the sum of the error probabilities (Figure

3.8).

The procedure presented to find the k∗ ∈ [k∗inf, k
∗
sup] values for a fixed n is replicated for

different sample sizes and taking into account the prior distributions for θ. In Tables 3.2, 3.3,

3.4 and Figures 3.9, 3.10, 3.11 the results are displayed. Note that by increasing n, the k∗

values show a decreasing trend in the three cases (Beta(1, 1), Beta(1, 3) and Beta(10, 10)),

which allows us to interpret that the influence of sample size on the determination of the

cutoff for ev (0.5;x∗0) is very relevant.
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(a) Beta(1, 1) (b) Beta(1, 1)

(c) Beta(1, 3) (d) Beta(1, 3)

(e) Beta(10, 10) (f) Beta(10, 10)

Figure 3.7: (a), (c) and (e) Averaged error probabilities (αϕe, βϕe e αϕe + βϕe) as function of k;
(b), (d) and (f) Power function when k = 0.1, k = 0.5 and k = 0.8. Sample size n = 40.
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(a) Beta(1, 1) (b) Beta(1, 3)

(c) Beta(10, 10)

Figure 3.8: Linear combination of averaged error probabilities (αϕe +βϕe) as function of k. Sample
size n = 40.

n k∗inf k
∗

k∗sup

10 0.03910 0.10530 0.17150
20 0.06080 0.11115 0.16150
30 0.05930 0.09585 0.13240
40 0.05170 0.07860 0.10550
50 0.04320 0.06340 0.08360
60 0.03550 0.05075 0.06600
70 0.02890 0.04055 0.05220
80 0.04140 0.05570 0.07000
90 0.03290 0.04390 0.05490
100 0.02610 0.03465 0.04320
150 0.02130 0.02685 0.03240
200 0.02290 0.02790 0.03290
250 0.02220 0.02645 0.03070
300 0.02050 0.02405 0.02760

Table 3.2: Cutoff values k∗ for ev (0.5;x∗0) as
function of n, with θ ∼ Beta(1, 1).

Figure 3.9: Cutoff values k∗ for ev (0.5;x∗0) as
function of n, with θ ∼ Beta(1, 1).
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n k∗inf k
∗

k∗sup

10 0.06270 0.14015 0.21760
20 0.02540 0.05025 0.07510
30 0.02830 0.04835 0.06840
40 0.02660 0.04220 0.05780
50 0.02340 0.03550 0.04760
60 0.01990 0.02925 0.03860
70 0.03130 0.04350 0.05570
80 0.02520 0.03460 0.04400
90 0.02020 0.02750 0.03480
100 0.01620 0.02190 0.02760
150 0.01420 0.01815 0.02210
200 0.01620 0.01985 0.02350
250 0.01620 0.01945 0.02270
300 0.01530 0.01805 0.02080

Table 3.3: Cutoff values k∗ for ev (0.5;x∗0) as
function of n, with θ ∼ Beta(1, 3).

Figure 3.10: Cutoff values k∗ for ev (0.5;x∗0) as
function of n, with θ ∼ Beta(1, 3).

n k∗inf k
∗

k∗sup

10 0.43720 0.56755 0.69790
20 0.32010 0.41395 0.50780
30 0.24000 0.30925 0.37850
40 0.18260 0.23460 0.28660
50 0.21950 0.27285 0.32620
60 0.16940 0.21085 0.25230
70 0.19640 0.23910 0.28180
80 0.15350 0.18740 0.22130
90 0.17440 0.20940 0.24440
100 0.13770 0.16590 0.19410
150 0.12070 0.14165 0.16260
200 0.10250 0.11850 0.13450
250 0.08610 0.09855 0.11100
300 0.09150 0.10335 0.11520

Table 3.4: Cutoff values k∗ for ev (0.5;x∗0) as
function of n, with θ ∼ Beta(10, 10).

Figure 3.11: Cutoff values k∗ for ev (0.5;x∗0) as
function of n, with θ ∼ Beta(10, 10).

Since for any k∗ ∈ [k∗inf, k
∗
sup] the sum of the averaged error probabilities, αϕe + βϕe , is

minimal, we propose to choose the minimum k∗ as a cutoff value for ev (0.5;x∗0), because it

could be more conservative, that is, it could reject the null hypothesis less. Thus, in Table

3.5 and Figure 3.12 the comparisons of the minimum k∗ as function of sample size for each

of the predetermined priors is exposed. The differences in the results between priors are

evident, and therefore, their influence in the moment of choosing the cutoff value should be

taken into account. In the θ ∼ Beta(10, 10) case, for example, the k∗ value is higher than in

the other two priors.
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k∗inf
γ = 1, γ = 1, γ = 10,

n δ = 1 δ = 3 δ = 10
10 0.03910 0.06270 0.43720
20 0.06080 0.02540 0.32010
30 0.05930 0.02830 0.24000
40 0.05170 0.02660 0.18260
50 0.04320 0.02340 0.21950
60 0.03550 0.01990 0.16940
70 0.02890 0.03130 0.19640
80 0.04140 0.02520 0.15350
90 0.03290 0.02020 0.17440
100 0.02610 0.01620 0.13770
150 0.02130 0.01420 0.12070
200 0.02290 0.01620 0.10250
250 0.02220 0.01620 0.08610
300 0.02050 0.01530 0.09150

Table 3.5: Minimum k∗ as function of n, for θ ∼
Beta(1, 1), θ ∼ Beta(1, 3) and θ ∼ Beta(10, 10).

Figure 3.12: Minimum k∗ as function of n,
for θ ∼ Beta(1, 1), θ ∼ Beta(1, 3) and θ ∼
Beta(10, 10).

Finally, Figure 3.13 presents for each prior the optimal averaged error probabilities α∗ϕ∗e

and β∗ϕ∗e , that is, the type-I and type-II error probabilities for which αϕe +βϕe is minimal as a

function of n. Note that, the probabilities of both kind of errors and their linear combination

generally decrease with increasing sample size.

3.1.2 Significance index: P-value

Define the same hypotheses to be tested

H : θ = 0.5

A : θ 6= 0.5.

The prior predictive probability functions under the two hypotheses are

fH(x∗) =

∫
H

f(x∗| θ) gH(θ) dθ

= f(x∗|θ = 0.5)

=

(
n

x∗

)
(0.5)n, x∗0 ∈ Ω∗.
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(a) Beta(1, 1) (b) Beta(1, 3)

(c) Beta(10, 10)

Figure 3.13: Optimal averaged error probabilities (α∗ϕ∗e , β∗ϕ∗e and α∗ϕ∗e + β∗ϕ∗e) as function of n.

and

fA(x∗) =

∫
A

f(x∗| θ) gA(θ) dθ

=

∫
A

f(x∗| θ) g(θ) dθ

=

(
n

x∗

)
Γ(γ + δ)

Γ(γ)Γ(δ)

∫ 1

0

θγ+x∗−1 (1− θ)δ+n−x∗−1 dθ

=

(
n

x∗

)
Γ(γ + δ)

Γ(γ)Γ(δ)

Γ(γ + x∗)Γ(δ + n− x∗)
Γ(γ + δ + n)

.

Let ϕ∗P (x∗) be the test given by

ϕ∗P (x∗) =

 0 if BF(x∗) > 1

1 if BF(x∗) ≤ 1.
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To obtain the P -value, define the set ΨP of sample points x∗ for which the Bayes factors

are smaller than or equal to the Bayes factor of the observed sample point x∗0, that is

ΨP = {x∗ ∈ Ω∗ : BF(x∗) ≤ BF(x∗0)},

so the P -value is the sum of the predictive probabilities under H in ΨP

P -value (x∗0) =
∑
ΨP

fH(x∗) =
∑
ΨP

(
n

x∗

)
(0.5)n.

Now, defining the set Ψ∗P of sample points x∗ with Bayes factors smaller than or equal

to b/a = 1, i.e.,

Ψ∗P = {x∗ ∈ Ω∗ : BF(x∗) ≤ 1} ,

the optimal averaged error probabilities from the generalized Neyman-Pearson Lemma are

αϕ∗P =
∑
x∗∈Ψ∗P

fH(x∗) =
∑
x∗∈Ψ∗P

(
n

x∗

)
(0.5)n

and

βϕ∗P =
∑
x∗ /∈Ψ∗P

fA(x∗) =
∑
x∗ /∈Ψ∗P

(
n

x∗

)
Γ(γ + δ)

Γ(γ)Γ(δ)

Γ(γ + x∗)Γ(δ + n− x∗)
Γ(γ + δ + n)

.

In Table 3.6 and Figure 3.14 the comparisons of the optimal adaptive significance level

for each of the predetermined priors are shown. When the prior is more informative, the

θ ∼ Beta(10, 10) case, the αϕ∗P value is higher than in the other two priors.

Figure 3.15 presents the optimal adaptive significance level αϕ∗P , the optimal adaptive

type-II averaged error probability and the minimized linear combination αϕ∗P + βϕ∗P as a

function of the sample size for each prior. In general, the probabilities of both kind of errors

and their linear combination decrease when the sample size increases.
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αϕ∗
P

γ = 1, γ = 1, γ = 10,
n δ = 1 δ = 3 δ = 10
10 0.10938 0.18262 0.34375
20 0.11532 0.06357 0.26318
30 0.09874 0.05743 0.20049
40 0.08069 0.04864 0.15386
50 0.06491 0.04013 0.20264
60 0.05189 0.03269 0.15500
70 0.04139 0.04735 0.18822
80 0.05666 0.03749 0.14564
90 0.04460 0.02973 0.17024
100 0.03520 0.02362 0.13321
150 0.02715 0.01914 0.12053
200 0.02813 0.02063 0.10364
250 0.02666 0.02007 0.08750
300 0.02418 0.01855 0.09390

Table 3.6: Optimal averaged type-I error proba-
bility (αϕ∗P ) as function of n, with θ ∼ Beta(1, 1),
θ ∼ Beta(1, 3) and θ ∼ Beta(10, 10).

Figure 3.14: Optimal averaged type-I error
probability (αϕ∗P ) as function of n, with θ ∼
Beta(1, 1), θ ∼ Beta(1, 3) and θ ∼ Beta(10, 10).

(a) Beta(1, 1) (b) Beta(1, 3)

(c) Beta(10, 10)

Figure 3.15: Optimal averaged error probabilities (αϕ∗P , βϕ∗P and αϕ∗P + βϕ∗P ) as function of n,
with θ ∼ Beta(1, 1), θ ∼ Beta(1, 3) and θ ∼ Beta(10, 10).
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3.1.3 Relationship between e-value and P-value

Following the ideas from Diniz et al. (2012) who illustrate how the frequentist p-value

and the e-value have a straight mathematical relationship, we also want to establish a

possible relationship between the P -value with the results from FBST. For that purpose, we

simulated 1000 binomial random samples with parameter θ = 0.5 to be used as observations

to calculate the evidence and the significance indices. So, in Figure 3.16 are plotted, for each

prior, the e-value versus P -value for different sample sizes. Note that, for the smaller sample

sizes, the e-values tend to be higher than the P -values, which is more evident when the prior

is more informative, that is, when θ ∼ Beta(10, 10). For larger sample sizes, the two values

are almost the same.

(a) Beta(1, 1) (b) Beta(1, 3)

(c) Beta(10, 10)

Figure 3.16: Relationship between e-value and P-value as function of n in proportion hypothesis
testing, with θ ∼ Beta(1, 1), θ ∼ Beta(1, 3) and θ ∼ Beta(10, 10).
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These samples, that were simulated under H, were also used to build the histograms in

Figure 3.17 for a single sample size n = 60. Here is difficult to see a particular distribution

for the simulated observations which may occur due to the discrete nature of X∗.

(a) Beta(1, 1) (b) Beta(1, 1)

(c) Beta(1, 3) (d) Beta(1, 3)

(e) Beta(10, 10) (f) Beta(10, 10)

Figure 3.17: e-value and P-value densities under H in proportion hypothesis testing, with θ ∼
Beta(1, 1), θ ∼ Beta(1, 3) and θ ∼ Beta(10, 10). Sample size n = 60.
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Tables 3.7, 3.8 and 3.9 summarize the optimal averaged error probabilities from e-value

and P -value as well as the cutoff values k∗ as functions of n for the three priors. It can be

seen that the values corresponding to both kinds of errors are exactly the same in all cases,

which was already evident comparing Figures 3.13 and 3.15.

n αϕ∗P α∗ϕ∗e k∗inf k
∗

k∗sup βϕ∗P β∗ϕ∗e
10 0.10938 0.10938 0.03910 0.10530 0.17150 0.45455 0.45454
20 0.11532 0.11532 0.06080 0.11115 0.16150 0.33333 0.33333
30 0.09874 0.09874 0.05930 0.09585 0.13240 0.29032 0.29032
40 0.08069 0.08069 0.05170 0.07860 0.10550 0.26829 0.26829
50 0.06491 0.06491 0.04320 0.06340 0.08360 0.25490 0.25490
60 0.05189 0.05189 0.03550 0.05075 0.06600 0.24590 0.24590
70 0.04139 0.04139 0.02890 0.04055 0.05220 0.23944 0.23943
80 0.05666 0.05666 0.04140 0.05570 0.07000 0.20988 0.20987
90 0.04460 0.04460 0.03290 0.04390 0.05490 0.20879 0.20879
100 0.03520 0.03520 0.02610 0.03465 0.04320 0.20792 0.20792
150 0.02715 0.02715 0.02130 0.02685 0.03240 0.17881 0.17881
200 0.02813 0.02813 0.02290 0.02790 0.03290 0.15423 0.15423
250 0.02666 0.02666 0.02220 0.02645 0.03070 0.13944 0.13944
300 0.02418 0.02418 0.02050 0.02405 0.02760 0.12957 0.12957

Table 3.7: Optimal averaged error probabilities and cutoff values k∗ as functions of n, with θ ∼
Beta(1, 1).

n αϕ∗P α∗ϕ∗e k∗inf k
∗

k∗sup βϕ∗P β∗ϕ∗e
10 0.18262 0.18262 0.06270 0.14015 0.21760 0.27972 0.27972
20 0.06357 0.06357 0.02540 0.05025 0.07510 0.29644 0.29644
30 0.05743 0.05743 0.02830 0.04835 0.06840 0.25202 0.25201
40 0.04864 0.04864 0.02660 0.04220 0.05780 0.22859 0.22859
50 0.04013 0.04013 0.02340 0.03550 0.04760 0.21408 0.21408
60 0.03269 0.03269 0.01990 0.02925 0.03860 0.20420 0.20420
70 0.04735 0.04735 0.03130 0.04350 0.05570 0.17548 0.17548
80 0.03749 0.03749 0.02520 0.03460 0.04400 0.17267 0.17267
90 0.02973 0.02973 0.02020 0.02750 0.03480 0.17046 0.17046
100 0.02362 0.02362 0.01620 0.02190 0.02760 0.16868 0.16868
150 0.01914 0.01914 0.01420 0.01815 0.02210 0.14295 0.14295
200 0.02063 0.02063 0.01620 0.01985 0.02350 0.12240 0.12240
250 0.02007 0.02007 0.01620 0.01945 0.02270 0.11004 0.11004
300 0.01855 0.01855 0.01530 0.01805 0.02080 0.10177 0.10177

Table 3.8: Optimal averaged error probabilities and cutoff values k∗ as functions of n, with θ ∼
Beta(1, 3).

Finally, we choose a single observation x̄∗0 = 0.6 to calculate the e-value and P -value

for the three priors, all with the purpose of comparing the decision that can be made by

performing the test with each of these measures. The cells in boldface represent the cases

when H is rejected. Tables 3.10 and 3.11 display these values considering the minimum k∗
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n αϕ∗P α∗ϕ∗e k∗inf k
∗

k∗sup βϕ∗P β∗ϕ∗e
10 0.34375 0.34375 0.43720 0.56755 0.69790 0.55742 0.55742
20 0.26318 0.26318 0.32010 0.41395 0.50780 0.56812 0.56812
30 0.20049 0.20049 0.24000 0.30925 0.37850 0.57884 0.57884
40 0.15386 0.15386 0.18260 0.23460 0.28660 0.58669 0.58669
50 0.20264 0.20264 0.21950 0.27285 0.32620 0.50071 0.50070
60 0.15500 0.15500 0.16940 0.21085 0.25230 0.51954 0.51953
70 0.18822 0.18822 0.19640 0.23910 0.28180 0.46140 0.46140
80 0.14564 0.14564 0.15350 0.18740 0.22130 0.48125 0.48124
90 0.17024 0.17024 0.17440 0.20940 0.24440 0.43772 0.43772
100 0.13321 0.13321 0.13770 0.16590 0.19410 0.45653 0.45653
150 0.12053 0.12053 0.12070 0.14165 0.16260 0.40205 0.40205
200 0.10364 0.10364 0.10250 0.11850 0.13450 0.37284 0.37284
250 0.08750 0.08750 0.08610 0.09855 0.11100 0.35465 0.35464
300 0.09390 0.09390 0.09150 0.10335 0.11520 0.32134 0.32133

Table 3.9: Optimal averaged error probabilities and cutoff values k∗ as functions of n, with θ ∼
Beta(10, 10).

and maximum k∗, respectively. The results show that the decision is the same whatever the

index is used and also is the same for both k∗ values, then, any k∗ ∈ [k∗inf, k
∗
sup] could be

taken in order to perform a hypothesis test. On the other hand, it is important to note that

the decision changes with the prior. In the θ ∼ Beta(10, 10) case, the null hypothesis is more

rejected than in the θ ∼ Beta(1, 1) case. This is because the posterior has smaller variance

even though it is centered closer to H : θ = 0.5. In contrast, when θ ∼ Beta(1, 3), the null

hypothesis is less rejected, in the first place, because the prior differs with the information

brought by x̄∗0, and furthermore, because the posterior is centered closer to H : θ = 0.5.

Figure 3.18 illustrates these statements.

Figure 3.18: Posterior distributions with θ ∼ Beta(1, 1), θ ∼ Beta(1, 3), θ ∼ Beta(10, 10),
x̄∗0 = 0.6 and n = 10
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γ = 1, δ = 1, x̄∗0 = 0.6 γ = 1, δ = 3, x̄∗0 = 0.6 γ = 10, δ = 10, x̄∗0 = 0.6

n k∗inf ev αϕ∗
P

Pv k∗inf ev αϕ∗
P

Pv k∗inf ev αϕ∗
P

Pv

10 0.0391 0.4966 0.1094 0.5488 0.0627 1.0000 0.1826 0.7949 0.4372 0.6979 0.3438 0.5488
20 0.0608 0.3523 0.1153 0.2632 0.0254 0.6592 0.0636 0.5435 0.3201 0.5078 0.2632 0.2632
30 0.0593 0.2602 0.0987 0.2005 0.0283 0.4687 0.0574 0.5280 0.2400 0.3786 0.2005 0.2005
40 0.0517 0.1963 0.0807 0.1539 0.0266 0.3453 0.0486 0.2917 0.1826 0.2867 0.1539 0.1539
50 0.0432 0.1499 0.0649 0.1189 0.0234 0.2596 0.0401 0.2206 0.2195 0.2194 0.2026 0.1189
60 0.0355 0.1156 0.0519 0.0925 0.0199 0.1978 0.0327 0.1688 0.1694 0.1693 0.1550 0.0925
70 0.0289 0.0898 0.0414 0.0722 0.0313 0.1521 0.0474 0.1771 0.1964 0.1315 0.1882 0.0722
80 0.0414 0.0701 0.0567 0.0567 0.0252 0.1179 0.0375 0.1011 0.1535 0.1027 0.1456 0.0748
90 0.0329 0.0549 0.0446 0.0446 0.0202 0.0918 0.0297 0.1074 0.1744 0.0804 0.1702 0.0446
100 0.0261 0.0432 0.0352 0.0352 0.0162 0.0719 0.0236 0.0619 0.1377 0.0633 0.1332 0.0352
150 0.0213 0.0135 0.0272 0.0111 0.0142 0.0221 0.0191 0.0191 0.1207 0.0198 0.1205 0.0111
200 0.0229 0.0044 0.0281 0.0036 0.0162 0.0071 0.0206 0.0062 0.1025 0.0064 0.1036 0.0036
250 0.0222 0.0015 0.0267 0.0012 0.0162 0.0024 0.0201 0.0028 0.0861 0.0021 0.0875 0.0012
300 0.0205 0.0005 0.0242 0.0004 0.0153 0.0008 0.0185 0.0007 0.0915 0.0007 0.0939 0.0004

Table 3.10: Cutoff values k∗inf, ev (0.5; x̄∗0), αϕ∗P and P -value (x̄∗0) as functions of n, with θ ∼
Beta(1, 1), θ ∼ Beta(1, 3) and θ ∼ Beta(10, 10).

γ = 1, δ = 1, x̄∗0 = 0.6 γ = 1, δ = 3, x̄∗0 = 0.6 γ = 10, δ = 10, x̄∗0 = 0.6

n k∗sup ev αϕ∗
P

Pv k∗sup ev αϕ∗
P

Pv k∗sup ev αϕ∗
P

Pv

10 0.1715 0.4966 0.1094 0.5488 0.2176 1.0000 0.1826 0.7949 0.6979 0.6979 0.3438 0.5488
20 0.1615 0.3523 0.1153 0.2632 0.0751 0.6592 0.0636 0.5435 0.5078 0.5078 0.2632 0.2632
30 0.1324 0.2602 0.0987 0.2005 0.0684 0.4687 0.0574 0.5280 0.3785 0.3786 0.2005 0.2005
40 0.1055 0.1963 0.0807 0.1539 0.0578 0.3453 0.0486 0.2917 0.2866 0.2867 0.1539 0.1539
50 0.0836 0.1499 0.0649 0.1189 0.0476 0.2596 0.0401 0.2206 0.3262 0.2194 0.2026 0.1189
60 0.0660 0.1156 0.0519 0.0925 0.0386 0.1978 0.0327 0.1688 0.2523 0.1693 0.1550 0.0925
70 0.0522 0.0898 0.0414 0.0722 0.0557 0.1521 0.0474 0.1771 0.2818 0.1315 0.1882 0.0722
80 0.0700 0.0701 0.0567 0.0567 0.0440 0.1179 0.0375 0.1011 0.2213 0.1027 0.1456 0.0748
90 0.0549 0.0549 0.0446 0.0446 0.0348 0.0918 0.0297 0.1074 0.2444 0.0804 0.1702 0.0446
100 0.0432 0.0432 0.0352 0.0352 0.0276 0.0719 0.0236 0.0619 0.1941 0.0633 0.1332 0.0352
150 0.0324 0.0135 0.0272 0.0111 0.0221 0.0221 0.0191 0.0191 0.1626 0.0198 0.1205 0.0111
200 0.0329 0.0044 0.0281 0.0036 0.0235 0.0071 0.0206 0.0062 0.1345 0.0064 0.1036 0.0036
250 0.0307 0.0015 0.0267 0.0012 0.0227 0.0024 0.0201 0.0028 0.1110 0.0021 0.0875 0.0012
300 0.0276 0.0005 0.0242 0.0004 0.0208 0.0008 0.0185 0.0007 0.1152 0.0007 0.0939 0.0004

Table 3.11: Cutoff values k∗sup, ev (0.5; x̄∗0), αϕ∗P and P -value (x̄∗0) as functions of n, with θ ∼
Beta(1, 1), θ ∼ Beta(1, 3) and θ ∼ Beta(10, 10).

3.2 Adaptive significance levels in normal mean hy-

pothesis testing

Consider that X1, ..., Xn are c.i.i.d Normal(θ, σ2) given θ ∈ R (σ2 > 0 known), and

define X = (X1, ..., Xn). Let X̄ =
∑n

i=1 Xi/n be a sufficient statistic for θ, then, X̄|θ ∼

Normal(θ, σ2/n). Suppose also that θ ∼ Normal(m, v2) (m ∈ R and v2 > 0). Thus, the
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posterior distribution of θ given that X̄ = x̄ can be calculated as

f(θ|x) = f(θ|x̄) ∝ f(X = x|θ) g(θ)

∝ exp

−
n∑
i=1

(xi − θ)2

2σ2

 exp

{
−(θ −m)2

2v2

}

∝ exp

{
−1

2

(
θ2

[
n

σ2
+

1

v2

]
− 2θ

[nx̄
σ2
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v2
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∝ exp

−
1
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σ2
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σ2

+
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v2

]
[
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σ2
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] +

 nx̄σ2
+
m

v2
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σ2
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2



∝ exp

−
1

2

(
σ2v2

σ2 + nv2

) (θ − σ2m+ nv2x̄

σ2 + nv2

)2

 , θ ∈ R, σ2 > 0,m ∈ R, v2 > 0.

Therefore, the posterior distribution is

θ|x̄ ∼ Normal

(
σ2m+ nv2x̄

σ2 + nv2
,

σ2v2

σ2 + nv2

)
.

The hypotheses to be tested are given by

H : θ = θ0

A : θ 6= θ0.

3.2.1 Evidence index: e-value

With ΘH = {θ0}, the tangential set to the null hypothesis and the evidence in favor of

H are respectively

Tx̄0 =

{
θ ∈ Θ : f(θ|x̄0) > sup

H
f(θ|x̄0)

}
= {θ ∈ Θ : f(θ|x̄0) > f(θ0|x̄0)} ,

ev (H; x̄0) = 1− P (θ ∈ Tx̄0|x̄0).
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Let ϕe(x̄) be the test given by

ϕe(x̄) =

 0 if ev (H; x̄) > k

1 if ev (H; x̄) ≤ k.

Let denote by M the mean of the posterior distribution θ|x̄. Figure 3.19 show the repre-

sentation of the tangential set to the null hypothesis when M > θ0 and M < θ0.

(a) M > θ0 (b) M < θ0

Figure 3.19: Tangential set to H : θ = θ0.

Because of the normal distribution symmetry, the evidence in favor of H when M > θ0

and M < θ0 is equivalent, and can be expressed as

ev (H; x̄0) = 1− P (θ ∈ Tx̄0 |x̄0)

= 1− P
(
θ0 ≤ θ ≤ 2

(
σ2m+ nv2x̄0

σ2 + nv2

)
− θ0 |x̄0

)

= 1− P

θ0 −
(
σ2m+ nv2x̄0

σ2 + nv2

)
σv√

σ2 + nv2

≤ Z ≤ −

(
θ0 −

(
σ2m+ nv2x̄0

σ2 + nv2

))
σv√

σ2 + nv2

∣∣∣∣∣ x̄0



= 2 Φ

−
∣∣∣∣∣θ0 −

(
σ2m+ nv2x̄0

σ2 + nv2

)∣∣∣∣∣
σv√

σ2 + nv2


= 2 Φ

(
−

∣∣∣∣∣ σ(θ0 −m)

v
√
σ2 + nv2

+
nv(θ0 − x̄0)

σ
√
σ2 + nv2

∣∣∣∣∣
)
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= 2 Φ

−
∣∣∣σ2(θ0 −m) + nv2(θ0 − x̄0)

∣∣∣
σv
√
σ2 + nv2

 , (3.1)

where Φ is the standard normal cumulative distribution function.

Hence, the power function and the averaged error probabilities can be calculated as

follows

πϕe(θ) = P
(
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where Ω∗ is the space induced by the sufficient statistic.

αϕe = P
(
{X̄ ∈ Ω∗ : ϕe(X̄) = 1}|H

)
= P

(
{X̄ ∈ Ω∗ : ev
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H; X̄
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= 1− [Φ(z∗2(θ))− Φ(z∗1(θ))|θ = θ0] .

βϕe = Eθ [1− πϕe(θ)|A]

= Eθ [Φ(z2(θ))− Φ(z1(θ))|A]

=

∫
A

[Φ(z2(θ))− Φ(z1(θ))] g(θ)dθ

=

∫
A

[Φ(z2(θ))− Φ(z1(θ))]
1√

2π v2
exp

{
−(θ −m)2

2v2

}
dθ.

The averaged type-II error probability can be approximated by Monte Carlo methods

(Robert and Casella, 2005).

Taking the particular case in which σ2 = 10 and m = 0, then X̄|θ ∼ Normal(θ, 10/n)

and the prior will be θ ∼ Normal(0, v2), therefore θ|x̄ ∼ Normal
(

nv2x̄
10+nv2

, 10v2

10+nv2

)
. Take

also the hypotheses

H : θ = 0

A : θ 6= 0.

Consider three prior distributions for θ, two that can be seen as informative priors,

θ ∼ Normal(0, 0.1) and θ ∼ Normal(0, 1), the first one providing more information than

the second one, and a “vague” prior, θ ∼ Normal(0, 100) (Figure 3.20).
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Figure 3.20: Prior distributions θ ∼ Normal(0, 0.1), θ ∼ Normal(0, 1) and θ ∼ Normal(0, 100).

In Figure 3.21 for the three priors and a sample size n = 50 the averaged error proba-

bilities as a function of k (Figures 3.21.(a), 3.21.(c), 3.21.(e)), as well as the power function

for a fixed k (Figures 3.21.(b), 3.21.(d), 3.21.(f)) are plotted.

Again, the procedure previously described to find the k∗ values is replicated to different

sample sizes and considering each prior distribution. In Figures 3.22.(a), 3.22.(c) and 3.22.(e)

the results are presented. In this example, where the distribution of X is continuous, the

continuity of the curve that represents the relation between k∗ and n can be noted, making

more evident that by increasing the sample size, the k∗ value decreases until approaching

zero. Figures 3.22.(b), 3.22.(d) and 3.22.(f) show the optimal averaged error probabilities

(α∗ϕ∗e , β∗ϕ∗e and α∗ϕ∗e + β∗ϕ∗e) as functions of n. Once more, by increasing the sample size, the

probabilities of both kind of errors and their linear combination decrease.
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(a) Normal(0, 100) (b) Normal(0, 100)

(c) Normal(0, 1) (d) Normal(0, 1)

(e) Normal(0, 0.1) (f) Normal(0, 0.1)

Figure 3.21: (a), (c) and (e) Averaged error probabilities (αϕe, βϕe and αϕe + βϕe) as function of
k; (b), (d) and (f) Power function when k = 0.1, k = 0.5 and k = 0.8. Sample size n = 50.
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(a) Normal(0, 100) (b) Normal(0, 100)

(c) Normal(0, 1) (d) Normal(0, 1)

(e) Normal(0, 0.1) (f) Normal(0, 0.1)

Figure 3.22: (a), (c) and (e) Cutoff values k∗ for ev (0; x̄0) as function of n; (b), (d) and (f)
Optimal averaged error probabilities (α∗ϕ∗e , β∗ϕ∗e and α∗ϕ∗e + β∗ϕ∗e) as function of n.



48 SIMPLE ILLUSTRATIVE EXAMPLES

Finally, Table 3.12 and Figure 3.23 display the comparisons of k∗ as a function of the

sample size for each of the predetermined priors. It is possible to perceive the differences

in the results between priors, and therefore, to identify their relevance at the moment of

setting the cutoff value for ev (H; x̄0). It can also be observed that, insofar as the prior is

less informative, the k∗ value is smaller.

k∗

n v2 = 100 v2 = 1 v2 = 0.1

10 0.03174 0.40574 0.75754
50 0.01320 0.18178 0.52456
100 0.00892 0.12234 0.40574
150 0.00705 0.09651 0.33928
200 0.00588 0.08142 0.29552
250 0.00513 0.07131 0.26404
300 0.00459 0.06398 0.24006
350 0.00417 0.05838 0.22113
400 0.00387 0.05395 0.20565
450 0.00362 0.05033 0.19274
500 0.00342 0.04732 0.18178
1000 0.00233 0.03174 0.12234
1500 0.00188 0.02533 0.09651
2000 0.00166 0.02168 0.08142

Table 3.12: Cutoff values k∗ for ev (0; x̄0) as
function of n, with θ ∼ Normal(0, 100), θ ∼
Normal(0, 1) and θ ∼ Normal(0, 0.1).

Figure 3.23: Cutoff values k∗ for ev (0; x̄0) as
function of n, with θ ∼ Normal(0, 100), θ ∼
Normal(0, 1) and θ ∼ Normal(0, 0.1).

3.2.2 Significance index: P-value

Taking the same particular case where σ2 = 10, m = 0 and also the hypotheses

H : θ = 0

A : θ 6= 0

want to be tested, the prior predictive distributions are X̄|H ∼ Normal(0, σ2/n) and X̄|A ∼

Normal
(

0, σ
2+nv2

n

)
(see Appendix A). Thus,

fH(x̄) =

∫
H

f(x̄| θ) gH(θ) dθ

= f(x̄|θ = 0)
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=

√
n√

2σ2π
exp

{
−nx̄

2

2σ2

}
.

and

fA(x̄) =

∫
A

f(x̄| θ) gA(θ) dθ

=

∫
A

f(x̄| θ) g(θ) dθ

= f(x̄)

=

√
n√

2π(σ2 + nv2)
exp

{
− nx̄2

2(σ2 + nv2)

}
.

Let ϕ∗P (x∗) be the test given by

ϕ∗P (x̄) =

 0 if BF(x̄) > 1

1 if BF(x̄) ≤ 1.

As stated in (2.6), the P -value is calculated as

P -value (x̄0) = P
(
{X̄ ∈ Ω∗ : BF(X̄) ≤ BF(x̄0)} |H

)
.

So, from the inequality

BF(x̄) ≤ BF(x̄0)

fH(x̄)

fA(x̄)
≤ fH(x̄0)

fA(x̄0)

√
n

√
2π
√
σ2

exp

{
−nx̄

2

2σ2

}
√
n√

2π
√
σ2 + nv2

exp

{
− nx̄2

2(σ2 + nv2)

} ≤
√
n

√
2π
√
σ2

exp

{
−nx̄

2
0

2σ2

}
√
n√

2π
√
σ2 + nv2)

exp

{
− nx̄2

0

2σ2 + nv2

}

exp

{
−nx̄

2

2σ2
+

nx̄2

2(σ2 + nv2)

}
≤ exp

{
−nx̄

2
0

2σ2
+

nx̄2
0

2(σ2 + nv2)

}
nx̄2

2σ2
− nx̄2

2(σ2 + nv2)
≥ nx̄2

0

2σ2
− nx̄2

0

2(σ2 + nv2)

x̄2 ≥ x̄2
0,
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an expression for the P -value can be specified by

P -value (x̄0) = 1− P
(
| X̄ |≤

√
x̄2

0

∣∣∣H)
= 1− P

(
−x̄0 ≤ X̄ ≤ x̄0

∣∣∣H)

= 1− P

− x̄0√
σ2

n

≤ Z ≤ x̄0√
σ2

n


= 2 Φ

(
−
√
n | x̄0 |
σ

)
. (3.2)

Considering the sample points x̄ with Bayes factors smaller than or equal to b/a = 1, i.e.,

BF(x̄) ≤ 1

fH(x̄)

fA(x̄)
≤ 1

√
n

√
2π
√
σ2

exp

{
−nx̄

2

2σ2

}
√
n√

2π
√
σ2 + nv2

exp

{
− nx̄2

2(σ2 + nv2)

} ≤ 1

exp

{
−nx̄

2

2σ2
+

nx̄2

2(σ2 + nv2)

}
≤

√
σ2

σ2 + nv2

nx̄2

σ2
− nx̄2

σ2 + nv2
≥ − log

(
σ2

σ2 + nv2

)

x̄2 ≥ − log

(
σ2

σ2 + nv2

)
σ2 (σ2 + nv2)

n2v2
,

the optimal averaged type I error probability can be calculated as follows

αϕ∗P = P
(
{X̄ ∈ Ω∗ : ϕ∗P (X̄) = 1}|H

)
= P

(
{X̄ ∈ Ω∗ : BF

(
X̄
)
≤ 1}|H

)
= 1− P

(
| X̄ | ≤

√
− log

(
σ2

σ2 + nv2

)
σ2 (σ2 + nv2)

n2v2

∣∣∣∣∣ θ = 0

)
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= 2 Φ

(
−
√
n

σ

√
− log

(
σ2

σ2 + nv2

)
σ2 (σ2 + nv2)

n2v2

)
.

Analogously, the optimal averaged type II error probability can be expressed as

βϕ∗P = P
(
{X̄ ∈ Ω∗ : ϕ∗P (X̄) = 0}|A

)
= P

(
{X̄ ∈ Ω∗ : BF

(
X̄
)
> 1}|A

)
= P

(
| X̄ | ≤

√
− log

(
σ2

σ2 + nv2

)
σ2 (σ2 + nv2)

n2v2

∣∣∣∣∣ A

)

= 1− 2 Φ

−
√
− log

(
σ2

σ2 + nv2

)
σ2 (σ2 + nv2)

n2v2√
σ2

n
+ v2

 .

The optimal adaptive significance level for each prior is shown in Table 3.13 and Figure 3.24.

In this example the αϕ∗P value presents the same behavior as in the first one, it is higher

when the prior is more informative, i.e., when θ ∼ Normal(0, 0.1).

αϕ∗
P

n v2 = 100 v2 = 1 v2 = 0.1
10 0.03085 0.23903 0.30587
50 0.01257 0.14256 0.27007
100 0.00854 0.10436 0.23903
150 0.00682 0.08548 0.21654
200 0.00582 0.07378 0.19924
250 0.00515 0.06566 0.18539
300 0.00465 0.05960 0.17397
350 0.00428 0.05487 0.16434
400 0.00397 0.05106 0.15608
450 0.00372 0.04789 0.14889
500 0.00351 0.04522 0.14256
1000 0.00241 0.03085 0.10436
1500 0.00193 0.02462 0.08548
2000 0.00165 0.02096 0.07378

Table 3.13: Optimal averaged type-I error probabil-
ity (αϕ∗

P
) as function of n, with θ ∼ Normal(0, 100),

θ ∼ Normal(0, 1) and θ ∼ Normal(0, 0.1).

Figure 3.24: Optimal averaged type-I error
probability (αϕ∗

P
) as function of n, with θ ∼

Normal(0, 100), θ ∼ Normal(0, 1) and θ ∼
Normal(0, 0.1).

A tendency to decrease when the sample size increases can be observed in Figure 3.25

where the optimal adaptive significance level αϕ∗P , the optimal adaptive type-II averaged

error probability and the minimized linear combination αϕ∗P +βϕ∗P are plotted for each prior.
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(a) Normal(0, 100) (b) Normal(0, 1)

(c) Normal(0, 0.1)

Figure 3.25: Optimal averaged error probabilities (αϕ∗P , βϕ∗P and αϕ∗P + βϕ∗P ) as function of n,
with θ ∼ Normal(0, 0.1), θ ∼ Normal(0, 1) and θ ∼ Normal(0, 100).

3.2.3 Relationship between e-value and P-value

In order to establish a possible functional relationship between the e-value and the P -

value, without loss of generality, consider the particular case in which m = 0 and θ0 = 0.

Therefore, the e-value in (3.1) can be rewritten as

ev (0; x̄0) = 2 Φ

− v√
σ2

n
+ v2

√
n | x̄0 |
σ

 . (3.3)

In that way, the e-value in (3.3) can be defined as a function of the P -value in (3.2)

ev (0; x̄0) = 2 Φ

 v√
σ2

n
+ v2

Φ−1

(
P -value (x̄0)

2

) . (3.4)
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Then the cutoff value k∗ can also be denoted as a function of the optimal averaged type-I

error probability αϕ∗P as follows:

k∗ϕ∗P = 2 Φ

 v√
σ2

n
+ v2

Φ−1
(αϕ∗P

2

) . (3.5)

This means that, in this particular case, through the P -value it is also possible to provide

a cutoff value for the evidence in the FBST. Figure 3.26 shows for each prior the e-value

versus P -value for different sample sizes. In this case, we have the functional relationship

given by (3.4), so a simulation is not required, it is enough to plot ev(p) for 0 ≤ p ≤ 1. Here

it is seen more clearly that, when the prior is more informative, the e-values are higher than

the P -values for the smaller sample sizes. Again, for larger sample sizes, the two values are

very close.

(a) Normal(0, 100) (b) Normal(0, 1)

(c) Normal(0, 0.1)

Figure 3.26: Relationship between e-value and P-value as function of n in normal mean hypothesis
testing, with θ ∼ Normal(0, 100), θ ∼ Normal(0, 1) and θ ∼ Normal(0, 0.1).
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The histograms in Figure 3.27, made with simulated samples for a single sample size

n = 100, show that under H, the indices have a uniform distribution. However, the e-value

apparently begins to leave this distribution when the prior is more informative.

(a) Normal(0, 100) (b) Normal(0, 100)

(c) Normal(0, 1) (d) Normal(0, 1)

(e) Normal(0, 0.1) (f) Normal(0, 0.1)

Figure 3.27: e-value and P-value densities under H in normal mean hypothesis testing, with
θ ∼ Normal(0, 100), θ ∼ Normal(0, 1) and θ ∼ Normal(0, 0.1). Sample size n = 100.



ADAPTIVE SIGNIFICANCE LEVELS IN NORMAL MEAN HYPOTHESIS TESTING 55

The optimal averaged error probabilities from e-values and P -values as well as the cutoff

values for the three priors are shown in Tables 3.14, 3.15 and 3.16. Note that the k∗ϕ∗P and

k∗ values are almost the same in all cases and the probabilities of both kinds of errors are

very similar, which was already visible comparing Figures 3.22 (b), (d), (f) and 3.25. In this

example, it was possible to make comparisons between exact cutoff values (k∗ϕ∗P ) and cutoff

values obtained by simulation (k∗), however, in more complex cases, such as those presented

in the next chapter, it will only be possible to obtain these values via simulation.

n αϕ∗P α∗ϕ∗e k∗ϕ∗P
k∗ βϕ∗P β∗ϕ∗e

10 0.03085 0.03086 0.03169 0.03174 0.17340 0.17343
50 0.01257 0.01323 0.01266 0.01320 0.08560 0.09102
100 0.00854 0.00835 0.00858 0.00892 0.06400 0.06771
150 0.00682 0.00681 0.00684 0.00705 0.05520 0.05679
200 0.00582 0.00497 0.00583 0.00588 0.04950 0.05022
250 0.00515 0.00604 0.00515 0.00513 0.04550 0.04567
300 0.00465 0.00290 0.00466 0.00459 0.04240 0.04232
350 0.00428 0.00660 0.00428 0.00417 0.04040 0.03971
400 0.00397 0.00604 0.00398 0.00387 0.03770 0.03757
450 0.00372 0.00375 0.00373 0.00362 0.03490 0.03578
500 0.00351 0.00285 0.00352 0.00342 0.03390 0.03426
1000 0.00241 0.00310 0.00241 0.00233 0.02380 0.02577
1500 0.00193 0.00184 0.00193 0.00188 0.01920 0.02189
2000 0.00165 0.00094 0.00165 0.00166 0.01800 0.01945

Table 3.14: Optimal averaged error probabilities and cutoff values k∗ as functions of n, with
θ ∼ Normal(0, 100).

n αϕ∗P α∗ϕ∗e k∗ϕ∗P
k∗ βϕ∗P β∗ϕ∗e

10 0.23903 0.23437 0.40510 0.40574 0.60100 0.59622
50 0.14256 0.12809 0.18071 0.18178 0.45460 0.45272
100 0.10436 0.11664 0.12150 0.12234 0.38100 0.37792
150 0.08548 0.08055 0.09589 0.09651 0.33640 0.33507
200 0.07378 0.06341 0.08101 0.08142 0.30850 0.30597
250 0.06566 0.05105 0.07107 0.07131 0.28830 0.28440
300 0.05960 0.04917 0.06387 0.06398 0.27190 0.26749
350 0.05487 0.05947 0.05836 0.05838 0.25810 0.25373
400 0.05106 0.05768 0.05397 0.05395 0.24560 0.24220
450 0.04789 0.05634 0.05038 0.05033 0.23550 0.23235
500 0.04522 0.04484 0.04738 0.04732 0.22600 0.22379
1000 0.03085 0.03086 0.03169 0.03174 0.17340 0.17343
1500 0.02462 0.03369 0.02510 0.02533 0.14880 0.14846
2000 0.02096 0.02618 0.02129 0.02168 0.13300 0.13255

Table 3.15: Optimal averaged error probabilities and cutoff values k∗ as functions of n, with
θ ∼ Normal(0, 1).
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n αϕ∗P α∗ϕ∗e k∗ϕ∗P
k∗ βϕ∗P β∗ϕ∗e

10 0.30587 0.23878 0.75753 0.75754 0.67660 0.67136
50 0.27007 0.26420 0.52428 0.52456 0.63740 0.63308
100 0.23903 0.23437 0.40510 0.40574 0.60100 0.59622
150 0.21654 0.23344 0.33845 0.33928 0.57190 0.56712
200 0.19924 0.23323 0.29457 0.29552 0.54870 0.54314
250 0.18539 0.20918 0.26303 0.26404 0.52700 0.52286
300 0.17397 0.18696 0.23903 0.24006 0.50690 0.50533
350 0.16434 0.17326 0.22005 0.22113 0.49060 0.48990
400 0.15608 0.15115 0.20457 0.20565 0.47600 0.47620
450 0.14889 0.13221 0.19167 0.19274 0.46450 0.46389
500 0.14256 0.12809 0.18071 0.18178 0.45460 0.45272
1000 0.10436 0.11664 0.12150 0.12234 0.38100 0.37792
1500 0.08548 0.08055 0.09589 0.09651 0.33640 0.33507
2000 0.07378 0.06341 0.08101 0.08142 0.30850 0.30597

Table 3.16: Optimal averaged error probabilities and cutoff values k∗ as functions of n, with
θ ∼ Normal(0, 0.1).

Lastly, this time we choose a single observation x̄0 = 0.3 to calculate the e-value and

P -value for the three priors. The results are presented in Table 3.17. The cells in boldface

represent the cases when H is rejected. It can be seen that the decision is the same whatever

the index is used. Here, when the prior is more informative, i.e., in the θ ∼ Normal(0, 0.1)

case, the null hypothesis is more easily rejected. This is because the corresponding posterior

has smaller variance, as seen in Figure 3.28. Observe that, unlike the e-value, the P -value

does not depend on the hyperparameter v2, as the expression in (3.2) shows, so it takes the

same value regardless of the prior.

Figure 3.28: Posterior distributions θ ∼ Normal(0, 0.1), θ ∼ Normal(0, 1), θ ∼ Normal(0, 100),
x̄0 = 0.3 and n = 10.
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v2 = 100, x̄0 = 0.3 v2 = 1, x̄0 = 0.3 v2 = 0.1, x̄0 = 0.3

n k∗ ev αϕ∗
P

Pv k∗ ev αϕ∗
P

Pv k∗ ev αϕ∗
P

Pv

10 0.0317 0.7653 0.0309 0.7642 0.4057 0.8320 0.2390 0.7642 0.7575 0.9279 0.3059 0.7642
50 0.0132 0.5028 0.0126 0.5023 0.1818 0.5403 0.1426 0.5023 0.5246 0.6985 0.2701 0.5023
100 0.0089 0.3430 0.0085 0.3428 0.1223 0.3657 0.1044 0.3428 0.4057 0.5023 0.2390 0.3428
150 0.0070 0.2454 0.0068 0.2453 0.0965 0.2606 0.0855 0.2453 0.3393 0.3681 0.2165 0.2453
200 0.0059 0.1798 0.0058 0.1797 0.0814 0.1904 0.0738 0.1797 0.2955 0.2733 0.1992 0.1797
250 0.0051 0.1337 0.0051 0.1336 0.0713 0.1413 0.0657 0.1336 0.2640 0.2049 0.1854 0.1336
300 0.0046 0.1004 0.0047 0.1003 0.0640 0.1060 0.0596 0.1003 0.2401 0.1547 0.1740 0.1003
350 0.0042 0.0760 0.0043 0.0759 0.0584 0.0801 0.0549 0.0759 0.2211 0.1175 0.1643 0.0759
400 0.0039 0.0578 0.0040 0.0578 0.0540 0.0609 0.0511 0.0578 0.2056 0.0897 0.1561 0.0578
450 0.0036 0.0442 0.0037 0.0442 0.0503 0.0465 0.0479 0.0442 0.1927 0.0687 0.1489 0.0442
500 0.0034 0.0339 0.0035 0.0339 0.0473 0.0357 0.0452 0.0339 0.1818 0.0528 0.1426 0.0339
1000 0.0023 0.0027 0.0024 0.0027 0.0317 0.0028 0.0309 0.0027 0.1223 0.0042 0.1044 0.0027
1500 0.0019 0.0002 0.0019 0.0002 0.0253 0.0003 0.0246 0.0002 0.0965 0.0004 0.0855 0.0002
2000 0.0017 0.0000 0.0016 0.0000 0.0217 0.0000 0.0210 0.0000 0.0814 0.0000 0.0738 0.0000

Table 3.17: Cutoff values k∗, ev (0; x̄0), αϕ∗P and P -value (x̄0) as functions of n, with θ ∼
Normal(0, 100), θ ∼ Normal(0, 1) and θ ∼ Normal(0, 0.1).
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Chapter 4
Adaptive Significance Levels in Linear

Regression Models

Linear models are probably the most used statistical models to establish the influence

of a set of covariates on a response variable. In that sense, the proper identification of the

relevant variables in the model is an important issue in many scientific researches. Such

identification can be done through hypothesis-testing procedures involving the respective

regression coefficients. In the conjugate Bayesian analysis of the normal linear regression

model, it is possible to obtain expressions for the posterior distributions of the parameters

and their respective marginals. Therefore, given a model, the FBST can be used for testing

if one or more of its regression coefficients are null, which is the basis of one possible model-

selection procedure. In this chapter, we present the proposed methodology to determine the

adaptive cutoff value k∗ for evidence extended to the context of linear regression models

under a Bayesian approach. Emphasis is on analysis of two formulations of the normal linear

model using conjugate priors. Specifically, the unknown variance model and the known

variance model are considered. Likewise, all the developments to calculate the adaptive

significance levels using P -value are described. Additional proofs and explanations about

the models can be found in O’Hagan and Forster (2004) and Banerjee (2008).

Consider the usual multiple linear regression model

y = Xθ + ε, (4.1)

where y = (y1, . . . , yn)> is an n × 1 vector of yi observations, X = (x1, . . . ,xn)> is an

59
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n × p matrix of covariates, also called the design matrix, with xi = (1, xi1, . . . , xip−1)>,

θ = (θ1, . . . , θp)
> is a p×1 vector of parameters (regression coefficients) and ε = (ε1, . . . , εn)>

an n× 1 vector of random errors. The elements of ε are assumed to have zero mean, to be

uncorrelated and to have common variance σ2, which is an additional parameter.

If we further assume that the elements of ε are jointly normally distributed, i.e.Nn(0, σ2In),

then the model is described as the normal linear model. The model says simply that the

conditional distribution of y given parameters (θ, σ2) is the multivariate normal distribution

Nn(Xθ, σ2In).

Therefore, the likelihood becomes

f(y|θ, σ2) = (2πσ2)−n/2 exp

{
− 1

2σ2
(y −Xθ)>(y −Xθ)

}
. (4.2)

We can write the quadratic form (y−Xθ)>(y−Xθ) in the exponent of (4.2) in various

ways. Just expanding,

(y −Xθ)>(y −Xθ) = θ>X>Xθ − θ>X>y − y>Xθ + y>y.

If the p× p matrix X>X is non-singular we can go on to complete the square to give the

likelihood

f(y|θ, σ2) = (2πσ2)−n/2 exp

{
− 1

2σ2

[
ks2 +

(
θ − θ̂

)>
X>X

(
θ − θ̂

)]}
, (4.3)

where θ̂ = (X>X)−1X>y is the classical Maximum Likelihood or Least Squares estimator

of θ, and ks2 = (y −Xθ̂)>(y −Xθ̂) is the residual sum of squares, with k = n− p. Notice

that (θ̂, s2) is the sufficient statistic value with respect to the linear model considered.
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4.1 Unknown-variance model

The natural conjugate prior distribution of (θ, σ2) is a p-variate Normal-Inverse Gamma

distribution with hyperparameters m0, V0, a0 and b0, denoted by (θ, σ2) ∼ NpIG(m0,V0, a0, b0):

g(θ, σ2) =
(b0)a0

(2π)p/2 |V0|1/2 Γ(a0)
(σ2)

−
(
a0+

p
2

+1
)

exp

{
− 1

2σ2

[
(θ −m0)>V0

−1 (θ −m0) + 2b0

]}
,

(4.4)

such that, the conditional prior distributions of θ given σ2 is

g(θ|σ2) = (2π)−p/2 |V0|−1/2 (σ2)−p/2 exp

{
− 1

2σ2

[
(θ −m0)>V0

−1 (θ −m0)
]}

, (4.5)

and the prior marginal distribution of σ2 is

g(σ2) =
(b0)a0

Γ(a0)
(σ2)−(a0+1) exp

{
− b0

σ2

}
, (4.6)

denoted, respectively, as

θ|σ2 ∼ Np(m0, σ
2V0), σ2 ∼ IG(a0, b0). (4.7)

Both distributions are equivalent to the new pair

g(σ2|θ) =

(
b0 + (θ−m0)>V0

−1(θ−m0)
2

)(a0+
p
2

)

Γ
(
a0 + p

2

) (σ2)
−
(
a0+

p
2

+1
)
×

exp

{
− 1

2σ2

[
(θ −m0)>V0

−1 (θ −m0) + 2b0

]}
, (4.8)

and

g(θ) =
(2b0)a0 Γ

(
a0 + p

2

)
πp/2 |V0|1/2 Γ(a0)

{
(θ −m0)>V0

−1 (θ −m0) + 2b0

}−(a0+
p
2

)

∝
{

1 + (θ −m0)> (2b0V0)−1 (θ −m0)
}−(a0+

p
2

)
. (4.9)

The density in (4.9) is a p-variate t distribution with 2a0 degrees of freedom and hyper-
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parameters m0 and (b0/a0)V0. Then these distributions are denoted by

σ2|θ ∼ IG

(
a0 +

p

2
, b0 +

(θ −m0)>V0
−1(θ −m0)

2

)
, θ ∼ tp

(
2a0; m0,

b0

a0

V0

)
. (4.10)

Now suppose that the NpIG(m0,V0, a0, b0) distribution (4.4) is adopted as the prior

distribution for (θ, σ2). Combining it with the likelihood (4.2) gives the posterior distribution

f(θ, σ2|y) ∝ (σ2)
−
(
a0+

n
2

+
p
2

+1
)

exp

{
− 1

2σ2

[
(θ −m∗)>V∗−1 (θ −m∗) + 2b1

]}
, (4.11)

where

V∗ =
(
V0
−1 + X>X

)−1
, m∗ = V∗ (V0

−1m0 + X>y
)
,

a1 = a0 +
n

2
, b1 = b0 +

m0
>V0

−1m0 + y>y −m∗>V∗−1m∗

2
.

If X>X is non-singular, we can write

m∗ = V∗
(
V0
−1m0 + X>Xθ̂

)
.

Therefore, the posterior distribution of (θ, σ2) is

(θ, σ2)|y ∼ NpIG(m∗,V∗, a1, b1). (4.12)

Consequently,

θ|σ2,y ∼ Np(m
∗, σ2V∗), σ2|y ∼ IG(a1, b1), (4.13)

and this is equivalent to,

σ2|θ,y ∼ IG

(
a1 +

p

2
, b1 +

(θ −m∗)>V∗−1(θ −m∗)

2

)
, (4.14)

θ|y ∼ tp

(
2a1; m∗,

b1

a1

V∗
)
. (4.15)
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4.1.1 Conditional distributions

Consider now conditional distributions given partial specification of θ. First let

θ> = (θ>1 ,θ
>
2 ), and consider distributions conditional on θ2. Suppose that (θ, σ2) ∼

NpIG(m0,V0, a0, b0). Corresponding distributions result if we change a0 to a1, b0 to b1,

m0 to m∗ and V0 to V∗. If θ1 has s elements and θ2 has r elements, write

m0 =

m01

m02

 , V0 =

V011 V012

V021 V022

 ,
where m01 is s× 1, V011 is s× s, m02 is r× 1, V022 is r× r, with r = p− s. Now since

θ given σ2 is distributed as Np(m0, σ
2V0), using general results on multivariate normal

distributions (see Mardia et al. (1979)), we have the following distributions:

θ2|σ2 ∼ Nr(m02, σ
2V022), (4.16)

(θ1|θ2, σ
2) ∼ Ns(m01.2(θ2), σ2V011.2), (4.17)

where m01.2(θ2) = m01 + V012V0
−1
22 (θ2 −m02) and V011.2 = V011 −V012V0

−1
22 V021.

From (4.16) and the IG(a0, b0) distribution of σ2 we have the distribution

(θ2, σ
2) ∼ NrIG(m02,V022, a0, b0) (4.18)

and hence

θ2 ∼ tr

(
2a0; m02,

b0

a0

V022

)
, (4.19)

σ2|θ2 ∼ IG

(
a0 +

r

2
, b0 +

(θ2 −m02)>V0
−1
22 (θ2 −m02)

2

)
, (4.20)

Now (4.17) and (4.20) together give

(θ1, σ
2|θ2) ∼ NsIG

(
m01.2(θ2),V011.2, a0 +

r

2
, b0 +

(θ2 −m02)>V0
−1
22 (θ2 −m02)

2

)
(4.21)
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and finally

θ1|θ2 ∼ ts

(
2a0 + r; m01.2(θ2),

2b0 + (θ2 −m02)>V0
−1
22 (θ2 −m02)

2a0 + r
V011.2

)
. (4.22)

4.1.2 Marginal distributions

The following results are defined in Banerjee (2008). The model (4.1) expresses y as a

sum of Xθ and ε, where ε is distributed as Nn(0, σ2In) given σ2, and θ is distributed as

Np(m0, σ
2V0) also given σ2. Therefore the distribution of y given σ2 can be calculated as

f(y|σ2) =

∫
f(y|θ, σ2) f(θ|σ2) dθ =

∫
Nn(Xθ, σ2In)×Np(m0, σ

2V0) dθ

= Nn

(
Xm0, σ

2
(
In + XV0X

>)) . (4.23)

With the prior distribution of σ2 being IG(a0, b0), it follows that the joint distribution

of (y, σ2) is NnIG
(
Xm0, σ

2
(
In + XV0X

>) , a0, b0

)
. So the marginal distribution of f(y) is

obtained by integrating the NnIG as follows

f(y) =

∫
f(y|σ2) f(σ2) dσ2 =

∫
Nn

(
Xm0, σ

2
(
In + XV0X

>))× IG(a0, b0) dσ2

=

∫
NnIG

(
Xm0, σ

2
(
In + XV0X

>) , a0, b0

)
dσ2

= tn

(
2a0; Xm0,

b0

a0

(
In + XV0X

>)) . (4.24)

Rewriting this result in another way reveals another useful property of the NIG distri-

bution

f(y) =

∫
f(y|θ, σ2) f(θ, σ2) dθ dσ2

=

∫
Nn(Xθ, σ2In)×NpIG(m0,V0, a0, b0) dθ dσ2

= tn

(
2a0; Xm0,

b0

a0

(
In + XV0X

>)) . (4.25)

The computation of f(y) could also be carried out in terms of the NpIG distribution
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parameters more directly as

f(y) =

∫
f(y|θ, σ2) f(θ, σ2) dθ dσ2

=

∫
Nn(Xθ, σ2In)×NpIG(m0,V0, a0, b0) dθ dσ2

=
(b0)a0 Γ

(
a0 +

n

2

)
|V∗|1/2

(2π)n/2 Γ(a0) |V0|1/2

[
b0 +

m0
>V0

−1m0 + y>y −m∗>V0
−1m∗

2

]−(a0+n/2)

=
(b0)a0 Γ (a1) |V∗|1/2

(2π)n/2 (b1)a1 Γ(a0) |V0|1/2
. (4.26)

4.1.3 Prior predictive densities in regression-coefficient hypothe-

sis testing

Let θ = (θ>1 ,θ
>
2 )>, with θ1 = (θ1, . . . , θs)

> and θ2 = (θs+1, . . . , θp)
>. Then, Y|ξ ∼

Nn(Xθ, σ2In) where ξ ∈ Ξ is the parameter vector such that ξ = (θ>, σ2)> = (θ>1 ,θ
>
2 , σ

2)>.

We are interested about testing the hypotheses

H : θ2 = 0

A : θ2 6= 0.

The prior predictive density under H is

fH(y) =

∫
H

f(y|ξ) dPH(ξ)

=

∫
H

f(y|θ1,θ2, σ
2) gH(θ1,θ2, σ

2) dθ1 dθ2 dσ
2,

where gH(θ1,θ2, σ
2) is the prior density under the subset of smaller dimensionality H cal-

culated as

gH(θ1,θ2, σ
2) = gH(θ1, σ

2) =
g(θ1,θ2, σ

2))1(θ2 = 0)∮
H
g(θ1,θ2, σ2) dθ1 dθ2 dσ2

=
g(θ1,θ2, σ

2)1(θ2 = 0)∫
θ1∈Rs, σ2∈R+

g(θ1,θ2 = 0, σ2) dθ1 dσ2
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= g(θ1, σ
2|θ2 = 0).

Thus, fH(y) is given by

fH(y) =

∫
H
f(y|θ1,θ2, σ

2) g(θ1, σ
2|θ2 = 0) dθ1 dθ2 dσ

2

=

∫
θ1∈Rs, σ2∈R+

f(y|θ1,θ2 = 0, σ2) g(θ1, σ
2|θ2 = 0) dθ1 dσ

2

=

∫
θ1∈Rs, σ2∈R+

Nn(XCθ1, σ
2In)×

NsIG

(
m01.2(0),V011.2, a0 +

r

2
, b0 +

m0
>
2 (V022)−1m02

2

)
dθ1 dσ

2

= tn

2
(
a0 +

r

2

)
; XCm01.2(0),

b0 +
m0
>
2 (V022)−1m02

2(
a0 +

r

2

) (
In + (XC)V011.2(XC)>

) ,

(4.27)

where C(s+r)×s = [Is,0s×r]
>.

The prior predictive density under A can be obtained from the result in (4.25) as follows

fA(y) =

∫
A

f(y|ξ) dPA(ξ)

=

∫
A

f(y|θ, σ2) gA(θ, σ2) dθ dσ2

=

∫
A

f(y|θ, σ2) g(θ, σ2) dθ dσ2

=

∫
A

Nn(Xθ, σ2In)×NpIG(m0,V0, a0, b0) dθ dσ2

= tn

(
2a0; Xm0,

b0

a0

(
In + XV0X

>)) . (4.28)

It is necessary to consider the particular case where X = 1n (the dimensionality of the

parameter space is d = dim(Ξ) = 2). Therefore, consider the linear regression model

y = Xθ + ε, ε ∼ Nn(0, σ2In), (4.29)

here y = (y1, . . . , yn)> is an n× 1 vector of yi observations, ε = (ε1, . . . , εn)> is the n× 1
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vector of random errors and θ = θ1 is the regression coefficient. Then, Y|ξ ∼ Nn(1nθ1, σ
2In)

where ξ ∈ Ξ is the parameter vector such that ξ = (θ1, σ
2)>. The hypotheses of interest are

H : θ1 = 0

A : θ1 6= 0.

The prior predictive density under H is

fH(y) =

∫
H

f(y|ξ) dPH(ξ)

=

∫
H

f(y|θ1, σ
2) gH(θ1, σ

2) dθ1 dσ
2,

gH(θ1, σ
2) is calculated as

gH(θ1, σ
2) =

g(θ1, σ
2)1(θ1 = 0)∮

H
g(θ1, σ2) dθ1 dσ2

=
g(θ1, σ

2)1(θ1 = 0)∫
σ2∈R+

g(θ1 = 0, σ2) dσ2
= g(σ2|θ1 = 0).

So fH(y) is given by

fH(y) =

∫
H

f(y|θ1, σ
2) g(σ2|θ1 = 0) dθ1 dσ

2

=

∫
σ2∈R+

f(y|θ1 = 0, σ2) g(σ2|θ1 = 0) dσ2

=

∫
σ2∈R+

Nn(0, σ2In) × IG

(
a0 +

1

2
, b0 +

m2
0 V−1

0

2

)
dσ2

=

Γ

(
a1 +

1

2

) [
b0 +

m2
0 V−1

0

2

](a0+1/2)

(2π)n/2 Γ

(
a0 +

1

2

) [
b0 +

y>y + m2
0 V−1

0

2

](a1+1/2)
, (4.30)

and the prior predictive density under A in this case will be

fA(y) =

∫
A

f(y|ξ) dPA(ξ)

=

∫
A

f(y|θ1, σ
2) gA(θ1, σ

2) dθ1 dσ
2
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=

∫
A

f(y|θ1, σ
2) g(θ1, σ

2) dθ1 dσ
2

=

∫
A

Nn(1nθ1, σ
2In)×NIG(m0,V0, a0, b0) dθ1 dσ

2

= tn

(
2a0; 1nm0,

b0

a0

(
In + 1nV01

>
n

))
. (4.31)

4.2 Known-variance model

Suppose the residual error variance σ2 is known. We now regard σ2 as fixed in the

likelihood (4.2), and denote it by f(y|θ). Only θ is unknown, and we require a suitable prior

distribution g(θ). Using also (4.3), the likelihood simplifies to

f(y|θ) ∝ exp

{
−
(
θ − θ̂

)>
X>X

(
θ − θ̂

)
/(2σ2)

}
, (4.32)

and therefore the natural conjugate prior family is the family of multivariate normal

distributions. Suppose therefore that θ has the Np(m0,W0) prior distribution

g(θ) ∝ exp

{
−(θ −m0)>W0

−1(θ −m0)

2

}
. (4.33)

Then f(θ|y) ∝ f(y|θ)g(θ) ∝ exp(−Q/2), where

Q = σ−2(θ − θ̂)>X>X(θ − θ̂) + (θ −m0)>W0
−1(θ −m0)

= θ>(W0
−1 + σ−2X>X)θ + θ>(W0

−1m0 + σ−2X>y) + (W0
−1m0 + σ−2X>y)θ +R1

= (θ −m∗)>(W∗)−1(θ −m∗) +R2,

in which

m∗ = (W0
−1 + σ−2X>X)−1(W0

−1m0 + σ−2X>y), (4.34)

W∗ = (W0
−1 + σ−2X>X)−1 (4.35)

and R1, R2 are constants. Therefore,

f(θ|y) ∝ exp

{
−(θ −m∗)>W∗−1(θ −m∗)

2

}
, (4.36)
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i.e. the posterior distribution of θ is Np(m
∗,W∗).

4.2.1 Prior predictive densities in regression coefficients hypoth-

esis testing

Let θ = (θ>1 ,θ
>
2 )>. If θ1 has s elements and θ2 has r elements, write

m0 =

m01

m02

 , W0 =

W011 W012

W021 W022

 ,
where m01 is s× 1, W011 is s× s, m02 is r × 1, W022 is r × r. Then

θ1 ∼ Ns (m01,W011) , (4.37)

θ2 ∼ Nr (m02,W022) , (4.38)

Using general results on multivariate normal distributions,

θ1|θ2 ∼ Ns(m01.2(θ2),W011.2), (4.39)

where m01.2(θ2) = m01 +W012W0
−1
22 (θ2−m02) and W011.2 = W011−W012W0

−1
22 W021.

A corresponding distribution results if we change m0 to m∗ and W0 to W∗.

We are interested in testing the hypotheses

H : θ2 = 0

A : θ2 6= 0.

The prior predictive density under H is

fH(y) =

∫
H

f(y|θ) dPH(θ)

=

∫
H

f(y|θ1,θ2) gH(θ1,θ2) dθ1 dθ2

where gH(θ1,θ2) is the prior density under the subset of smaller dimensionality H calculated
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as

gH(θ1,θ2) = gH(θ1) =
g(θ1,θ2)1(θ2 = 0)∮
H
g(θ1,θ2) dθ1 dθ2

=
g(θ1,θ2)1(θ2 = 0)∫

θ1∈Rs g(θ1,θ2 = 0) dθ1

= g(θ1|θ2 = 0).

Thus, fH(y) is given by

fH(y) =

∫
H
f(y|θ1,θ2) g(θ1|θ2 = 0) dθ1 dθ2

=

∫
θ1∈Rs

f(y|θ1,θ2 = 0) g(θ1|θ2 = 0) dθ1

=

∫
θ1∈Rs

Nn(XCθ1, σ
2In) × Ns (m01.2(0),W011.2) dθ1

= Nn

(
XCm01.2(0),

(
σ2In + (XC)W011.2(XC)>

))
. (4.40)

where C(s+r)×s = [Is,0s×r]
>.

The prior predictive density under A can be obtained as follows

fA(y) =

∫
A

f(y|θ) dPA(θ)

=

∫
A

f(y|θ) gA(θ) dθ

=

∫
A

f(y|θ) g(θ) dθ

=

∫
A

Nn(Xθ, σ2In)×Np(m0,W0) dθ

= Nn

(
Xm0,

(
σ2In + XW0X

>)) . (4.41)

When X = 1n (d = 1) and considering the regression model in (4.29), the hypotheses of

interest are

H : θ1 = 0

A : θ1 6= 0.
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Therefore, the prior predictive density under H is

fH(y) =

∫
H

f(y|θ1) dPH(θ1)

=

∫
H

f(y|θ1) gH(θ1) dθ1

= f(y|θ1 = 0) (4.42)

and here the prior predictive density under A will be

fA(y) =

∫
A

f(y|θ1) dPA(θ1)

=

∫
A

f(y|θ1) gA(θ1) dθ1

=

∫
A

f(y|θ1) g(θ1) dθ1

=

∫
A

Nn(1nθ1, σ
2In)×N(m0,W0) dθ1

= Nn

(
1nm0,

(
σ2In + 1nW01

>
n

))
. (4.43)

4.3 Adaptive significance levels in regression coefficients

hypothesis testing

4.3.1 Evidence index: e-value

As stated in Definition 5, to calculate the evidence in the FBST, first, we need to perform

an optimization process, where the maximum of the posterior density restricted to the subset

of the parameter space that represents the null hypothesis H is obtained. This maximum

value is used to find the tangential set to the null hypothesis, formed by the points of

the parameter space with posterior density greater than the maximum over H. Below, the

procedure to calculate the tangential set and the evidence for the two prior formulation

considered is presented.
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4.3.1.1 Unknown-variance model

The tangential set to the null hypothesis H is defined as

Ty0
=

{
ξ ∈ Ξ : f(ξ|y0) > sup

H
f(ξ|y0)

}
=

{
(θ1,θ2, σ

2) ∈ Ξ : f(θ1,θ2, σ
2|y0) > sup

H
f(θ1,θ2, σ

2|y0)

}
.

Knowing that the posterior distribution of (θ1, σ
2) given θ2 is an s-variate Normal-Inverse

Gamma, as stated in (4.21), the point under H for which the posterior attains its maximum

value can be calculated as follows:

arg sup
H

f(θ1,θ2, σ
2|y0) = arg sup

θ1,θ2=0,σ2

f(θ1,θ2 = 0, σ2|y0)

= arg sup
θ1,σ2

f(θ1,θ2 = 0, σ2|y0)∫
θ1∈Rs, σ2∈R+

f(θ1,θ2 = 0, σ2|y0) dθ1 dσ2

= arg sup
θ1,σ2

f(θ1, σ
2|θ2 = 0,y0)

= Mode
[
f(θ1, σ

2|θ2 = 0,y0)
]

=

m∗
1.2(0), 0,

b1 +
(m∗

2)> (V∗
22)−1(m∗

2)

2(
a1 +

r

2

)
+ 1 +

s

2


=
(
θ̂1, 0, σ̂2

)
.

Thus, we get the tangential set

Ty0
=
{

(θ1,θ2, σ
2) ∈ Ξ : f(θ1,θ2, σ

2|y0) > f(θ̂1,0, σ̂2|y0)
}
.

In the case of the model in (4.29), the tangential set to the null hypothesis can be

expressed as

Ty0
=

{
ξ ∈ Ξ : f(ξ|y0) > sup

H
f(ξ|y0)

}
=

{
(θ1, σ

2) ∈ Ξ : f(θ1, σ
2|y0) > sup

H
f(θ1, σ

2|y0)

}
.

Here, the posterior distribution of σ2 given θ is an Inverse Gamma, as stated in (4.14).
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Then, the point under H for which the posterior attains its maximum is obtained as follows

arg sup
H

f(θ1, σ
2|y0) = arg sup

θ1=0,σ2

f(θ1 = 0, σ2|y0)

= arg sup
σ2

f(θ1 = 0, σ2|y0)∫
σ2∈R+

f(θ1 = 0, σ2|y0) dσ2

= arg sup
σ2

f(σ2|θ1 = 0,y0)

= Mode
[
f(σ2|θ1 = 0,y0)

]
=

0,
b1 +

(m∗)2 (V∗)−1

2(
a1 +

1

2

)
+ 1


=
(

0, σ̂2
)
.

Therefore, we get

Ty0
=
{

(θ1, σ
2) ∈ Ξ : f(θ1, σ

2|y0) > f(0, σ̂2|y0)
}
. (4.44)

For the unknown-variance model, once the tangential set is defined, we perform an inte-

gration as a second step, where the evidence in favor H is calculated as the complement of

the posterior probability of Ty0
. That is,

ev (H; y0) = 1− P (ξ ∈ Ty0
|y0).

Generating M samples from the posterior distribution of ξ, say ξ(1), . . . , ξ(M), specified

by (4.12), we estimate the evidence by Monte Carlo simulation through the expression

1− 1

M

M∑
j=1

1

(
ξ(j) ∈ Ty0

)
.
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4.3.1.2 Known-variance model

The tangential set to the null hypothesis is given by

Ty0
=

{
θ ∈ Θ : f(θ|y0) > sup

H
f(θ|y0)

}
=

{
(θ1,θ2) ∈ Θ : f(θ1,θ2|y0) > sup

H
f(θ1,θ2|y0)

}
.

In this case we know that the posterior distribution of θ1 given θ2 is an s-variate Normal

distribution, as stated in (4.39). So, the point under H for which the posterior attains its

maximum value will be

arg sup
H

f(θ1,θ2|y0) = arg sup
θ1,θ2=0

f(θ1,θ2 = 0|y0)

= arg sup
θ1

f(θ1,θ2 = 0|y0)∫
θ1∈Rs f(θ1,θ2 = 0|y0) dθ1

= arg sup
θ1

f(θ1|θ2 = 0,y0)

= Mode [f(θ1|θ2 = 0,y0)]

= (m∗
1.2(θ2 = 0), 0)

=
(
θ̂1, 0

)
.

Then, we get the tangential set

Ty0
=
{

(θ1,θ2) ∈ Θ : f(θ1,θ2|y0) > f(θ̂1,0|y0)
}
.

From this definition for Ty0
, we have that

f(θ1,θ2|y0) > f(θ̂1,0|y0)

(2π)−p/2

|W∗|1/2
exp

{
−(θ −m∗)>W∗−1(θ −m∗)

2

}
> f(θ̂1,0|y0)

(θ −m∗)>W∗−1(θ −m∗) < −2 log
{
f(θ̂1,0|y0) |W∗|1/2 (2π)p/2

}
,

and since (θ −m∗)>W∗−1(θ −m∗) ∼ χ2
p (see Mardia et al. (1979)), the evidence in favor
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of H can be calculated directly as

ev (H; y0) = 1− P (θ ∈ Ty0
|y0)

= 1− P
(
χ2
p < −2 log

{
f(θ̂1,0|y0) |W∗|1/2 (2π)p/2

})
.

When we have the model in (4.29), the tangential set takes the form

Ty0
=

{
θ1 ∈ Θ : f(θ1|y0) > sup

H
f(θ1|y0)

}
= {θ ∈ Θ : f(θ1|y0) > f(θ1 = 0|y0)} ,

and it follows that

f(θ1|y0) > f(θ1 = 0|y0)

(2π)−1/2

W∗1/2 exp

{
−(θ1 −m∗)>W∗−1(θ1 −m∗)

2

}
> f(θ1 = 0|y0)

(θ1 −m∗)>W∗−1(θ1 −m∗) < −2 log
{
f(θ1 = 0|y0)W∗1/2 (2π)p/2

}
.

Since (θ1 −m∗)>W∗−1(θ1 −m∗) ∼ χ2
1, the evidence in favor of H is

ev (H; y0) = 1− P (θ1 ∈ Ty0
|y0)

= 1− P
(
χ2

1 < −2 log
{
f(θ1 = 0|y0)W∗1/2 (2π)1/2

})
.

Now, in order to calculate the averaged error probabilities for the unknown variance

model and the known variance model, consider the test such that

ϕe(y) =


0 if ev (H; y) > k

1 if ev (H; y) ≤ k.

The averaged error probabilities, expressed in terms of the predictive densities defined

in (4.27) and (4.28) (or by (4.30) and (4.31) when X = 1n) in the unknown variance case,

and also in (4.40) and (4.41) (or by (4.42) and (4.43) when X = 1n) in the known variance
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case, can be estimated by Monte Carlo simulation through the expressions

αϕe =

∫
y∈Ψe

fH(y) dy and βϕe =

∫
y/∈Ψe

fA(y) dy.

where Ψe is the set

Ψe = {y ∈ Ω : ev (H; y) ≤ k} .

So the adaptive cutoff value k∗ for ev (H; y) will be the k that minimizes aαϕe + bβϕe .

Finally, consider the test

ϕ∗e(y) =


0 if ev (H; y) > k∗

1 if ev (H; y) ≤ k∗.

Then the optimal averaged error probabilities that depend on the sample size will be

α∗ϕ∗e =

∫
y∈Ψ∗e

fH(y) dy and β∗ϕ∗e =

∫
y/∈Ψ∗e

fA(y) dy.

where Ψ∗e is the set defined by

Ψ∗e = {y ∈ Ω : ev (H; y) ≤ k∗} .

4.3.2 Significance index: P-value

This procedure is extended to both previous models only changing the respective prior

predictive densities. Let ϕ∗P (y) be the test given by

ϕ∗P (y) =


0 if BF(y) >

b

a

1 if BF(y) ≤ b

a
.

To obtain the P -value, define the set ΨP of sample points y for which the Bayes factors
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are smaller than or equal to the Bayes factor of the observed sample point y0, that is

ΨP = {y ∈ Ω : BF(y) ≤ BF(y0)}.

Then, the P -value is the integral of the predictive density under H in ΨP

P -value (y0) =

∫
ΨP

fH(y) dy.

Defining the set Ψ∗P of sample points y with Bayes factors smaller than or equal to b/a,

i.e.,

Ψ∗P =

{
y ∈ Ω : BF(y) ≤ b

a

}
,

the optimal averaged error probabilities, that can be approximated by Monte Carlo simula-

tion, are given by

αϕ∗P =

∫
y∈Ψ∗P

fH(y) dy and βϕ∗P =

∫
y/∈Ψ∗P

fA(y) dy.

4.4 Simulation study

We developed a simulation study considering two models, both under the two formu-

lations of conjugate prior distributions described in the previous sections. The first model

is

y = Xθ + ε, ε ∼ Nn(0, σ2In), (4.45)

where X = 1n and θ = θ1. For the unknown-variance model, we selected the parameters a0

and b0 of the Inverse Gamma prior distribution for σ2 such that the resulting distribution had

a mean equal to 1 and a variance equal to 100, those values being a0 = 2.01 and b0 = 1.01.

Next, we specified the parameters in the Normal prior for θ given σ2 as m0 = 0 and V0 = 1.

On the other hand, in the known variance case, we supposed that the residual error variance

was σ2 = 1 and the parameters in the Normal prior for θ were m0 = 0 and W0 = 1. The
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hypotheses to be tested were

H : θ1 = 0

A : θ1 6= 0.

The second model studied was

y = Xθ + ε, ε ∼ Nn(0, σ2In), (4.46)

where X = (x1, . . . ,xn)> is an n× p matrix of covariates with xi = (1, xi1, . . . , xip−1)> and

θ = (θ>1 ,θ
>
2 )> is the p × 1 vector of coefficients. In the unknown-variance analysis, the

parameters of the Inverse Gamma distribution were selected in the same way as in model

(4.45). Additionally, in the Normal prior for θ given σ2, m0 = (0>,0>)> and V0 = Ip were

taken as parameters, assuming that θ1 and θ2 could be treated as independent. Finally, in

the known-variance formulation, we supposed that the residual error variance was σ2 = 1

and the parameters in the Normal prior for θ were m0 = (0>,0>)> and W0 = Ip, being θ1

and θ2 also treated as independent. This time, the hypotheses of interest were

H : θ2 = 0

A : θ2 6= 0.

The averaged error probabilities αϕe , βϕe , α
∗
ϕ∗e

, β∗ϕ∗e , αϕ∗P and βϕ∗P , were calculated using

the Monte Carlo method with values generated from the following distributions:

• Unknown-variance analysis

– Model (4.45) under H

θ
(j)
1 = 0

σ2(j)|θ(j)
1 = 0 ∼ IG

(
a0 +

1

2
, b0 +

(θ
(j)
1 −m0)>V−1

0 (θ
(j)
1 −m0)

2

)

Y(j)|σ2(j), θ
(j)
1 ∼ Nn(1nθ

(j)
1 , σ2(j)In).
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– Model (4.45) under A

σ2(j) ∼ IG(a0, b0)

θ
(j)
1 |σ2(j) ∼ N(m0, σ

2(j)V0)

Y(j)|σ2(j), θ
(j)
1 ∼ Nn(1nθ

(j)
1 , σ2(j)In).

– Model (4.46) under H

θ
(j)
2 = 0

θ
(j)
1 |θ

(j)
2 = 0 ∼ ts

(
2a0 + 1; m01.2(θ

(j)
2 ),

2b0 + (θ
(j)
2 −m02)>V0

−1
22 (θ

(j)
2 −m02)

2a0 + 1
V011.2

)

σ2(j)|θ(j)
1 ,θ

(j)
2 = 0 ∼ IG

(
a0 + 1, b0 +

(θ(j) −m0)>V0
−1(θ(j) −m0)

2

)

Y(j)|σ2(j),θ
(j)
1 ,θ

(j)
2 = 0 ∼ Nn(Xθ(j), σ2(j)In).

– Model (4.46) under A

σ2(j) ∼ IG(a0, b0)

θ(j)|σ2(j) ∼ Np(m0, σ
2(j)V0)

Y(j)|σ2(j),θ(j) ∼ Nn(Xθ(j), σ2(j)In).

• Known-variance analysis

– Model (4.45) under H

σ2(j) = 1

θ
(j)
1 = 0

Y(j)|θ(j)
1 = 0 ∼ Nn(1nθ

(j)
1 , σ2(j)In).

– Model (4.45) under A

σ2(j) = 1

θ
(j)
1 ∼ N(m0,W0)

Y(j)|θ(j)
1 ∼ Nn(1nθ

(j)
1 , σ2(j)In).



80 ADAPTIVE SIGNIFICANCE LEVELS IN LINEAR REGRESSION MODELS

– Model (4.46) under H

σ2(j) = 1

θ
(j)
2 = 0

θ
(j)
1 |θ

(j)
2 = 0 ∼ Ns

(
m01.2(θ

(j)
2 ),W011.2

)
Y(j)|θ(j)

1 ,θ
(j)
2 = 0 ∼ Nn(Xθ(j), σ2(j)In).

– Model (4.46) under A

σ2(j) = 1

θ(j) ∼ Np(m0,W0)

Y(j)|θ(j) ∼ Nn(Xθ(j), σ2(j)In).

Then, y(j) = (y
(j)
1 , . . . y

(j)
n ) is a random sample of the conditional distribution of Y,

j = 1 . . .M .

In a first stage, we considered the model (4.45) where θ = θ1 and the model (4.46)

with θ = (θ1, θ2)>. Note that the dimensionality of the parameter space in the two models

is different when the prior changes, so for model (4.45), the dimensionality will be d = 2

in the unknown-variance case and d = 1 in the known-variance case. For model (4.46)

the dimensionality will be d = 3 in the unknown-variance case and d = 2 in the known-

variance case. Samples of size M = 1000 were generated for each model under the respective

hypotheses and also for different sample sizes between n = 10 and n = 5000. In model

(4.46) the covariate xi1, i = 1 . . . n, was generated from a standard normal distribution. The

random generation of variables from the Inverse Gamma distribution and the Multivariate

Normal and t distributions were made respectively through the packages LaplacesDemon

(Statisticat and LLC., 2018) and mnormt (Azzalini and Genz, 2016) both available in R

software (R Core Team, 2017). Finally, to obtain the adaptive values of k∗, αϕ∗P and βϕ∗P ,

the two types of errors were considered as equally severe, that is, a = b = 1.

Figures 4.1 and 4.2 show the averaged error probabilities for the FBST as functions

of k for a sample size n = 100. This was replicated for various sample sizes in order to

numerically find the corresponding k∗ value that minimizes αϕe + βϕe . Tables 4.1-4.4 and

Figures 4.3-4.6 present the k∗ and αϕ∗P values as function of n for each model under the

two formulations of conjugate prior distributions. As it can be seen, both values have a

decreasing trend when the sample size increases. In the case of the cutoff value for the

evidence, it is possible to notice the differences in the results when the dimensionality of the

parameter space change. Then, the k∗ value depends not only on the sample size but also on
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the dimensionality of the parameter space, more specifically, it is greater when d is higher.

However, this does not occur with αϕ∗P which maintains almost the same values even if d

increases. The results in the unknown-variance and the known-variance analysis do not differ

considerably when the models have the same dimension, the k∗ and αϕ∗P values being a little

higher in the unknown-variance case. On the other hand, Figures 4.7-4.10 illustrate that in

all these models, the optimal averaged error probabilities and their linear combination also

decrease with increasing sample size.

(a) d = 2 (b) d = 3

Figure 4.1: Unknown-variance model averaged error probabilities (αϕe, βϕe and αϕe + βϕe) as
function of k. Sample size n = 100.

(a) d = 1 (b) d = 2

Figure 4.2: Known-variance model averaged error probabilities (αϕe, βϕe and αϕe + βϕe) as func-
tion of k. Sample size n = 100.



82 ADAPTIVE SIGNIFICANCE LEVELS IN LINEAR REGRESSION MODELS

k∗

n d = 2 d = 3

10 0.32530 0.51220
50 0.12534 0.22442
100 0.11705 0.21081
150 0.10889 0.19735
200 0.10092 0.18416
250 0.09323 0.17132
300 0.08587 0.15894
350 0.07893 0.14713
400 0.07243 0.13598
450 0.06641 0.12560
500 0.06091 0.11606
1000 0.03035 0.06689
1500 0.02223 0.07086
2000 0.01892 0.07173

Table 4.1: Unknown-variance model cutoff val-
ues k∗ for ev (H; y) as a function of n, with d = 2
and d = 3.

Figure 4.3: Unknown-variance model cutoff val-
ues k∗ for ev (H; y) as a function of n, with d = 2
and d = 3.

k∗

n d = 1 d = 2

10 0.10040 0.35260
50 0.05166 0.11262
100 0.04447 0.10473
150 0.03776 0.09698
200 0.03179 0.08946
250 0.02667 0.08226
300 0.02244 0.07544
350 0.01905 0.06904
400 0.01639 0.06311
450 0.01429 0.05767
500 0.01264 0.05274
1000 0.00649 0.02823
1500 0.00622 0.02954
2000 0.00610 0.03000

Table 4.2: Known-variance cutoff values k∗ for
ev (H; y) as a function of n, with d = 1 and
d = 2.

Figure 4.4: Known-variance cutoff values k∗ for
ev (H; y) as a function of n, with d = 1 and
d = 2.
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αϕ∗P
n d = 2 d = 3

10 0.12400 0.09200
50 0.04515 0.04327
100 0.03899 0.03775
150 0.03327 0.03252
200 0.02817 0.02772
250 0.02380 0.02341
300 0.02018 0.01963
350 0.01732 0.01642
400 0.01513 0.01376
450 0.01353 0.01163
500 0.01241 0.01002
1000 0.00941 0.00683
1500 0.00827 0.00398
2000 0.00681 0.00524

Table 4.3: Unknown-variance model optimal av-
eraged type I error probability (αϕ∗P ) as a function
of n, with d = 2 and d = 3.

Figure 4.5: Unknown-variance model optimal
averaged type I error probability (αϕ∗P ) as a func-
tion of n, with d = 2 and d = 3.

αϕ∗P
n d = 1 d = 2

10 0.10200 0.10100
50 0.04137 0.04136
100 0.03766 0.03683
150 0.03407 0.03248
200 0.03067 0.02841
250 0.02752 0.02469
300 0.02467 0.02135
350 0.02213 0.01844
400 0.01990 0.01595
450 0.01798 0.01388
500 0.01635 0.01221
1000 0.01011 0.00684
1500 0.00836 0.00421
2000 0.00606 0.00507

Table 4.4: Known-variance model optimal aver-
aged type I error probability (αϕ∗P ) as a function
of n, with d = 1 and d = 2.

Figure 4.6: Known-variance model optimal av-
eraged type I error probability (αϕ∗P ) as a function
of n, with d = 1 and d = 2.
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(a) d = 2 (b) d = 3

Figure 4.7: Unknown-variance model optimal averaged error probabilities (α∗ϕ∗e , β∗ϕ∗e and α∗ϕ∗e +β∗ϕ∗e)
as functions of n.

(a) d = 1 (b) d = 2

Figure 4.8: Known-variance model optimal averaged error probabilities (α∗ϕ∗e , β∗ϕ∗e and α∗ϕ∗e + β∗ϕ∗e)
as functions of n.
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(a) d = 2 (b) d = 3

Figure 4.9: Unknown-variance model optimal averaged error probabilities (αϕ∗P , βϕ∗P and αϕ∗P +
βϕ∗P ) as functions of n.

(a) d = 1 (b) d = 2

Figure 4.10: Known-variance model optimal averaged error probabilities (αϕ∗P , βϕ∗P and αϕ∗P +βϕ∗P )
as functions of n.

We choose a single random sample y0 to calculate the e-value and P -value for all models.

Tables 4.5 and 4.6 display the results, the cases when H is rejected being represented by the

cells in boldface. It can be observed that the decision remains the same regardless of the

index used. Besides, it is important to note that the null hypothesis is less easily rejected

as the dimensionality of the parameter space increases and even more in the case of the

known-variance formulation that we assign.
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d = 2 d = 3
n k∗ ev αϕ∗

P
Pv k∗ ev αϕ∗

P
Pv

10 0.3253 0.9838 0.1240 0.7510 0.5122 0.9696 0.0920 0.4850
50 0.1253 0.0820 0.0451 0.0190 0.2244 0.9261 0.0433 0.3570
100 0.1171 0.0000 0.0390 0.0000 0.2108 0.4176 0.0377 0.0650
150 0.1089 0.0973 0.0333 0.0200 0.1974 0.2965 0.0325 0.0510
200 0.1009 0.0036 0.0282 0.0000 0.1842 0.0466 0.0277 0.0040
250 0.0932 0.0001 0.0238 0.0000 0.1713 0.0620 0.0234 0.0050
300 0.0859 0.0000 0.0202 0.0000 0.1589 0.0119 0.0196 0.0010
350 0.0789 0.0000 0.0173 0.0000 0.1471 0.0282 0.0164 0.0030
400 0.0724 0.0000 0.0151 0.0000 0.1360 0.0347 0.0138 0.0020
450 0.0664 0.0000 0.0135 0.0000 0.1256 0.0628 0.0116 0.0040
500 0.0609 0.0000 0.0124 0.0000 0.1161 0.0181 0.0100 0.0010
1000 0.0303 0.0000 0.0094 0.0000 0.0669 0.0000 0.0068 0.0010
1500 0.0222 0.0000 0.0083 0.0000 0.0709 0.0000 0.0040 0.0010
2000 0.0189 0.0000 0.0068 0.0000 0.0717 0.0000 0.0052 0.0010

Table 4.5: Unknown-variance model cutoff values k∗, ev (H; y0) and P -value (y0) as function of
n, with d = 2 and d = 3.

d = 1 d = 2
n k∗ ev αϕ∗

P
Pv k∗ ev αϕ∗

P
Pv

10 0.1004 0.6785 0.1020 0.6740 0.3526 0.9647 0.1010 0.7710
50 0.0517 0.4918 0.0414 0.4900 0.1126 0.8561 0.0414 0.5850
100 0.0445 0.0749 0.0377 0.0630 0.1047 0.3659 0.0368 0.1530
150 0.0378 0.0254 0.0341 0.0190 0.0970 0.1955 0.0325 0.0840
200 0.0318 0.0048 0.0307 0.0040 0.0895 0.1987 0.0284 0.0820
250 0.0267 0.0002 0.0275 0.0000 0.0823 0.1684 0.0247 0.0690
300 0.0224 0.0000 0.0247 0.0000 0.0754 0.0476 0.0214 0.0120
350 0.0191 0.0000 0.0221 0.0000 0.0690 0.0088 0.0184 0.0030
400 0.0164 0.0000 0.0199 0.0000 0.0631 0.0032 0.0160 0.0010
450 0.0143 0.0000 0.0180 0.0000 0.0577 0.0005 0.0139 0.0010
500 0.0126 0.0000 0.0164 0.0000 0.0527 0.0003 0.0122 0.0010
1000 0.0065 0.0000 0.0101 0.0000 0.0282 0.0000 0.0068 0.0010
1500 0.0062 0.0000 0.0084 0.0000 0.0295 0.0000 0.0042 0.0010
2000 0.0061 0.0000 0.0061 0.0000 0.0300 0.0000 0.0051 0.0010

Table 4.6: Known-variance model cutoff values k∗, ev (H; y0) and P -value (y0) as function of n,
with d = 1 and d = 2.

As a second stage in our simulation study, we set two sample sizes n = 60 and n = 120

to perform the tests for model (4.46), increasing the dimensionality of the parameter space.

In that scenario, the vector of coefficients was such that θ = (θ>1 , θ2)> and the hypotheses

to be tested were

H : θ2 = 0

A : θ2 6= 0.

So by varying the dimension of vector θ1 the different models considered for each test
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were obtained. Tables 4.7-4.8 and Figures 4.11-4.12 show the k∗ and αϕ∗P values as functions

of d under the two formulations of conjugate prior distributions. For d = 2 and d = 1 in the

unknown-variance and known-variance analysis respectively, the values correspond to model

(4.45). We can say that, for a fixed hypothesis, the larger the size of the parameter space, the

greater the value of k∗. In the case of the αϕ∗P value, it does not change significantly when

the dimensionality of the parameter space increases, except when the number of parameters

is very large in relation to the sample size.

k∗

d n = 60 n = 120

2 0.18500 0.08560
3 0.20420 0.19480
4 0.31510 0.39630
5 0.47790 0.49500
6 0.57670 0.53040
7 0.79970 0.67400
8 0.82970 0.70490
9 0.91250 0.80310
10 0.94540 0.92770
11 0.97300 0.92940
21 0.99990 0.99960
31 0.99990 0.99970
41 0.99990 0.99990
51 0.99990 0.99990

Table 4.7: Unknown-variance model cutoff val-
ues k∗ for ev (H; y) as a function of d, with
n = 60 and n = 120.

Figure 4.11: Unknown-variance model cutoff
values k∗ for ev (H; y) as a function of d, with
n = 60 and n = 120.

k∗

d n = 60 n = 120

1 0.04590 0.01870
2 0.13180 0.12830
3 0.29400 0.18730
4 0.34320 0.14560
5 0.37160 0.44770
6 0.58160 0.53420
7 0.65620 0.62000
8 0.78070 0.65780
9 0.84350 0.80460
10 0.92490 0.77400
20 0.99940 0.99900
30 0.99990 0.99990
40 0.99990 0.99990
50 0.99980 0.99990

Table 4.8: Known-variance model cutoff values
k∗ for ev (H; y) as a function of d, with n = 60
and n = 120.

Figure 4.12: Known-variance model cutoff val-
ues k∗ for ev (H; y) as a function of d, with
n = 60 and n = 120.
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αϕ∗P
d n = 60 n = 120

2 0.03700 0.02100
3 0.03300 0.03800
4 0.03700 0.03600
5 0.04100 0.03800
6 0.04800 0.03300
7 0.04400 0.03500
8 0.04600 0.03100
9 0.05000 0.03600
10 0.04500 0.03900
11 0.04600 0.04000
21 0.05100 0.03700
31 0.05300 0.03700
41 0.07200 0.03600
51 0.12600 0.04100

Table 4.9: Unknown-variance model optimal av-
eraged type-I error probability (αϕ∗P ) as a func-
tion of d, with n = 60 and n = 120.

Figure 4.13: Unknown-variance model optimal
averaged type-I error probability (αϕ∗P ) as a func-
tion of d, with n = 60 and n = 120.

αϕ∗P
d n = 60 n = 120

1 0.04800 0.03000
2 0.04200 0.03900
3 0.04200 0.03800
4 0.04200 0.03800
5 0.04100 0.03700
6 0.04100 0.03800
7 0.03700 0.03900
8 0.04100 0.03900
9 0.04100 0.04000
10 0.03800 0.04000
20 0.04500 0.04600
30 0.04900 0.04400
40 0.08000 0.03900
50 0.12600 0.04500

Table 4.10: Known-variance model optimal av-
eraged type-I error probability (αϕ∗P ) as a func-
tion of d, with n = 60 and n = 120.

Figure 4.14: Known-variance model optimal av-
eraged type-I error probability (αϕ∗P ) as a func-
tion of d, with n = 60 and n = 120.
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Figures 4.15 and 4.16 show the e-value versus P -value under H for a single sample size

n = 60 and for three different dimensionalities of the parameter space. Note that as d

increases, the e-value grows faster, however, the P -value has a very little variation. Figures

4.17 and 4.18 display the histograms for the e-values and P -values under the same conditions.

It can be seen that the P -value appears to have a uniform distribution in all scenarios, instead

the e-value seems to approach 1 when d increases.

(a) d = 2 (b) d = 8

(c) d = 21

Figure 4.15: Unknown-variance model relationship between e-value and P-value. Sample size n =
60.
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(a) d = 1 (b) d = 7

(c) d = 20

Figure 4.16: Known-variance model relationship between e-value and P-value. Sample size n = 60.
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(a) d = 2 (b) d = 2

(c) d = 8 (d) d = 8

(e) d = 21 (f) d = 21

Figure 4.17: Unknown-variance model e-value and P-value densities under H. Sample size n = 60.
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(a) d = 1 (b) d = 1

(c) d = 7 (d) d = 7

(e) d = 20 (f) d = 20

Figure 4.18: Known-variance model e-value and P-value densities under H. Sample size n = 60.
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Tables 4.11 and 4.12 present the e-value and P -value calculated for a single random

sample y0 in all models. Here, with the e-value the null hypothesis is less easily rejected.

This may be related to two things: it may be due to approximation error as a result of

the simulation process or due to the fact that the evidence apparently converges to 1 as

the dimensionality of the parameter space increases, in which case a more detailed study is

required.

n = 60 n = 120
d k∗ ev αϕ∗

P
Pv k∗ ev αϕ∗

P
Pv

2 0.1850 0.6865 0.0370 0.3660 0.0856 0.0082 0.0210 0.0010
3 0.2042 0.5849 0.0330 0.1360 0.1948 0.7199 0.0380 0.1760
4 0.3151 0.8119 0.0370 0.1820 0.3963 0.9230 0.0360 0.2470
5 0.4779 0.0000 0.0410 0.0000 0.4950 0.0000 0.0380 0.0010
6 0.5767 0.5672 0.0480 0.0290 0.5304 0.7002 0.0330 0.0360
7 0.7997 0.8854 0.0440 0.0820 0.6740 0.9992 0.0350 0.2860
8 0.8297 0.3267 0.0460 0.0050 0.7049 0.7858 0.0310 0.0260
9 0.9125 0.1919 0.0500 0.0020 0.8031 0.0009 0.0360 0.0010
10 0.9454 0.0006 0.0450 0.0010 0.9277 0.0001 0.0390 0.0010
11 0.9730 0.0000 0.0460 0.0000 0.9294 0.0000 0.0400 0.0000
21 0.9999 0.0000 0.0510 0.0000 0.9996 0.0000 0.0370 0.0000
31 0.9999 1.0000 0.0530 0.0240 0.9997 0.0495 0.0370 0.0010
41 0.9999 0.9998 0.0720 0.0010 0.9999 0.0004 0.0360 0.0010
51 0.9999 1.0000 0.1260 0.0000 0.9999 0.0000 0.0410 0.0000

Table 4.11: Unknown-variance model cutoff values k∗, ev (H; y0) and P -value (y0) as functions
of d, with n = 60 and n = 120.

n = 60 n = 120
d k∗ ev αϕ∗

P
Pv k∗ ev αϕ∗

P
Pv

1 0.0459 0.1801 0.0480 0.1910 0.0187 0.0045 0.0300 0.0020
2 0.1318 0.4944 0.0420 0.2280 0.1283 0.4404 0.0390 0.2360
3 0.2940 0.7751 0.0420 0.2780 0.1873 0.7762 0.0380 0.3140
4 0.3432 0.0000 0.0420 0.0000 0.1456 0.0000 0.0380 0.0000
5 0.3716 0.6141 0.0410 0.0570 0.4477 0.4429 0.0370 0.0380
6 0.5816 0.9377 0.0410 0.1820 0.5342 0.5969 0.0380 0.4310
7 0.6562 0.5500 0.0370 0.0160 0.6200 0.0000 0.0390 0.0270
8 0.7807 0.2510 0.0410 0.0030 0.6578 0.0000 0.0390 0.0010
9 0.8435 0.0037 0.0410 0.0010 0.8046 0.0000 0.0400 0.0010
10 0.9249 0.0000 0.0380 0.0000 0.7740 0.0000 0.0400 0.0000
20 0.9994 0.0000 0.0450 0.0000 0.9990 0.0000 0.0460 0.0000
30 0.9999 1.0000 0.0490 0.1600 0.9999 1.0000 0.0440 0.0070
40 0.9999 1.0000 0.0800 0.0010 0.9999 0.5933 0.0390 0.0010
50 0.9998 1.0000 0.1260 0.0000 0.9999 0.0000 0.0450 0.0000

Table 4.12: Known-variance model cutoff values k∗, ev (H; y0) and P -value (y0) as functions of
d, with n = 60 and n = 120.
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4.5 Applications

In this section we present two application with real datasets using the unknown-variance

model. We choose a0 = 3 and b0 = 2 as parameters of the Inverse Gamma prior distribution

for σ2. Additionally, in the Normal prior for θ given σ2, m0 = 0p×1 and V0 = Ip are

taken as parameters. The Monte Carlo approximations were made generating samples of

size M = 10000.

4.5.1 Budget shares of British households dataset

We selected the BudgetUK dataset, available in the Ecdat package of R software

(Croissant and Graves, 2019), which draws 1519 observations from the 1980-1982 British

Family Expenditure Surveys (FES) (Blundell et al., 1998). In our application we consider

the following five variables:

• wfood: budget share for food expenditure

• income: total net household income (rounded to the nearest 10 UK pounds sterling)

• walc: budget share for alcohol expenditure

• wfuel: budget share for fuel expenditure

• age: age of household head.

All the expenditures and income are measured in pounds sterling per week. We took the

budget share for food expenditure (wfood) as the dependent variable.

Figure 4.20 presents a matrix plot where the scatterplots of each pair of variables are

drawn on the left part, Pearson correlations are displayed on the right side and variable

distributions are on the diagonal.

Table 4.13 summarizes the results for the hypotheses H : θj = 0, j = 1 . . . 5, by per-

forming the test with the p-value at 0.05 significance level and also the e-value and the

P -value with their respective adaptive significance levels. The cases when H is rejected are

represented by the cells in boldface. It can be seen that, unlike the p-value, the e-value and

the P -value do not reject the hypothesis of nullity of the coefficient associated with the age

variable.
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Figure 4.19: Budget shares of British households dataset matrix plot.

Coefficients θ̂Freq α pv θ̂Bayes k∗ ev αϕ∗
P

Pv

Intercept 0.3758 0.0500 0.0000 0.3700 0.7078 0.0000 0.0382 0.0000

income -0.0004 0.0500 0.0000 -0.0004 0.0113 0.0000 0.0001 0.0000

walc -0.1533 0.0500 0.0003 -0.1283 0.9410 0.1890 0.1278 0.0172

wfuel 0.1717 0.0500 0.0007 0.1487 0.9520 0.1957 0.1468 0.0143

age 0.0009 0.0500 0.0119 0.0010 0.0764 0.3048 0.0004 0.0666

Table 4.13: Budget shares of British households dataset hypothesis-testing summary.

Table 4.14 exposes the optimal averaged error probabilities using the e-value and the

P -value. It can be noted that the values are very similar with both methodologies.

Coefficients α∗ϕ∗e αϕ∗P β∗ϕ∗e βϕ∗P
Intercept 0.0466 0.0382 0.2157 0.2193

income 0.0000 0.0001 0.0006 0.0006

walc 0.1521 0.1278 0.4146 0.4145

wfuel 0.1508 0.1468 0.4679 0.4410

age 0.0004 0.0004 0.0080 0.0083

Table 4.14: Budget shares of British households dataset optimal averaged error probabilities.
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4.5.2 Boston housing dataset

We also took the Boston dataset, which contains information about housing val-

ues obtained from census tracts in the Boston Standard Metropolitan Statistical Area

(SMSA) in 1970 (Harrison and Rubinfeld, 1978). These data, available in the MASS package

(Venables and Ripley, 2002) of R software, has 506 samples and 14 variables. We chose the

following 10 variables to fit our model:

• medv: median value of owner-occupied homes in 1000s

• crim: per capita crime rate by town.

• zn: proportion of residential land zoned for lots over 25.000 sq.ft

• indus: proportion of non-retail business acres per town

• rm: average number of rooms per dwelling

• age: proportion of owner-occupied units built prior to 1940

• dis: weighted mean of distances to five Boston employment centers

• tax: full-value property-tax rate per 10.000

• ptratio: pupil-teacher ratio by town

• black: 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town.

We select the median value of the owner-occupied homes in the census tract (medv) as

the dependent variable.

Figure 4.20 presents a matrix plot with the scatterplots, the Pearson correlations and

the variable distributions as in Figure 4.19.

The results for the hypotheses H : θj = 0, j = 1 . . . 10 by performing the test with the

p-value, the e-value and the P -value, are summarized in Table 4.15. This time, with the

e-value the null hypotheses are less rejected. The e-value does not reject the hypotheses of

nullity of the coefficients associated to the zn and indus variables, while the p-value does.

On the other hand, the P -value, unlike the p-value, does not reject the hypothesis for the

zn variable but it does for the Intercept. As can be observed in Table 4.16, for these

data, the optimal averaged error probabilities values are also very close.
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Figure 4.20: Boston housing dataset matrix plot.

Coefficients θ̂Freq α pv θ̂Bayes k∗ ev αϕ∗P Pv

Intercept 1.7035 0.0500 0.6958 1.2035 0.9998 1.0000 0.1916 0.0085

crim -0.1244 0.0500 0.0006 -0.1244 0.5780 0.3365 0.0010 0.0001

zn 0.0359 0.0500 0.0224 0.0362 0.4089 0.9012 0.0004 0.0025

indus -0.1489 0.0500 0.0235 -0.1473 0.6390 0.9114 0.0025 0.0023

rm 6.7165 0.0500 0.0000 6.7336 0.9296 0.0000 0.0143 0.0000

age -0.0655 0.0500 0.0000 -0.0648 0.3275 0.0141 0.0001 0.0000

dis -1.3198 0.0500 0.0000 -1.3091 0.8146 0.0001 0.0095 0.0000

tax -0.0030 0.0500 0.2324 -0.0030 0.0124 0.9996 0.0002 0.0198

ptratio -0.7652 0.0500 0.0000 -0.7528 0.8223 0.0003 0.0053 0.0000

black 0.0145 0.0500 0.0000 0.0147 0.0297 0.0113 0.0001 0.0000

Table 4.15: Boston housing dataset hypothesis-testing summary.
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Coefficients α∗ϕ∗e αϕ∗P β∗ϕ∗e βϕ∗P
Intercept 0.1321 0.1916 0.6494 0.4946

crim 0.0018 0.0010 0.0165 0.0173

zn 0.0006 0.0004 0.0075 0.0079

indus 0.0030 0.0025 0.0286 0.0292

rm 0.0222 0.0143 0.1123 0.1181

age 0.0000 0.0001 0.0068 0.0068

dis 0.0091 0.0095 0.0825 0.0808

tax 0.0000 0.0002 0.0016 0.0015

ptratio 0.0081 0.0053 0.0494 0.0521

black 0.0000 0.0001 0.0019 0.0017

Table 4.16: Boston housing dataset optimal averaged error probabilities.



Chapter 5
Conclusions

5.1 Final considerations

In this work we present a method to find a cutoff value k∗ for the Bayesian evidence in

the FBST by minimizing the linear combination of the averaged type-I and type-II error

probabilities for a given sample size n and also for a given dimensionality d of the parameter

space. In that sense, we provide a solution to the existing problem in the usual approach

of hypothesis-testing procedures, where increase the sample size leads to rejection of the

null hypothesis. Furthermore, we compare our results with those obtained by using the test

proposed by Pereira et al. (2017) and Gannon et al. (2019).

In chapter 3, two simple illustrative examples are considered. We test a precise hypothesis

against a composite alternative, first in a case where the random variable is discrete, and

second for a variable following a continuous distribution. We note that the k∗ value presents

a decreasing trend with increasing n, which shows us the importance of taking the sample

size into account when defining a significance level in hypothesis-testing procedures. In both

examples, we also consider different priors to evaluate how much their choice affect the cutoff

value. When comparing the e-value with the P -value, we observe that the decision is the

same, no matter which index is used, however, the null hypothesis is more easily rejected in

cases associated with posteriors that have smaller variances, which are generally those cases

where the priors are more informative. Another important thing to mention is that the e-

value is higher than the P -value for smaller sample sizes when the prior is more informative,

but they are very similar when the sample size is larger.

99
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In chapter 4 we present the proposed methodology to determine the adaptive cutoff

value k∗ for evidence extended to the context of linear regression models under a Bayesian

approach. The conjugate model with unknown and known variance as prior formulation

are considered. Additionally, all the steps to calculate the adaptive significance levels using

P -value are described. For that purpose, we perform a simulation study in two stages. In

the first phase, we fix the dimension of the parameter space and we change the sample size.

The results show that the optimal averaged error probabilities reach similar values with

both methodologies. On the other hand, the cutoff value k∗ as well as the optimal averaged

type-I error probability αϕ∗P have a decreasing trend when the sample size increases. In the

k∗ case, the values are different when the parameter space changes. Thus, we can conclude

that the k∗ value depends not only on the sample size but also on the dimensionality of

the parameter space. More specifically, k∗ is greater when d is higher. However, this do not

happen with αϕ∗P , which maintains almost the same value even if d increases. The results

in the unknown-variance and the known-variance analysis do not differ considerably when

the models have the same dimensionality, the k∗ and αϕ∗P values being a little higher in the

unknown-variance case. In this context, we also observe that the decision remains the same

regardless of the index used, either the e-value or the P -value, but, it is important to say

that the null hypothesis is less easily rejected as the dimensionality of the parameter space

increases and even more so in the case of the known-variance formulation that we chose.

As a second simulation stage, we set two sample sizes n = 60 and n = 120 and we increase

the dimensionality of the parameter space to perform the tests for a fixed hypothesis. In this

scenario, it is possible to notice that, the larger the size of d, the greater the value of

k∗. In the αϕ∗P value case, it does not change significantly when the dimensionality of the

parameter space increases, except when the number of parameters is very large in relation

to the sample size. The results for the e-value and the P -value show that, as d increases,

the e-value grows faster, while the P -value has a very little variation. Additionally, the P -

value display a uniform distribution under H, while the e-value seems to approach 1 when d

increases. Here, with the e-value the null hypothesis is less easily rejected. We believe, this

may be related to two things: it may be due to the approximation error as a result of the

simulation process, or it may be due to the fact that the evidence apparently converges to 1
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as the dimensionality of the parameter space increases, in which case a more detailed study

is required.

At the end of this chapter, two applications using real data are presented. The results

are quite consistent with those obtained via simulation.

Finally, we can provide a general conclusion derived from the results of the illustrative

examples as well as the regression models. With our suggestion of cutoff value for the ev-

idence in the FBST and also with the procedure proposed by Pereira et al. (2017) and

Gannon et al. (2019), increasing the sample size implies that the probabilities of both kind

of optimal averaged errors and their linear combination decrease, unlike the most cases,

where by setting a single level of significance independent of sample size, only type-II error

probability decreases.

5.2 Suggestions for future research

• The methodology we propose to determine the adaptive cutoff value for evidence in the

FBST could be extended to more complex models with different prior specifications,

which would involve, among other things, using approximate methods to find the prior

predictive densities under the null and alternative hypotheses.

• It would be interesting to use a low-level programming language to more efficiently

evaluate a greater number of covariates and also to consider larger sample sizes than

those presented in this work.
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Appendix A
Support Material

A.1 Marginal distribution of a normal sample mean

Let X̄|θ ∼ Normal(θ, σ2/n) (θ ∈ R and σ2 > 0 known) and θ ∼ Normal(m, v2) (m ∈ R
and v2 > 0). The marginal distribution of X̄ is given by

f(x̄) =

∫ ∞
−∞

f(x̄|θ) g(θ) dθ
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∞∫
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e Estat́ıstica. Departamento de Estat́ıstica, São Paulo. From page 1, 2, 3, 15, 17

Paulino et al. (2003) C. D. Paulino, M. A. Turkman and B. Murteira. Estat́ıstica

Bayesiana. Fundação Calouste Gulbenkian, Lisboa. From page 21

Pereira (1985) C. A. B. Pereira. Teste de hipóteses definidas em espaços de diferentes
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