• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.45.2021.tde-06052021-100559
Documento
Autor
Nome completo
Mateus Gonzalez de Freitas Pinto
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2021
Orientador
Banca examinadora
Chiann, Chang (Presidente)
Lopes, Silvia Regina Costa
Montoril, Michel Helcias
Título em inglês
Long memory in high frequency time series using wavelets and conditional volatility models
Palavras-chave em inglês
Asset returns
FIGARCH
High frequency data
Intraday data
Long memory
Volatility
Wavelets
Resumo em inglês
The goal of this dissertation is to describe a methodology for modelling the volatility of high frequency financial data, considering its features and stylized facts. In order to account for the long-range dependence in conditional mean and conditional variance, ARFIMA and FI(E)GARCH models are used respectively, when observed. To account for the non-normality, skeweness and kurtosis, features observed in the the distribution of the log-returns in high frequency, the Skewed Student t and the Generalized Error Distribution (GED) are adopted for the innovation term of the aforementioned models. Wavelet shrinkage is used in a non-parametric identification and separation of the intraday jumps from the time series data. The application of this procedure is presented using real high frequency asset returns from the Brazilian Exchange and OTC, as well as exchange rates from cryptocurrencies traded in Crypto Exchanges.
Título em português
Memória longa em séries financeiras utilizando ondaletas e modelos de volatilidade condicional
Palavras-chave em português
Dados de alta frequência
Dados intradiários
FIGARCH
Memória longa
Ondaletas
Retornos
Volatilidade
Resumo em português
O objetivo desta dissertação é descrever uma metodologia para modelagem da volatilidade de dados financeiros de alta frequência, considerando suas particularidades e fatos estilizados. Os modelos ARFIMA e FI(E)GARCH são utilizados para modelar a longa persistência das séries na média e na variância condicional, respectivamente, quando isto for observado. A fim de contemplar não-normalidade, assimetria e curtose são utilizadas as distribuições t de Student Assimétrica e Distribuição Generalizada de Erros (GED) para o termo de inovações dos modelos supracitados. A limiarização de ondaletas é utilizada para identificação e separação dos "jumps" intradiários de forma não-paramétrica. A aplicação deste procedimento é apresentada utilizando séries financeiras reais de retornos de ações em alta frequência para ativos negociados no mercado à vista na bolsa de valores brasileira, além de séries de taxas de câmbio de criptomoedas, comparando o modelo semiparamétrico proposto a uma abordagem tradicional sem remover os "jumps".
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-05-06
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.