• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2007.tde-05052007-174318
Document
Author
Full name
Demerson Andre Polli
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2007
Supervisor
Committee
Lima, Antonio Carlos Pedroso de (President)
Bolfarine, Heleno
Ortega, Edwin Moises Marcos
Title in Portuguese
Um estudo de métodos bayesianos para dados de sobrevivência com omissão nas covariáveis
Keywords in Portuguese
análise de sobrevivência
inferência bayesiana
omissão nas covariáveis
Abstract in Portuguese
O desenvolvimento de métodos para o tratamento de omissões nos dados é recente na estatística e tem sido alvo de muitas pesquisas. A presença de omissões em covariáveis é um problema comum na análise estatística e, em particular nos modelos de análise de sobrevivência, ocorrendo com freqüência em pesquisas clínicas, epidemiológicas e ambientais. Este trabalho apresenta propostas bayesianas para a análise de dados de sobrevivência com omissões nas covariáveis considerando modelos paramétricos da família Weibull e o modelo semi-paramétrico de Cox. Os métodos estudados foram avaliados tanto sob o enfoque paramétrico quanto o semiparamétrico considerando um conjunto de dados de portadores de insuficiência cardíaca. Além disso, é desenvolvido um estudo para avaliar o impacto de diferentes proporções de omissão.
Title in English
A study of Bayesian methods for survival data with missing covariates.
Keywords in English
bayesian inference
missing covariates
survival analysis
Abstract in English
The development of methods dealing with missing data is recent in Statistics and is the target of many researchers. The presence of missing values in the covariates is very common in statistical analysis and, in particular, in clinical, epidemiological and enviromental studies for survival data. This work considers a bayesian approach to analise data with missing covariates for parametric models in the Weibull family and for the Cox semiparametric model. The studied methods are evaluated for the parametric and semiparametric approaches considering a dataset of patients with heart insufficiency. Also, the impact of different omission proportions is assessed.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Polli2007.pdf (294.89 Kbytes)
Publishing Date
2007-06-22
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.