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DA

UNIVERSIDADE DE SÃO PAULO
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sobrinha Mariana Gómez porque, sem ela saber, ela me apoiava todos os dias.

A minha tia Teresa Noguera e sua familia por que sempre que voltei para a Colômbia
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Aos professores do Instituto de Matemática e Estatı́stica da Universidade de São Paulo,

que ajudaram na minha formação acadêmica. Aos professores da banca examinadora

pelas suggestões e correções feitas.
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Abstract

GÓMEZ NOGUERA, S. A. Approximate local influence in generalized linear mixed

models. 2019. Tese (Doutorado) - Institute of Mathematics and Statistics, University of

São Paulo, São Paulo, 2019.

Non-Gaussian correlated data are frequent in longitudinal and repeated measure stud-

ies. Generalized linear mixed models (GLMMs) are a powerful tool for the analysis

and treatment of this kind of data. Residual and sensitivity analysis are useful diag-

nostic procedures to verify the assumptions made on these models and the adequacy

to the data. Among the techniques included in the sensitivity analysis is the local

influence, which allows to discriminate observations with a undue weight in the pa-

rameter estimates of any statistical model. In this work we present approximated ana-

lytical structures for local influence measurements in generalized linear mixed models.

These structures were obtained through Laplace approximations for usual perturbation

schemes in order to discriminate observations and subjects with excessive influence on

the parameter estimates. These measures, which are presented in closed forms for

the generalized linear mixed models, have a relatively low computational cost and

have been shown to be effective in detection of influential observations and subjects as

evidenced by simulation studies and analyses of three real data sets.

Keywords: generalized linear mixed model, Laplace approximation, local influence,

perturbation scheme, conformal normal curvature, influential observations, influential

subjects, random effects.
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Resumo

GÓMEZ NOGUERA, S. A. Influência local aproximada em modelos lineares ge-

neralizados mistos 2019. Tese (Doutorado) - Instituto de Matemáticas e Estatı́stica,

Universidade de São Paulo, São Paulo, 2019.

Dados correlacionados não Gaussianos são frequentes em estudos longitudinais e de

medidas repetidas. Os modelos lineares generalizados mistos (MLGMs) constituem

uma ferramenta poderosa para a análise e tratamento de dados desse tipo. Análise de

resı́duos e análise de sensibilidade são procedimentos de diagnóstico úteis para veri-

ficar as suposições feitas para esses modelos e a adequação aos dados. Entre as técnicas

incluı́das na análise de sensibilidade está a influência local que permite discriminar

observações com um peso desproporcional nas estimativas dos parâmetros de qual-

quer modelo estatı́stico. Estruturas analı́ticas aproximadas para medidas de influência

local são apresentadas neste trabalho em modelos lineares generalizados mistos. Essas

estruturas foram obtidas através de aproximações de Laplace para esquemas usuais de

perturbação a fim de discriminar observações e grupos com excessiva influência nas

estimativas dos parâmetros. Essas medidas, que são apresentadas em formas fechadas

para os MLGs mistos, despendem custo computacional relativamente baixo e tem-se

mostrado eficientes na detecção de observações e grupos influentes conforme compro-

vado através de estudos de simulação e análises de três conjuntos de dados reais.

Palavras chave: Modelo linear generalizado misto, aproximação de Laplace, influência

local, esquema de perturbação, curvatura normal conformal, observações influentes,

indivı́duos influentes, efeitos aleatórios.
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Chapter 1

Introduction

Generalized linear mixed models (GLMMs) may be interpreted as an extension of

the generalized linear models (McCullagh and Nelder, 1989), by including fixed effects

and non-observable random variables, called random effects in the linear predictor.

The aim of the random effects is to deal with correlated observations, for example,

from longitudinal or repeated measure studies. GLMMs are likely the class of mod-

els with random effects most used in the analysis of non-Gaussian correlated data

(Rakhmawati et al., 2017). Frequently, the estimation processes in these models require

to manipulate intractable high-dimensional integrals, since the likelihood functions

associated with GLMMs rarely have closed forms (Nelder et al., 2006). For a com-

plete review of GLMMs and the estimation methods related with these models the

reader may refer to Breslow and Clayton (1993), McGilchrist (1994), McCulloch

(1997), Aitkin (1999), McCulloch and Searle (2000), Rabe-Hesketh et al. (2002),

McCulloch and Neuhaus (2005), Jiang (2007), Wu (2009), Fong et al. (2010), Stroup

(2012) and Demidenko (2013), among others. Breslow and Clayton (1993) used Laplace

approximation for estimating the parameters in GLMMs. This approach will be exten-

sively used in this work. The reader may refer, for example, to Vonesh and Chinchilli

(1996) and Tuerlinckx et al. (2006) and the references therein for more details on the

Laplace approximation.

In general, after postulating and fitting a model, it is necessary to assess the existence of

1
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observations with undue impact on the parameter estimates which may lead to wrong

conclusions. Such observations are called influential observations. For this purpose, ac-

cording to Lesaffre and Verbeke (1998), deletion diagnostics are the most popular tool

to assess the effect of dropping observations on the parameter estimates. This technique

was proposed by Cook (1977) for normal linear models and subsequently extended to

more general models (see, for instance, Cook and Weisberg, 1982). Tan et al. (2001) gen-

eralized this methodology for longitudinal mixed - effects models. Xiang et al. (2002)

studied the Cook distance in GLMMs. Xu et al. (2006) developed deletion diagnostics

for GLMMs. Tang et al. (2006) developed influence diagnostics in nonlinear repro-

ductive dispersion mixed models, which are more general than GLMMs. Recently,

Pinho et al. (2015) extended the idea of Xiang et al. (2002) to allow the separate identi-

fication of influential observations in the parameter estimates and prediction of random

effects in GLMMs.

An alternative approach based on small perturbations in the model or data was pro-

posed by Cook (1986). Basically, the surface formed by an appropriate influence mea-

sure and the perturbation vector is approximated by the normal curvature in some arbi-

trary direction. Various diagnostic graphs may be derived from the normal curvature.

This diagnostic approach has been applied for different kinds of models. For instance,

local influence for mixed linear models with normally distributed errors was discussed

by Lesaffre and Verbeke (1998). In the context of GLMMs, Ouwens et al. (2001) inves-

tigated local influence in Poisson and binomial mixed models using Bayesian approach

and computational tools. Xiang et al. (2003) studied local influence in GLMMs with a

particular structure in the variance - covariance matrix of the random effects. That study

focused on assessing potentially influential clusters. Zhu and Lee (2003) proposed to

develop local influence in GLMMs treating the random effects as missing observations,

which allows to identify influential observations through an alternative influence mea-

sure (Zhu and Lee, 2001). Recently, Rakhmawati et al. (2017) extended the idea of the

seminal paper of Cook (1986) in some GLMMs by means of a mixture of analytical and
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computational techniques. Specifically, the authors focused in highlighting influential

subjects rather than observations. However, their influence measures do not have an

analytical form that can be applied to any GLMM. More recently, following the ap-

proach of Zhu and Lee (2003), Tapia et al. (2019a) and Tapia et al. (2019b) proposed a

sensitivity analysis for Poisson and binomial mixed models. It is worth mentioning that,

except Zhu and Lee (2003), the aforementioned papers only perform local influence in

particular cases of GLMMs. Also, none of these works supplies general structures for

the practical use of this diagnostic tool.

1.1 Objectives and thesis organization

Although there are several works on local influence in GLMMs, as far as we know no

one of them provides general analytical expressions for the identification of potentially

influential observations and subjects. Thus, based on the original idea of Cook (1986),

the aim of this work is to supply general analytical forms that allow the detection of

subjects and observations with undue weight in the parameter estimates of GLMMs.

By general analytical forms, we refer to closed structures for the influence measures

that rely on general features of GLMMs, like the variance function, the weight matrix,

design matrices for fixed and random effects, among others (McCulloch and Searle,

2000). From such structures, we intend to implement useful functions in the R software,

with inexpensive computational routines that allow the use of the proposed approaches

in a variety of situations, whose treatments require the use of GLMMs. To achieve this

goal we organize the dissertation as follows.

In chapter 2, we describe briefly GLMMs, pointing out some aspects of the estima-

tion methods and presenting a review on the local influence approach. We also propose

multivariate extensions of the results presented in section 7.7.1 of Demidenko (2013) on

the Laplace approximation. In chapter 3, we derive approximated local influence mea-

sures for GLMMs for discriminating potentially influential subjects and observations.
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We dedicate a section of that chapter for the treatment of local influence in random

intercept GLMMs. However, it does not mean that our results are applicable only to

these models. Also, we derive the score function and the observed information matrix

for such models. Numerical studies and applications with several real data sets are

described in chapter 4. In chapter 5 we present some conclusions and suggestions for

future research.

In addition, this work is supported by a supplementary material section divided

into three appendices. In appendix A we describe the proofs related with the multi-

variate extensions of the Laplace approximations. Details on the computation of the

local influence measures are discussed in appendix B. In addition, in appendix C, we

discuss some aspects on the intraclass correlation in GLMMs. Finally, in appendix D,

we illustrate the implementation of our proposal in the R software (R Core Team, 2018)

for a variety of GLMMs with random slope and intercept.

This work is computationally implemented in the R software (R Core Team, 2018)

available in http://www.R-project.org/. Also, this work was written using the typeset

system LATEX available in https://www.latex-project.org/ and using the online editor,

overleaf available in https://www.overleaf.com/.

http://www.R-project.org/
https://www.latex-project.org/
https://www.overleaf.com/


Chapter 2

Basic Concepts

2.1 Introduction

This chapter is divided into three parts. In the first one we specify the GLMMs

mentioning some special features of these models that are fundamental in the devel-

opment of our work. Also, we briefly refer to the estimation methods related with the

GLMMs and references are suggested for a deeper study of these topics. In the second

part we describe the local influence approach (Cook, 1986) justifying the use of the

conformal normal curvature (Poon and Poon, 1999) to accomplish sensitivity studies in

regression models. In the last part, we focus in clarifying some fundamental aspects of

the notation and proposing some multivariate extensions of the Laplace approximation

(Demidenko, 2013).

2.2 Generalized linear mixed models (GLMMs)

Generalized linear mixed models (GLMMs) may be considered as an extension of

generalized linear models, where the linear predictor is formed by fixed effects and

non-observable random effects. The random effects are incorporated into the model in

order to deal with correlated observations.

5
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2.2.1 The Model

Let Yi j be the jth observation from the ith subject, where 1 ≤ j ≤ ni, 1 ≤ i ≤ N and

NT =
N∑

i=1
ni. Suppose that the probability density function of Yi j relies on a q-dimensional

vector bi of random effects, via the parameter θi j ∈ R. In addition, assume that given

bi, Yi j follows a distribution in the exponential family i. e.,

fyi j|bi

Ä
yi j;θi j, φ

ä
= exp

î
φ
¶

yi j θi j − a(θi j)
©

+ c(yi j;φ)
ó
, (2.1)

where a(.) and c(. ; .) are known functions and φ denotes the precision parameter.

Under certain regularity conditions (McCulloch and Searle, 2000) it follows that µi j =

E
Ä
Yi j | bi

ä
=

d a(θi j)
dθi j

and Var
Ä
Yi j | bi

ä
= φ−1 Vi j, where Vi j = V

Ä
µi j
ä

=
d 2 a(θi j)

dθ 2
i j

is named

the variance function.

The parameter θi j relates µi j to the linear predictor ηi j = x>i j β + z>i j bi through the

relationship

g(µi j) = ηi j = x>i j β + z>i j bi, (2.2)

where xi j is a p× 1 vector of explanatory variable values, β is a p× 1 vector of unknown

parameters, zi j is a q × 1 vector of non-stochastic variables and g(.) is a monotonic

and differentiable function. Furthermore, we will assume that bi ∼ Nq (0,Ξ), where Ξ

is a symmetric and positive definite variance-covariance matrix, which depends on a

q (q + 1)/2 ×1 vector of parameters ξ. The generalized linear mixed models are specified

jointly by (2.1), (2.2) and the aforementioned distributional assumption on bi.

Essentially, in this work, we consider the generalized linear mixed model (GLMM)

specified as follows:

Yi j | bi
ind
∼ EF

Ä
µi j; φ

ä
,

g
Ä
µi j
ä

= x>i j β + z>i j bi and

bi
iid
∼ N q (0; Ξ) ,

(2.3)
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where j = 1, . . . ,ni and i = 1, . . . ,N. The notation EF( · ; · ) refers to the exponential

family. That is, we assume that given bi, Yi j follows a distribution of the form (2.1).

Furthermore, letting ηi =
Ä
ηi 1, . . . , ηi ni

ä>
, µi =

Ä
µi 1, . . . , µi ni

ä>
and

g
Ä
µi

ä
=
Ä
g
Ä
µi 1

ä
, . . . ,g

Ä
µi ni

ää>
, we obtain

g
Ä
µi

ä
= Xi β + Zi bi, (2.4)

where Xi =
(
xi1, . . . , xini

)> and Zi =
(
zi1, . . . , zini

)>.

Finally, writing µ =
Ä
µ>1 , . . . ,µ

>

N

ä>
, η =

Ä
η>1 , . . . ,η

>

N

ä>
, b =

Ä
b>1 , . . . , b

>

N

ä>
and

g
Ä
µ
ä

=
(
g
Ä
µ1

ä>
, . . . ,g

Ä
µN

ä>)>
we can express the relationship (2.4) as

g
Ä
µ
ä

= η = Xβ + Z b, (2.5)

where X =
Ä
X>1 , . . . ,X

>

N

ä>
and Z =

N⊕
i=1

Zi, with
⊕

denoting the direct sum of matrices.

2.2.2 On the estimation methods in GLMMs

Denote ψ =
Ä
β>, ξ>, φ

ä>
the vector of parameters in the aforementioned model

to be estimated. For an exhaustive review of different methods for estimating ψ the

reader may refer to McCulloch and Searle (2000), Breslow and Clayton (1993) and

Demidenko (2013), among others.

Let y =
Ä
y>1 , . . . , y

>

N

ä>
be the NT × 1 observation vector, where yi =

Ä
yi1, . . . , yini

ä>
is

the observation vector for the ith subject. Hence, using similar arguments as Tang et al.

(2006) the joint log-likelihood function of yi and bi, for i = 1, . . . ,N, is given by

L
Ä
ψ; yi, bi

ä
= −

q
2

log(2π) −
1
2

log |Ξ | +
ni∑

j=1

î
φ
¶

yi j θi j − a(θi j)
©

+ c(yi j;φ)
ó
−

1
2

b>i Ξ−1 bi.

(2.6)
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Thus, the marginal log-likelihood functions of yi and y are, respectively,

L
Ä
ψ; yi

ä
= log

∫
Rq

exp
¶

L
Ä
ψ; yi, bi

ä©
d bi

 (2.7)

and

L
Ä
ψ; y

ä
=

N∑
i=1

L
Ä
ψ; yi

ä
. (2.8)

Unfortunately, in most cases the expression (2.7) can not be evaluated in closed form.

However, Tuerlinckx et al. (2006) presented a complete review of methods for approx-

imating that expression.

The maximum likelihood approach requires the treatment of (2.8) and hence

the use of numerical methods, as the Gauss-Hermite quadrature, becomes a pow-

erful tool to lead with the q-dimensional required integration (see, for instance,

McCulloch and Searle, 2000). Also, it is possible to apply the Laplace approximation

in (2.7) to avoid the multidimensional integration. The use of such approximation is

directly associated with a penalized log-likelihood function which leads to ”maximum

penalized likelihood estimates” for β and b. The penalized log-likelihood function

assumes the form

L P

Ä
β, b
ä

=
N∑

i=1

n1∑
j=1

log
¶

f yi j | bi

Ä
yi j ; β , φ

ä©
−

1
2

N∑
i=1

b>i Ξ−1 bi, (2.9)

which is obtained via the Laplace approximation in (2.7) and by ignoring some terms of

the resulting expression. This facilitates the estimation of β and prediction of b, renders

the estimation of the variance-covariance parameters ξ difficult (Breslow and Clayton,

1993).

Alternative strategies of estimation based directly on the study of (2.7) are pre-

sented in McGilchrist (1994) and Nelder et al. (2006). Bayesian estimation tools for

these models are presented, for instance, in Zhao et al. (2006) and Zeger and Karim

(1991).
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In addition to the estimation of the fixed effects β, the variance-covariance param-

eters ξ and the precision parameter φ, GLMMs allow estimation of the within subject

dependence structure. In this sense, the intraclass correlation coefficient, Corr (Yir, Yis) ,

is extensively derived for particular cases of GLMMs in appendix C. The intra-

class correlation for these models is induced by the random- effects distribution

(McCulloch and Neuhaus, 2005).

It is worth noting that this work focuses on diagnostic methods for GLMMs and

neither on parameter estimation nor on prediction of the random effects. The procedures

developed in next sections will assume that the estimated values for ψ were obtained

via some of the estimation methods mentioned earlier. In practice, even though the

different estimation methods may lead to different values, the diagnostic procedures to

be developed may be applied to each of them.

2.3 Local influence: general approach

With the goal of investigating the sensitivity of the estimate of a unknown parameter

vector
Ä
ψ
ä

under small perturbations in some components of the model or data,

Cook (1986) proposed the concept of local influence. Essentially, the proposal is based

on measuring such sensitivity through the behavior of the likelihood displacement

LDω = 2
¶

L
Ä “ψ; y

ä
− L

Ä “ψω; y
ä©

, where “ψω denotes the maximum likelihood estimate

under L
(
ψ ; y

∣∣∣ω), which denotes the adopted form by the log-likelihood function of

the postulated model L
Ä
ψ; y

ä
when minor modifications are introduced into the model

or data through the perturbation vector ω ∈ Θ ⊆ Rl (l does not necessarily represent

the sample size). The way of introducing the small modifications is not unique and

depends on the objective of the investigation. The different possibilities for perturbing

a model are called perturbation schemes. However, investigating characteristics of LDω

for all ω ∈ Θ could be unfeasible. Then, Cook (1986) proposed to study the behavior

of LDω in a neighborhood of the no perturbation vector ω0, that is, ω0 is such that
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L
(
ψ; y

∣∣∣ω0

)
= L

Ä
ψ; y

ä
. According to Cook (1986) this study must be made by means

of the computation of the normal curvature Cd
Ä
ψ
ä
, in the direction of some unitary

vector d, of the graph LDω0+a d against a, where a ∈ R. Cook (1986) showed that Cd may

be expressed as

Cd
Ä
ψ
ä

= 2
∣∣∣d> ∆> L−1

ψψ ∆ d
∣∣∣ , (2.10)

where

Lψψ =
∂ 2 L

Ä
ψ; y

ä
∂ψ ∂ψ>

and ∆ =
∂ 2L

(
ψ; y

∣∣∣ ω)
∂ψ∂ω>

,

and these quantities are evaluated at ω = ω0 and ψ = “ψ.

Also, if the vector of parameters is partitioned into ψ =
Ä
ψ>1 ,ψ2

>
ä>

and we are

interested, for instance, in the local influence of the r × 1 vector ψ1, then the normal

curvature Cd
Ä
ψ1

ä
in the direction of the unitary direction d takes the form

Cd
Ä
ψ1

ä
=
∣∣∣d> ∆>

Ä
L−1
ψψ − L2 2

ä
∆ d

∣∣∣ , (2.11)

where

L2 2 =

 0r×r 0r×(s−r)

0(s−r)×r L−1
ψ2 ψ2

 and Lψ2 ψ2
=
∂ 2 L

Ä
ψ; y

ä
∂ψ2 ∂ψ

>

2
.

Although the normal curvature (Cook, 1986) has been extensively used, it is not invari-

ant under a uniform change of scale and could take any value. So, it is difficult to judge

its size objectively. To reduce these complexities, Poon and Poon (1999) proposed the

conformal normal curvature which has one to one correspondence with the normal

curvature Cd and takes values in [0, 1]. On the basis of equations (2.10) and (2.11) the

conformal normal curvature (Poon and Poon, 1999) is defined, respectively, by

B d
Ä
ψ
ä

=
−

ß
d> ∆>

Ä
Lψψ

ä−1
∆ d
™…

tr
{Ä

∆> L−1
ψψ ∆

ä2} (2.12)
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and

B d
Ä
ψ1

ä
=
−
¶

d> ∆>
Ä
L−1
ψψ − L 2 2

ä
∆ d
©…

tr
[¶

∆>
Ä
L−1
ψψ − L 2 2

ä
∆
© 2] . (2.13)

This implies that 0 ≤ B d
Ä
ψ
ä
≤ 1 and 0 ≤ B d

Ä
ψ1

ä
≤ 1. All the quantities are evaluated

at ω = ω0 and ψ = “ψ.

Even though the conformal normal curvature Bd may be computed in any direction

d, we may have particular interest in some of them and we will refer to such directions in

later sections. We will use the conformal normal curvature as a tool to the assessment

of local influence. Thus, we will direct our efforts to compute such curvature under

GLMMs.

2.4 On the Laplace approximation

In this section we extend some results on Laplace approximations presented in

Demidenko (2013). Essentially, our results are multivariate extensions of the expres-

sions presented in chapter 7 of that book. However, before describing these extensions

we mention some notation aspects that are essential for the understanding and deve-

lopment of our work. The proofs and details of each result in this section are reported

in appendix A.

2.4.1 Some remarks on notation

In this section we mention briefly some relevant facts that will be used through-

out. We begin with a general definition of derivatives for matrix valued functions

based on the vectorization of such functions. This definition is very important because

it allows an easy and systematic treatment of the Hessian matrix functions, which

under this definition may be computed employing differential theory presented in

Magnus and Neudecker (1999) or Abadir and Magnus (2005). Furthermore, we men-

tion some key aspects on the notation that are helpful in understanding and obtaining
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the later results.

Definition 1. Let F : S ⊆ Rq
−→ R r×s be defined on an open set S in Rq and suppose x0 ∈ S.

We define the Hessian matrix Fx0 x0 of F at x0 by

Fx0 x0 =
∂
∂x>

(
vec

[®
∂vec (F)
∂x>

´>])∣∣∣∣∣
x=x0

. (2.14)

Note that F could be partitioned as F = (F 1, F 2, . . . , F s), where F j =
Ä
F1 j, F2 j, . . . , Frj

ä>
and Fi j : S ⊆ Rq

−→ R for 1 ≤ i ≤ r and 1 ≤ j ≤ s. Thus, in terms of the common

partial derivative expression (2.14) assumes the form

Fx0 x0 =
Ä
F1
>

x0 x0
, . . . ,Fs

>

x0 x0

ä>
, where F jx0 x0

=
Ä
∂2 F1 j /∂x∂x>, . . . , ∂2 Frj /∂x∂x>

ä>∣∣∣
x=x0

.

Frequently, computing derivatives of matrix valued functions using common tech-

niques, like the strategies in Harville (1997), is somewhat complicated. For this reason,

we will use the differential theory described by Magnus and Neudecker (1999) or

Abadir and Magnus (2005), which enables to obtain the derivatives of interest in a

simpler way.

2.4.1.1 Fx x and F ∗x x

In this work we distinguish between the Hessian r q s× q matrix Fx0 x0 defined above

and the r q × s q matrix of Hessians F ∗x0 x0
=
Ä
F1x0 x0 , . . . ,Fs x0 x0

ä
, which contains the same

components that the Hessian matrix, but in a different pattern. Hence, it may be obtained

by means of reordering the components of the Hessian matrix Fx0 x0 .

Furthermore, it is possible to deduce that for vector valued functions, that is s = 1,

Fx0 x0 = F ∗x0 x0
. Consequently, for real valued functions, that is r = s = 1, such equivalence

is also satisfied.

To illustrate the difference between Fx x and F ∗x x we consider the special case F :

S ⊆ Rq
−→ R2×3. Then, F may be expressed in terms of its real valued components
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Fi j : S ⊆ Rq
−→ R for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3. Thus, we have

F =

F 1 1 F 1 2 F 1 3

F 2 1 F 2 2 F 2 3

 ; Fx0 x0 =
[
U 1 1 U 2 1 U 1 2 U 2 2 U 1 3 U 2 3

]>
; F ∗x0 x0

=

U 1 1 U 1 2 U 1 3

U 2 1 U 2 2 U 2 3



where Ui j = ∂ 2 F i j
¿
∂x ∂x> for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3.

Although F ∗x0 x0
appears to be a more natural definition for the Hessian of a matrix

function F, Magnus and Neudecker (1999) discussed the reasons and advantages of

the Definition 1.

The reader may be asking why distinguishing between Fx0 x0 and F ∗x0 x0
and the

answer is simple: the strategies exposed by Magnus and Neudecker (1999) and

Abadir and Magnus (2005) allow the direct and systematic computation of Fx0 x0 but

not of F ∗x0 x0
. However, for a general and suitable presentation of the results exposed in

this work, we require the structure F ∗x0 x0
. This can be seen in the next section, in which

we present multivariate consequences of the Laplace approximation.

Actually, Fx0 x0 , F ∗x0 x0
only when F is a matrix function (that is s , 1) and in these

cases Fx0 x0 is just the road for obtaining F ∗x0 x0
. In general, the direct computation of F ∗x0 x0

may be performed computing the Hessians of the components Fi j one by one, but this

procedure is impractical. Thus, we prefer to compute F x0 x0 and reordering its elements

to achieve F ∗x0 x0
.

It is worth mentioning that for a real valued function g the notation gx x given in

Definition 1 agrees with the usual definition of Hessian for this type of function. That is,

g x x = ∂ 2g
¿
∂ x ∂ x>. In addition, we write g x for denoting the partial derivative ∂g

¿
∂x.

2.4.2 Consequences of the Laplace approximation

The Laplace approximation may be used to avoid multidimensional integration.

Specifically, it is suitable for obtaining approximations for the integral

∫
Rq

exp {h (x)} d x, (2.15)
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where h is a unimodal function.

According to Demidenko (2013), if h is an unimodal function with continuous

partial derivatives up to second order, we have

∫
Rq

exp {h (x)} d x ≈ (2π)q/2 exp {h (‹x )}
∣∣−h x̃ x̃

∣∣−1/2 , (2.16)

where h x̃ x̃ is the Hessian matrix of h evaluated at the maximum point of h, denoted

by x̃.

Demidenko (2013) argued that to check if a function h is unimodal, it is enough

to prove that the negative Hessian matrix is positive definite for all x ∈ Rq. Some

authors, such as Breslow and Clayton (1993) based their estimation procedures for

GLMMs on this approximation. Other authors, such as Vonesh and Chinchilli (1996)

and Pinheiro and Bates (2000), give special relevance for this approximation as a pow-

erful tool in estimation processes for mixed effect models, where h is some function

related with the likelihood function corresponding to the involved model.

In our approach, we want to approximate ratios of integrals such as

∫
Rq
υ (x) exp {h (x)} d x∫
Rq

exp{h (x)} d x
, (2.17)

where υ : S ⊆ Rq
−→ R is a continuous function with continuous partial derivatives up

to second order. Next we propose some theorems for getting such approximations.

Theorem 1. Let h, υ : S ⊆ Rq
−→ R be continuous functions with continuous partial

derivatives up to second order in a neighborhood of the point x̃ where h is maximum. Thus,

we have that

∫
Rq

υ (x) exp {h (x)} d x ≈ (2π) q/2 exp {h ( x̃ )}
∣∣−h x̃ x̃

∣∣−1/2
ñ
υ (x̃) −

1
2

tr
¶(

h x̃ x̃
)−1 (υ x̃ x̃

)©ô
,

where h x̃ x̃ =
∂h (x)
∂x ∂x>

∣∣∣∣∣
x=x̃

and υ x̃ x̃ =
∂υ (x)
∂x ∂x>

∣∣∣∣∣
x=x̃
.
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Proof. See appendix A.1. �

Theorem 2. Under the same conditions of Theorem 1, we have

∫
Rq
υ (x) exp {h (x)} d x∫
Rq

exp {h (x)} d x
≈ υ (x̃) −

1
2

tr
¶(

h x̃ x̃
)−1 (υ x̃ x̃

)©
= υ (x̃) +

1
2

vec
Ä
Iq
ä> Ä

υ x̃ x̃ ⊗ Iq
ä

vec
Ä
−h−1

x̃ x̃

ä
,

where Iq denotes the identity matrix of order q and
⊗

represents the Kronecker product.

Proof. See appendix A.2. �

These theorems are essential to approximate moments of an unknown conditional den-

sity and to generalize results given in Demidenko (2013) on Laplacian approximations.

One consequence of the previous result is given in the following theorem.

Theorem 3. Let Υ : S ⊆ Rq
−→ Rr×s be a matrix valued function with real valued components

υi j : S ⊆ Rq
−→ R for 1 ≤ i ≤ r and 1 ≤ j ≤ s. Also, let A =

Ä
ai j
ä

be a r × s matrix, where

ai j =

∫
Rq
υ i j (x) exp {h (x)} d x∫
Rq

exp {h (x)} d x
,

and h is a function with the previous conditions. Then,

A ≈ Υ ( x̃ ) +
{

Ir ⊗ vec
Ä
Iq
ä>} Ä

Υ ∗x̃ x̃ ⊗ Iq
ä ¶

Is ⊗ vec
Ä
−h−1

x̃ x̃

ä©
, (2.18)

where Υ ∗x̃ x̃ is the matrix of Hessians of Υ.

Proof. See appendix A.3. �

Remember that Υ ∗x̃ x̃ may be obtained by reordering the elements of the Hessian

matrix Υ x̃ x̃ , which was considered in Definition 1 of section 2.4.1 (for more details, see

section 2.4.1.1).
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This theorem reflects the importance of employing the matrix of Hessians F ∗x0 x0
for

a matrix function F. This will be applied extensively throughout this work.

2.5 Concluding remarks

In this chapter we defined GLMMs and briefly described the local influence method-

ology for sensitivity analysis. Some aspects of notation were introduced, specifically

the difference between the Hessian matrix F x x and the matrix of Hessians F ∗x x. Also,

employing this notation we proposed some generalizations of the results presented in

Demidenko (2013) on the Laplace approximation. Such generalizations are one of the

key tools for the development of our work.



Chapter 3

Local influence in GLMMs

3.1 Introduction

In this chapter we adapt the local influence approach presented in section 2.3 to

GLMMs. Firstly, we mention some known works in sensitivity analysis for random

effect models and we expose our methodology in detail. After that, we justify the

impossibility of obtaining exact local influence measures for GLMMs and therefore we

propose approximate structures of those measures by means of the results in section

2.4.2. To approximate the local influence measures it is necessary to compute, at least in

an approximated way, moments of a random variable bi | yi. This is the aim of a specific

section in this chapter.

On the other hand, according to Ouwens et al. (2001) it is important to detect in-

fluential subjects and influential observations. Following these authors, influential ob-

servations may be distributed across the different subjects which are not necessarily

discriminated as potentially influential. Studying local influence at the subject and

observation levels, we can distinguish between the subject specific influence and the

influence due to features of observations on a specific subject. Thus, we perform our

sensitivity analysis both at the subject and at the observation levels.

17
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3.2 Works on local influence in random effect models

Several papers have been written under the framework of local influence for random

effect models. For example, Lesaffre and Verbeke (1998) studied local influence in linear

mixed models, which are a particular case of GLMMs. This idea is fully based in the

original proposal of Cook (1986). The same ideas were used by Rakhmawati et al.

(2017) in some special cases of GLMMs via one special perturbation scheme that only

allows to discriminate potentially influential subjects but not potentially influential

observations. Also that study focused exclusively in the computation of the ∆ matrix

given in (2.10) and the building of Lψψ is performed through fully numerical procedures

in special situations without providing a general structure. Using a Bayesian approach,

Ouwens et al. (2001) studied local influence in Poisson mixed models and in negative

binomial mixed models.

In a more general context, Tang et al. (2006) studied influence diagnostics in nonlin-

ear reproductive dispersion mixed models (NRDMM) which emcompass generalized

Cook distance and local influence tools. Although the NRDMMs are more general

than the GLMMs, the study of sensitivity by means of local influence performed by

these authors focused only on the fixed effects β. In fact, if we consider that approach

for GLMMs, it is possible to deduce that their local influence analysis is equivalent

to developing the curvatures (2.12) and (2.13) based on the penalized log-likelihood

function (2.9) considered by Breslow and Clayton (1993). This penalized log-likelihood

function, which is an approximation of the marginal log-likelihood function L
Ä
ψ; y

ä
,

is obtained via Laplace approximation (2.16) in (2.7) by ignoring some terms of the

resulting expression. The ignored terms according to Breslow and Clayton (1993) and

Tang et al. (2006) do not affect the estimation procedures of the fixed effects. This fa-

cilitates the estimation of the fixed effects β and the prediction of bi, but prevents the

estimation of the variance-covariance components ξ, because among the ignored terms

there are quantities with a strong dependence on ξ. Consequently, the study of local
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influence with respect to ξ based in penalized log-likelihood function is not accurate.

In fact, Breslow and Clayton (1993) suggested an alternative process motivated by the

estimation of the variance components in linear mixed models via restricted maximum

likelihood (REML). This is described in chapter 17 of Pawitan (2001). Indeed, this is

the reason for which the local influence analysis of Tang et al. (2006) is considered only

for β. Consequently, since our aim is to study the local influence on ψ, the penalized

log-likelihood function presented in (2.9) is not an option.

As it will be seen later, our work allows to identify observations and subjects with

an undue weight on the estimates for ψ =
Ä
β>, ξ>, φ

ä>
.

A different approach for the study of GLMMs, and in general for random effect

models, is to treat the random effects as missing observations. This inspired the use

of a new measure of influence, different from the likelihood displacement ( LDω ) de-

fined previously, but with similar properties. Such a measure is called Q-displacement

and has been extensively used by Zhu and Lee (2001) in models with missing obser-

vations and extended to sensitivity analysis for nonlinear structural equation models

with ignorable missing data by Lee et al. (2006), for nonlinear mixed effect models by

Lee and Xu (2004) and for GLMMs by Zhu and Lee (2003). The use of this measure of

influence is based on techniques such as MCMC, Gibbs sampling among others, which

could be computationally intensive (Nelder et al., 2006) and difficult in the construction

of useful procedures in practical problems. On this respect, Tapia et al. (2019b) and

Tapia et al. (2019a) performed studies of local influence in logistic and Poisson random

effect models and argued for this approach to avoid the multidimensional integration

emerging from (2.7).

We prefer to use the ideas of the seminal paper by Cook (1986), the proposal of con-

formal normal curvature given in Poon and Poon (1999) and perturbation schemes for

discriminating potentially influential subjects and observations. These considerations

will be treated with more detail in the next sections.



20 LOCAL INFLUENCE IN GLMMS

3.3 Local influence in GLMMs: our strategy

The diagnostic methods proposed in this work has the expressions (2.7) and (2.8) and

derived expressions of them as starting point. We will use the Laplace approximation,

specifically Theorems 1, 2 and 3, presented in section 2.4.2, to avoid the difficulties

of integration coming from the intractable high-dimensional integrals that the log-

likelihood function associated with the GLMMs, given in (2.8), involves.

In the context of GLMMs we are interested in identifying influential subjects and

observations. In the former, we use the ideas of Lesaffre and Verbeke (1998). Thus, for

computing the conformal normal curvature defined in (2.12) and (2.13), we consider

the perturbation vectorω ∈ RN , the direction defined by d = ui ∈ RN, where u i denotes

a vector with 1 in the ith position and zeros in the remaining positions and we regard

the ith subject as likely influential if Bu j = B j > 2 B , where B = {Bi : i = 1, . . . ,N}. In the

latter case, we compute Bd using ω ∈ RNT with direction defined by the partitioned

vector d =
Ä
d>1 , . . . ,d

>

N

ä>
= ui j ∈ RNT , which assumes zero everywhere, except in

the jth position of di ∈ Rni , in which it contains 1. Following Lee et al. (2006) we

will say that the jth observation of the ith subject is potentially influential if Bui j =

Bi j > k1 B + k2 SD(B), where B =
¶

Bi j : j = 1, . . . ,ni and i = 1, . . . ,N
©

and k1 and k2 are

appropriately selected constants. In both cases, the index plots of Bi and Bi j may reveal

individually influential subjects and observations, respectively. Also, as suggested by

Cook (1986), we study the normal curvature Bd in the direction of the eigenvector of

−∆ L−1
ψψ ∆ corresponding to the largest eigenvalue. This vector will be denoted by dmax

and maximizes Bd. It is worth mentioning that in the former dmax ∈ RN and in the

latter dmax ∈ RNT . Inspect the index plot of |dmax|may reveal simultaneously influential

subjects and observations.

For obtaining exact local influence measures like those derived by Lesaffre and Verbeke

(1998), Espinheira et al. (2008) and Paula (2013a) for linear mixed models, beta regres-

sion models and double generalized linear models, respectively, we need a closed form
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for the log-likelihood function of the postulated model. Nevertheless, this is not satis-

fied in GLMMs, since in general L
Ä
ψ; y

ä
does not have closed form (see, section 2.2.1).

Therefore, we will compute approximate local influence measures for these models

employing the results given in section 2.4.2 on Laplace approximation jointly with the

integral-based approach proposed by Rakhmawati et al. (2017). This approach basically

consists of using the integral expression for L
Ä
ψ; y

ä
given in (2.8) and the property of

interchangeability of integration and derivation under mild regularity conditions. We

want to emphasize that even though the Laplace approximation is the basis of the

results exhibited in section 2.4.2, we do not intend to approximate the marginal log-

likelihood L
Ä
ψ; y

ä
and from such approximation to compute the curvatures defined

in (2.12). We develop the analysis of sensitivity from the full expression for L
Ä
ψ; y

ä
and since the computed curvatures do not have a closed form, approximations will be

obtained by using the results of section 2.4.2.

From here, the priority will be to compute general structures, at least approximated,

for the components of the normal conformal curvature defined in (2.12), namely ∆

and Lψψ. Thus, in the next section we will begin with the computation of Lψψ and

consequently of Lψ, which do not vary with the perturbation scheme.

3.4 Score Lψ and Hessian Lψψ

In this section, we provide the score Lψ = ∂L
Ä
ψ; y

ä¿
∂ψ and the Hessian matrix

Lψψ. In appendices B.3 and B.4 are presented the details on the derivation of these

expressions.

To obtain the structures for the score function and the Hessian matrix, we use funda-

mental concepts of linear algebra as the r s× r s commutation matrix Kr s defined implic-

itly by the equation Kr s vec ( A ) = vec
Ä
A>
ä

for any r× s matrix A (Abadir and Magnus

, 2005). This commutation matrix Kr s will be denoted by Kr when s = r . The explicit

definition of Kr s may be reviewed in Harville (1997).
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Also, we will employ the q2
× q (q + 1)/2 duplication matrix Gq defined im-

plicitly by the expression G q vech ( A ) = vec ( A ) for any square q × q matrix

(Abadir and Magnus, 2005). Again, the explicit definition of G q may be reviewed in

Harville (1997). Remember that vech (A) denotes the q
Ä
q + 1

ä
/ 2 vector that is ob-

tained from vec (A) by deleting all supradiagonal elements of A. For convenience we

represent the r2
× r2 matrix I r2 + Kr by Nr . The duplication matrix G q and the com-

mutation matrix K rs are available in the matrixcalc package of the R - software

(R Core Team, 2018).

In addition, the following definitions are necessary for an adequate and simplified

presentation of the results.

Definition 2. Let A represent an m×n matrix and B a p×q matrix. Then, we define the matrix

valued functions Λq : Rm×n
−→ Rm n q×q and Πm : Rp×q

−→ Rp q m×m by

Λq (A) =
Ä
In ⊗Kqm

ä Ä
vec (A) ⊗ Iq

ä
and Πm (B) =

Ä
Kqm ⊗ Ip

ä
(Im ⊗ vec (B)) . (3.1)

Definition 3. Let Ini be the ni × ni identity matrix and ei j its jth column. Then, the direct sum

of the ei j’s is denoted by Ωi. That is, Ωi = ⊕ni
j=1ei j. Note that Ωi is an n2

i × ni matrix.

Now, given (2.8), the computation of Lψ and Lψψ will be obtained from the contribution

of the ith subject, Li = L
Ä
ψ; yi

ä
to the marginal log-likelihood function L = L

Ä
ψ; y

ä
.

Let

• Vi = ⊕ni
j=1Vi j and Wi = ⊕ni

j=1Wi j be the weight matrix (McCulloch and Searle

, 2000), where Wi j =
Ä
dµi j/d ηi j

ä2
/Vi j,

• τi = W1/2
i V−1/2

i

Ä
yi − µi

ä
, λi = bi ⊗ bi, νi =

ni∑
j=1

¶
yi j θi j − a(θi j) + cφ

Ä
yi j;φ

ä©
,

• Ai = dµi/dη
>

i = ⊕ni
j=1dµi j/dηi j, ρi =

Ä
ρi1, ρi2, . . . , ρi ni

ä>
,

• ρi j =
d

dηi j

(
dθi j

dµi j

dµi j

dηi j

)
=

d2θi j

dµ2
i j

(
dµi j

dηi j

)2

+
dθi j

dµi j

d2µi j

dη2
i j

and
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• Mi = Dyi−µi
Dρi
− W1/2

i V−1/2
i Ai, where for a r × 1 vector α, Dα = ⊕r

j=1α j and

α = (α1, α2, . . . , αr)
>.

Taking into account that

Li
ψ =

(Ä
Li
β

ä>
,
Ä
Li
ξ

ä>
,Li

φ

)>
and Li

ψψ =


Li
ββ Li

βξ Li
βφ

Li
ξβ Li

ξξ Li
ξφ

Li
φβ Li

φξ Li
φφ

 , (3.2)

it is possible to prove that (see appendices B.3 and B.4)

Li
β = φE

(
X>i τi

∣∣∣ yi

)
, Li

ξ = −
1
2

G>q
¶

vec
Ä
Ξ−1
ä
− (Ξ ⊗ Ξ)−1 E

Ä
λi| yi

ä©
, Li

φ = E
Ä
νi| yi

ä
(3.3)

and

Li
ββ = φ2 Var

(
X>i τi

∣∣∣ yi

)
+ φE

(
X>i Mi Xi

∣∣∣ yi

)
,

Li
φφ =

ni∑
j=1

cφφ
Ä
yi j;φ

ä
+ Var

Ä
νi| yi

ä
,

Li
βξ =

φ
2

Cov
(

X>i τi,λi

∣∣∣ yi

)
(Ξ ⊗ Ξ)−1 Gq,

Li
βφ = E

(
X>i τi

∣∣∣ yi

)
+ φCov

(
X>i τi, νi

∣∣∣ yi

)
,

Li
ξφ =

1
2

G>q (Ξ ⊗ Ξ)−1 Cov
Ä
λi, νi| yi

ä
and

Li
ξξ =

1
2

G>q

ñ
Iq2 −

{
E
Ä
λi| yi

ä>
⊗ Iq2

}
P +

1
2

(Ξ ⊗ Ξ)−1 Var
Ä
λi| yi

äô
(Ξ ⊗ Ξ)−1 Gq,

(3.4)

where P =
¶

Iq ⊗Πq
Ä
Ξ−1
ä©

+
¶
Λq
Ä
Ξ−1
ä
⊗ Iq
©

. Also, Li
ξβ =

Ä
Li
βξ

ä>
, Li

φβ =
(
Li
βφ

)>
and

Li
φξ =

(
Li
ξφ

)>
.

The computations above are valid for i = 1, . . . ,N. Thus, it is enough to take into

account that Lψψ =
∑N

i=1 Li
ψψ and Lψ =

∑N
i=1 Li

ψ for obtaining the score Lψ and the

Hessian Lψψ .

Indeed, the expected values and the variances considered above should be expressed

as E bi | yi

Ä
· | yi

ä
and Var bi | yi

Ä
· | yi

ä
. However, because the simplicity in the notation
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and since this must not give rise to doubt we prefer using E
Ä
· | yi

ä
and Var

Ä
· | yi

ä
,

respectively.

3.5 Approximate local influence through the Laplace ap-

proximation

In this section we will use the results obtained in section 2.4.2 on Laplace approxi-

mation with the aim of achieving approximated expressions for the components of the

conformal normal curvature defined in (2.12) and (2.13).

3.5.1 Remark on the notation

We distinguish between the symbols ” ̂ ” and ” ˜ ”. The first one refers to the

estimates of the parameters involved in a GLMM (ψ), and the latter is related with the

predicted values for the random effects b. Unlike generalized linear models (GLMs)

some of the expressions defined in section 3.4, such as Wi , Mi , τi and νi rely onψ and

bi jointly and throughout we need to discriminate when these expressions are evaluated

at “ψ only or at “ψ and b̃i jointly. Therefore, an accurate notation is necessary.

For example, the notation Ŵi means that the weight matrix Wi is evaluated at “ψ but

not at b̃i and consequently the matrix Ŵi depends on bi only. The natural choice for

representing Wi evaluated at “ψ and b̃i jointly lead to a tedious notation and we prefer

to use W̃i to denote this indicate. In summary

Ŵi = Wi

∣∣∣
ψ̂

and W̃i = Ŵi

∣∣∣
b̃i

= Wi

∣∣∣∣
ψ̂ , b̃i

, for i = 1, . . . ,N.

As a consequence, for other expressions that rely on bi only, such as λi, the notation λ̃i

represents λi | b̃i
as is usual.
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3.5.2 Approximate computation of the moments of bi | yi

The expressions in (3.3) and (3.4) require the computation of conditional expec-

tations of the form E bi | yi

¶
κ (bi) | yi

©
, for some real valued function κ. Particularly, in

the simplest case we need to compute E bi | yi

Ä
bi | yi

ä
, defined in McCulloch and Searle

(2000) as the best predictor for bi. But, to compute exactly that expression the knowledge

of the distribution of bi | yi is required, which is explicitly available only for conjugate

distributions (see for instance, Nelder et al., 2006).

Unfortunately, for the majority of GLMMs such distribution does not have a closed

form; hence, accurate expressions are unfeasible. Thus, computational tools such as the

Gibbs sampling, Markov-Chain Monte-Carlo methods or numerical methods such as

Gauss-Hermite integration become important to evaluate those quantities. Neverthe-

less, according to Nelder et al. (2006) the use of such approximation tools is computa-

tionally intensive and heavier as the dimension of bi increases. For instance, Tapia et al.

(2019b) and Tapia et al. (2019a) used those techniques in a sensitivity analysis via a

local influence approach for longitudinal count responses and for mixed effect logistic

regression models, respectively. Although such proposals are very useful, they do not

allow an accurate generalization for each GLMM.

Instead, we will evaluate the conditional expectations involved in (3.3) and (3.4)

by means of Laplace approximations studied in section 2.4.2. Note that any of such

expectations evaluated at “ψmay be expressed in the form of the Theorem 3 (see section

2.4.2) where h (bi) = L
Ä“ψ; yi, bi

ä
and υi j varies according to the corresponding expected

value. In what follows, our focus is on approximate computation for the moments of

the random variable bi | yi , for i = 1, 2, . . . ,N.

Remember that the use of the results in section 2.4.2 entails the existence and search

of a maximum of the function h and in our case, a maximum in bi of L
Ä“ψ; yi, bi

ä
,

for i = 1, . . . ,N, given in (2.6). In this case, we assume that the vector of estimated

parameters “ψ was obtained by means of some known procedure for this purpose as

penalized maximum likelihood, maximum likelihood, restricted maximum likelihood
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or Bayesian tools such as maximum a posteriori (MAP) estimation (see, for instance,

Demidenko, 2013; McCulloch and Searle, 2000). Thus, we want to maximize (in bi) the

function h (bi) = L
Ä“ψ; yi, bi

ä
to achieve ‹bi and this may be implemented via an iterative

process or in practice, for example, via the gamlss package (Stasinopoulos et al., 2017)

in the software R (R Core Team, 2018). The details on the computation of b̃i will be

treated in the next sections. Once b̃i is obtained, the Theorem 3 in section 2.4.2 provides

an analytical way for approximating moments of the random variable bi | yi. Thus, for

i = 1, . . . ,N, we have h ( bi ) = L
Ä“ψ; yi, bi

ä
and

−h b̃i b̃i
= −L b̃i b̃i

Ä“ψ; yi, bi
ä

=
Å“φZ>i Ŵi Zi + “Ξ−1

ã∣∣∣∣
bi=b̃i

= “φZ>i W̃i Zi + “Ξ−1
,

which is positive definite (see, appendix B.2) and hence h (bi) = L
Ä“ψ , yi , bi

ä
is uni-

modal (Demidenko, 2013).

Although the unimodality is not guaranteed in the non-canonical cases, we will

use the outcomes given in section 2.4.2, replacing −h b̃i b̃i
= −L b̃i b̃i

Ä“ψ; yi, bi
ä

by

Eyi|bi

¶
−L bi bi

Ä“ψ ; yi, bi
ä©∣∣∣

bi=b̃i
. This fact is commonly used when the Laplace ap-

proximation is required as in the approximate inference proposed for GLMMs by

Breslow and Clayton (1993). In that sense, we can deduce (see appendix B.2) that

E yi | bi

(
−h bi bi

)∣∣
bi=̃bi

= E yi | bi

¶
−L bi bi

Ä
ψ̂; yi, bi

ä©∣∣∣
bi=̃bi

=
(
φ̂Z>i “Wi Zi + Ξ̂

−1
)∣∣∣

bi=̃bi

= φ̂Z>i ‹Wi Zi + Ξ̂
−1
,

where Ŵi

∣∣∣
bi=b̃i

= W̃i.

Anyway, if C = C (bi) is an r × s matrix, we can rewrite (2.18) as

E bi|yi

(
C | yi

)
≈ ‹C +

{
Ir ⊗ vec

Ä
Iq
ä>} (

C ∗
b̃i b̃i
⊗ Iq

) ï
Is ⊗ vec

ß(
φ̂Z>i W̃i Zi + Ξ̂

−1)−1™ò
, (3.5)

where b̃i maximizes L
Ä“ψ; yi, bi

ä
. This expression is the key tool for approximating

equations (3.3) and (3.4) and therefore the conformal normal curvature (2.12). Thus, it

will be used extensively throughout.
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Note that (3.5) may be reduced if C = c is a vector (s = 1). So, we have

E bi|yi

(
c | yi

)
≈ c̃ +

{
Ir ⊗ vec

Ä
Iq
ä>} (

c b̃i b̃i
⊗ Iq

)
vec
ß(
φ̂Z>i W̃i Zi + Ξ̂

−1)−1™
, (3.6)

because from the results shown in section 2.4.1.1, we have c bi bi = c ∗bi bi
.

In addition, when q = 1 and Zi = 1ni (random intercept GLMMs) the equation (3.5)

may be expressed as

E bi|yi

(
C | yi

)
≈ ‹C + C ∗

b̃i b̃i
×

¶
φ̂ tr
Ä

W̃i
ä

+ ξ̂−1
©−1

. (3.7)

Motivated by the usefulness of equation (3.5) in later results and for an accurate

presentation of these, we propose the following definitions.

Definition 4. Let C : S ⊆ Rq
−→ Rr× s be a matrix function and bi and yi as defined previously

for i = 1, . . . ,N . Then, we define the matrix function R1 as

R1
Ä
C ; b̃i

ä
= C +

{
Ir ⊗ vec

Ä
Iq
ä>} (

C ∗
b̃i b̃i
⊗ Iq

) ï
Is ⊗ vec

ß(
φ̂Z>i W̃i Zi + Ξ̂

−1)−1™ò
.

Definition 5. Let C an r × s matrix, B a t × s matrix and bi, for i = 1, 2, . . . ,N. We define the

matrix valued function R2 as

R2
Ä
C , B ; b̃i

ä
= R1

Ä
C B> ; b̃i

ä
− R1

Ä
C ; b̃i

ä
R1
Ä
B ; b̃i

ä>
.

Note that the application of the functions R1 and R2 requires the computation

of ( C ) ∗bibi
,
Ä

C B>
ä ∗

bibi
and ( B ) ∗bibi

. Here theory of matrix differentiation described in

Magnus and Neudecker (1999) or Abadir and Magnus (2005) is important, because it

allows the computation of ( C )bibi
,
Ä

C B>
ä

bibi
and ( B )bibi

. Once these Hessian matrices

are computed we can reorder their elements, according the guidelines of section 2.4.1.1,

to obtain ( C ) ∗bibi
,
Ä

C B>
ä ∗

bibi
and ( B ) ∗bibi

.
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Following these definitions, equation (3.5) assumes the form

E
Ä
C | yi

ä
≈ R1

Ä
C ; b̃i

ä
, for i = 1, . . . ,N.

Now, for the computation of b̃i , we can use an optimization algorithm such as

Newton-Raphson or Fisher scoring. Also, the gamlss package in the R software

(R Core Team, 2018) could provide b̃i directly. The details on the computation of b̃i

for i = 1, . . . ,N, are given in the next two sections.

3.5.2.1 Iterative process for computing ‹bi

The Newton-Raphson iteration for getting the maximum of L
Ä“ψ; yi, bi

ä
, denoted by

b̃i, for i = 1, . . . ,N, is

b(s+1)
i = b(s)

i +
¶
−L bi bi

Ä “ψ ; yi , b (s)
i

ä© −1 ¶
L bi

Ä “ψ ; yi , b (s)
i

ä©
, s = 0, 1, . . . , (3.8)

where s denotes the iteration index. It is possible to deduce (see appendix B.2) that

L bibi

Ä“ψ; yi, bi
ä

= “φZ>i M̂i Zi −
“Ξ−1

and L bi

Ä“ψ; yi, bi
ä

= “φZ>i τ̂i −
“Ξ−1

bi.

Also, it can be shown that in the canonical exponential family (θi j = ηi j), the above

expressions take the forms

L bibi

Ä“ψ; yi, bi
ä

= − “φZi
>ŴiZi −

“Ξ−1
and L bi

Ä“ψ; yi, bi
ä

= “φZ>i
Ä
yi − µ̂i

ä
− “Ξ−1

bi.

In fact, this is very important because −L bi bi

Ä“ψ; yi, bi
ä

= “φZ>i ŴiZi + “Ξ−1
is positive

definite (see appendix B.2), and therefore the iterative process (3.8) converges in a finite

number of steps.

In the non-canonical cases, it is not always possible to prove that −Lbibi

Ä“ψ; yi, bi
ä

is positive definite and the iterative process (3.8) may not converge. Thus, we use the
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Fisher scoring rather than Newton-Raphson iteration procedure, which is obtained

from (3.8), replacing −Lbibi

Ä“ψ; yi, bi
ä

by Eyi|bi

¶
−Lbibi

Ä“ψ; yi , bi
ä©

= “φZ>i Ŵi Zi + “Ξ−1
, that

is positive definite (see appendix B.2).

Among the non-canonical cases we have a special situation, where (2.1) is the gamma

probability density function and the link function g(.) is log(.). It is possible to prove,

as in the canonical cases, that −Lbi bi

Ä“ψ; yi, bi
ä

is positive definite and therefore, under

this model, we can use the results given in section 2.4.2 directly. The gamma normal

model is very useful in practice and later we will employ it in one of our applications.

3.5.2.2 Computing b̃i through gamlss package

For fixed ψ =
Ä
β>, ξ>, φ

ä>
, maximizing the joint log-likelihood function of yi and

bi, given in (2.6) to obtain b̃i is equivalent to maximizing the penalized log-likelihood

function (see, for instance Demidenko, 2013; McCulloch and Searle, 2000), namely

L P

Ä
β, bi

ä
=

ni∑
j=1

log
¶

fyi j | bi

Ä
yi j;β, φ

ä©
−

1
2

b>i Ξ−1 bi, i = 1, . . . ,N,

or in the more general form

L P

Ä
β, b
ä

=
N∑

i=1

ni∑
j=1

log
¶

fyi j | bi

Ä
yi j;β, φ

ä©
−

1
2

N∑
i=1

b>i Ξ−1 bi, (3.9)

where fyi j | bi

Ä
yi j ; ψ

ä
is defined in (2.1) and b =

Ä
b>1 , b

>

2 , . . . , b
>

N

ä>
. It is precisely

the above expression that motivates studying GLMMs as special cases of general-

ized additive models for location, scale and shape (GAMLSS) with random effects

(Stasinopoulos et al., 2017).

Random effect models in GAMLSS allow modeling the location, scale and shape pa-

rameters (see, for instance, Stasinopoulos et al., 2017) and the estimation and prediction

of the fixed and random effects, respectively, are performed through the maximization,

on the random and fixed effects jointly, of an accurate penalized log-likelihood function
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(Rigby and Stasinopoulos, 2005). When the scale and shape parameters are assumed

to be constant (as in the GLMMs), the log-likelihood penalized function associated to

the GAMLSS model takes the simplified form given by (3.9). Thus, it makes sense to

consider GLMMs as a special case of the random effect models in GAMLSS. In the

GAMLSS framework, a GLMM can be specified from (2.1) jointly with (2.5) assuming

that b ∼ NN q
Ä
0; ⊕N

i=1Ξ
ä
.

By studying GLMMs as a special case of the random effects models in GAMLSS,

we can use the tools offered by the gamlss package in the R software (R Core Team,

2018) for fitting GLMMs. According to Stasinopoulos et al. (2017) this package allows,

among its multiple utilities, to fit GLMMs by means of the gamlss() function jointly

with the random() and re() functions. The random() function is used exclusively for

dealing with random intercept GLMMs and the re() function focuses on more general

GLMMs. Another option in the gamlss package is the gamlssNP() function, which

hast he fitting of random intercept GLMMs among its functionalities. For more details,

the reader is referred to Stasinopoulos et al. (2017). In the random effects models in

GAMLSS, the re() and random() functions allow the inclusions of random effects into

the predictors associated with different parameters as scale or shape. However, this is

not the aim of this work.

Actually, in the context of GLMMs, the two basic algorithms in the gamlss pack-

age called CG (Cole and Green) and RS (Rigby and Stasinopoulos), described in

Rigby and Stasinopoulos (2005), allow the maximization of (3.9) with respect to b

and β to obtain the maximum penalized likelihood estimates of the fixed and random

effects. However, this is not the first time that (3.9) was used with that purpose. In fact,

this had been considered by Breslow and Clayton (1993) with the aim of obtaining

the previously mentioned estimates and its maximization is performed using a Fisher

scoring algorithm. In that sense, according to Rigby and Stasinopoulos (2005) the re()

and random() functions of the gamlss package have their theoretical justification in

the work of Breslow and Clayton (1993). This is because although the gamlss package
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has the general algorithms CG and RS, these are focused on the maximization of a

general version of (3.9). Nevertheless, in the spacial case of a GLMM, the estimates

of the variance components ξ can not be obtained from (3.9) and therefore additional

tools are required. Such tools are provided by the approximate inference proposed by

Breslow and Clayton (1993) for GLMMs. Specifically, the estimates of ξ are obtained

using restricted maximum likelihood (REML).

So far, we assumed that ψ was estimated and we focused on getting b̃i which

maximizes L
Ä“ψ; yi, bi

ä
or equivalently LP

Ä
β, b
ä

given in (3.9). That is, our procedures

are valid once “ψ is obtained. In practice, maximum likelihood, MAP (maximum a

posteriori) or maximum penalized likelihood estimates are slightly different. Thus,

regardless of the estimation procedure used to fit a GLMM, our diagnostic proposal

may be used.

Precisely, as mentioned above, in the gamlsspackage the penalized likelihood (3.9) is

maximized in b and β to produce ”maximum penalized likelihood estimates” for β and

bi. The latter is of special interest in our diagnostic proposal. Therefore, it is reasonable

the use of the GAMLSS framework for getting “ψ and b̃ directly, without program-

ming the iterative procedure (3.8) explicitly. In fact, the maximization algorithm of

the penalized log-likelihood associated to the random effects GAMLSS described in

Rigby and Stasinopoulos (2005) is based on Newton-Raphson iterations.

On the other hand, our diagnostic tools are not restricted to the gamlss pack-

age, since given the iterative process (3.8), we can obtain b̃ from other functions

to fit GLMMs, as glmer() of the lme4 package and glmmPQL() of the MASS package

(Venables and Ripley, 2002). In that sense, although all the available packages for fit-

ting GLMMs provide predicted values for the random effects, these do not necessarily

correspond to b̃i, for i = 1, . . . ,N, that we require. Some packages produce best linear

unbiased predicted (BLUP) (see for instance, McCulloch and Searle, 2000), which is an

approximation for E
Ä
bi | yi

ä
that agrees with b̃i, for example, in the normal linear mixed

model, but not in general (Pawitan, 2001). However, the BLUP may be considered as
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starting value b (0)
i in the iterative process (3.8) to obtain ‹bi . In our case, we prefer to

use the GAMLSS framework.

3.6 Approximation for L “ψ “ψ
Now, denoting L i = L

Ä
ψ ; yi

ä
and taking into account the definitions of R1 and R2

given in section 3.5.2, we can obtain the approximated structures for (3.4) given by

Li
β̂ β̂
≈ “φ 2 R2

Ä
X>i τ̂i , X>i τ̂i ; b̃i

ä
+ “φR1

Ä
X>i M̂i Xi ; b̃i

ä
,

Li
φ̂ φ̂
≈

ni∑
j=1

c φ̂ φ̂
Ä
yi j ; φ

ä
+ R 2

Ä
ν̂i , ν̂i ; b̃i

ä
,

Li
β̂ ξ̂
≈

“φ
2

¶
R2

Ä
X>i τ̂i , λi ; b̃i

ä© Ä“Ξ ⊗ “Ξä−1
Gq , (3.10)

Li
β̂ φ̂
≈ R1

Ä
X>i τ̂i ; b̃i

ä
+ “φR2

Ä
X>i τ̂i , ν̂i ; b̃i

ä
,

Li
ξ̂ φ̂
≈

1
2

G>q
Ä“Ξ ⊗ “Ξä−1

R2

Ä
λi , ν̂i ; b̃i

ä
and

Li
ξ̂ ξ̂
≈

1
2

G>q

ñ
Iq2 −

{
R1

Ä
λi ; b̃i

ä>
⊗ Iq2

}
P̂ +

1
2

Ä“Ξ ⊗ “Ξä−1
R2

Ä
λi , λi ; b̃i

äô
(Ξ ⊗ Ξ)−1 Gq ,

where P̂ =
ß

Iq ⊗Πq

Å“Ξ−1
ã™

+
ß
Λq

Å“Ξ−1
ã
⊗ Iq

™
. Finally, letting

• ρ̇i =
Ä
ρ̇i1, ρ̇i2, . . . , ρ̇i ni

ä>
, where ρ̇i j =

dρi j

dηi j
,

• Ṁi = Dyi−µi
Dρ̇i
−W1/2

i V−1/2
i Ȧi with Ȧi =

⊕ni
j=1 d 2µi j/d η2

i j and

• M̈i = Dyi−µi
Dρ̈i
−W1/2

i V−1/2
i Äi with Äi =

⊕ni
j=1 d 3µi j/d η3

i j ,

and according to the Definitions 4 and 5 given in section 3.5.2, it is necessary taking

into account the following expressions extensively developed in appendix B.5:

(
X>i τi

)
bibi

=
(
X>i ⊗ Z>i

)
Ωi
(
Ṁi − 2 Dρi

Ai
)

Zi ,

(
X>i τiτ>i Xi

)
bibi

=
(
Np ⊗ Z>i

)¶(
X>i ⊗ X>i τi ⊗ Ini

)
Ωi
(
Ṁi − 2Dρi

Ai
)

+
Ä

Ip2 ⊗MiXi

ä
Λp
(
Ip
)

X>i Mi

©
Zi ,
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(
X>i Mi Xi

)
bibi

=
{(

X>i ⊗ X>i
)
Ωi ⊗ Z>i

}
Ωi
{

M̈i − 3
(
Dρi

Ȧi + Dρ̇i
Ai
)}

Zi ,

(
ν 2

i
)

bibi
= 2 Z>i

(
νi Mi + τi τ>i

)
Zi and (νi)bibi

= Z>i Mi Zi ,

(λi)bi bi
=
(
Nq ⊗ Iq

)
Λq
(
Iq
)
, (3.11)

(
X>i τi λ

>

i
)

bi bi
=
Ä

Iq2 ⊗ X>i ⊗ Z>i
ä [

(λi ⊗Ωi)
(
Ṁi − 2Dρi

Ai
)

Zi +
{

Nq ⊗ vec (Mi)
} (

Iq ⊗ bi
)]

+
{

Nq ⊗ X>i τi ⊗ Iq
}

Λq
(
Iq
)

+ Λp
{(

Iq ⊗ b>i
)

Nq
}

X>i Mi Zi ,

(
X>i τi νi

)
bi bi

= (Xi ⊗ Zi)
>
{
νiΩi

(
Ṁi − 2 Dρi

Ai
)

+ vec (Mi) τ>i + Nni (Mi ⊗ τi)
}

Zi ,

(λi νi)bi bi
=
(
Nq ⊗ Iq

)
Λ q
(
Iq
) (

Iq νi + bi τ>i Zi
)

+
Ä

Iq2 ⊗ Z>i
ä [

(λi ⊗Mi Zi) +
{

Nq
(
Iq ⊗ bi

)
⊗ τi

}]
and

(
λi λ

>

i
)

bi bi
=
Ä

Nq2 ⊗ Iq

ä Äî
Nq
(
Iq ⊗ bi

)
⊗ vec

¶(
Iq ⊗ bi

)>Nq

©ó
+
¶
Λ q2

(
λ>i
)

Nq ⊗ Iq

©
Λq
(
Iq
)ä
.

In fact, the quantities τi , Dρi
, Ai , Ȧi , Mi , Ṁi , λi and νi in the right side of the above

expressions should have the symbol ” ˜ ” , but we omit it by the simplicity. Also, φ

should be replaced by “φ.

In addition, from section 2.4.1.1 we have that F bi bi = F ∗bi bi
when F is a vector function,

but not in general. However, this is not a problem, because it is enough to reorder the

elements of F bi bi to obtain F ∗bi bi
, according to the results of the same section. This

procedure may be computationally implemented without major difficulties.

Hence, replacing suitably expressions (3.11) in (3.10), we obtain an approximate

analytical expression for L i
ψψ given in (3.2), and consequently for the Hessian matrix

Lψψ =
∑N

i=1 L i
ψψ. For details of these computations, the reader may be refer to appendix

B.5. Furthermore, it is very important to mention that these procedures are valid for any

GLMM since in general depend of the weight matrix Wi, the variance function matrix

Vi and the design matrices Xi and Zi, among others. The commutation and duplication

matrices Km n and Gq, respectively, are implemented in the matrixcalc package of the



34 LOCAL INFLUENCE IN GLMMS

R software (R Core Team, 2018).

Although these expressions seem complex, great simplifications are possible when

the GLMM of interest belongs to the canonical exponential family and/or correspond

to random intercept GLMMs. Some of these reductions are presented below.

Canonical exponential family

In the canonical cases (θi j = ηi j), we have the following simplifications:

ρ̇i = ρi = 0ni×1 , τi = yi − µi , −Mi = Wi = Vi = Ai

Dρ̇i
= Dρi

= 0ni×ni , Ṁi = −Ȧi and M̈i = −Äi.
(3.12)

This leads to notorious reductions in expressions given in (3.11) and consequently in

the approximated structure for (3.2) from the structures (3.10). To illustrate, we show

some of the equations in (3.11) in the canonical form. Thus, we haveÄ
X>i τi

ä
bibi

=
¶

X>i
Ä
yi − µi

ä©
bibi

= −
Ä
X>i ⊗ Z>i

ä
Ωi Ȧi Zi andÄ

X>i Mi Xi
ä

bibi
= −

Ä
X>i Vi Xi

ä
bibi

= −
¶Ä

X>i ⊗ X>i
ä
Ωi ⊗ Z>i

©
ΩiÄi Zi.

This procedure may be performed for each of the formulas in (3.11).

Random intercept GLMMs

On the other hand, for random intercept GLMMs, that is, when q = 1 and Zi = 1ni ,

we obtain

Iq = Iq2 = 1 , Kq = 1 , Gq = 1 and Nq = Nq2 = 2. (3.13)

In addition, for two matrices A and B, if q = 1 we obtain from Definition 2 that

Λ1 (A) = vec (A) and Π1 (B) = vec (B). To exemplify, some of the expressions in (3.11)
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assume the following structures:

(νi)bi bi
= tr ( Mi) and

Ä
ν2

i

ä
bi bi

= 2νi tr (Mi) + 2 tr ( Ti ) 2 ,

where T i = W 1/2
i V− 1/2

i Dy i−µ i
. Analogously, it is possible to get simplified forms for

each of the expressions given in (3.11).

Furthermore, Definitions 4 and 5 in section 3.5.2, which allow approximated com-

putations for the moments of bi | yi, assume simple structures that are consequences of

(3.7). It should be clear for the reader that for random intercept GLMMs in the canoni-

cal exponential family the simplifications are even more drastic. The random intercept

logistic model and the random intercept Poisson model with logarithmic link are some

examples with these features. In that sense, the logarithmic link is special, because the

matrices Ai , Ȧi and Äi (which are related with the link function g ) are the same when

this link function is considered. In this sense, we refer in detail to the random intercept

GLMMs in section 3.8.

In the next section, equations in (3.11) will be used to approximate the matrix ∆,

defined in (2.10), for different perturbation schemes.

3.7 Conformal normal curvature under different pertur-

bation schemes: approximation for ∆

According to the mentioned criteria in section 3.3, we intend to discriminate possibly

influential subjects and observations. Thus, we focus on two perturbation schemes,

namely: case weights - subjects and case weights - observations.

The perturbation scheme affects the normal conformal curvature (2.12) or (2.13)

through ∆ = ∂L
Ä
ψ; y |ω

ä
/∂ψ ∂ω> |ω0, ψ̂

. Consequently, it is necessary to derive ∆ for

each perturbation scheme. These computations may be reviewed in appendices B.6 and

B.7. The outcomes are displayed below.
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3.7.1 Case weights - subjects

Lesaffre and Verbeke (1998) considered this approach in linear mixed models for

identifying influential subjects and we apply it in GLMMs. Hence, we use the pertur-

bation vector ω = (ω1, . . . , ωN)> and we assume that L
Ä
ψ; y |ω

ä
=
∑N

i=1ωi L
Ä
ψ; yi

ä
.

Consequently, the no perturbation vector is ω0 = 1 N.

Under this perturbation scheme it is possible to prove (see appendix B.6) that

∆ = (δ1,δ2, . . . ,δN), where δi = L i
ψ = L ψ

Ä
ψ ; yi

ä
evaluated at ψ = “ψ and L i

ψ displayed

in equation (3.3). However, as it was mentioned previously, in general, it is not viable to

compute exactly this expression. Therefore, from the results of section 3.5.2, we propose

the following approximate structure for δi :

δi =


L i
β̂

L i
ξ̂

L i“φ
 ≈


“φR1

Ä
X>i “τi ; b̃i

ä
−

1
2

G>q
ß

vec
Å“Ξ−1

ã
−
Ä“Ξ ⊗ “Ξä−1

R1

Ä
λi ; b̃i

ä™
R1

Ä“νi ; b̃i
ä

 , for i = 1, . . . ,N.

(3.14)

Thus, according to Definition 4 in section 3.5.2, we must replace accurately the expres-

sions
Ä
X>i τi

ä
bi bi

, (λi) bi bi
and (νi) bi bi

given in (3.11), in expression (3.14) to achieve an

analytical structure for δi and hence for ∆. Some special cases are discussed below.

Canonical exponential family

For the canonical exponential family, using (3.12), we have the following abbrevi-

ated formulas:

R1

Ä
X>i τ̂i ; ‹bi

ä
= X>i

(
yi − µ̃i

)
−
{

Ip ⊗ vec
(
Iq
)}> [{(X>i ⊗ Z>i

)
Ωi
˜̇ViZi

}
⊗ Iq

]
vec
ß(
φ̂Z>i ‹Vi Zi + Ξ̂

−1
)−1
™
,

R1

Ä
λi ; ‹bi

ä
= λ̃i +

¶
Iq2 ⊗ vec

(
Iq
)©> [{(

Nq ⊗ Iq
)

Λq
(
Iq
)}
⊗ Iq

]
vec
ß(
φ̂Z>i ‹Vi Zi + Ξ̂

−1
)−1
™

and

R1

Ä
ν̂i ; ‹bi

ä
= ν̃i − vec

(
Iq
)> ¶ÄZ>i ‹ViZi

ä
⊗ Iq

©
vec
ß(
φ̂Z>i ‹Vi Zi + Ξ̂

−1
)−1
™
.

Replacing the terms above in (3.14), we obtain the explicit analytical expression for

δi.
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Random intercept GLMM

By way of example, in a random intercept GLMM of the canonical exponential

family, we obtain

δi =


L i
β̂

L i
ξ̂

L i“φ
 ≈


“φX>i

Ä
yi − µ̃i

ä
− “φX>i

‹̇Vi 1i
¶ “φ tr

Ä ‹Vi
ä

+ ξ̂ −1
©−1

−
1

2 ξ̂
+

1
2 ξ̂ 2

ï ‹bi
2

+ 2
¶ “φ tr

Ä ‹Vi
ä

+ ξ̂ −1
©−1
ò

ν̃i − tr
Ä ‹Vi

ä ¶ “φ tr
Ä ‹Vi

ä
+ ξ̂ −1

©−1

 , for i = 1, . . . ,N.

3.7.1.1 Conformal normal curvature - subjects

The perturbation scheme developed in section 3.7.1 allows to discriminate poten-

tially influential subjects. As it was mentioned in section 3.3, for obtaining a curvature

measure associated to each subject, we consider the direction vector d = ui ∈ RN with

i = 1, . . . ,N. The vector ui represents an N × 1 vector that assumes zero everywhere,

except in the ith position, which equals 1. Hence, from (2.12) , for i = 1, 2, . . . ,N we

have that the conformal normal curvature associated to the ith subject is given by

B i
Ä
ψ
ä

= B ui

Ä
ψ
ä
≈

u>i ∆>
(
−L ψ̂ ψ̂

) −1
∆ ui√

tr
ñß

∆>
(
L ψ̂ ψ̂

)−1
∆
™ 2ô =

δ>i
(
−L ψ̂ ψ̂

) −1
δ i√

tr
ñß

∆>
(
L ψ̂ ψ̂

)−1
∆
™ 2ô , (3.15)

where ∆ = (δ 1, δ 2, . . . , δN) , δi is given in (3.14) and L ψ̂ ψ̂ is approximately obtained

from (3.10). This curvature enables the assessment of potentially influential subjects in

any GLMM and is one of the main results of this work. Special cases of this curvature

are treated in section 3.8.

3.7.2 Case weights - observations

In order to detect influential observations we aggregate weights to each observation

via the NT×1 perturbation vectorω =
(
ω>1 ,ω

>

2 , . . . ,ω
>

N
)>, whereωi =

(
ωi 1, ωi 2, . . . , ωi ni

)>
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and NT =
∑N

i=1 ni. Under this perturbation scheme we consider

L
Ä
ψ; y |ω

ä
=

N∑
i=1

L
Ä
ψ; yi | ωi

ä
,

where

L
Ä
ψ; yi |ωi

ä
= log

∫
exp

¶
L
Ä
ψ; yi, bi |ωi

ä©
d bi, i = 1, . . . ,N, (3.16)

and

L
Ä
ψ; yi, bi |ωi

ä
= −

q
2

log(2π) −
1
2

log |Ξ | +ω>i fi −
1
2

b>i Ξ−1 bi

with fi =
(
fi 1, fi 2, . . . , fi ni

)>, fi j = log
¶

fyi j|bi

Ä
yi j;θi j, φ

ä©
and the no perturbation vec-

tor given by ω0 =
Ä
ω>0 1

, ω>0 2
, . . . , ω>0 N

ä>
= 1NT . It can be shown that (see appendix

B.7) ∆ = (∆1,∆2, . . . ,∆N), where ∆i = ∂ L
Ä
ψ; yi |ωi

ä
/∂ψω>i

∣∣∣
ω0 , ψ̂

and letting Ti =

W1/2
i V−1/2

i Dyi−µi
we obtain

∆i =
∂L
(
ψ; yi | ωi

)
∂ψ ∂ω>i

∣∣∣∣∣
ω0 , ψ̂

=



∂L
(
ψ; yi |ωi

)
∂β ∂ω>i

∂L
(
ψ; yi |ωi

)
∂ξ ∂ω>i

∂L
(
ψ; yi |ωi

)
∂φ∂ω>i


ω0 , ψ̂

=


φ̂Cov

(
X>i τ̂i, f̂i

∣∣∣ yi

)
+ φ̂E

(
X>i T̂i

∣∣∣ yi

)
1
2

G>q
Ä
Ξ̂ ⊗ Ξ̂

ä−1
Cov

(
λi, f̂i

∣∣∣ yi

)
Cov

(
ν̂i , f̂i

∣∣∣ yi

)
+ E

( ̂̇fi

∣∣∣ yi

)>
 ,
(3.17)

where ḟi = ∂ fi / ∂φ. Again, computing exactly the structures in ∆i requires at least

knowledge of the probability density function of bi | yi, and for reasons mentioned

before, that is not our case. Then, taking Ci = 1ni f>i + Ini and supported by the results

from section 2.4.2 we obtain, for i = 1, . . . ,N , the following approximate expressions:

∆i =



∂L
Ä
ψ; yi |ωi

ä
∂β ∂ω>i

∂L
Ä
ψ; yi |ωi

ä
∂ξ ∂ω>i

∂L
Ä
ψ; yi |ωi

ä
∂φ∂ω>i


ω0 , ψ̂

≈


“φR1

Ä
X>i “Ti

“C i ; b̃i
ä
− “φR1

Ä
X>i τ̂i , b̃i

ä
R1

Ä
f̂i , b̃i

ä>
1
2

G>q
Ä“Ξ ⊗ “Ξä−1

R2

Ä
λi , f̂i ; b̃i

ä
R1

Å ̂̇f>i “C i ; b̃i

ã
− R1 ( ν̂i ; bi) R1

Ä
f̂i ; b̃i

ä>
 .

(3.18)
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Again, for using the R1 and R2 functions defined in section 3.5.2 it is necessary to take

into account
Ä
X>i τi

ä
bibi

, (λi)bibi
and (νi)bibi

presented in (3.11) as well as

(
X>i TiCi

)
bi bi

= φ
(
Ini p ⊗ Z>i

) [
φ−1 {(Ci ⊗ Xi)

>Ωi ⊗ Ini

}
Ωi
(
Ṁi − 2Dρi

Ai
)

+
(
Ini p ⊗MiΩ

>

i
)
×(

Ti ⊗Πni (Xi) 1ni

)
+
(
Ini ⊗ X>i τi ⊗ Ini

)
ΩiMi

]
Zi + φΛp

(
Z>i Ti

)
X>i Mi Zi ,

(
λi f>i

)
bi bi

=
¶Ä

fi ⊗ Iq2

ä
Nq ⊗ Iq

©
Λq
(
Iq
)

+ φ
¶

Ini q2 ⊗
(
Iq ⊗ b>i

)
Nq

©¶
Ti Zi ⊗ vec

Ä
Iq2

ä©
+ φ

(
Ini ⊗ λi ⊗ Z>i

)
ΩiMiZi + φΛq2

(
Z>i Ti

)
Nq
(
Iq ⊗ bi

)
,Ä

ḟ
>

i Ci

ä
bi bi

= φ
(
Ini ⊗ Z>i

) {
(Ti ⊗ τi) + φ−1 (C>i ⊗ Ini

)
ΩiMi + vec (Ti) τ>i + (νi ⊗Ωi Mi)

}
Zi and

(fi)bibi
= φ

(
Ini ⊗ Z>i

)
Ωi Mi Zi and

(
ḟi
)

bi bi
= φ−1 (fi)bi bi

.

These Hessian matrices are computed in appendix B.7.1.

Again, the quantities Ti , τi , Dρi
, Ai , C i , Mi , Ṁi , λi and νi in the right side of the

expressions above should have the symbol ” ˜ ” , but we omit it by the simplicity in

the writing. Also, φ should be replaced by “φ
In addition, from section 2.4.1.1 we have that F bi bi = F ∗bi bi

, when F is a vector

function, but not in general. However, this is not a problem, because it is enough to

reordering the elements of F bi bi for obtaining F ∗bi bi
, according to the exposed in section

2.4.1.1. This procedure may be computationally implemented without difficulties.

Simplifications of these expressions and therefore of ∆i, may be obtained, from (3.12)

for the canonical exponential family. Also, in practice random intercept GLMMs in the

canonical exponential family are frequently used and applying jointly (3.12) and (3.13)

in the expressions above, we may obtain simple structures for ∆i and ∆.

3.7.2.1 Conformal normal curvature - observations

Motivated by the work of Zhu and Lee (2003), we propose this perturbation scheme

in order to spotlight potentially influential observations. To define the direction in which
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the conformal normal curvature will be computed, we consider a partition of the vector

d ∈ RNT , given by d =
Ä
d>1 , d>2 , . . . , d>N

ä>
, where di ∈ R ni . Thus, as was described

in section 3.3, we regard the direction vector d = u i j with 1 ≤ j ≤ ni , 1 ≤ i ≤ N and

NT =
∑N

i=1 ni. The NT × 1 vector u i j is a vector with 1 in the jth position of di ∈ Rni

and zeros in the remaining positions. In this way, from (2.12) , the conformal normal

curvature corresponding to the jth observation of the ith subject, denoted by B i j
Ä
ψ
ä
,

is given by

B i j
Ä
ψ
ä

= B ui j

Ä
ψ
ä

=
u>i j ∆

(
−L ψ̂ ψ̂

) −1
∆ u i j

tr
ñß

∆>
(
L ψ̂ ψ̂

)−1
∆
™ 2ô , (3.19)

for 1 ≤ j ≤ ni and 1 ≤ i ≤ N . In this case, we have ∆ = (∆ 1, ∆ 2, . . . , ∆N), where ∆i is

given in (3.18) and L ψ̂ ψ̂ is approximately computed by means of (3.10). This curvature

enables the assessment of potentially influential observations in any GLMM and is one

of the main results of this work.

A special case of the GLMMs are the random intercept GLMMs. These models

are frequently used in the practice and their specification is simpler than the general

GLMMs. Thus, the conformal normal curvature measures, which allows the assessment

of the local influence, present important simplifications that will be the purpose of the

next section.

3.8 Approximate local influence in random intercept

GLMMs

Now we focus on a particular GLMM with one random effect. The main aim of this

section is to particularize the results so far to random intercept GLMMs. These models



APPROXIMATE LOCAL INFLUENCE IN RANDOM INTERCEPT
GLMMS 41

are specified as:

Yi j | bi
ind
∼ EF

Ä
µi j; φ

ä
,

g
Ä
µi j
ä

= x>i j β + bi and

bi
iid
∼ N (0; ξ) ,

(3.20)

where j = 1, . . . ,ni and i = 1, . . . ,N. In addition, the notation EF( · ; · ) refers to the

exponential family. That is, we assume that given bi, Yi j follows a distribution in the

form (2.1).

These models are special cases of the models defined in section 2.2.1 in which

for j = 1, . . . , ni and i = 1, . . . , N we have that z>i j = 1 or equivalently Zi = 1i for

i = 1, . . . ,N, where 1i is a ni × 1 vector of 1’s.

Under this model the conformal normal curvature defined in (2.12), and computed

for different perturbation schemes in (3.15) and (3.19), suffers significant reduction.

Essentially, the ∆ matrix for each perturbation scheme (see sections 3.7.1 and 3.7.2) and

the Hessian matrix L ψ̂ ψ̂ assume simpler forms. These structures and consequently the

conformal normal curvature measures are displayed in the remainder of this chapter.

3.8.1 Approximate Hessian matrix

To obtain the approximated structure of L ψ̂ ψ̂

Ä
ψ ; y

ä
corresponding to the model

(3.20) it is necessary to perform some algebraic operations on (3.10), taking into account

that Z i = 1 i and Ξ becomes a positive real number ξ . Thus, expressions in (3.10)

assume the simplified form

L i
β̂ β̂
≈ φ 2

Ä
1 − t−1

i

ä
X>i

{
Ti Ji Hi + Hi Ji Ti

}
Xi + φ 2 t−2

i X>i Hi Ji Hi Xi

+ φX>i
î
Mi +

¶
M̈i − 3

Ä
Dρi

Ȧi + Dρ̇i
Ai
ä©

t−1
i

ó
Xi ,

L i
β̂ ξ̂
≈
φ
ξ 2 X>i

¶
2 bi Mi t−1

i − Hi t−2
i

©
1 i ,

L i
β̂ φ̂
≈ X>i

î
Ti + Hi

¶
1 + φ tr (Mi) t−1

i

©
t−1
i + 2φ tr (Ti) Mi t−1

i

ó
1i , (3.21)



42 LOCAL INFLUENCE IN GLMMS

L i
ξ̂ ξ̂
≈

1
2ξ2

¶
1 − 2 ξ−1 b 2

i −
Ä
4ξ−1 + 4 b 2

i ξ
−2
ä

t−1
i − 2 ξ−2 t−2

i

©
,

L i
ξ̂ φ̂
≈

1
ξ 2

¶
4 bi tr (Ti) t−1

i − 2 tr (Mi) t−2
i

©
and

L i
φ̂ φ̂
≈

ni∑
j=1

c φ̂ φ̂
Ä
yi j ; φ

ä
+ 2 tr ( Ti ) 2 t−1

i − tr ( Mi ) 2 t−2
i ,

where Hi = Ṁi − 2 Dρi
Ai , Ti = W 1/2

i V−1/2
i Dyi −µi

, Mi = Dyi −µi
Dρi
−W 1/2

i V−1/2
i Ai,

ti = φ tr ( Wi ) +ξ−1 , Ṁi = Dyi −µi
D ρ̇i
−W 1/2

i V−1/2
i Ȧi , M̈i = Dyi −µi

D ρ̈i
−W 1/2

i V−1/2
i Äi ,

Ai = ⊕ni
j=1dµi j /d ηi j , Ȧi = ⊕ni

j=1d 2µi j /d η 2
i j and Äi = ⊕ni

j=1d 3µi j /d η 3
i j .

From (3.2), we have an approximated structure for L ψ̂ ψ̂

Ä
ψ ; yi

ä
and consequently

for L ψ̂ ψ̂

Ä
ψ ; y

ä
=
∑N

i=1 L ψ̂ ψ̂

Ä
ψ ; y i

ä
.

Note that other simplifications are possible by considering canonical links. These

simplifications may be obtained from (3.12). The next sections focuses on the simplified

form assumed by the ∆ matrix, for each perturbation scheme, under model (3.20).

3.8.2 Case weights - subjects

The ∆ matrix associated to this perturbation scheme was developed in section

3.7.1. This matrix was obtained from perturbed log-likelihood function L
Ä
ψ ; y |ω

ä
=∑N

i=1 ωi L
Ä
ψ ; yi

ä
, where ω = (ω1, ω2, . . . , ωN)> ∈ RN is the perturbation vector. Also,

ω 0 = 1N is the no perturbation vector.

In appendix B.6 we show that ∆ =
∂L
Ä
ψ; y |ω

ä
∂ψ ∂ω>

∣∣∣∣∣∣
ψ̂, ω 0

= (δ1, . . . ,δN), where, under

the model (3.20), δ i assumes the form

δ i =


L i
β̂

L i
ξ̂

L i
φ̂

 ≈

“φX>i

Å
W̃

1/2
i
‹V −1/2

i Dyi − µ̃i
+ t̃ −1

i
‹Hi

ã
1i

−
1

2 ξ̂
+

1
2 ξ̂ 2

Å ‹bi
2

+ 2 t̃ −1
i

ã
ν̃i + tr

Ä
M̃i
ä

t̃−1
i

 , for i = 1, . . . , N , (3.22)

with νi =
ni∑

j=1

¶
yi j θi j − a(θi j) + cφ

Ä
yi j;φ

ä©
, ti = φ tr ( Wi ) + ξ −1 , Hi = Ṁi − 2 Dρi

Ai ,

Mi = Dyi −µi
Dρi
−W 1/2

i V−1/2
i Ai , Ṁi = Dyi −µi

D ρ̇i
−W 1/2

i V−1/2
i Ȧi , Ai = ⊕ni

j=1dµi j /d ηi j
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and Ȧi = ⊕ni
j=1d 2µi j /d η 2

i j . Thus, under this perturbation scheme and for model (3.20),

the ∆ matrix is expressed by

∆ =



∂L
Ä
ψ ; y |ω

ä
∂β ∂ω>

∂L
Ä
ψ ; y |ω

ä
∂ ξ ∂ω>

∂L
Ä
ψ ; y |ω

ä
∂φ∂ω>


ψ̂, ω 0

≈


“φX>

Å
W̃

1/2 ‹V −1/2
D y−µ̃ 1 + ‹H 1 D −1

t̃

ã
1>N

Ç
−

1
2 ξ̂

I N +
1

2 ξ̂ 2
D 2

b̃
+

1
ξ̂ 2

D −1
t̃

å
1 >N
î

D ν̃ +
¶⊕N

i=1 tr
Ä

M̃i
ä©

D −1
t̃

ó
 , (3.23)

with t = (t 1, t 2, . . . , t N)> ,ν = (ν1, ν2, . . . , νN)> , b = ( b 1, b 2, . . . , b N ) > , W =
⊕N

i=1 W i ,

W =
⊕N

i=1 V i , H =
⊕N

i=1 H i and 1 =
⊕N

i=1 1i .

From (3.12) it is possible to obtain other simplifications when the model of interest

indicates the canonical link.

3.8.2.1 Conformal normal curvature - subjects

From (3.15), we obtain that the conformal normal curvature associated to the ith

subject is as follows

Bi
Ä
ψ
ä

=
δ>i

(
−L ψ̂ ψ̂

) −1
δ i√

tr
ñß

∆>
(
L ψ̂ ψ̂

)−1
∆
™ 2ô ,

with L ψ̂ ψ̂ built by means of (3.21), δ i and ∆ given in (3.22) and (3.23), respectively.

This curvature is useful to detect potentially influential subjects.

3.8.3 Case weights - observations

The ∆ matrix associated to this perturbation scheme was developed in section

3.7.2 from the perturbed log-likelihood function L
Ä
ψ ; y |ω

ä
=
∑N

i=1 L
Ä
ψ; yi |ωi

ä
, where

ω is the perturbation vector given by ω =
(
ω>1 , ω

>

2 . . . ,ω>N
)>
∈ RNT , with ωi =(

ω i1, ω i2, ω ini

)>
∈ R ni and L

Ä
ψ; yi |ωi

ä
is defined in (3.16). Also, the no perturbation

vector is given by ω 0 =
Ä
ω>0 1

, ω>0 2
, . . . , ω>0 N

ä>
= 1NT . In appendix B.7 we proved that
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under this perturbation scheme ∆ = ( ∆ 1, ∆ 2, . . . ,∆N ) and under model (3.20) it is

possible to prove that for i = 1, . . . ,N, ∆ i assumes approximately the form

∆i =



∂ L
Ä
ψ ; yi |ωi

ä
∂β ∂ω>i

∂ L
Ä
ψ ; yi |ωi

ä
∂ ξ ∂ω>i

∂ L
Ä
ψ ; yi |ωi

ä
∂φ∂ω>i


ψ̂, ω 0 i

≈



“φX>i
¶‹Ti + ‹Hi t̃ −1

i + 2φ M̃i Ji
‹Ti t̃ −1

i + φ ‹Hi Ji M̃i t̃ −2
i

©“φ
ξ̂ 2

¶
1>i
Ä
2 b̃i
‹Ti t̃−1

i − M̃ i t̃ −2
i

ä©
˜̇f >i + 1>i

î
k̃i M̃i t̃ −1

i + 2 “φ tr
Ä‹Ti
ä ‹Ti t̃ −1

i −
“φ tr

Ä
M̃i
ä

M̃i t̃ −2
i

ó
 ,

where ki =
Ä
1 − φ

ä
νi + 1 , Ji denotes an ni × ni matrix of 1’s and ḟ i =

Ä
ḟi1, . . . , ḟi ni

ä>
with ḟi j = ∂ log

¶
fyi j|bi

Ä
yi j;θi j, φ

ä©
/ ∂φ. Also, as was previously mentioned,

Hi = Ṁi − 2 Dρi
Ai , Ti = W 1/2

i V−1/2
i Dyi −µi

, Mi = Dyi −µi
Dρi
−W 1/2

i V−1/2
i Ai ,

Ṁi = Dyi −µi
D ρ̇i
−W 1/2

i V−1/2
i Ȧi , Ai = ⊕ni

j=1dµi j /d ηi j and Ȧi = ⊕ni
j=1d 2µi j /d η 2

i j . Con-

sequently, one approximation for ∆ = ∂L
Ä
ψ ; y |ω

ä
/ ∂ψ ∂ω> | ψ̂, ω 0

is given by

∆ ≈



“φX>
®‹T + ‹H Ç

N⊕
i=1

Ini t̃−1
i

å
+ 2 “φ M̃ J ‹T Ç N⊕

i=1
Ini t̃

−1
i

å
+ φ ‹H J M̃

Ç
N⊕

i=1
Ini t̃

−2
i

å´
“φ
ξ̂ 2

ñ
1>NT

®
2 ‹T Ç N⊕

i=1
b̃i t̃−1

i Ini

å
− M̃

Ç
N⊕

i=1
t̃−2
i Ini

å´ô
˜̇f> + 1>NT

ñ
M̃
Ç

N⊕
i=1

k̃i t̃−1
i Ini

å
+ 2 “φ‹T ® N⊕

i=1
tr
Ä
t̃−1
i
‹Ti
ä

I ni

´
− “φ M̃

®
N⊕

i=1
tr
Ä

M̃i t̃−2
i

ä
Ini

´ ô


,

where ti = φ tr ( Wi ) + ξ−1 , T =
⊕N

i=1 Ti , M =
⊕N

i=1 Mi , J =
⊕N

i=1 Ji , H =
⊕N

i=1 Hi , Ini is

the ni × ni identity matrix, and ḟ =
(
ḟ
>

1 , ḟ
>

2 , . . . , ḟ
>

N

)>
with ḟ i = ∂ fi / ∂φ .

Expression (3.12) enables to achieve simplified forms for ∆ when the considered

model assumes canonical link.
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3.8.3.1 Conformal normal curvature - observations

From expression (3.19) we have that the conformal normal curvature corresponding

to the jth observation of the ith subject is given by

B i j
Ä
ψ
ä

= B ui j

Ä
ψ
ä

=
u>i j ∆

(
−L ψ̂ ψ̂

) −1
∆ u i j

tr
ñß

∆>
Ä
Lψ ψ

ä−1
∆
™ 2ô ,

where ∆i and ∆ were previously obtained and L ψ̂ ψ̂ may be achieved using the expres-

sions (3.21). This curvature may be used to identify potentially influential observations

in random intercept GLMMs.

3.9 Concluding remarks

In this chapter we studied an approximation for local influence in GLMMs. The

local influence approach that we considered was proposed by Cook (1986). We men-

tioned briefly some works related with local influence in random effect models and

we described our strategy for achieving approximate measures to discriminate poten-

tially influential points. In that sense, we obtained analytical structures −L ψ̂ ψ̂

Ä
ψ ; y

ä
and ∆ under different perturbation schemes and consequently for conformal normal

curvature. This allowed the simple computation of the conformal normal curvatures

defined in (2.12) and (2.13). In addition, we dedicated some pages to the local influence

in random intercept GLMMs. Also, we justified the use of the gamlss framework like

an accurate tool that provides the necessary elements for the implementation of our

approximation of local influence. However, it is possible to use other packages, through

of the implementation of a Newton-Raphson or Fisher scoring algorithm.
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Chapter 4

Numerical studies and applications

4.1 Introduction

The first part of this chapter contains numerical studies for exploring the effec-

tiveness of our proposal. Thus, we consider simulated data from Poisson and gamma

mixed models and we develop sensitivity analyses by means of the local influence ap-

proach. We consider a comparative study evaluating the components of the conformal

normal curvature (2.12), namely the observed Fisher information matrix −L ψ̂ ψ̂ and ∆,

via numerical techniques and using our proposal.

In the last part of this chapter we show the flexibility of our proposal by studying

three real data sets, the analyses of which may be accomplished through GLMMs.

Also, since the application of our technique requires the previous knowledge of some

structures as the weight matrix, the variance function among others, we provide such

quantities for different distributions in the exponential family.

4.2 Numerical studies

In this section we consider artificial data sets generated from Poisson and gamma

random intercept models. Then, we use our proposal and numerical techniques to com-

pute the conformal normal curvature in order to examine if it discriminates influential

points.

47
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4.2.1 Poisson - normal GLMM

To exhibit the use of the approximation proposed in this work for the conformal

normal curvature (2.12), we study artificial data sets generated from a random intercept

GLMM with response Poisson and logarithmic link function. Specifically, the data sets

come from the model specified as follows:

Yi j | bi
ind
∼ Po

Ä
µi j
ä
,

g
Ä
µi j
ä

= log
Ä
µi j
ä

= 1 + bi + 0.5 xi j and

bi
iid
∼ N (0; 1) ,

(4.1)

where i = 1, . . . , k , j = 1, . . . ,ni and NT =
∑k

i=1 ni. k represents the number of units

considered in each data set and ni is the number of observations per unit. For the

explanatory variables xi = (xi 1, xi 2, . . . , xi ni)
> we consider two cases: balanced data

(ni = n = NT/k) and unbalanced data. In the former, xi = (xi 1, xi 2, . . . , xi n)> coin-

cides for each subject and corresponds to a random sample of size n from the nor-

mal distribution N (1.5 ; 0, 5). In the latter case, for each i = 1, 2, . . . , k, we assume that

xi = (xi 1, xi 2, . . . , xi ni)
> is a random sample of size ni from the normal distribution

N (1.5 ; 0.5).

The models of interest were fitted by means of the gamlss() function of the gamlss

package and the normal conformal curvatures for the units, Bi
Ä
ψ
ä
, are performed

using the technique proposed in this work based on the Laplace approximation and

alternatively using the Gauss-Hermite quadrature with 20 points of quadrature for

computing the integrals involved in such curvatures. The latter, was considered in

order to illustrate that our technique is good enough for discriminating potentially

influential subjects. It is worth noting that the curvatures via Gauss-Hermite quadrature

are achievable because the model in question requires one dimensional integration

(q = 1), but in general this procedure may be computationally expensive (Nelder et al.,

2006).
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We want to emphasize that the aim is not to compare the quality of our proposal with

the quality of the numerical integration via Gauss-Hermite quadrature, but to show that

the identification of influential subjects with the two methodologies produces similar

results. This is an enormous advantage for our proposal because the computational

routines of our analytical structures for B i
Ä
ψ
ä

are inexpensive. In general, what we

expect is that the highlighted units coincide in the two methodologies. That is, via

Gauss-Hermite quadrature and by means of our proposal.

As illustration, we initially consider four data sets consisting of k = 10 , k = 15 ,

k = 30 and k = 50 different units with n = 15 , n = 10 , n = 5 and n = 3 observations

per unit, respectively. Hence, the corresponding models are balanced with NT = 150

observations each. In addition, 10% of the units were perturbed as will be stated later.

A study of sensitivity was made for these models and the results are exposed in Figures

4.1, 4.2, 4.3 and 4.4. Such figures display index plots of Bi
Ä
ψ
ä

obtained through the

two methodologies. In the left side of each figure we may see the behavior of the two

strategies and should be clear that our approach (solid line) is well behaved in the units

with greater curvature, that is, in the potentially influential subjects. This may be con-

firmed in the right side of the figures in question, because in most cases the highlighted

subjects were the same. The dotted and dashed horizontal lines represent twice the

average of the curvatures obtained through Gauss-Hermite quadrature and by means

of our proposal, respectively. This benchmark was suggested by Lesaffre and Verbeke

(1998).
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Figure 4.1: Comparison of the conformal normal curvatures with NT = 150 and k = 10 from the model
(4.1) fitted to the generated data sets.
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Figure 4.2: Comparison of the conformal normal curvatures with NT = 150 and k = 15 from the model
(4.1) fitted to the generated data sets.
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Figure 4.3: Comparison of the conformal normal curvatures with NT = 150 and k = 30 from the model
(4.1) fitted to the generated data sets.
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Figure 4.4: Comparison of the conformal normal curvatures with NT = 150 and k = 50 from the model
(4.1) fitted to the generated data sets.

Note that Figures 4.1, 4.2, 4.3 and 4.4 cover only four particular cases of data sets coming
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from (4.1) and although our proposal reveals good results in these cases, it would be

appropriate to study in a more general form the usefulness of our approximation. Thus,

to evaluate the effectiveness of our proposal we repeat several times the procedure

described previously in different scenarios. Basically, the idea is to build distinct data

sets with particular features from (4.1). Hence, we consider different sample sizes for NT

(total number of observations) and different numbers of units (subjects) k in which the

observations are grouped. It is our purpose to investigate the influence of such units.

Thus, for each number of observations NT we have studied distinct scenarios, each of

them defined by the number of subjects k considered. For example, given NT = 200 we

study four possible scenarios: (i) k = 20 , (ii) k = 25 , (iii) k = 40 and (iv) k = 50 . Each

scenario was replicated 300 times, thus obtaining 300 data sets from (4.1) in which 10%

of the units were randomly perturbed.

The procedure of perturbation for a selected subject r is described as follows: we add

d y e to each component of the vector of responses yr, where y = (1/NT)
∑k

i=1
∑n

j=1 yi j and

d·e is the ceiling function. In each data set potentially influential units were discriminated

through our proposal and by means of Gauss-Hermite quadrature with 20 points

of quadrature. Finally, given the discriminated units via numerical integration, we

established how many of them were detected by our proposal. The average percentage

of successes in the 300 replicates by scenario is reported in Table 4.1.

Table 4.1 reveals the good behavior of our approximation, because for different sam-

ple sizes grouped in distinct number of subjects, the average rate of detection (in the

300 replicates by scenario) of potentially influential subjects is greater than 90%. This

confirms the features exhibited in Figures 4.1, 4.2, 4.3 and 4.4. Also, it shows that such

behavior is recurrent in a variety of scenarios. Although the scenarios and the particular

structure of the model (4.1) considered here do not correspond to a exhaustive study,

these suggest that our proposal is a good tool in the identification of potentially influ-

ential units. In addition, the analytical structures obtained in the previous sections for

the computation of B i
Ä
ψ
ä
, for i = 1, . . . , k, and the close relationship with the GAMLSS
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framework, mentioned in section 3.5.2.2, allow sensitivity analyses via local influence,

with inexpensive computational routines for any GLMM. On the other hand, studies of

local influence via numerical integration or Bayesian methods are restricted to particu-

lar GLMMs and with great computational cost, which prevent building computational

routines that enable to conduct studies of sensitivity in any practical problem.

Furthermore, unbalanced data were generated from (4.1). Figures 4.5 and 4.6 are

special cases of this type of artificial data and these show a good behavior of our

methodology. As previously, 300 replicates were performed in different scenarios and

the average percentage of successes is reported in the bottom of Table 4.1. The proce-

dure of perturbation is analogous to the mentioned previously. Also, the quantity of

observations in each unity was selected randomly for each scenario.
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Figure 4.5: Comparison of the conformal normal curvatures with NT = 275 and k = 16 for the model
(4.1) fitted to the generated data sets under unbalanced data.
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Figure 4.6: Comparison of the conformal normal curvatures with NT = 275 and k = 17 for the model
(4.1) fitted to the generated data sets under unbalanced data.

Table 4.1: Summary of the average percentages of potentially influential subjects detected in the 300
replicates by our proposal for each scenario.

Total NT Units size ni Units Average percentage

of detection
Balanced Case (ni = n)

10 k = 10 90%
100 5 k = 20 91.48%

4 k = 25 91.10%

6 k = 25 92.73%
150 5 k = 30 93.41%

3 k = 50 93.48%

10 k = 20 90%
200 8 k = 25 93.33%

5 k = 40 93.77%
4 k = 50 94,38%

12 k = 25 92.80%
300 10 k = 30 92.7%

6 k = 50 95.98%
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5 k = 60 93%

20 k = 25 90.77%
500 10 k = 50 94.50%

5 k = 100 96.1%
4 k = 125 95.5%

Unbalanced Case
k = 25 91.31%

500 k = 45 91.78%
k = 50 91.21%
k = 70 90.47%

k = 71 90.16%
450 k = 51 92.34%

k = 37 90.97%
k = 26 91.9%

k = 26 90.36%
350 k = 51 90%

k = 37 91.98%

k = 50 91.96%
275 k = 35 93.87%

k = 16 91.10%

k = 17 91.96%
137 k = 25 91.43%

k = 11 89.70%

k = 10 89%
110 k = 18 90.15%

k = 17 91.96%

The Table 4.1 suggests that for balanced and unbalanced data our proposal is well

behaved.
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The same numerical studies were performed for the gamma normal GLMM. Such

studies are the focus of the next section.

4.2.2 Gamma - normal GLMM

Again, in order to evaluate our proposal, we consider artificial data sets generated

from a random intercept GLMM with response variable gamma and logarithmic link

function. Thus, the data sets come from the model specified as follows:

Yi j | bi
ind
∼ G

Ä
µi j ; φ = 1.56

ä
,

g
Ä
µi j
ä

= log
Ä
µi j
ä

= 1 + bi + 0.5 xi j and

bi
iid
∼ N (0; 1) ,

(4.2)

where i = 1, . . . , k , j = 1, . . . ,ni and NT =
∑k

i=1 ni. k represents the number of units

considered in each data set and ni is the number of observations per unit. For the

explanatory variables xi = (xi 1, xi 2, . . . , xi ni)
> we consider two cases: balanced data

(ni = n = NT/k) and unbalanced data. In the former, xi = (xi 1, xi 2, . . . , xi n)> coin-

cides in each subject and corresponds to a random sample of size n from the nor-

mal distribution N (1.5 ; 0, 5). In the latter case, for each i = 1, 2, . . . , k, we assume that

xi = (xi 1, xi 2, . . . , xi ni)
> is a random sample of size ni from the normal distribution

N (1.5 ; 0.5).

In the balanced case we have data sets with 50, 100, 150, and 200 observations,

which are distributed in k subjects. For example, we consider data sets generated from

(4.2) with NT = 100 observations distributed in 10, 20 and 25 subjects. That is, with

100 observations we obtain three scenarios. Each scenario was replicated by 300 times

and in each replicate (in each data set) was computed the conformal normal curvature

using Gauss-Hermite quadrature and our proposal. Once the influential points were

identified via Gauss - Hermite quadrature with 20 quadrature points, we registered

how many of them were discriminated by our technique. The average percentage of
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detection in the replicates is reported in Table 4.2. The procedure of perturbation in

this model was similar to the one performed in section 4.2.1. Unbalanced cases were

studied and the average percentage of detection is displayed in the bottom of Table 4.2.

The results show an accurate behavior of our technique. It is worth mentioning that

the local influence analysis via Gauss-Hermite quadrature is viable because the simple

structure of model (4.2), but in general the procedures involved in the computation of

conformal normal curvature may be computationally heavy.

Figures 4.7, 4.8 and 4.9 show the comparison between the normal conformal cur-

vatures via Gauss - Hermite quadrature and through our proposal in some particular

balanced data sets generated from (4.2). Figures 4.10 and 4.11 display the same compar-

ison but in unbalanced particular data sets. In both cases, the behavior of our proposal

is accurate. The results of Table 4.2 confirm the behavior in the aforementioned figures.
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Figure 4.7: Comparison of the conformal normal curvatures with NT = 100 and k = 10 for the model
(4.2) fitted to the generated data sets.
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Figure 4.8: Comparison of the conformal normal curvatures with NT = 100 and k = 20 for the model
(4.2) fitted to the generated data sets.
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Figure 4.9: Comparison of the conformal normal curvatures with NT = 100 and k = 25 for the model
(4.2) fitted to the generated data sets.
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Figure 4.10: Comparison of the conformal normal curvatures with NT = 51 and k = 10 for the model
(4.2) fitted to the generated data sets under unbalanced data.
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Figure 4.11: Comparison of the conformal normal curvatures with NT = 63 and k = 9 for the model
(4.2) fitted to the generated data sets under unbalanced data.
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Table 4.2: Summary of the average percentages of potentially influential subjects detected in the 300
replicates by our proposal for each scenario.

Total NT Units size ni Units Average percentage

of detection
Balanced Case (ni = n)

50 5 k = 10 95%

10 k = 10 93%
100 5 k = 20 94.17%

4 k = 25 90.96%

10 k = 15 96.66%
150 6 k = 25 96.10%

5 k = 30 94.40%

20 k = 10 96%
200 8 k = 25 96.90%

5 k = 40 93.54%

Unbalanced Case
51 5, 5, 5, 6, 4, 6, 5, 6, 5, 4 k = 10 90%

63 7, 5, 8, 6, 9, 7, 7, 7, 7 k = 9 95%

Thus, our technique appears to be accurate in the discrimination of potentially

influential subjects. Later we will use the gamma - normal GLMM in a real context.

In the next section we study a variety of practical problems that shows the practi-

cality and the usefulness of our proposal in the sensitivity analysis for GLMMs.

4.3 Applications

In this section we intend to apply the results exhibited in the previous sections in

several practical situations under different characteristics, which could be approached
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through GLMMs. Analysis of sensitivity by means of local influence will be performed

in GLMMs with continuous, dichotomous and count responses. In particular, the

gamma, binomial and negative binomial models of random effects will be analyzed

in detail. This is possible thanks to the general procedures executed in previous sec-

tions for computing the conformal normal curvature. Such procedures enable us to

execute a study of influential points (subjects and observations) not only in the cases

mentioned in this section, but also in any GLMM with the form given in section 2.2.1.

In each application, once the potentially influential points are highlighted, we mea-

sure the effect of such points on the estimates of the parameters of interest. This as-

sessment will be made using the Mean Relative Change (MeRC) and the Maximum

Relative Change (MRC), which are described in detail later.

4.3.1 Milk data set

First we consider a data set, described and analyzed by Diggle et al. (1994), with the

aim of illustrating the methodology proposed in this paper. The experiment provides

data consisting of protein content of milk samples gathered weekly for 19 weeks from

79 Australian cows, which entered into the study after calving and were fed with one

of the three diets: barley, mixtured barley and lupins and lupins alone. The numbers of

animals in the diet treatments were 25, 27 and 27 cows, respectively. The milk samples

were collected at the first 14 weeks for all the cows and after that the number of animals

decreased to 59, 50, 46, 46 and 41 in the weeks 15, 16, 17, 18 and 19, respectively. Thus, the

79 sequences of protein milk measurements do not have the same length. The objective

of the milk protein study is to explain the effects of diet on the mean response profile of

the protein in milk. Authors like Molenberghs and Kenward (2007) and Diggle et al.

(1994) have considered several proposals for the analysis of this data set. To analyze this

data set and try to achieve the objective of this study we use the GLMMs. Nevertheless,

before postulating a model, we perform a preliminary descriptive analysis of the data.

For example, Figure 4.12 presents robust boxplots (Hubert and Vandervieren, 2008)
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for the protein for each diet, for all cows and for all weeks. This figure, in general,

indicates larger protein content values for the cows fed with barley, whereas the cows

treated with lupins and mixture barley/lupins, respectively, present smaller and inter-

mediate values. Also, one may observe some outliers in each group.
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Figure 4.12: Robust boxplots of the protein content values for each diet for all cows and for all weeks.

Figure 4.13 presents the profiles of protein for each animal classified according to

diet. Among the things that this plot may suggest, we highlight the need of including

at least a random intercept in the linear predictor of the proposed model.

In Figure 4.14 the mean protein profiles for each diet along the study weeks are

displayed. The means change across weeks and seem to be different for each diet. Also,

Figure 4.14 indicates a possible quadratic tendency for the means. This tendency will

be considered later in the proposed model. Furthermore, note that the protein content

in the milk for each diet appears to be larger in the first weeks. In addition, one may

notice indications that the milk produced by the animals treated with barley presents

the larger mean values along weeks. In contrast, the animals fed with lupins seem to

present smaller mean values, whereas the animals treated with mixture barley/lupins

present intermediate mean values.
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Figure 4.13: Profile of the protein content values for each cow classified for each diet across weeks.
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Figure 4.14: Profile of the mean protein content values for each diet across weeks.

Thus, based on the descriptive graphs we propose the following random intercept

gamma-normal model:

Yi jk | bi
ind
∼ G

Ä
µi jk, φ

ä
,

g(µi jk) = log
Ä
µi jk
ä

= β0 + β1 ( j) + weeks k β2 + weeks2
k β3 + bi and

bi
iid
∼ N (0; ξ) ,

(4.3)



64 NUMERICAL STUDIES AND APPLICATIONS

where Yi jk denotes the protein content of the milk collected for the ith animal on the jth

diet in the kth week, for i = 1, 2, . . . , 79, j = 1 (barley), 2 (barley and lupins), 3 (lupins)

and k = 1, 2, . . . ,ni with
∑79

i=1 ni = 1337. β1( j) denotes the main effect of the jth diet and bi

represents the random effect due to the ith animal.

Usually, in the context of the random effect models, the Greek letter ξ that we use for

denoting the variance of the random-effects is replaced by σ 2
b . Thus, in the remainder

of this section remember that ξ = σ 2
b .

The density function of a random variable Y with gamma distribution is given by

f Y

Ä
y;µ, φ

ä
= exp

®
φ
Ç
−

y
µ
− logµ

å
− log

¶
Γ(φ)

©
+ φ log(φ y) − log(y)

´
,

where y > 0, φ > 0, µ > 0 and Γ(φ) =
∫
∞

0 tφ−1 exp(−t) dt. It should be noted that

E (Y) = µ and Var (Y) = φ−1 µ2. Thus, the coefficient of variation of Y becomes given by

σ = 1 /
»
φ.

The adequacy of the model was examined through the gamlsspackage in R software

(R Core Team, 2018), specifically, via the quantile residuals described by Stasinopoulos et al.

(2017).
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Figure 4.15: Quantile residual against fitted value for µ (left) and normal probability plot for the quantile
residual (right) from the random intercept gamma-normal model fitted to the Milk data set (4.3).

The main feature of normal quantile residuals is that, if the postulated model is not

incorrect, then the residuals will follow asymptotically independent standard normal
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distributions. So, these residuals enable us to verify the adequacy of a GAMLSS fitted

model and in particular of the postulated GLMM.

In our case, from Figure 4.15 we may notice a plot of the quantile residuals against

the fitted value for µ indicating a random scatter plot around the horizontal line at 0,

which means that the variability seems to be controlled. In addition, the normal prob-

ability plot for the quantile residual indicates that the gamma-normal model presents

a reasonable fit to the data set. Table 4.3 displays a summary of the quantile residu-

als in which we have that its mean, variance, coefficient of skewness and coefficient

of kurtosis are close to 0, 1, 0 and 3, respectively. This suggests that the residual has

approximately standard normal distribution, as it is expected for a suitable model.

Table 4.3: Summary of the quantile residuals from the random intercept gamma-normal model fitted to
the Milk data set (4.3).

Mean 6.954× 10−6

Variance 1.0007
Coefficient of skewness -0.0412
Coefficient of kurtosis 3.2988
Filliben correlation coefficient 0.9982

Another diagnostic tool provided by the gamlss package is the worm plot

(Buuren and Fredriks, 2001). This is an alternative presentation of the quantile residuals

that focuses on deviations of the distribution of these residuals in comparison with the

standard normal distribution. The three components of a worm plot are: the worm

plot points, a cubic fit of the worm plot points and two elliptical curves that represent

point-wise 95% confidence intervals.

In this sense, Figure 4.16 shows the distance between residuals and their expected

values represented by the horizontal dotted line. According to Stasinopoulos et al.

(2017) if the postulated model is not incorrect, we should have at least 95% of the

points between the two elliptic dashed curves. Such a feature is revealed in Figure 4.16.

In addition, the worm plot may be useful in the detection of outliers, which correspond
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to the points that fall outside the elliptic curves.

On the other hand, the shape of the cubic fit of the worm plot points in Figure 4.16

is important because it may reflect problems related to the location, variance, skewness

and kurtosis of the fitted distribution (Stasinopoulos et al., 2017, chapter 12). In our case,

such cubic fit does not present a specific form. So, it does not seem to reveal inadequate

characteristics in the postulated model (4.3).
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Figure 4.16: Worm plot from the random intercept gamma-normal model fitted to the Milk data set (4.3).

The density plot of the predicted random effects b̃ i is presented in Figure 4.17, and

the null hypothesis of normality is not rejected by the Shapiro-Wilk test. In general, as

pointed out by McCulloch and Neuhaus (2011), the standard assumption of Gaussian

random-effects in GLMMs results in good performance of the predicted random-effects

under a wide variety of distributions for the random effects. In other words, the mis-

specification of the random-effects distribution in GLMMs, in general, does not affect

the accuracy of the predicted random-effects b̃ i.
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Figure 4.17: Predicted random effects density from the random intercept gamma-normal model fitted to
the Milk data set (4.3).

The estimated parameters and their approximate standard errors were obtained by

means of gamlss package and are given in Table 4.4

Table 4.4: Parameter estimates and their approximated standard errors from the random intercept
gamma-normal model fitted to the Milk data set (4.3).

Complete data
Effect Estimate S. E. z-value
Intercept 1.3260 0.0083 158.3130
week -0.0173 0.0020 -8.6340
week2 0.0008 0.0001 8.0550
Mixtbarleylupins -0.0270 0.0050 -5.3830
Lupins -0.0606 0.0050 -12.0530
σ
Ä
φ−1/ 2

ä
0.0744 0.0019 38.4950

ξ
Ä
σ2

b

ä
0.0024

ρ 0.2986

We may notice from Table 4.4 that all effects are marginally significant. One has, for

instance, a quadratic effect of time on the mean protein in the milk. The treatment with

barley only seems to produce the largest mean, whereas the treatment with lupins only,

the smallest one. The estimated coefficient of variation is about 0.0744(7.44%).
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In order to evaluate the variance component ξ, one may use the likelihood ratio test

for assessing H 0 : ξ = 0 against H 1 : ξ > 0 . In that sense, according to Zhang and Lin

(2008), the asymptotic null distribution of this test in random intercept GLMMs is a mix-

ture of central chi-squared distributions 1
2χ

2
0 + 1

2χ
2
1 , where χ 2

0 represents the degenerate

distribution at the origin. In this case, the likelihood ratio statistics equals ζLR = 282.5.

The corresponding p-value is 1
2 P
Ä
χ 2

1 ≥ ζLR

ä
< 0.0001, which indicates strong evidence

for rejecting H 0. In other words, there is reason to consider the presence of the random

intercept in model (4.3).

To apply this test it was necessary the use of the gamlssNP() function of gamlss.mx

package (Stasinopoulos et al., 2017) in the R software (R Core Team, 2018) for fitting the

model (4.3). Unlike the gamlss() function, the gamlssNP() function provides max-

imum likelihood estimates for the parameters in random intercept GLMMs by maxi-

mizing the marginal log-likelihood function (2.8). Furthermore, this function allows us

to obtain the log-likelihood function evaluated at the maximum likelihood estimates

and therefore the application of this test may be easily developed.

In addition, under model (4.3), it is possible to demonstrate (see, appendix C) that

the estimated correlation coefficient among two observations of the ith subject, induced

by the assumption of the random-effects distribution, is

ρ̂ = Corr (Yir, Yis) =
exp

Ä
ξ̂
ä
− 1Ä “φ−1 + 1

ä
exp

Ä
ξ̂
ä
− 1

, (4.4)

where 1 ≤ r, s ≤ ni, i = 1, . . . , 79 and r , s. Thus, note that the correlation matrix of the

observations for each subject is exchangeable and it is fully specified by the correlation

parameter ρ. The estimate of this parameter is displayed in Table 4.4 and suggests a

low correlation. For more details the reader may review appendix C. Note that the

intraclass correlation coefficient (4.4), induced by the distributional assumption of the

random effects, is always positive.
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Table 4.5: Parameter estimates and their approximated standard errors from the random intercept
gamma-normal model fitted to the Milk data set (4.3) dropping the potentially influential subjects and

observations on “ψ =
(
β̂
>

, ξ̂, φ̂
)>

.

Dropping influential subjects Dropping influential obs.
Effect Estimate S. E. z-value Estimate S. E. z-value
Intercept 1.3255 0.0087 152.2140 1.3195 0.0084 156.8910
week -0.0173 0.0021 -8.2560 -0.0160 0.0020 -7.7850
week2 0.0008 0.0001 7.1550 0.0008 0.0001 7.3840
Mixtbarleylupins -0.0213 0.0051 -4.1690 -0.0278 0.0048 -5.7580
Lupins -0.0602 0.0053 -11.3490 -0.0628 0.0049 -12.9270
σ
Ä
φ−1/ 2

ä
0.0718 0.0020 35.6300 0.0715 0.0019 36.7500

ξ
Ä
σ 2

b

ä
0.0024 0.0025

ρ 0.2986 0.3106

To use the techniques proposed in this work, it is necessary to note that the fitted

model does not belong to the canonical exponential family. So, according to the ap-

proximated structures for L ψ̂ ψ̂ and ∆ (related with the specific perturbation scheme)

given in sections 3.6 and 3.7, it is necessary to compute some additional matrices along

with the variance matrix Vi. The structures required for the computation of the con-

formal normal curvature defined in (2.12) and (2.13) are summarized in Table 4.6. It

is worth noting that in the canonical cases the most of such structures are simplified

to null matrices and the others have important simplifications as has been mentioned

throughout.
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Table 4.6: Necessary matrices for computing the conformal normal curvature in gamma-normal models
with logarithmic link.

Wi = Ini Vi = ⊕ni
j=1µ

2
i j

Dρi
= −V−1/2

i Dρ̇i
= V−1

i

Dρ̈i
= −2 V−3/2

i Mi = −Dyi
V−1/2

i

Ṁi = Dyi
V−1

i −V−1
i − Ini M̈i = −V−1

i

Ä
Vi + 2 Dyi

V−1/2
i − 2 Ini

ä
Ai = Ȧi = Äi = V 1/2

i

Note that these structures are defined in terms of Vi, which may be built from fitted

values for µ that may be obtained, for example, from the gamlss package by means of

the function fitted(fitmodel, ”mu”). The computational cost of these procedures and

their subsequent replacement in the analytical expressions for L ψ̂ ψ̂ and ∆ obtained in

this work, is inexpensive.

4.3.1.1 Potentially influential points

Potentially influential subjects

Once the approximated structures for L ψ̂ ψ̂ and ∆ were computed, we may obtain

the conformal normal curvature and highlight the potentially influential points by

means of Figures 4.18 and 4.19. In these figures, the most potentially influential sub-

jects or observations correspond to the furthest points of the threshold represented

by dashed lines. We suggest to use as cutoff 2 B for discriminating influential subjects

(Lesaffre and Verbeke, 1998) and B + 4 SD (B) for pointing out influential observations.

B and SD (B) denote the mean and the standard deviation of B = {Bi : i = 1, . . . ,N} or

B =
¶

Bi j : j = 1, . . . ,ni and i = 1, . . . ,N
©

, to identify potentially influential subjects

or observations, respectively.

In that sense, in Figure 4.18 three subjects are revealed as possible influential

subjects: cow 13, fed with a mixture of barley and lupins (corresponding to the animal
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number 38) and cows 1 and 6 maintained with lupins alone (correspond to the animals

53 and 62, respectively).

The subjects identified as potentially influential were eliminated in different combi-

nations and the selected model (4.3) was refitted in each case; inferential changes were

not observed. To illustrate this, in the left side of Table 4.5 we exhibit the estimated

parameters without the subjects potentially influential. Hence, comparing Tables 4.4

and 4.5, we may see that the majority of the parameters changed mildly.
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Figure 4.18: Index plot of the conformal normal curvature Bi
(
β, ξ, φ

)
from the random intercept

gamma-normal model fitted to the Milk data set (4.3).

Potentially influential observations

On the other hand, in order to detect observations with great impact on the fitting

process of the selected model, we use the perturbation scheme developed in section

3.7.2 and by means of the analytical structures exposed in that section, the conformal

normal curvatures (2.12) and (2.13) were computed for generating Figures 4.19 and

4.20. Figure 4.19 indicates several potentially influential observations. To label them we

have taken into account that the 79 animals have been classified in groups of 25, 27 and

27 according to a specific diet. Hence, we have labeled the observations by (L 02, 1),

(L 16, 1) and (BL12, 19). The first two represent the observations collected in the first
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week of the cows number 02 and 16 maintained with lupins. The last corresponds to

the observation collected in the week 19 in the cow 12 fed with a mixture of barley

and lupins. Figure 4.20 shows that the observations mentioned above exercise greater

influence on the estimate of the fixed effects β̂. The sample mean of the protein content

of the milk collected in the week 19 for the animals under the mixture of barley and

lupins diet is 3.40 and the protein content of the observation (BL12, 19) is 2.89, which

is well below the mean. Furthermore, the sample mean of the protein measured in the

first week is 3.75 for the animals nourished with lupins whereas in observations (L 02, 1)

and (L 16, 1) the protein content was 4.20 and 4.13, respectively, which are far above the

sample mean mentioned. Sample means of content protein in the milk of the animals

BL13, L 02 and L 16 were computed and we find that such means are actually different

from the protein content of the mentioned observations. Finally, note that according

to Figures 4.19 and 4.20, the majority of the observations highlighted as influential

appear for the last animals, which are cows fed with lupins. Also, in the left side of

the same figures, that is, before of the subject 30 the quantity of potentially influential

observations decreases considerably. In other words, most observations corresponding

to the cows in the barley diet, do not have a undue weight in the estimation procedure.
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Figure 4.19: Index plot of the conformal normal curvature Bi j
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β, ξ, φ
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from the random intercept

gamma-normal model fitted to the Milk data set (4.3).
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Again, in order to assess if the detected observations in Figure 4.19 lead to important

inferential changes we deleted such points in different combinations and we observed

no inferential changes. In the right side of Table 4.5 we present the parameters esti-

mates and their approximated standard errors when the influential observations were

completely removed.

Index plots for examining influential observations or subjects separately on β̂, ξ̂

or σ̂ may be obtained following equation (2.13). For instance, Figure 4.20 shows that

observations (BL12, 19), (L 02, 1) and (L 16, 1) are the most potentially influential on β̂

and (L 02, 1) and (L 16, 1) are the most potentially influential on ξ̂ and σ̂, respectively.

Other observations are revealed in this figure. We analysed possible inferential changes

and the conclusion was similar to the one made previously.
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Figure 4.20: Index plots of the conformal normal curvature Bi j
(
β
)

(left top), against Bi j (ξ) (right top)
and Bi j

(
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)

(bottom) from the random intercept gamma-normal model fitted to the Milk data set (4.3).
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4.3.1.2 MeRC and MRC

In order to assess the effect of a set of points in the estimation procedures, we

computed the MRC (Maximum Relative Change) proposed by Lee et al. (2006) for this

purpose. Also, we propose to compute the MeRC (Mean Relative Change) to assess of

such effect. These quantities are defined as follows

MeRC =
1
s

s∑
i=1

∣∣∣∣∣∣
“ψi −

“ψ 0
i“ψi

∣∣∣∣∣∣ and MRC = max
1≤i≤s

∣∣∣∣∣∣
“ψi −

“ψ 0
i“ψi

∣∣∣∣∣∣ , (4.5)

where s is the number the parameters, “ψ =
Ä“ψ1, . . . , “ψs

ä>
and “ψ 0

=
Ä“ψ 0

1 , . . . ,
“ψ 0

s

ä>
are

the estimates of ψ with the complete data set and by dropping the points of interest,

respectively. We expect that the impact of the potentially influential points on the

estimation processes is greater than the impact of any other set of non-influential

points.

To verify this, following Lee et al. (2006), given a set of k points discriminated as

influential, we develop the procedure described below:

(1) Compute the MeRC and MRC for the set of potentially influential points.

(2) Choose randomly several sets of non-influential points of size k.

(3) Compute the MeRC and MRC for each of the sets selected above.

(4) Compare the MeRC′s and MRC′s obtained in the items (3) and (1).

Thus, according to Lee et al. (2006) we should verify if the MRC for the influential points

is greater than the ones for the non-influential points. Similar behavior is expected for

the MeRC. This will reflect if the estimation procedure is less sensitive to non-influential

points.
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MeRC and MRC for the influential subjects

Since in Figure 4.18 three subjects were highlighted, we selected 10 random samples

of non-influential points, each sample with 3 non-influential points and considered the

above mentioned method. The results are displayed in Table 4.7 and they reveal what

we expected. The greatest MeRC and MRC are associated with the influential subjects.

Table 4.7: Comparison of the measures MeRC and MRC for potentially influential subjects from the
random intercept gamma-normal model fitted to the Milk data set (4.3).

Influential Samples of non-influential subjects
subjects 1 2 3 4 5

MeRC 0.052 0.034 0.018 0.041 0.032 0.008
MRC 0.208 0.084 0.034 0.149 0.116 0.019

Samples of non-influential subjects
6 7 8 9 10

MeRC 0.020 0.051 0.022 0.040 0.020
MRC 0.058 0.108 0.05 0.109 0.037

MeRC and MRC for the influential observations

Furthermore, we have selected randomly several samples of non-influential obser-

vations and we computed the MRC and the MeRC, following the procedure described

in section 4.3.1.2. The results are displayed in Table 4.8. As we expect, the greatest

impact on the fitted model occurs for the potentially influential observations.
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Table 4.8: Comparison of the measures MeRC and MRC for potentially influential observations from
the random intercept gamma-normal model fitted to the Milk data set (4.3).

Influential Samples of non-influential observations
observations 1 2 3 4 5

MeRC 0.185 0.038 0.060 0.051 0.084 0.097
MRC 0.578 0.088 0.166 0.181 0.213 0.177

Samples of non-influential observations
6 7 8 9 10

MeRC 0.081 0.076 0.073 0.072 0.067
MRC 0.162 0.259 0.153 0.174 0.212

4.3.2 Respiratory data set

This data set from the biomedical literature is described by Myers et al. (2002) and

taken originally from Stokes et al. (1995). The aim of the study is to compare two

treatments applied to patients with respiratory disease. The data were collected for 56

patients distributed in two groups of 27 and 29 patients, respectively. The first group

was submitted to a treatment with active drug and the second was treated with placebo.

In the period of the treatment, the respiratory condition of each patient was observed

and described as good or poor in each of four visits. Also, other features observed in

the patients were Age, Gender and a baselinemeasure.

A summary of this data set is presented in Tables 4.9 and 4.10. Both tables suggest

that the probability of poor respiratory condition is reduced when the patient is treated

with the active drug. Also, Table 4.9 indicates that the active drug seems to have

different performance in males and females. Essentially, the female patients improved

only in the last visit. In addition, from Table 4.10 we have strong indications that the

active drug works differently on younger and older patients. In that sense, none of

the younger patients treated with the active drug presented poor respiratory condition

after the third visit. However, poor respiratory condition in the older patients treated

with active drug is presented until the last visit.
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Table 4.9: Patients with poor respiratory condition in each visit, classified according to the two treatments
and gender.

Treatment Gender Visit 1 Visit 2 Visit 3 Visit 4

Active drug
Female 2 / 2 2 / 2 2 / 2 0 / 2
Male 20 / 25 11 / 25 3 / 25 1 / 25

Placebo
Female 5 / 5 5 / 5 5 / 5 4 / 5
Male 15 / 24 13 / 24 16 / 24 11 / 24

Table 4.10: Patients with poor respiratory condition in each visit, classified according to the two
treatments and age.

Treatment Age Visit 1 Visit 2 Visit 3 Visit 4

Active drug
(≤ 30) 13 / 16 5 / 16 0 / 16 0 / 16
(> 30) 9 / 11 8 / 11 5 / 11 1 / 11

Placebo
(≤ 30) 9 / 17 7 / 17 9 / 17 8 / 17
(> 30) 11 / 12 11 / 12 12 / 12 7 / 12

Furthermore, in Figure 4.21 we have robust boxplots (Hubert and Vandervieren,

2008) for the age according to the respiratory condition for all patients, for all visits and

the two treatments. Note that the greater ages are related to poor respiratory condition.

However, some extreme values are detected in patients with good respiratory condition.
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Figure 4.21: Robust boxplots of age for each respiratory condition for all patients and for all visits.

Myers et al. (2002) and Stokes et al. (1995) proposed to analyze this data set via

generalized estimating equations (Liang and Zeger, 1986). Myers et al. (2002) focused

their analysis by modeling the probability of the respiratory condition poor given

the explanatory variables Age, Treatment and Gender and suggested to use a correlation

structure AR(1) for the responses of each patient.

In the context of the GLMMs, taking into account that the variable respiratory

condition is dichotomous (0 for good, 1 for poor) and following descriptive analyses,

we propose to use a random intercept model with response variable Bernoulli with

success probability πi j, which represents the probability of poor respiratory condition

of the ith patient in the jth visit given the explanatory variables previously mentioned

and the logit link. The model is specified as:

Yi j | bi
ind
∼ Be

Ä
πi j
ä
,

log
(

πi j

1 − πi j

)
= β0 + β1 Agei + β2 Treatmenti + β3 Genderi + bi and

bi
iid
∼ N (0 ; ξ) ,

(4.6)

where Yi j represents the respiratory condition (1 for poor, 0 for good) of the ith patient
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in the jth visit for i = 1, 2, . . . , 56 and j = 1, 2, 3, 4. The explanatory variables are Age in

years and the dichotomous variables treatment (0 for active drug, 1 for placebo) and

Gender (0 for female, 1 for male) whereas bi represents the random effect due to the ith

patient.
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Figure 4.22: Quantile residual against fitted value forπ (left) and normal probability plot for the quantile
residual (right) from the random intercept Bernoulli-normal model fitted to the Respiratory data set (4.6).

Since the response variable Yi j is not continuous, Stasinopoulos et al. (2017) recom-

mend to use the normalized randomized quantile residuals as a tool for establishing

possible departures from the postulated model. Unlike GLMMs with continuous re-

sponse variable, the quantile residual associated with discrete responses does not have

a unique output. This is due to the nature of the cumulative distribution function for a

discrete random variable, which is a step function with jumps at the integers and there-

fore is not a one to one function on [0, 1]. As a consequence, the introduction of random

processes for obtaining the quantile residuals, that in this case are called randomized

quantile residuals. For more details on the building of these residuals the reader may

refer to Stasinopoulos et al. (2017) and references therein. Thus, to verify the adequacy

of model (4.6) we use several realizations of the randomized quantile residuals. This

option is available in the gamlss package by means of the rqres.plot() function.

The right panel of Figure 4.22 displays several realizations of the randomized quan-

tile residuals and their median. Also, for each realization a scatter plot versus the fitted

value for π was built, obtaining the graph presented on the left panel of Figure 4.22.
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Then, we may see that the behavior seems adequate as well as for the normal probabil-

ity plot on the right panel of Figure 4.22. On the other hand, in order to use the worm

plot (see section 4.3.1) as a diagnostic tool, we require quantile residuals that are not

unique when the response is not continuous. Hence, following a similar procedure as

that considered in Figure 4.22, we use worm plots for several realizations of the nor-

malized randomized quantile residuals which are displayed in Figure 4.23. Since the

realizations of the quantile residuals are not the same, the worm plots present different

forms, but if the postulated model is adequate we expect suitable forms in each one of

them. Thus, note that in each worm plot in Figure 4.23 the worm plot points are located

between the elliptical curves and no one of the fitted cubic curves has a specific form.

Hence, model 4.6 seems to be adequate.

The correlation matrix associated to the observations in each subject is discussed

for some GLMMs in appendix C. The expressions for computing these correlations

were achieved for GLMMs with logarithmic link. For other link functions, such as the

logit link, it is necessary to use numerical methods for computing the aforementioned

correlations.
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Figure 4.23: Worm plots from the random intercept Bernoulli-normal model fitted to the Respiratory
data set (4.6).

A plot of predicted random effects density is given in Figure 4.24. As pointed out

by McCulloch and Neuhaus (2011), the shape of this density is due to the normality

assumption for the random effects in model (4.6) and does not reflect the true density of

the random effects. Nevertheless, the knowledge of such density is not necessary since

McCulloch and Neuhaus (2011) demonstrated that the predicted values of random

effects suffer a slight sensitivity to the shape of the density assumed for the random

effects. Thus, the normality assumption for the random effects seems suitable in our
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study.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

Predicted Random Effect

D
e
n
s
it
y

Figure 4.24: Predicted random effects density from the random intercept Bernoulli-normal model fitted
to the Respiratory data set (4.6).

The parameter estimates and their approximated standard errors are given on the

left side of Table 4.11.

Table 4.11: Parameter estimates and their approximated standard errors from the random intercept
logistic model fitted to the Respiratory data set.

Complete data Dropping influential subjects
Effect Estimate S. E. z-value Estimate S. E. z-value
Intercept -0.1362 0.8005 -0.1700 -0.0372 0.7952 -0.0470
Age 0.0481 0.0140 3.4360 0.0453 0.0141 3.2180
Placebo 1.0487 0.3062 3.4250 1.0165 0.3082 3.2980
MGender -1.9807 0.6433 -3.0790 -2.0790 0.6420 -3.2380
ξ
Ä
σ 2

b

ä
0.6532 0.4236

We may notice from Table 4.11 that all effects are marginally significant. As the age

increases the probability of poor respiratory condition increases, patients submitted to

placebo seems to have a larger probability (estimated odds ratio of “ψ = exp (1.0486) =

2.85) with respect to the patients submitted to the active drug, whereas female gender
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has a larger probability (estimate odds ratio of “ψ = exp (1.9806) = 7.25), with respect to

male gender.

In addition, as mentioned in section 4.3.1, it is possible to assess the variance com-

ponent ξ through the likelihood ratio test for evaluating H 0 : ξ = 0 against H 1 : ξ > 0 ,

which follows for large NT a mixture of central chi-squared distributions 1
2 χ

2
0 + 1

2 χ
2
1 ,

whereχ 2
0 denotes the degenerate distribution at the origin (Zhang and Lin, 2008). In this

case, the likelihood ratio statistic equals ζLR = 3.99 and the corresponding p-value is

1
2 P
Ä
χ 2

1 ≥ ζLR

ä
= 0.0228, which indicates evidence against H 0 . In other words, one has

evidence for rejecting the absence of patient random effect. As mentioned in section

4.3.1, this test was performed using the gamlssNP() function of the gamlss package

in R software (R Core Team, 2018).

Alternatively, one may apply the aforementioned likelihood ratio test using the

glmmML() function of the glmmML package in the R software (R Core Team, 2018). This

is a function, based on the work of Broström and Holmberg (2011), that provides

among other things, the p-value corresponding to the likelihood ratio test for assessing

H 0 : ξ = 0 against H 1 : ξ > 0 . Thus, by means of this function the obtained p-value is

0.02283, which confirms the results achieved through the gamlssNP() function. That

is, we have evidence against H 0. It is worth mentioning that the glmmML() function is

only available for random intercept GLMMs with response (conditional to the random

effects) Poisson and binomial.

Table 4.12: Parameter estimates and their approximated standard errors from the random intercept
logistic model fitted to the Respiratory data set, after dropping potentially influential observations.

Dropping observation (18,4) Dropping influential obs.
Effect Estimate S. E. z-value Estimate S. E. z-value
Intercept 0.2294 0.8937 0.2570 12.1022 281.9406 0.0430
Age 0.0515 0.0143 3.6100 0.0546 0.0148 3.7010
Placebo 0.9873 0.3099 3.1850 0.9825 0.3220 3.0510
MGender -2.4159 0.7636 -3.1640 -14.3778 281.9402 -0.0510
ξ
Ä
σ 2

b

ä
0.6987 0.9170
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Now, with the purpose of determining points with a undue weight in the estimation

processes we will use the approximate local influence approach proposed in sections

3.6 and 3.7. This model belongs to the canonical exponential family and consequently

there are important simplifications in the structure of the conformal normal curvature

defined in (2.12) and (2.13). Such simplifications are described in (3.12). In addition,

we have other important reductions given by (3.13) because model (4.6) is a random

intercept model. The required structures are summarized in Table 4.13.

Table 4.13: Necessary matrices for computing the conformal normal curvature in the logistic model.

Ai = Vi = Wi = ⊕ni
j=1 πi j

Ä
1 − πi j

ä
Mi = −Vi

Ṁi = −Ȧi =
(
2 Dπi − Ini

)
Vi φ = 1

M̈i = −Äi =
(
6 Vi − Ini

)
Vi

These simple structures enable to compute approximately L ψ̂ ψ̂ and ∆ for each

perturbation scheme according to the results in sections 3.6 and 3.7.

4.3.2.1 Potentially influential points

Potentially influential subjects

Through the perturbation scheme discussed in section 3.7.1 we may compute the

conformal normal curvature Bi
Ä
ψ
ä

for each patient and consequently to build Figure

4.25. The dashed line that represents 2 B (Lesaffre and Verbeke, 1998), as it was men-

tioned in the previous example allows us to identify at least two potentially influential

subjects, the patients 15 and 22. Patient 22 is a 46 year man, which was the only one

submitted to active drug that did not present improvement (see, Table 4.10). Patient

15 is the youngest man treated with placebo that presented poor respiratory condition

in the four visits. The individual and joint deletion of these patients did not represent

changes in the inference. For instance, the right side of Table 4.11 reports the parameter
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estimates when the spotlighted subjects are simultaneously deleted.
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Figure 4.25: Index plot of the conformal normal curvature Bi
(
β, ξ

)
from the random intercept logistic

model fitted to the Respiratory data set (4.6).

Potentially influential observations

On the other hand, by means of the perturbation scheme described in section 3.7.2,

it is possible to obtain the conformal normal curvature for the ith patient in the jth visit

denoted by Bi j
Ä
ψ
ä

= Bi j
Ä
β, ξ
ä

with 1 ≤ i ≤ 56 and 1 ≤ j ≤ 4. Thus, Figure 4.26 shows

such curvatures for each patient and the dashed line, that represents B+2 SD (B), enables

us to highlight potentially influential observations. In this case, B and SD (B) denote

the mean and the standard deviation of B =
¶

Bi j : i = 1, . . . , 56 and j = 1, . . . , 4
©

. We

labeled the observations in the form (patient,visit). Hence, in Figure 4.26 we may see

that observations (18, 4), (28, 4) and (53, 4) are discriminated. The observations (18, 4)

and (53, 4) correspond to the last visit of the patients 18 and 53. Such patients are the

only women treated with active drug that presented good respiratory condition until

the last visit (see Table 4.9). Also, observation (28, 4) represents the last visit for the

patient 28. Such patient is the only woman treated with placebo that improved in the

fourth visit (see Table 4.9).
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Myers et al. (2002) analyzed these data using the GEE (generalized estimating equa-

tions) methodology. From that analysis, Paula (2013b), in section 5.5.2, highlighted po-

tentially influential observations through a generalization of the Cook distance (Cook,

1977) for GEE. Such observations agree exactly with the ones spotlighted in this work.
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Figure 4.26: Index plot of the conformal normal curvature Bi j
(
β, ξ

)
from the random intercept logistic

model fitted to the Respiratory data set (4.6).

The observations were deleted in multiple combinations to evaluate the impact on

the parameter estimates and to inspect possible inferential changes. Hence, when such

observations are eliminated individually and in groups of two, we achieved similar

results to the ones exhibited in the left side of Table 4.12, which correspond to the

estimates reached by extracting observation (18, 4). Then, we may see that there are

no inferential changes. Note that there is an important shift in the Intercept, but

this effect is not significant. However, by extracting jointly the three observations,

substantial changes are revealed and exposed in the right side of Table 4.12. The most

important occurrence is on the effect of the explanatory variable gender that becomes

not significant. Thus, it seems that the observations in question induce the effect of

the explanatory variable gender, but when this effect is eliminated from the model,

the resulting AIC becomes greater than the one obtained for the model (4.6). Also, the
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randomized quantile residuals are not well behaved. However, because some standard

errors appear very large when compared with the ones from the fit with all observations,

one may have indication of singularity with the Fisher information matrix, so the results

are not reliable.

All the fits required in this work have been performed by using the gamlss package

and eventually compared with the results produced by the glmer function of the lme4

package, getting almost identical outcomes. Nevertheless, when we tried to fit the

model (4.6) dropping the observations (18, 4), (28, 4) and (53, 4) jointly, the convergence

is not attained. The same problems of divergence occur using the GEE methodology by

extracting the mentioned observations.

Furthermore, from Figure 4.27 we may see that the observation (53, 4) is highlighted

to be potentially influential on β̂ but not on ξ̂. Two new observations appear spotlighted,

(12, 1) and (54, 1), but none of them causes inferential changes.

0 10 20 30 40 50

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

Subject number

B
ij(

β
)

(18,4) (28,4)

(53,4)

0 10 20 30 40 50

0
.0

0
0

.1
0

0
.2

0

Subject number

B
ij(

ξ)

(12,1) (18,4)

(28,4)

(54,1)

Figure 4.27: Index plots of the conformal normal curvature Bi j
(
β
)

(left) and against Bi j (ξ) (right) from
the random intercept logistic model fitted to the Respiratory data set (4.6).

4.3.2.2 MeRC and MRC

MeRC and MRC for the influential subjects

Following the procedure described in section 4.3.1.2 we select 10 random samples

with two subjects each. Then, we compute the MeRC and the MRC for the highlighted
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subjects in Figure 4.25 and for the selected samples on the significant effects. The

outcomes are reported in Table 4.14 and present an expected behavior.

Table 4.14: Comparison of the measures MeRC and MRC for potentially influential subjects from the
random intercept logistic model fitted to the Respiratory data set (4.6).

Influential Samples of non-influential subjects
subjects 1 2 3 4 5

MeRC 0.122 0.055 0.066 0.029 0.075 0.098
MRC 0.351 0.117 0.113 0.047 0.216 0.157

Samples of non-influential subjects
6 7 8 9 10

MeRC 0.051 0.066 0.057 0.057 0.077
MRC 0.109 0.090 0.182 0.146 0.122

MeRC and MRC for the influential observations

In order to perform the computations for the MeRC and the MRC, it is necessary to

fit the model of interest dropping the potentially influential observations. However, for

this data set there is a question if the convergence is attained when the observations of

interest are ignored. This doubt arises from the inconsistent results obtained when this

model is fitted with distinct packages for the treatment of GLMMs in the R software

(R Core Team, 2018). Thus, we prefer to omit the study the MeRC and MRC for the

potentially influential observations in this example.

It is worth noting that the doubts are presented in the convergence of the model

dropping the discriminated observations, but not in the identification of such observa-

tions, which are displayed in Figure 4.26. As it was previously mentioned, the same

observations were spotlighted, through the Cook’s distance when this problem was

treated with GEE by Paula (2013b).
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4.3.3 Insurance data set

The Third party insurance is a obligatory insurance for vehicle owners in Australia.

It insures the drivers if they suffer an accident that causes injuries to other drivers,

pedestrian or passengers. The ”third party” data set, described by De Jong and Heller

(2008), contains the register of third party claims in a period of twelve months between

1984 and 1986 in each of 176 geographical areas (local government areas) in New

South Wales, Australia. Such areas are divided into thirteen statistical divisions, that

will be called territories. In addition, other features for each local government area

are reported in this data set, namely, number of accidents, number of people dead or

injured, population density and population.

For the insurers it is important to know the relationship between the third party

claims and other variables contained in this data set. This allows to assess the risk of

insuring a driver and therefore it becomes an important tool for establishing the insur-

ance premium. Different approaches for analyzing this data set have been exposed in

the literature (see, De Jong and Heller, 2008; Stasinopoulos and Rigby, 2007). Although

the Poisson distribution is the natural selection by considering as response variable

the number of claims, Stasinopoulos and Rigby (2007) and De Jong and Heller (2008)

show that this data set presents overdispersion, so a negative binomial distribution

may be a more appropriate choice, since it is well known that this distribution accom-

modates overdispersed data better. Furthermore, De Jong and Heller (2008) suggested

to use a quasi-likelihood approach.

A preliminary analyses of this data set reveals important and natural relations

among the number of claims in the remaining variables of this data set in any territory.

These relations are reviewed in Stasinopoulos and Rigby (2007). In Figure 4.28, we

present only a scatterplot of the number of claims versus the logarithm of the number

of accidents for all territories and indicates an increase in the number of claims by

increasing the number of accidents. Based in this graph, it makes sense to consider the

logarithm of the number of accidents as explanatory variable, such as was suggested
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by Pinho et al. (2015).
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Figure 4.28: Scatterplot of the number of claims versus logarithm of the number of accidents for all
territories with fitted smoothing curve.

We adopt the proposed model by Pinho et al. (2015) which is random intercept

GLMM with negative binomial response specified as follows

Yi j | bi
ind
∼ BN

Ä
µi j, ν

ä
,

log
Ä
µi j
ä

= β0 + β1 LogAccidentsi j + bi and

bi
iid
∼ N (0 ; ξ) ,

(4.7)

where Yi j and LogAccidentsi j denote, respectively, the claims and the logarithm of the

number of accidents in the jth area of the ith territory and bi represents the random

effect due to the ith territory, for i = 1, 2, . . . , 13 and j = 1, . . . ,ni , with NT =
13∑
i=1

ni = 176.

The parametrization that we assume for the probability function of a random va-

riable Y with negative binomial distribution is

f
Ä
y;µ, ν

ä
=

Γ
Ä
ν + y

ä
Γ
Ä
y + 1

ä
Γ (ν)

Ç
µ

µ + ν

åy Ç ν
µ + ν

åν
, (4.8)

where µ > 0, ν > 0 and y = 0, 1, 2, . . .. We consider ν fixed. Hence, it is possible to prove
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that (4.8) belongs to the exponential family and therefore the results in this work are

applicable.

Pinho et al. (2015) proposed an extension of Cook’s distance to GLMMs and used

it for discriminating influential observations under model (4.7). We will consider the

same study, but by means of the approximate local influence approach developed in

this work.
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Figure 4.29: Quantile residual against fitted value for µ (left) and normal probability plot for the quantile
residual (right) from the random intercept negative binomial model with ν fixed, fitted to the Insurance
data set (4.7).

In light of the fact that the response variable is not continuous, we use several

realizations of the normalized randomized quantile residuals which are displayed in

probability plots in the right panel of Figure 4.29. These plots appears to be well

behaved. Also, for each realization of these residuals was built a scatter plot against the

adjusted value for µ. One of these scatter plots is presented in the left panel of Figure

4.29 and may suggest that the dispersion should be modeled (the remaining scatter

plots present similar features). However, in order to illustrate our methodology, we

prefer to use model (4.7) proposed by Pinho et al. (2015).

In practice, ν may not be assumed to be known and ν̂ should be computed. We

are aware that the negative binomial distribution given in (4.8), for ν unknown, can

not be written in the form (2.1). That is, the negative binomial distribution does not

belong to the exponential family. Nevertheless, for illustrative purposes we obtained,

through the gamlss package, the parameter estimates β̂, ξ̂ and ν̂ and we focus our
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sensitivity analysis on β̂ and ξ̂ assuming that ν = ν̂. This is necessary because the

diagnostic tool proposed in this work is valid only in the exponential family. A complete

sensitivity analysis, through local influence, in model (4.7) requires computation of

special curvatures for this model. As far as we know, such curvatures are not available

in the statistical literature. Thus, it would be interesting to address this problem in

future research.

Unlike the gamma-normal random intercept model (4.3) the correlations between

two pairs of observations from ith subject, under the model (4.6), are not the same

(see, appendix C) and therefore the correlation matrix of the ni observations from ith

subject is not exchangeable and in general may be unstructured. Thus, in appendix C

we present an analytical expression for computing the ni (ni − 1) / 2 different elements

of the correlation matrix corresponding to each subject. In this case, we do not present

the correlation matrix associated to the observations of each subject, but this is easily

computable from the analytical expressions showed in appendix C.

Figure 4.31 shows worm plots for several realizations of the normalized randomized

quantile residuals. These plots reveal a reasonable behavior, although given the specific

form of the fitted curve it would be accurate to model the shape parameter ν. However,

in our case that is not possible, since we consider ν fixed.
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Figure 4.30: Predicted random effects density from the random intercept negative binomial model with
ν fixed, fitted to the Insurance data set (4.7).
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Figure 4.31: Worm plots from the random intercept negative binomial model with ν fixed, fitted to the
Insurance data set (4.7).

A plot of the random effects density is shown in Figure 4.30 and does not reflect the

true density of the random effects. However the normality assumption is adequate since

the predicted values of the random effects are slightly affected by the misspecification of

the random-effects density (McCulloch and Neuhaus, 2011). The parameter estimates

obtained from the gamlss() function of the gamlss package are summarized in Table

4.15.
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Table 4.15: Parameter estimates and their approximated standard errors from the random intercept
negative binomial model fitted to the Insurance data set (4.7).

Complete data
Effect Estimate S. E. z-value
Intercept -2.1157 0.1438 -14.7100
LogAccidents 1.1893 0.0224 53.0400
ξ
Ä
σ 2

b

ä
0.0023

Table 4.16: Parameters estimates from the negative binomial model fitted to the Insurance data (4.7),
after dropping the influential territories and areas.

Dropping influential territories Dropping influential areas
Effect Estimate S. E. z-value Estimate S. E. z-value
Intercept -1.8588 0.1420 -13.0900 -2.0038 0.1378 -14.5400
LogAccidents 1.1526 0.0216 53.1700 1.1699 0.0213 54.7000
ξ
Ä
σ 2

b

ä
0.0012 0.0109

We may notice from Table 4.15 that all effects are marginally significant. As the

number of accidents increases the mean number of claims increases. With respect to

the variance component ξ, one way test H 0 : ξ = 0 against H 1 : ξ > 0 . As proved by

Zhang and Lin (2008) the asymptotic null distribution of this test is a mixture of central

chi-squared distributions 1
2 χ

2
0 + 1

2 χ
2
0 , where χ 2

0 denotes the degenerate distribution at

the origin. In our case, the likelihood ratio statistic equals ζLR = 8.720 and consequently

the resulting p-value is 1
2 P
Ä
χ 2

1 ≥ 8.720
ä

= 0.0016 , which reveals a strong evidence

against H 0. That is, the absence of the random effect due to territory is rejected.

The structures required for the implementation of the results of the sections 3.6 and

3.7 are reported in Table 4.17.
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Table 4.17: Necessary matrices for computing the conformal normal curvature for the negative binomial
model with ν fixed and logarithmic link.

Vi =
ni⊕

j=1
Vi j; Vi j = µi j

Ä
1 + ν−1 µi j

ä
Wi =

ni⊕
j=1

Wi j; Wi j = µi j
Ä
1 + ν−1 µi j

ä−1

Dρi
= −ν−1 Wi Vi Ai Dρ̇i

= Dρi
W1/2

i

Ä
V−1/2

i − νW1/2
i

ä
Mi =

Ä
Dyi
−Ai

ä
Dρi
−Wi Ṁi =

Ä
Dyi
−Ai

ä
Dρ̇i
−Wi

M̈i =
Ä
Dyi
−Ai

ä
Dρ̈i
−Wi Äi = Ȧi = Ai = Dµi

Dρ̈i
= −ν−1 Dρ̇i

W1/2
i

Ä
V−1/2

i − νW1/2
i

ä
− 2Dρi

Wi V−1
i

We may obtain the conformal normal curvatures Bi
Ä
ψ
ä

and Bi j
Ä
ψ
ä

for i = 1, . . . , 13

and j = 1, . . . ,ni, where ψ =
Ä
β>, ξ

ä>
. Such curvatures are represented in Figures

4.32 and 4.33. In Figure 4.32, the dashed line represents 2 B as was suggested in

Lesaffre and Verbeke (1998). B is the set of normal conformal curvatures associated

to each of the thirteen territories. In Figure 4.33, B is the set of normal conformal

curvatures associated to each of the 176 local government areas and the dashed line

represents B + 2 SD ( B ).

4.3.3.1 Potentially influential points

Potentially influential subjects

Figure 4.32 shows the territories 7 and 13 as potentially influential. These territo-

ries have the least and the greatest proportion of claims in relation to the number of

accidents, respectively. Particularly, territory 7 had been highlighted as influential in

Pinho et al. (2015) by means of their proposal of Cook distance. However, territory 13

is special because it contains three geographical areas, being one of them Brokenhill, in

which the number of claims is extremely high in relation with the number accidents as

well as an unincorporated area in which the number of claims is low in relation with

its accidents.
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Figure 4.32: Index plot of the conformal normal curvature from the random intercept negative binomial
model fitted to the Insurance data (4.7).

Potentially influential observations

In Figure 4.33, two local government areas of the territory 12, (12, 4) and (12, 16), one

of the territory 13, denoted by (13, 1) and one of the territory 5, represented by (5, 3),

were pointed out. We labeled the observations in the form (territory, area). Thus, for

example observation (13, 1) corresponds to the first area of the territory 13 and anal-

ogously for the remaining highlighted areas. The observation (13, 1) is the Brokenhill

area and its influence may be due to the number of claims (912) in relation with the

number of accidents(540). The influence of (5, 3), Casino area, may be justified by the

same arguments, because the number of claims (182) is high when compared with the

number of accidents (208). In fact, in the territory 5 the greatest proportion of claims

relative to the number of accidents occur in the Casino area. The remaining areas of

this territory has a relatively low proportion of claims. It is worth noting that these

areas were identified by Pinho et al. (2015) using the Cook distance. Furthermore, we

have discriminated the areas (12, 4) and (12, 16), that are Cohargo and Windouran areas.

Their influence may be due to have zero claims in spite of occurring accidents.
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Figure 4.33: Index plot of the conformal normal curvature Bi j
(
β, ξ

)
from the random intercept negative

binomial model fitted to the Insurance data set (4.7).

The territories and areas previously highlighted were deleted in several combina-

tions and model (4.7) was fitted again for studying a possible inferential impact. In Table

4.16 are recorded the most extreme cases, that is when the identified areas and territo-

ries are completely deleted. Note that in spite of taking place important changes on ξ̂

(likely related to the elimination of Brokenhill or its territory), there are no inferential

changes.

Also, Figure 4.34 displays the same highlighted areas, but it is possible to note that

the majority of them have impact only on the fixed effects estimates β̂. Brokenhill is the

most influential area on ξ̂ and this was foreseeable because it belongs to the territory

13, that has different features and particularly Brokenhill presents a large number of

claims in comparison with other areas in this territory.
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Figure 4.34: Index plots of the conformal normal curvature Bi j
(
β
)

(left) and against Bi j (ξ) (right) from
the random intercept negative binomial model fitted to the Insurance data set.

4.3.3.2 MeRC and MRC

MeRC and MRC for the potentially influential territories

Using the strategies mentioned in section 4.3.1.2, we accomplish the computations

of the MeRC and MRC of the two potentially influential territories and of 10 random

samples of two non-influential territories. The results of these procedures are recorded

in Table 4.18 and show that the highlighted territories have a greater influence than the

other territories.

Table 4.18: Comparison of the measures MeRC and MRC for potentially influential subjects from the
random intercept negative binomial model fitted to the Insurance data set (4.7).

Influential Samples of non-influential subjects
subjects 1 2 3 4 5

MeRC 0.367 0.065 0.136 0.144 0.024 0.094
MRC 0.949 0.186 0.352 0.372 0.047 0.264

Samples of non-influential subjects
6 7 8 9 10

MeRC 0.114 0.027 0.100 0.057 0.094
MRC 0.317 0.073 0.270 0.160 0.264
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MeRC and MRC for the potentially influential areas

Table 4.19 reports the MeRC and MRC for the four potentially influential areas

displayed in Figure 4.33 and for 10 random samples of non-influential areas. Each

sample with four areas. This table shows that the influence of the discriminated areas

is greater than the others.

Table 4.19: Comparison of the measures MeRC and MRC for influential areas from the fit of the negative
binomial model to the Insurance data set (4.7).

Influential Samples of non-influential areas
areas 1 2 3 4 5

MeRC 0.171 0.014 0.030 0.037 0.056 0.039
MRC 0.480 0.026 0.090 0.102 0.158 0.110

Samples of non-influential areas
6 7 8 9 10

MeRC 0.032 0.047 0.018 0.044 0.032
MRC 0.085 0.094 0.047 0.129 0.086

4.4 Concluding remarks

In this chapter we accomplished numerical studies to assess the effectiveness of our

technique based on the Laplace approximation. Essentially, we compared our proposal

with the local influence measures obtained via numerical integration. This comparison

was made in random intercept GLMMs with count response variables. The simplicity

of that model was necessary because the Gauss-Hermite integration may be computa-

tionally heavy when the dimension of the random effects increases. The results of such

comparison were satisfactory and consequently suggest that our proposal is suitable

for highlighting influential points.

Once the effectiveness of our proposal was guaranteed, we considered three data

sets with different features, which carry to the study of a variety of models that are often

used in practice. Models with count, continuous and dichotomous response variable
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were analyzed in our work. This shows the flexibility of our proposal for highlighting

potentially influential points. Also, since we built analytical structures for L ψ̂ ψ̂ and

∆, the computational routines are inexpensive. In addition, for confirming that the

detected points are potentially influential we measured the impact of the discriminated

points in the parameter estimates by means of the MRC suggested by Lee et al. (2006)

and the MeRC that we proposed. This study suggests what we expected, the identified

points have the greatest impact on the fitted models.

Finally, taking advantage that some of the data sets considered in this work have been

analyzed by other authors through GEE (Paula, 2013b) or GLMMs (Pinho et al., 2015)

and sensitivity analysis were performed for them using Cook’s distance, we compared

the potentially influential points detected with their proposals and with our proposal.

The results are accurate since the detected points by them were also detected by our

proposal. Although, in general this does not have to be necessarily true, the points

identified with other approaches are confirmed with the approximate local influence

that we propose in this work.
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Chapter 5

Conclusions

5.1 Final considerations

Two mathematical tools were essential in the development of this work. First, the

Laplace approximation that has been widely used for estimation and diagnostic pro-

cedures in regression models. In that sense, we introduced some multivariate exten-

sions of this approximation that facilitate an accurate presentation of the computa-

tions for L ψ̂ ψ̂ , ∆ and therefore for the conformal normal curvature B d. The second

fundamental tool extensively employed in this work was the theory of matrix differ-

entiation (Magnus and Neudecker, 1999), because even though the Laplace approxi-

mation avoids the intrinsic multidimensional integration of the GLMMs, this approx-

imation requires the computation of Hessians, and in our case Hessians of matrix

functions, which are unfeasible with traditional derivation techniques. For example,

Lesaffre and Verbeke (1998) provide local influence measures in linear mixed mod-

els, but such measures have complex structures, since were computed using common

techniques of derivation. This is an enormous problem, since the implementation of di-

agnostic procedures may be tedious. However, if such curvatures are computed using

the theory of matrix differentiation, it is possible to obtain equivalent results but in a

more accurate presentation that allows an easy implementation.

The numerical studies suggested that our proposal is accurate for the identification

of potentially influential subjects for balanced and unbalanced data sets. These numer-
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ical studies involve the comparison of curvatures obtained via numerical integration

and by means of our proposal. The models used to conduct this comparison were

chosen to avoid problems with computational time in the numerical integration.

We proposed approximations for the local influence measures in GLMMs. Such

approximations have a closed form and therefore can be implemented with inexpensive

computational routines. We show that the expressions present important simplifications

when the distribution associated to the model belongs to the canonical exponential

family. Also, our study is general and may be applied to any GLMM.

In contrast to other diagnostic proposals, our approach enables the distinction be-

tween the influence due to features of a subject and the influence related with char-

acteristics of an observation from some subject. In fact, the applications considered in

this work showed that even if a subject is not discriminated as potentially influential,

some of its observations may be. In some other cases, one subject is discriminated to

be influential but none of its observations is not potentially influential. Therefore, in a

GLMM, sensitivity analysis is necessary to assess potentially influential subjects and

observations. Also in this work we studied the impact of the detected points on the pa-

rameter estimates through the mean relative change (MeRC) and the maximum relative

change (MRC). Such studies suggest that the discriminated observations and subjects

are correctly identified. Furthermore, the structures required for the implementation of

our diagnostic procedures in gamma mixed models, negative binomial mixed models

and Bernoulli mixed models are provided in Tables 4.17, 4.13 and 4.6 in section 4.

5.2 Suggestions for future research

Several research lines directly related with the results of this work may be developed.

Thus, we have

• To implement a package in the libraries of GLMMs of the R software (R Core Team,

2018) for discriminating potentially influential subjects and observations through
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the local influence approach.

• Tang et al. (2006) studied diagnostic techniques for nonlinear reproductive dis-

persion mixed models, particularly the local influence approach. However, these

procedures are valid for highlighting observations with an undue weight only

on the fixed effects. Thus, extensions of this sensitivity analysis for the dispersion

and covariance parameters are necessary.

• The gamlss framework allows analyses via a great quantity of distributions

(Stasinopoulos et al., 2017, chapter 6) that may be used in a regression model

according to the response variable of interest. The majority of such distributions

does not belong to the exponential family and therefore would be necessary a

sensitivity analysis through the local influence approach for these models. In fact,

as far as we know, deletion diagnostics such as the Cook distance are not yet

available in statistical packages.

In general the gamlss framework allows fitting and selecting a great quantity of

regression models with several choices to the distribution of the response variable

of interest. In this framework, the analysis of residuals is considered via the

quantile residuals and the estimation procedures are performed by maximizing

a general penalized likelihood (Rigby and Stasinopoulos, 2005). However, as far

as we know, this framework provides nothing on the identification of potentially

influential points. This open enormous possibilities for future research. In our

case, we are initially interested in count mixed models with excess of zeros, e. g.,

For example, Poisson mixed models with excess of zeros and negative binomial

mixed models with excess of zeros.

• Since the gamlss framework allows the analyses of location, scale, skewness and

kurtosis, we intend to extend the local influence approach to such models, be-

ginning with double generalized linear mixed models, that is, models with linear

predictors associated to the scale and dispersion parameters. Such predictors in-



106 CONCLUSIONS

clude random effects. This work would be an extension of the work performed

for double generalized linear models by Paula (2013a).

• In general it would be accurate to develop robust estimation methods in the

GLMMs.



Appendix A

Proofs related to the Laplace
approximation

A.1 Proof of theorem 1

Proof. Using the Taylor series expansion of the second order for h and υ at x̃, we obtain

h (x) ≈ h (x̃) +
1
2

(x − x̃)>
{
h x̃ x̃

}
(x − x̃)

Ä
because h x̃ = 0 q

ä
υ (x) ≈ υ (x̃) + (x − x̃)> υ x̃ +

1
2

(x − x̃)>
{
υ x̃ x̃

}
(x − x̃) .

Now, using these expressions we can obtain

∫
Rq

υ (x) exp {h (x)} ≈
∫
Rq

®
υ (x̃) + (x − x̃)> υ x̃ +

1
2

(x − x̃)>
{
υ x̃ x̃

}
(x − x̃)

´
exp {h (x)} d x.

(A.1)

To evaluate this integral we require to perform the computations given below

(a)
∫
Rq

υ ( x̃ ) exp {h ( x )} d x ≈ υ ( x̃ )
∫
Rq

exp
®

h (x̃) +
1
2

(x − x̃)>
{
h x̃ x̃

}
(x − x̃)

´
d x

= υ ( x̃ ) exp {h(x̃) }
∫
Rq

exp
®

1
2

(x − x̃)>
î{

h x̃ x̃
}−1ó−1

(x − x̃)
´

d x

= υ ( x̃ ) exp {h(x̃) }
(2π)q/2

∣∣∣{−h x̃ x̃
}−1
∣∣∣1/2

(2π)q/2
∣∣∣{−h x̃ x̃

}−1
∣∣∣1/2

∫
Rq

exp
®
−

1
2

(x − x̃)>
î{
−h x̃ x̃

}−1ó−1
(x − x̃)

´
d x

= υ ( x̃ ) exp {h(x̃) } (2π)q/2 ∣∣{−h x̃ x̃
}∣∣− 1/2 Ä

Multivariate normal density
ä
.
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(b)
∫
Rq

(x − x̃)> υ x̃ exp {h (x)} d x ≈
∫
Rq

(x − x̃)> υ x̃ exp
®

h (x̃) +
1
2

(x − x̃)>
{
h x̃ x̃

}
(x − x̃)

´
d x

= exp {h ( x̃ )}
∫
Rq

(x − x̃)> υ x̃ exp
®
−

1
2

(x − x̃)>
¶
−h−1

x̃ x̃

©−1
(x − x̃)

´
d x

= (2π)q/2 ∣∣{−h x̃ x̃
}∣∣−1/2 exp {h (x̃)} E

Nq

Ä
x̃ ; −h−1

x̃ x̃

ä ¶(x − x̃)> υ x̃

©
= (2π)q/2 ∣∣{−h x̃ x̃

}∣∣−1/2 exp {h (x̃)} 0>q υ x̃ = 0.

(c)
∫
Rq

1
2

(x − x̃)> υ x̃ x̃ (x − x̃) exp {h (x)} d x
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1
2

exp {h (x̃) }
∫
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1
2

(x − x̃)> υ x̃ x̃ (x − x̃) exp
®
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1
2

(x − x̃)>
¶
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x̃ x̃

©−1
(x − x̃)

´
d x

=
1
2
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Ä
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x̃ x̃

ä ¶(x − x̃)> υ x̃ x̃ (x − x̃)
©

=
1
2

(2π)q/2 ∣∣{−h x̃ x̃
}∣∣−1/2 exp {h (x̃) } E
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Ä
x̃ ; −h−1

x̃ x̃

ä îtr ¶(x − x̃) (x − x̃)> υ x̃ x̃

©ó
=

1
2
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}∣∣−1/2 exp {h (x̃) } tr

ñ
E

Nq

Ä
x̃ ; −h−1

x̃ x̃

ä ¶(x − x̃) (x − x̃)>
©
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ô
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1
2
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h x̃ x̃
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©
.

Replacing (a), (b) and (c) in (A.1) we obtain the result of theorem 1. �

A.2 Proof of theorem 2

Proof. From theorem 1 and by considering υ (x) = 1, we obtain the result exposed in
(2.16). The first result of this theorem is obtained making the ratio between the outcome
of the theorem 1 and the expression (2.16).

Also, we can obtain that∫
υ (x) exp {h (x)} d x∫

exp {h (x)} d x
≈ υ (x̃) −

1
2

tr
¶(

h x̃ x̃
)−1 (υ x̃ x̃

)©
= υ (x̃) −

1
2

tr
¶

Iq Iq
(
h x̃ x̃

)−1 (υ x̃ x̃
)©

= υ (x̃) −
1
2

vec
Ä
Iq
ä>

vec
¶

Iq
(
h x̃ x̃

)−1 (υ x̃ x̃
)©

= υ (x̃) −
1
2

vec
Ä
Iq
ä> Ä

υ x̃ x̃ ⊗ Iq
ä

vec
¶ (

h x̃ x̃
)−1 © .

This equation is important for achieving a more generalized form of this theorem,
which is exposed in theorem 3. �
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A.3 Proof of theorem 3

Proof. The result may be verified by considering in each component ai j of the matrix A
its approximated value given in the second result of the theorem 1 and by performing
the accurate simplifications. �
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Appendix B

Computations of the quantities related
with the curvature

B.1 Some aspects of notation

In the development of the computations presented below, it is useful to take into
account the aspects of notation exposed in Table B.1.

Table B.1: Some useful results.

Some conventions used in the procedures developed throughout this work

λi = bi ⊗ bi τi = W1/2
i V−1/2

i

Ä
yi − µi

ä
Ai = ⊕ni

j=1dµi j/d ηi j Ȧi = ⊕ni
j=1d2 µi j/d η2

i j

Äi = ⊕ni
j=1d3 µi j/d η3

i j νi =
ni∑

j=1

¶
yi j θi j − a

Ä
θi j
ä

+ cφ
Ä
yi j ; φ

ä©
ρi j =

d2θi j

dµ2
i j

(
dµi j

dηi j

)2

+
dθi j

dµi j

d2µi j

dη2
i j

ρ̇i j =
dρi j

d ηi j
, ρ̈i j =

d2 ρi j

d η2
i j

Dα = ⊕ni
j=1α j; α =

(
α1, . . . , αni

)> ρi =
Ä
ρi1, . . . , ρi ni

ä>
ρ̇i =

Ä
ρ̇i1, . . . , ρ̇i ni

ä>
ρ̈i =

Ä
ρ̈i1, . . . , ρ̈i ni

ä>
Mi = Dyi−µi

Dρi
−W1/2

i V−1/2
i Ai Ṁi = Dyi−µi

Dρ̇i
−W1/2

i V−1/2
i Ȧi

M̈i = Dyi−µi
Dρ̈i
−W1/2

i V−1/2
i Äi

fi =
(
fi 1, . . . , fi ni

)>; fi j = log
¶

fyi jbi

Ä
yi j;θi j, φ

ä©
Ti = V−1/2

i W1/2
i Dyi−µi

Ci = 1i f>i + Ini
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Also, the following proposition is a powerful tool for an accurate presentation of
the later results.

Proposition 1. If a =
(
a1, a2, . . . , ani

)> is an ni × 1 vector and Ωi is a matrix as in definition 3,
we have that

(a)
(
a> ⊗ Ini

)
Ωi = Da, (b)

(
Da ⊗ Ini

)
Ωi = Ωi Da,

(c)
(
Ini ⊗ a>

)
Ωi = Da and (d)

(
Ini ⊗Da

)
Ωi = Ωi Da.

Proof. (a) :
(
a> ⊗ Ini

)
Ωi =

(
a1 Ini a2 Ini . . . ani Ini

)
⊕

ni
j=1 ei j

=
(
a1 Ini a2 Ini . . . ani Ini

) (
Dei1 Dei2 . . . Dei ni

)>
=

ni∑
j=1

a j Dei j = Da.

(b) :
(
Da ⊗ Ini

)
Ωi =

Ä
⊕

ni
j=1 a j Ini

ä Ä
⊕

ni
j=1ei j

ä
=
{(

Dei1 Dei2 . . . Dei ni

) Ä
⊕

ni
j=1 a j Ini

ä}>
=
(
a1 Dei1 a2 Dei2 . . . ani Dei ni

)>
=
{

Da

(
Dei1 Dei2 . . . Dei ni

)}>
= Ωi Da.

(c) and (d) : Analogous.
�

Some useful differentials

Following Magnus and Neudecker (1999), given a matrix function F : A ⊆

Rq
−→ Rr×s, the more suitable form of computing derivatives is through the differ-

entials. Such differentials must be computed by means of general rules of differen-
tiation widely exposed in chapter 13 of Abadir and Magnus (2005) and throughout
Magnus and Neudecker (1999). Thus, these rules will be used extensively in what fol-
lows and the reader may refer to the books previously mentioned for a detailed review.
Among the variety of existing techniques for the treatment with differentials, some
of them are essential for obtaining derivatives from the differentials. For example, the
identification and uniqueness theorems (Magnus and Neudecker, 1999, chapter 5) al-
low to associate to each differential one derivative. Other important tool is the Cauchy’s
rule of invariance (Magnus and Neudecker, 1999, chapter 5), which is the chain rule
for differentials and enables to compute differentials of complex matrix functions ef-
fectively. In addition, relations between the vec function and the Kronecker product
exposed in chapter 10 of Abadir and Magnus (2005) and properties of the duplica-
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tion and commutation matrices described in chapter 11 of the same book will be used
extensively later.

In what follows we present some important differentials that allow a more effective
development of the computations made in later sections. The proposition 1 will be used
repeatedly in each computation. In Table B.2 we summarize the results of this section.

Mi :

d vec (Mi) = d vec
Ä

Dyi−µi
Dρi
−W1/2

i V−1/2
i Ai

ä
=
¶(

Dρi
⊗ Ini

)
Ωi (−Ai) +

Ä
Ini ⊗Dyi−µi

ä
Ωi Dρ̇i

−
(
Ai ⊗ Ini

)
Ωi Dρi

−

Ä
Ini ⊗W1/2

i V−1/2
i

ä
Ωi Ȧi

©
Zi d bi

= Ωi

Ä
Dρi

Ai + Dyi−µi
Dρ̇i
−Ai Dρi

−W1/2
i V−1/2

i Ȧi

ä
Zi d bi = Ωi

(
Ṁi − 2 Dρi

Ai
)

Zi d bi ,

.

Ṁi :

d vec
(
Ṁi
)

= d vec
Ä

Dyi−µi
Dρ̇i
−W1/2

i V−1/2
i Ȧi

ä
=
¶(

Dρ̇i
⊗ Ini

)
Ωi (−Ai) +

Ä
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(
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)
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−

Ä
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i

ä
ΩiÄi

©
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¶
−Dρ̇i
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Dρ̈i
−Dρi

Ȧi −W1/2
i V−1/2

i Äi

©
Zi d bi

= Ωi
(
M̈i −Dρ̇i

Ai −Dρi
Ȧi
)

Zi d bi ,

.

X>i τi and Z>i τi :

d
(
X>i τi

)
= d
¶

X>i W1/2
i V−1/2

i

(
yi − µi

)©
= X>i

î¶(
yi − µi

)>
⊗ Ini

©
dvec

Ä
W1/2

i V−1/2
i

ä
+ W1/2

i V−1/2
i d

(
yi − µi

)ó
= X>i

î¶(
yi − µi

)>
⊗ Ini

©
Ωi Dρi

+ W1/2
i V−1/2

i (−Ai)
ó
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= X>i
î
Dyi−µi

Dρi
−W1/2

i V−1/2
i Ai

ó
Zi d bi = X>i Mi Zi d bi ,

d
(
Z>i τi

)
= Z>i Mi Zi (Analogous) and

λi :

d (λi) = d (bi ⊗ bi) = (d bi ⊗ bi) + (bi ⊗ d bi) =
(
Iq ⊗ bi

)
d bi +

(
bi ⊗ Iq

)
d bi

=
{(

Iq ⊗ bi
)

+ Kq
(
Iq ⊗ bi

)
Kq 1

}
d bi =

Ä
Iq2 + Kq

ä (
Iq ⊗ bi

)
d bi = Nq

(
Iq ⊗ bi

)
d bi .

fi and ḟi : Let fi =
(
fi1, fi2, . . . , fi ni

)>, where fi j = φ
¶

yi j θi j − a
Ä
θi j
ä©

+ c
Ä
yi j;φ

ä
. Note that

∂fi

∂b>i
=

Ç
∂fi 1

∂bi
, . . . ,

∂fi ni

∂bi

å>
and

∂fi j

∂b>i
= φ

Ä
yi j − µi j

ä dθi j

dµi j

dµi j

d ηi j
z>i j .
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Then,

∂fi

∂b>i
= φDyi−µi

W1/2
i V−1/2

i Zi = φTi Zi and d ḟi = Ti Zi d bi.

Also, since ḟi =
Ä
ḟi 1, . . . , ḟi ni

ä>
, where ḟi j = dḟi j

¿
dφ , then the procedure for computing

dḟi is as above.

νi : Note that νi =
∑ni

j=1

¶
yi j θi j − a

Ä
θi j + cφ

Ä
yi j;φ

ää©
= 1>ni

fi. Hence, we have

d ( νi ) = d
(

1>ni
ḟi
)

= 1>ni
d ḟi = 1>ni

Ti Zi = 1>ni
Dyi−µi

W 1/2
i V−1/2

i Zi =
(

yi − µi

)> W 1/2
i V−1/2

i Zi = τ>i Zi.

X>i Ti and Z>i Ti :

d vec
Ä
X>i Ti

ä
=
Ä
Ini ⊗ Xi

>
ä

d vec ( Ti )

=
Ä
Ini ⊗ Xi

>
ä ¶Ä

Dyi−µi
⊗ Ini

ä
d vec

Ä
V−1/2

i W1/2
i

ä
+
Ä
Ini ⊗V−1/2

i W1/2
i

ä
d vec

Ä
Dyi−µi

ä©
=
Ä
Ini ⊗ X>i

ä
Ωi
Ä
Dyi−µi

Dρi
−V−1/2

i W1/2
i Ai

ä
Zi d bi =

Ä
Ini ⊗ X>i

ä
Ωi Mi Zi d bi ,

d vec
Ä
Z>i Ti

ä
(Analogous) and

Ci :

d vec (Ci) = d vec
Ä
1i f>i + Ini

ä
= φ

(
Ini ⊗ 1i

)
d fi = φ

(
Ini ⊗ 1ni

)
Ti Zi d bi = φ

(
Ti Zi ⊗ 1ni

)
d bi

A summary of these computations is presented in the table below.
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Table B.2: Some useful differentials.

Matrix function (F) d vec (F)

Mi Ωi
Ä
Ṁi − 2 Dρi

Ai
ä

Zi d bi

Ṁi Ωi
Ä
M̈i −Dρ̇i

Ai −Dρi
Ȧi
ä

Zi d bi

X>i τi X>i Mi Zi d bi

Z>i τi Z>i Mi Zi d bi

λi Nq
Ä
Iq ⊗ bi

ä
d bi

νi τ>i Zi d bi

ḟi Ti Zi d bi

fi φTi Zi d bi

Xi
> Ti

Ä
Ini ⊗ X>i

ä
Ωi Mi Zi d bi

Zi
> Ti

Ä
Ini ⊗ Z>i

ä
Ωi Mi Zi d bi

Ci φ
(
Ti Zi ⊗ 1ni

)
d bi.

Each differential presented in the previous table allows to obtain first order derivatives
with respect to bi. Details of this process may be revised in Magnus and Neudecker
(1999). We make a brief summary in the next section.

Derivatives from differentials

One of the advantages of working with differentials is that F and dF have the same
dimension, and this allows more comfortable computations. To summarize, given F
as above we may compute the differential d F and the first identification theorem
(Magnus and Neudecker, 1999, chapter 5) ensures that, under accurate conditions,
vec ( d F ) = d vec (F) = C (x) d x, where C (x) = ∂vec (F) /∂ x> and x ∈ A ⊆ R q. In
our case, the expressions in question depend on bi ∈ R q and therefore the differen-
tiation procedures are performed on bi ∈ R q. For example, the first row of Table B.2
indicates that

d vec ( Mi ) = Ωi
Ä
Ṁi − 2 Dρi

Ai
ä

Zi d bi ⇐⇒
∂vec (Mi)
∂b>i

= Ωi
Ä
Ṁi − 2 Dρi

Ai
ä

Zi.

Note that if F is a vector function (s = 1), vec (F) = F and therefore it is not necessary
the vec (.) function for applying the identification theorem. For instance, from the third
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row in Table B.2 we may obtain

d
Ä

X>i τi
ä

= X>i Mi Zi ⇐⇒
∂X>i τi

∂b>i
= X>i Mi Zi.

B.2 Computation of L bi

(
ψ; yi, bi

)
and L bi bi

(
ψ; yi, bi

)
From (2.1) and (2.6)

L
Ä
ψ; yi, bi

ä
= −

q
2

log(2π) −
1
2

log |Ξ| +
ni∑

j=1
log
¶

fyi j | bi

Ä
yi j ; θi j, φ

ä©
−

1
2

b>i Ξ−1 bi.

First, note that

d
Ä
b>i Ξ−1 bi

ä
=
Ä
d b>i

ä
Ξ−1 bi + b>i Ξ d bi = 2 b>i Ξ−1 d bi =⇒

∂
Ä
b>i Ξ−1 bi

ä
∂ b>i

= 2 b>i Ξ−1.

Then,

L bi

Ä
ψ; yi, bi

ä
=
∂ L
Ä
ψ; yi, bi

ä
∂ bi

= φ
ni∑

j=1

yi j −
d a
Ä
θi j
ä

dθi j

 dθi j

dµi j

dµi j

d ηi j

dηi j

d bi

 − Ξ−1 bi

= φ
ni∑

j=1

[¶
yi j − µi j

© dθi j

dµi j

dµi j

d ηi j
zi j

]
− Ξ−1 bi = φZ>i W 1/2

i V−1/2
i

Ä
yi − µi

ä
− Ξ−1 bi

= φZ>i τi − Ξ−1 bi

and

L bi bi

Ä
ψ; yi, bi

ä
=

∂

∂b>i

Ä
φZ>i τi − Ξ−1 bi

ä
= φZ>i

∂τi

∂b>i
− Ξ−1 = φZ>i Mi Zi − Ξ−1.

Also, from (3.12), in the canonical exponential family we have that

Lbi

Ä
ψ; yi, bi

ä
= φZ>i

Ä
yi − µi

ä
− Ξ−1 bi and L bi bi

Ä
ψ; yi, bi

ä
= −φZ>i Wi Zi − Ξ−1.

Expected value of Eyi|bi

¶
− Lbi bi

Ä“ψ; yi, bi
ä©

Note that

Eyi|bi

Ä
Dyi−µi

| bi
ä

= Eyi|bi

Ä
Dyi
−Dµi

| bi
ä

= Eyi|bi

Ä
Dyi
| bi
ä
−Dµi

= 0ni .
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Thus, since Mi = Dyi−µi
Dρi
−W 1/2

i V−1/2
i Ai = Dyi−µi

Dρi
−Wi, we have that

Eyi | bi

¶
− Lbi bi

Ä“ψ; yi, bi
ä
| bi
©

= Eyi | bi

Ä
−φZ>i Mi Zi + Ξ−1

| bi
ä

= φZ>i Wi Zi + Ξ−1.

This matrix is positive definite because Wi is a diagonal matrix with positive elements
(Remember that a diagonal matrix is positive definite if and only if its elements are
positive). Thus, Z>i Wi Zi is semidefinite positive. Also Ξ−1 is positive definite because
Ξ is definite positive, therefore Z>i Wi Zi + Ξ−1 is positive definite. The properties used
in this argument could be reviewed in chapter 8 of Abadir and Magnus (2005).

B.3 Computation of the score function Lψ
(
ψ; y

)
Since L

Ä
ψ; y

ä
=
∑N

i=1 L
Ä
ψ; yi

ä
, we perform the calculations on L

Ä
ψ; yi

ä
. Hence, we

will compute Li
ψ = ∂L

Ä
ψ; yi

ä¿
∂ψ, for i = 1, . . . ,N.

For convenience in the computations, let us consider Li as the joint log-likelihood
function of yi and bi for i = 1, . . . ,N. That is, Li = log

¶
fyi, bi

Ä
yi, bi;ψ

ä©
= L

Ä
ψ; yi, bi

ä
.

Thus, from (2.7) and (2.6), we have that

Li
β =

∂L
Ä
ψ; yi

ä
∂β

=
∂
∂β

log


∫
Rq

exp (Li ) d bi

 =
1∫

Rq
exp (Li) d bi

∫
Rq

∂
∂β

exp (Li) d bi

=
1∫

Rq
exp (Li) d bi

∫
Rq

∂Li

∂β
exp (Li) d bi

=
φ∫

Rq
exp (Li) d bi

∫
Rq

X>i τi exp (Li) d bi = φE
(

X>i τi

∣∣∣ yi

)
.

Note that, in the previous procedure, we use the fact that

L
Ä
ψ; yi

ä
= log

¶
fyi

Ä
yi ; ψ

ä©
= log

ß∫
Rq

fyi,bi

Ä
yi, bi;ψ

ä
d bi

™
= log

∫
Rq

exp
¶

L
Ä
ψ; yi, bi

ä© .
In addition, we have used the following result:

∂Li

∂β
=
∂L
Ä
ψ; yi, bi

ä
∂β

=
∂
∂β

Ñ
ni∑

j=1

î
φ
¶

yi jθi j − a
Ä
θi j
ä©

+ c
Ä
yi j;φ

äóé
=

ni∑
j=1

{
φ
Ä
yi j − µi j

ä dθi j

dµi j

dµi j

d ηi j

d ηi j

dβ

}
=

ni∑
j=1

{
φ
Ä
yi j − µi j

ä dθi j

dµi j

dµi j

d ηi j
xi j

}

= φX>i W 1/2
i V−1/2

i

Ä
yi − µi

ä
= φX>i τi ,
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where Wi is the weight matrix, Vi is the matrix associated with the variance function
and τi = W 1/2

i V−1/2
i

Ä
yi − µi

ä
.

Also, Li
ξ = ∂L

Ä
ψ; yi

ä¿
∂ξ and Li

φ = ∂L
Ä
ψ; yi

ä¿
∂φ in (3.3) may be computed in a

similar way to the procedure exposed previously. It is enough take into account that

dLi =d
{

L
(
ψ, yi, bi

)}
= d
Å
−

1
2

log |Ξ| −
1
2

b>i Ξ−1 bi

ã
= −

1
2

tr
(
Ξ−1 d Ξ

)
+

1
2

b>i Ξ−1 d Ξ Ξ−1 bi

= −
1
2

vec
(
Ξ−1)> d vec (Ξ) +

1
2

tr
(
Ξ−1 bi b>i Ξ d Ξ

)
= −

1
2

vec
(
Ξ−1)> d vec (Ξ) +

1
2

vec
(
Ξ−1 bi b>i Ξ

)>
d vec (Ξ)

= −
1
2

¶
vec

(
Ξ−1)>

−
(
b>i ⊗ b>i

)
(Ξ ⊗ Ξ)−1

©
Gq d ξ ,

=⇒
∂Li

∂ξ
=
∂L
(
ψ; yi, bi

)
∂ξ

= −
1
2

G>q
¶

vec
(
Ξ−1)

− (Ξ ⊗ Ξ)−1 λi

©
. (B.1)

Finally, from (2.6), note that

∂Li

∂φ
=
∂L
Ä
ψ; yi, bi

ä
∂φ

=
ni∑

j=1

yi j θi j − a
Ä
θi j
ä

+
d c
Ä
yi j;φ

ä
dφ

 = νi.

B.4 Computation of the Hessian matrix Lψψ
(
ψ ; y

)
Again, since L

Ä
ψ; y

ä
=
∑N

i=1 L
Ä
ψ; yi

ä
, we perform the procedures on Ł

Ä
ψ; yi

ä
for

i = 1, . . . ,N.

In order to compute Li
ψψ =

∂ 2 L
Ä
ψ; yi

ä
∂ψ∂ψ>

in (3.2), we will compute each of its com-

ponents Li
ββ, Li

ξ ξ, Li
φφ, Li

β ξ, Li
ξφ, Li

βφ and we will obtain the results exposed in (3.4).
Thus, using some results of Table B.2, we obtain
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Li
ββ : Li

ββ =
∂Li

β

∂β>
= φ

∂

∂β>


∫
Rq

X>i τi exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−1


=

∫
Rq

Å
∂X>i τi

∂β>
+ X>i τi

∂Li

∂β>

ã
exp (Li) d bi ×

Ñ∫
Rq

exp (Li) d bi

é−1

− φ

∫
Rq

X>i τi exp (Li) d bi

∫
Rq

∂Li

∂β>
exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−2

= φ

∫
Rq

(
X>i Mi Xi + φX>i τi τ>i Xi

)
exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−1

− φ2
∫
Rq

X>i τi exp (Li) d bi

∫
Rq

τ>i Xi exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−2

= φE
(

X>i Mi Xi
∣∣ yi

)
+ φ2 E

{
X>i τi

(
X>i τi

)>∣∣∣ yi

}
− φ2 E

(
X>i τi

∣∣ yi

)
E
(

X>i τi
∣∣ yi

)>
= φE

(
X>i Mi Xi

∣∣ yi

)
+ φ2 Var

(
X>i τi

∣∣ yi

)
.

Li
ξ ξ : First, note that

∂

∂ξ>
{

E
(
λi| yi

)}
=

∂

∂ξ>


∫
Rq

λi exp (L i) d bi

Ñ∫
Rq

exp (Li) d bi

é−1


=

∫
Rq

λi
∂Li

∂ξ>
exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−1

−

∫
Rq

λi exp (L i) d bi

∫
Rq

∂Li

∂ξ>
exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−2

=E
Å
λi
∂Li

∂ξ>

∣∣∣∣ yi

ã
− E

(
λi| yi

)
E
Å
∂Li

∂ξ

∣∣∣∣ yi

ã>
= Cov

Å
λi ,

∂Li

∂ξ

∣∣∣∣ yi

ã
=Cov

ï
λi,−

1
2

G>q
{

vec
(
Ξ−1)

−
(
Ξ−1
⊗ Ξ−1)λi

}∣∣∣∣ yi

ò
= Cov

ß
λi,

1
2

G>q
(
Ξ−1
⊗ Ξ−1)λi

∣∣∣∣ yi

™
=

1
2

Var
(
λi| yi

)
(Ξ ⊗ Ξ)−1 Gq. (B.2)

Now Li
ξ ξ =

∂Li
ξ

∂ξ>
=

∂

∂ξ>

ñ
−

1
2

G>q
¶

vec
Ä
Ξ−1
ä
− (Ξ ⊗ Ξ)−1 E

Ä
λi| yi

ä©ô
.

Thus, we may compute

d
ñ
−

1
2

G>q
¶

vec
Ä
Ξ−1
ä
− (Ξ ⊗ Ξ)−1 E

Ä
λi| yi

ä©ô
=

1
2

G>q
î
−d vec

Ä
Ξ−1
ä

+ d
¶

(Ξ ⊗ Ξ)−1 E
Ä
λi| yi

ä©ó
.

Then,

(a) d
¶

vec
Ä
Ξ−1
ä©

= −vec
¶
Ξ−1 (d Ξ) Ξ−1

©
= − (Ξ ⊗ Ξ)−1 Gq d ξ and
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(b) d
¶

(Ξ ⊗ Ξ)−1 E
(
λi| yi

)©
=
¶

E
(
λi| yi

)>
⊗ Iq2

©
d vec

(
Ξ−1
⊗ Ξ−1) +

(
Ξ−1
⊗ Ξ−1) d E

(
λi| yi

)
=
¶

E
(
λi| yi

)>
⊗ Iq2

©
d vec

(
Ξ−1
⊗ Ξ−1) +

(
Ξ−1
⊗ Ξ−1) ï ∂

∂vec (Ξ)>
{

E
(
λi| yi

)}ò
d vec (Ξ)

=
¶

E
(
λi| yi

)>
⊗ Iq2

©
P d vec

(
Ξ−1) +

(
Ξ−1
⊗ Ξ−1) ï ∂

∂vec (Ξ)>
{

E
(
λi| yi

)}ò
Gq d ξ

=

Å
−

¶
E
(
λi| yi

)>
⊗ Iq2

©
P
(
Ξ−1
⊗ Ξ−1)Gq +

(
Ξ−1
⊗ Ξ−1) ï ∂

∂ξ>
{

E
(
λi| yi

)}òã
d ξ,

where P =
¶

Iq ⊗Πq
Ä
Ξ−1
ä©

+
¶
Λq
Ä
Ξ−1
ä
⊗ Iq
©

. Thus, from (a) and (b) we have that

Li
ξξ =

1
2

G>q
Ä

Iq2 −

¶
E
(
λi|yi

)
⊗ Iq2

©
P
ä

(Ξ ⊗ Ξ)−1 Gq +
1
2

G>q (Ξ ⊗ Ξ)−1
ï
∂

∂ξ>
{

E
(
λi|yi

)}ò
.

The result in (3.4) is obtained replacing (B.2) in the expression above. In addition, we
have

Li
φφ : Li

φφ =
∂Li

φ

∂φ
=
∂
∂φ

¶
E
Ä
νi|yi

ä©
=
∂
∂φ


∫
Rq

νi exp (Li) d bi

Ñ∫
Rq

exp (L) d bi

é−1


=
∫
Rq

Ç
d νi

dφ
+ νi

dLi

dφ

å
exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−1

−

∫
Rq

νi exp (Li) d bi

∫
Rq

dLi

∂φ
exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−2

=
d νi

dφ
+ E

Ç
νi

dLi

dφ

∣∣∣∣∣ yi

å
− E

Ä
νi| yi

ä
E
Ç

dLi

dφ

∣∣∣∣∣ yi

å
=

ni∑
j=1

d2c
Ä
yi j;φ

ä
dφ 2 + Cov

Ç
νi,
∂Li

∂φ

∣∣∣∣∣ yi

å
=

ni∑
j=1

d2c
Ä
yi j;φ

ä
dφ 2 + Var

Ä
νi | yi

ä
.

Li
βξ : Li

βξ =
∂Li

β

∂ξ>
=

∂

∂ξ>
{
φE

(
X>i τi

∣∣ yi

)}
= φ

∂

∂ξ>


∫
Rq

X>i τi exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−1


= φ

∫
Rq

X>i τi
∂Li

∂ξ>
exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−1

− φ

∫
Rq

X>i τi exp (Li) d bi

∫
Rq

∂Li

∂ξ>
exp (Li) d bi

Ñ∫
Rq

exp (Li) dbi

é−2

= φE
Å

X>i τi
∂Li

∂ξ>

∣∣∣∣ yi

ã
− φE

(
X>i τi

∣∣ yi

)
E
Å
∂Li

∂ξ

∣∣∣∣ yi

ã>
= φCov

Å
X>i τi,

∂Li

∂ξ

∣∣∣∣ yi

ã
= Cov

Å
X>i τi,−

1
2

G>q
¶

vec
(
Ξ−1)

− (Ξ ⊗ Ξ)−1 λi

©∣∣∣∣ yi

ã
= φCov

Å
X>i τi,

1
2

G>q (Ξ ⊗ Ξ)−1 λi

∣∣∣∣ yi

ã
=
φ

2
Cov

(
X>i τi , λi

∣∣ yi

)
(Ξ ⊗ Ξ)−1 Gq.
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Li
ξφ : First, note that

∂
∂φ

{
E
(
λi| yi

)}
=

∂
∂φ


∫
Rq

λi exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−1


=

∫
Rq

λi
∂Li

∂φ
exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−1

−

∫
Rq

λi exp (Li) d bi

∫
Rq

∂Li

∂φ
exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−2

= E
Å
λi
∂Li

∂φ

∣∣∣∣ yi

ã
− E

(
λi| yi

)
E
Å
∂Li

∂φ

∣∣∣∣ yi

ã
= Cov

Å
λi,
∂Li

∂φ

∣∣∣∣ yi

ã
= Cov

(
λi, νi| yi

)
.

Then,

Li
ξφ =

∂Li
ξ

∂φ
=

∂
∂φ

ï
−

1
2

G>q
¶

vec
(
Ξ−1)

− (Ξ ⊗ Ξ)−1 E
(
λi| yi

)©ò
=

1
2

G>q (Ξ ⊗ Ξ)−1 ∂
∂φ

{
E
(
λi| yi

)}
=

1
2

G>q (Ξ ⊗ Ξ)−1 Cov
(
λi, νi| yi

)
.

Li
βφ : First, note that

∂
∂φ

E
(

X>i τi
∣∣ yi

)
=

∂
∂φ


∫
Rq

X>i τi exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−1


=

∫
Rq

X>i τi
∂Li

∂φ
exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−1

−

∫
Rq

X>i τi exp (Li) d bi

∫
Rq

∂Li

∂φ
exp (Li) d bi

Ñ∫
Rq

exp (Li) d bi

é−2

= E
Å

X>i τi
∂Li

∂φ

∣∣∣∣ yi

ã
− E

(
X>i τi

∣∣ yi

)
E
Å
∂Li

∂φ

∣∣∣∣ yi

ã
= Cov

Å
X>i τi,

∂Li

∂φ

∣∣∣∣ yi

ã
= Cov

(
X>i τi, νi

∣∣ yi

)
.

Then,

Li
βφ =

∂Li
β

∂φ
=

∂
∂φ

{
φE

(
X>i τi

∣∣ yi

)}
= E

(
X>i τi

∣∣ yi

)
+ φ

∂
∂φ

{
E
(

X>i τi
∣∣ yi

)}
=
∂Li

β

∂φ
=

∂
∂φ

{
φE

(
X>i τi

∣∣ yi

)}
= E

(
X>i τi

∣∣ yi

)
+ φCov

(
X>i τi, νi

∣∣ yi

)
.
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B.5 Hessians for approximating L “ψ “ψ (
ψ ; y

)
For this purpose, it is necessary to obtain Hessian matrices from differentials. A

exhaustive review of this issue, may be found in Magnus and Neudecker (1999) or
Abadir and Magnus (2005). However, we briefly describe the procedure to achieve
such Hessians in the next section. After that, we apply this procedure in the cases that
we need.

Hessian matrices from differentials

Now, as it is suggested in Magnus and Neudecker (1999) or Abadir and Magnus
(2005), if the interest is to obtain the Hessian matrix of F denoted by Fbi bi and defined
in (2.14), we have two options. The former is to use the second identification theorem
presented in the chapter 6 of Magnus and Neudecker (1999) and the latter is to apply
successively the first identification theorem, which was described briefly above. We
choose the last. Thus, following definition 1 we have that

Fbi bi =
∂

∂b>i

(
vec

[®
∂vec (F)
∂b>i

´>])
.

Consequently, for obtaining Fbi bi we should conduct the procedure exposed below:

Step 1: To compute d vec ( F ) and hence we obtain ∂vec (F) /∂b>i .

Step 2: Transpose the resulting matrix for achieving
Ä
∂vec (F) /∂b>i

ä>
.

Step 3: To compute d vec
{Ä
∂vec (F) /∂b>i

ä>}
and use the first identification theorem

for obtaining Fbi bi .

In order to illustrate this procedure we will compute Fbi bi for F = X>i τi. Thus, we have

Step 1: From Table B.2 we have that d vec
Ä
X>i τi

ä
= d X>i τi = X>i Mi Zi d bi.

Step 2: ∂vec (F)/ ∂b>i = X>i Mi Zi and
¶
∂vec (F)/ ∂b>i

©>
= X>i Mi Zi

Step 3: Using Table B.2 we obtain

d vec(Z>i Mi Xi) =
Ä
X>i ⊗ Z>i

ä
d vec (Mi) =

Ä
X>i ⊗ Z>i

ä
Ωi
Ä
Ṁi − 2 Dρi

Ai
ä

Zi d bi.

Then, the Hessian matrix of F on bi is

Fbi bi =
Ä
X>i τi

ä
bi bi

=
Ä
X>i ⊗ Z>i

ä
Ωi
Ä
Ṁi − 2 Dρi

Ai
ä

Zi.
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Hessians for the approximation of Li
ψ̂ and Li

ψ̂ ψ̂

In this section we present the detailed computations of the Hessian matrices ex-
hibited in (3.11). For this purpose, we will use in each case the procedure exposed in
the previous section. The first Hessian in (3.11) was computed in the previous section.
Thus, we will deal with the remaining Hessians.

λi: from Table B.2, we have that dλi = Nq
Ä
Iq ⊗ bi

ä
d bi. Thus,

d vec
{(

Iq ⊗ b>i
)

Nq
}

=
(
Nq ⊗ Iq

)
Λq
(
Iq
)

d bi =⇒ (λ )bi bi
=
(
Nq ⊗ Iq

)
Λq
(
Iq
)
,

νi: from Table B.2, we have that dνi = τ>i Zi d bi and d Z>i τi = Z>i Mi Zi dbi. Therefore
( νi )bi bi

= Z>i Mi Zi.

X>i τi τ>i Xi : from Table B.2, we have expressions for d X>i τi and d vec (Mi). Thus,

d vec
(

X>i τi τ>i Xi
)

= d vec
¶

X>i τi
(
X>i τi

)>©
=
(
X>i τi ⊗ Ip

)
d
(
X>i τi

)
+
(
Ip ⊗ X>i τi

)
d
(
X>i τi

)
=
{

Kp
(
Ip ⊗ X>i τi

)
Kp 1 +

(
Ip ⊗ X>i τi

)}
d
(
X>i τi

)
=
{

Np
(
Ip ⊗ X>i τi

)}
d
(
X>i τi

)
= Np

(
Ip ⊗ X>i τi

)
X>i Mi Zi d bi and

d vec
{

Z>i Mi Xi
(
Ip ⊗ τ>i Xi

)
Np
}

=
(
Np ⊗ Z>i Mi Xi

)
Λp
(
Ip
)

X>i Mi Zi d bi +
[{

Np
(
Ip ⊗ X>i τi

)
X>i
}
⊗ Z>i

]
d vec (Mi)

=
(
Np ⊗ Z>i Mi Xi

)
Λp
(
Ip
)

X>i Mi Zi d bi +
{

Np
(
X>i ⊗ X>i τi

)
⊗ Z>i

}
Ωi
(
Ṁi − 2 Dρi

Ai
)

Zi d bi

=
(
Np ⊗ Z>i

) ¶Ä
Ip2 ⊗Mi Xi

ä
Λp
(
Ip
)

X>i Mi +
(
X>i ⊗ X>i τi ⊗ Ini

)
Ωi
(
Ṁi − 2 Dρi

Ai
)©

Zi,

=⇒
(
X>i τi τ>i Xi

)
bi bi

=
(
Np ⊗ Z>i

) ¶Ä
Ip2 ⊗Mi Xi

ä
Λp
(
Ip
)

X>i Mi +
(
X>i ⊗ X>i τi ⊗ Ini

)
Ωi
(
Ṁi − 2 Dρi

Ai
)©

Zi.

X>i Mi Xi: from Table B.2 we have expressions for d vec (Mi) and d vec
Ä
Ṁi
ä
. Thus,

d vec
(
X>i Mi Xi

)
=
(
X>i ⊗ X>i

)
d vec (Mi) =

(
X>i ⊗ X>i

)
Ωi
(
Ṁi − 2 Dρi

Ai
)

Zi d bi and

d vec
{

Z>i
(
Ṁi − 2 Dρi

Ai
)

Ω>i (Xi ⊗ Xi)
}

=
{(

X>i ⊗ X>i
)
Ωi ⊗ Z>i

}
d vec

(
Ṁi − 2 Dρi

Ai
)

=
{(

X>i ⊗ X>i
)
Ωi ⊗ Z>i

}{
d vec

(
Ṁi
)
− 2 d vec

(
Dρi

Ai
)}

=
{(

X>i ⊗ X>i
)
Ωi ⊗ Z>i

}{
d vec

(
Ṁi
)
− 2 Ωi

(
Dρ̇i

Ai + Dρi
Ȧi
)

Zi d bi
}

=
{(

X>i ⊗ X>i
)
Ωi ⊗ Z>i

}
Ωi
{

M̈i − 3
(
Dρ̇i

Ai + Dρi
Ȧi
)}

Zi d bi ,

=⇒(
X>i Mi Xi

)
bi bi

=
{(

X>i ⊗ X>i
)
Ωi ⊗ Z>i

}
Ωi
{

M̈i − 3
(
Dρ̇i

Ai + Dρi
Ȧi
)}

Zi .
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ν 2
i : from Table B.2 we have the computation for d vi and d Z>i τi. Thus,

d
(
ν2

i
)

= 2 νi
∂νi

∂b>i
d bi = 2 νi τ>i Zi d bi and

2 d
(
Z>i τi νi

)
= 2d {Ziτi} νi + 2 τi d (νi)

= 2 νi Z>i Mi Zi d bi + 2 Ziτiτ>i Zi d bi =⇒ (νi)bi bi
= 2 Z>i

(
νi Mi + τi τ>i

)
Zi

= 2 Z>i
(
νi Mi + τi τ>i

)
Zi d bi.

X>i τi λ
>

i : expressions for d X>i τi, dλi and d vec (Mi) are displayed in Table B.2. Thus,
we have

d vec
(
X>i τi λ

>

i
)

=
Ä

Iq2 ⊗ X>i τi

ä
dλi +

(
λi ⊗ Ip

)
d
(
X>i τi

)
=
{

Nq
(
Iq ⊗ bi

)
⊗ X>i τi

}
d bi +

(
λi ⊗ X>i Mi Zi

)
d bi and

d vec
[{(

Iq ⊗ b>i
)

Nq ⊗ τ>i Xi
}

+
(
λ>i ⊗ Z>i Mi Xi

)]
=

=Λp
{(

Iq ⊗ b>i
)

Nq
}

X>i Mi Zi d bi +
{

Nq ⊗Πq
(
τ>i Xi

)}
Λq
(
Iq
)

d bi

+
{

Nq
(
Iq ⊗ bi

)
⊗ vec

(
Z>i Mi Xi

)}
d bi +

{
Λp
(
λ>i
)

X>i ⊗ Z>i
}

Ωi
(
Ṁi − 2 Dρi

Ai
)

Zi d bi

=Λp
{(

Iq ⊗ b>i
)

Nq
}

X>i Mi Zi d bi +
{

Nq
(
Iq ⊗ bi

)
⊗ vec

(
Z>i Mi Xi

)}
d bi

+
(
Nq ⊗ X>i τi ⊗ Iq

)
Λq
(
Iq
)

d bi +
(
λi ⊗ X>i ⊗ Z>i

)
Ωi
(
Ṁi − 2 Dρi

Ai
)

Zi d bi

=
Ä

Iq2 ⊗ X>i ⊗ Z>i
ä [{

Nq
(
Iq ⊗ bi

)
⊗ vec (Mi)

}
+ (λi ⊗Ωi)

(
Ṁi − 2 Dρi

Ai
)

Zi
]

d bi

+
(
Nq ⊗ X>i τi ⊗ Iq

)
Λq
(
Iq
)

d bi + Λp
{(

Iq ⊗ b>i
)

Nq
}

X>i Mi Zi d bi

⇐⇒
(
X>i τi λ

>

i
)

bi bi
=

=
Ä

Iq2 ⊗ X>i ⊗ Z>i
ä [{

Nq
(
Iq ⊗ bi

)
⊗ vec (Mi)

}
+ (λi ⊗Ωi)

(
Ṁi − 2 Dρi

Ai
)

Zi
]

d bi

+
(
Nq ⊗ X>i τi ⊗ Iq

)
Λq
(
Iq
)

d bi + Λp
{(

Iq ⊗ b>i
)

Nq
}

X>i Mi Zi d bi.

X>i τi νi : In Table B.2 we have expressions for d X>i τi, d Z>i τi and d νi. Thus, we have

d vec
(
X>i τi νi

)
= d

(
X>i τi νi

)
= νi X>i Mi Zi d bi + X>i τi τ>i Zi d bi and

d vec
(
Z>i τi τ>i Xi + νi Z>i Mi Xi

)
=
(
X>i τi ⊗ Iq

)
Z>i Mi Zi d bi +

(
Ip ⊗ Z>i τi

)
X>i Mi Zi d bi

+
(
X>i ⊗ Z>i

)
vec (Mi) τ>i Zi d bi + νi

(
X>i ⊗ Z>i

)
Ωi
(
Ṁi − 2 Dρi

Ai
)

Zi d bi

=
(
X>i ⊗ Z>i

) {
(τi ⊗Mi) + (Mi ⊗ τi) + vec (Mi) τ>i + νi Ωi

(
Ṁi − 2 Dρi

Ai
)}

Zi d bi

=
(
X>i ⊗ Z>i

) {
Nni (Mi ⊗ τi) + vec (Mi) τ>i + νi Ωi

(
Ṁi − 2 Dρi

Ai
)}

Zi d bi

=⇒(
X>i τi νi

)
bi bi

=
(
X>i ⊗ Z>i

) {
Nni (Mi ⊗ τi) + vec (Mi) τ>i + νi Ωi

(
Ṁi − 2 Dρi

Ai
)}

Zi.

λi νi : In Table B.2 are reported dλi , d νi and d Z>i τi. Using these expressions we
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obtain

d vec (λi νi) = Nq
(
Iq ⊗ bi

)
d bi νi + λi τ>i Zi d bi =

{
νi Nq

(
Iq ⊗ bi

)
+ λi τ>i Zi

}
d bi and

d
(
Z>i τi λ

>

i +
(
Iq ⊗ b>i

)
Nq νi

)
=(

λi ⊗ Iq
)

Z>i Mi Zi d bi +
Ä

Iq2 ⊗ Z>i τi

ä
Nq
(
Iq ⊗ bi

)
d bi

+ vec
{(

Iq ⊗ b>i
)

Nq
}
τ>i Zi d bi + νi

(
Nq ⊗ Iq

)
Λq
(
Iq
)

d bi

=
(
λi ⊗ Z>i Mi Zi

)
d bi +

(
Nq ⊗ Z>i τi

) (
Iq ⊗ bi

)
d bi

+
(
Nq ⊗ Iq

)
Λq
(
Iq
)

bi τ>i Zi d bi + νi
(
Nq ⊗ Iq

)
Λq
(
Iq
)

d bi

=
(
Nq ⊗ Iq

)
Λq
(
Iq
) {

Iq νi + bi τ>i Zi
}

d bi +
Ä

Iq2 ⊗ Z>i
ä{

(λi ⊗Mi Zi) +
(
Nq ⊗ τi

) (
Iq ⊗ bi

)}
d bi ,

=⇒ (λi νi)bibi
=

=
(
Nq ⊗ Iq

)
Λq
(
Iq
) {

Iq νi + bi τ>i Zi
}

d bi +
Ä

Iq2 ⊗ Z>i
ä{

(λi ⊗Mi Zi) +
(
Nq ⊗ τi

) (
Iq ⊗ bi

)}
.

λi λ
>

i : Using dλi of Table B.2, we obtain

dvec
(
λi λ

>

i
)

=
Ä
λi ⊗ Iq2

ä
dλi +

Ä
Iq2 ⊗ λi

ä
dλi

= Nq2

Ä
λi ⊗ Iq2

ä
Nq
(
Iq ⊗ bi

)
dbi = Nq2

{
λi ⊗Nq

(
Iq ⊗ bi

)}
dbi and

d vec
î{
λ>i ⊗

(
Iq ⊗ b>i

)
Nq
}

Nq2

ó
= d vec

¶(
Iq ⊗ b>i

) (
λ>i ⊗Nq

)
Nq2

©
=
Ä

Nq2 ⊗ Iq

ä
d vec

{(
Iq ⊗ b>i

) (
λ>i ⊗Nq

)}
=
Ä

Nq2 ⊗ Iq

ä¶Ä
Iq5 ⊗ b>i

ä
d vec

(
λ>i ⊗Nq

)
+
(
λi ⊗Nq ⊗ Iq

)
Λq
(
Iq
)

d bi

©
=
Ä

Nq2 ⊗ Iq

ä îÄ
Iq5 ⊗ b>i

ä¶
Iq2 ⊗ vec

(
Nq
)©

dλi +
(
λi ⊗Nq ⊗ Iq

)
Λq
(
Iq
)

d bi

ó
=
Ä

Nq2 ⊗ Iq

ä îÄ
Iq5 ⊗ b>i

ä¶
Iq2 ⊗ vec

(
Nq
)©

Nq
(
Iq ⊗ bi

)
dbi +

(
λi ⊗Nq ⊗ Iq

)
Λq
(
Iq
)

dbi

ó
=
Ä

Nq2 ⊗ Iq

ä îÄ
Iq5 ⊗ b>i

ä{
Nq
(
Iq ⊗ bi

)
⊗ vec

(
Nq
)}

dbi +
(
λi ⊗Nq ⊗ Iq

)
Λq
(
Iq
)

dbi

ó
=
Ä

Nq2 ⊗ Iq

ä î¶
Nq
(
Iq ⊗ bi

)
⊗

Ä
Iq3 ⊗ b>i

ä
vec

(
Nq
)©

dbi +
(
λi ⊗Nq ⊗ Iq

)
Λq
(
Iq
)

dbi

ó
=
Ä

Nq2 ⊗ Iq

ä ([
Nq
(
Iq ⊗ bi

)
⊗ vec

{(
Iq ⊗ b>i

)
Nq
}]

+
(
λi ⊗Nq ⊗ Iq

)
Λq
(
Iq
))

dbi ,

=⇒ (
λi λ

>

i
)

bi bi
=
Ä

Nq2 ⊗ Iq

ä ([
Nq
(
Iq ⊗ bi

)
⊗ vec

{(
Iq ⊗ b>i

)
Nq
}]

+
(
λi ⊗Nq ⊗ Iq

)
Λq
(
Iq
))
.

B.6 ∆ under the first perturbation scheme (subjects)

In section 3.7.1 we considered L
Ä
ψ; y |ω

ä
=
∑N

i=1 ωi L
Ä
ψ; yi

ä
, where

ω = (ωi, ω2, . . . , ωN)>. The no perturbation vector is ω0 = 1N. Under this perturbation
scheme ∆ assumes the form
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∆ =
∂ 2 L

(
ψ; y

)
∂ψ ∂ω>

∣∣∣∣∣
ψ̂,ω0

=
∂ 2

∂ψ ∂ω>

{
N∑

i=1

ωi L
(
ψ; yi

)} ∣∣∣∣∣
ψ̂,ω0

=
∂
∂ψ

[
∂

∂ω>

{
N∑

i=1

ωi L
(
ψ; yi

)}] ∣∣∣∣∣
ψ̂,ω0

=
∂
∂ψ

(
L
(
ψ; y1

)
,L
(
ψ; y2

)
, . . . , L

(
ψ; yN

)) ∣∣∣∣
ψ̂

= (δ1,δ2, . . . ,δN) ,

where δi =
∂L
Ä
ψ ; yi

ä
∂ψ

∣∣∣∣∣∣
ψ̂

= L ψ̂

Ä
ψ ; yi

ä
= L i

ψ̂
for i = 1, . . . ,N.

L i
ψ is computed in appendix B.3.

Also, the approximated expression for δi given in (3.14) is obtained by means of the def-
inition 4 and using the Hessians

Ä
X>i τi

ä
bi bi

, (λi) bi bi
and ( νi ) bi bi

, which were computed
in appendix B.5.

B.7 ∆ under the second perturbation scheme (observa-

tions)

In section 3.7.2 we considered L
Ä
ψ; y |ω

ä
=
∑N

i=1 L
Ä
ψ; yi |ωi

ä
and L

Ä
ψ ; yi |ωi

ä
given in (3.16). Under this perturbation scheme ∆ may be obtained as follows:

∆ =
∂ 2L

(
ψ; y |ω

)
∂ψ ∂ω>

∣∣∣∣∣
ψ̂,ω0

=
∂ 2

∂ψ∂ω>

{
N∑

i=1

L
(
ψ; yi |ωi

)}∣∣∣∣∣
ψ̂,ω0

=
∂
∂ψ

[
∂

∂ω>

{
N∑

i=1

L
(
ψ; yi |ωi

)}]∣∣∣∣∣
ψ̂,ω0

=
∂
∂ψ

{
N∑

i=1

∂L
(
ψ; yi |ωi

)
∂ω>

}∣∣∣∣∣
ψ̂,ω0

=
∂
∂ψ

Ç
∂L
(
ψ ; y1 |ω1

)
∂ω1

>
,
∂L
(
ψ ; y2 |ω2

)
∂ω2

>
, . . . ,

∂L
(
ψ ; yN |ωN

)
∂ωN

>

å∣∣∣∣∣
ψ̂,ω0

= (∆1,∆2, . . . ,∆N) ,

where ∆i =
∂ 2 L

(
ψ; yi |ωi

)
∂ψ ∂ω>i

∣∣∣∣∣
ψ̂,ω0

.

In the computation above we have used the fact that, for i = 1, . . . ,N,

∂L
(
ψ; yi |ωi

)
∂ω

=

Ç
0>n 1
, . . . , 0>n i−1

,
∂L
(
ψ; yi |ωi

)
∂ω>i

, 0>n i+1
, . . . , 0>n N

å>
,

where 0n i is a ni × 1 vector of zeros.

In order to determine the structure of ∆, in what follows we will compute, for i =
1, . . . ,N, the form of ∆i given in (3.17) . Denoting L (ωi) = L

Ä
ψ; yi, bi |ωi

ä
and since

ψ =
Ä
β>, ξ>, φ

ä>
, we may see that

∂L (ωi)
∂ω>i

=
∂L
(
ψ; yi, bi |ωi

)
∂ω>i

=
∂

∂ω>i

(
ω>i fi

)
= f>i ,

∂L (ωi)
∂β

=
∂L
(
ψ; yi, bi |ωi

)
∂β

=
∂
∂β

(
f>i ωi

)
= φX>i W1/2

i V−1/2
i Dyi−µi

ωi = φX>i Tiωi and
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∂f>i
∂β

= φX>i Ti.

Now, using the expressions above and according to equation (3.16) we have that

∂2 L
(
ψ; yi |ωi

)
∂β ∂ωi

>
=

∂
∂β

Ñ
∂

∂ω>i
log

∫
Rq

exp {L (ωi)} d bi

é
=

∂
∂β

Ö∫
Rq

exp {L (ωi)} d bi

−1

×

∫
Rq

exp {L (ωi)}
∂L (ωi)
∂ω>i

d bi


è

=
∂
∂β

Ö∫
Rq

exp {L (ωi)} d bi

−1

×

∫
Rq

exp {L (ωi)} f>i d bi


è

=

∫
Rq

exp {L (ωi)} d bi

−1 ∫
R q

Å
∂L (ωi)
∂β

f>i +
∂f>i
∂β

ã
exp {L (ωi)} d bi

−

∫
Rq

exp {L (ωi)} d bi

−2 ∫
Rq

exp {L (ωi)}
∂L (ωi)
∂β

d bi

∫
Rq

exp {L (ωi)} f>i d bi

=

∫
Rq

exp {L (ωi)} d bi

−1 ∫
R q

(
φX>i Tiωi f>i + φX>i Ti

)
exp {L (ωi)} d bi

−

∫
Rq

exp {L (ωi)} d bi

−2 ∫
Rq

exp {L (ωi)} φX>i Tiωi d bi

∫
Rq

exp {L (ωi)} f>i d bi.

Since under this perturbation scheme the no perturbation vector is ω0 = 1NT and
ω =

(
ω>1 , ω

>

2 , . . . ,ω
>

N
)>, we have that ω0 i = 1ni for i = 1, . . . ,N. Thus,

L
(
ωi 0

)
= L

(
ψ; yi, bi |ωi 0

)
= L

(
ψ; yi, bi | 1ni

)
= L

(
ψ; yi, bi

)
= Li.

Then,

∂2 Lωi

(
ψ; yi

)
∂β ∂ωi

>

∣∣∣∣∣
ψ̂ , ωi0

= φE
(

X>i Ti 1ni f>i + X>i Ti
∣∣ yi

)
+ φE

(
X>i Ti1ni

∣∣ yi

)
E
(

fi| yi

)>
= φE

(
X>i τi f>i + X>i Ti

∣∣ yi

)
+ φE

(
X>i τi

∣∣ yi

)
E
(

fi| yi

)>
= φ̂E

(
X>i T̂i

∣∣∣ yi

)
+ φ̂Cov

(
X>i τ̂i , f̂i

∣∣∣ yi

)
.

On the other hand
∂2 L

Ä
ψ; yi |ωi

ä
∂ξ ∂ωi

>

∣∣∣∣∣∣
ψ̂ ,ωi0

and
∂2 L

Ä
ψ; yi |ωi

ä
∂φ ∂ωi

>

∣∣∣∣∣∣
ψ̂ , ωi0

may be computed

similarly. It is enough to take into account that

∂L (ωi)
∂ξ

=
∂Li

∂ξ
=
∂L
(
ψ; yi, bi

)
∂ξ

= −
1
2

G>q
¶

vec
(
Ξ−1)

− (Ξ ⊗ Ξ)−1 λi

©
. As it was seen in (B.1)
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∂L (ωi)
∂φ

=
∂L
(
ψ; yi, bi |ωi

)
∂φ

= 1>ni

∂fi

∂φ
= 1>ni

ḟi = νi.

Hence, for each i = 1, . . . ,N, we have obtained the structure for ∆i and therefore for ∆.
Finally, since ∆i does not have a closed form, following the definition (4) we require the
expressions given in section 3.7.2 and computed below.

B.7.1 Hessians for ∆ under the second perturbation scheme

X>i Ti Ci : Expressions for d vec (Ci), d vec (Ti) and d vec (Mi) are displayed in B.2.
Thus, we have

d vec
(
X>i Ti Ci

)
= d vec

Ä
X>i V−1/2

i W1/2
i Dyi−µi

Ci

ä
=
(
C>i ⊗ Ip

)
d vec

(
X>i Ti

)
+
(
Ini ⊗ X>i Ti

)
d vec (Ci)

=
(
C>i ⊗ X>i

)
Ωi Mi Zi d bi + φ

(
Ti Zi ⊗ X>i τi

)
and

d vec
{

Z>i Mi Ω
>

i (Ci ⊗ Xi) + φ
(
Z>i Ti ⊗ τ>i Xi

)}
=
{(

C>i ⊗ X>i
)
Ωi ⊗ Z>i

}
d vec (Mi) +

(
Ini p ⊗ Z>i Mi Ω

>

i
)

d vec (Ci ⊗ Xi)

+ φ
(
Ini ⊗Πq

(
τ>i Xi

))
d vec

(
Z>i Ti

)
+ φΛp

(
Z>i Ti

)
d X>i τi

=
{(

C>i ⊗ X>i
)
Ωi ⊗ Z>i

}
Ωi
(
Ṁi − 2 Dρi

Ai
)

Zi d bi + φ
(
Ini ⊗ X>i τi ⊗ Z>i

)
Ωi Mi Zi d bi

+ φΛp
(
Z>i Ti

)
X>i Mi Zi d bi + φ

(
Ini p ⊗ Z>i Mi Ω

>

i
) (

Ti Zi ⊗Πni (Xi) 1ni

)
d bi

=
(
Ini p ⊗ Z>i

) [{(
C>i ⊗ X>i

)
Ωi ⊗ Ini

}
Ωi
(
Ṁi − 2Dρi

Ai
)

+ φ
(
Ini ⊗ X>i τi ⊗ Ini

)
ΩiMi

+φ
(
Ini p ⊗MiΩ

>

i
) (

Ti ⊗Πni (Xi) 1ni

)]
Zi d bi + φΛp

(
Z>i Ti

)
X>i Mi Zi d bi ,

=⇒
(
X>i Ti Ci

)
bibi

=

=
(
Ini p ⊗ Z>i

) [{(
C>i ⊗ X>i

)
Ωi ⊗ Ini

}
Ωi
(
Ṁi − 2Dρi

Ai
)

+ φ
(
Ini ⊗ X>i τi ⊗ Ini

)
ΩiMi

+φ
(
Ini p ⊗MiΩ

>

i
) (

Ti ⊗Πni (Xi) 1ni

)]
Zi + φΛp

(
Z>i Ti

)
X>i Mi Zi .

λi f>i : Table B.2 presents expressions for d fi and dλi. Thus, we have

d vec
(
λi f>i

)
=
(
fi ⊗Nq

) (
Iq ⊗ bi

)
d bi + φ (Ti Zi ⊗ λi) d bi and

d vec
{(

Iq ⊗ b>i
) (

f>i ⊗Nq
)

+ φ
(
Z>i Ti ⊗ λ

>

i
)}

=
(
fi ⊗Nq ⊗ Iq

)
d vec

(
Iq ⊗ b>i

)
+
Ä

Ini q3 ⊗ b>i
ä

d vec
(
f>i ⊗Nq

)
+ φ

{
Ini ⊗Πq

(
λ>i
)}

d vec
(
Z>i Ti

)
+ φΛq2

(
Z>i Ti

)
dλi

=
(
fi ⊗Nq ⊗ Iq

)
Λq
(
Iq
)

d bi +
Ä

Ini q3 ⊗ b>i
ä (

Ini ⊗Π1
(
Nq
))

d fi

+ φ
(
Ini ⊗ λi ⊗ Iq

) (
Ini ⊗ Z>i

)
ΩiMiZid bi + φΛq2

(
Z>i Ti

)
Nq
(
Iq ⊗ bi

)
d bi

=
(
fi ⊗Nq ⊗ Iq

)
Λq
(
Iq
)

d bi + φ
Ä

Ini q3 ⊗ b>i
ä (

Ini ⊗ vec
(
Nq
))

Ti Zi d bi

+ φ
(
Ini ⊗ λi ⊗ Z>i

)
ΩiMiZi d bi + φΛq2

(
Z>i Ti

)
Nq
(
Iq ⊗ bi

)
d bi ,
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=⇒
(
λi f>i

)
bibi

=

=
(
fi ⊗Nq ⊗ Iq

)
Λq
(
Iq
)

+ φ
Ä

Ini q3 ⊗ b>i
ä (

Ini ⊗ vec
(
Nq
))

Ti Zi

+ φ
(
Ini ⊗ λi ⊗ Z>i

)
ΩiMiZi + φΛq2

(
Z>i Ti

)
Nq
(
Iq ⊗ bi

)
.

ḟ
>

i Ci : In Table B.2 expressions for d ḟi and d vec (Ci) are displayed. Thus, we have

d vec
Ä

ḟ
>

i Ci

ä
= d vec

¶(
C>i ḟi

)>©
= d vec

(
C>i ḟi

)
= d

(
C>i ḟi

)
=C>i d ḟi +

Ä
ḟ
>

i ⊗ Ini

ä
d vec

(
C>i
)

= C>i TiZi d bi +
Ä

ḟ
>

i ⊗ Ini

ä
Kn d vec (Ci)

=C>i TiZi d bi +
Ä

ḟ
>

i ⊗ Ini

ä (
1ni ⊗ Ti Zi

)
d bi = C>i Ti Zi d bi + φνi Ti Zi d bi and

d vec
(
Z>i Ti Ci + φνi Z>i Ti

)
=
(
Ini ⊗ Z>i Ti

)
d vec ( Ci ) +

(
C>i ⊗ Iq

)
d vec

(
Z>i Ti

)
+ φvec

(
Z>i Ti

)
τ>i Zi d bi

+φνi d vec
(
Z>i Ti

)
=φ

(
Ti Zi ⊗ Z>i τi

)
d bi +

(
C>i ⊗ Z>i

)
Ωi Mi Zi d bi + φvec

(
Z>i Ti

)
τ>i Zi d bi

+φνi
(
Ini ⊗ Z>i

)
Ωi Mi Zi d bi

=
(
Ini ⊗ Z>i

) {
φ (Ti ⊗ τi) +

(
C>i ⊗ Ini

)
Mi + φvec (Ti) τ>i + φΩiMi

}
Zi d bi ,

=⇒Ä
ḟ
>

i Ci

ä
bi bi

=
(
Ini ⊗ Z>i

) {
φ (Ti ⊗ τi) +

(
C>i ⊗ Ini

)
Mi + φvec (Ti) τ>i + φΩiMi

}
Zi .

fi : From Table B.2 we have that d fi = φTi Zi d bi and d Z>i Ti =
Ä
Ini ⊗ Z>i

ä
ΩiMiZi d bi.

Thus,

( fi )bibi
= φ

(
Ini ⊗ Z>i

)
ΩiMiZi.

ḟi : Note that d ḟi = φ−1 d fi. The procedure is as before and we have

(
ḟi
)

bibi
=
(
Ini ⊗ Z>i

)
ΩiMiZi.
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Within-subject correlations

Let us consider the GLMM as follows

Yi j | bi
ind
∼ EF

Ä
µi j; φ

ä
,

g
Ä
µi j
ä

= x>i j β + z>i j bi,

bi
iid
∼ Nq (0; Ξ) for j = 1, 2, . . . ,ni; i = 1, 2, . . . ,N.

Thus, for 1 = 1, . . . ,N, 1 ≤ r, s ≤ ni and r , s, we have that

Cov
Ä
yir, yis

ä
= Cov {E (Yir | bi} , E (Yis | bi)) + E {Cov (Yir, Yis | bi)}

Cov
¶

g−1
Ä
x>ir β + z>ir bi

ä
, g−1

Ä
x>is β + z>is bi

ä©
.

Also,

Var (Yir) = E {Var (Yir | bi)} + Var {E (Yir | bi)}

= E
¶
φ−1 V

Ä
µir
ä©

+ Var
Ä
µir
ä
,

where V
Ä
µir
ä

is the variance function and µir = g−1
Ä
x>ir β + z>ir bi

ä
.

Logarithmic link

A special case occurs when g ( · ) = log ( · ). In this case, we obtain the model

Yi j | bi
ind
∼ EF

Ä
µi j; φ

ä
,

log
Ä
µi j
ä

= x>i j β + z>i j bi,

bi
iid
∼ Nq (0; Ξ) for j = 1, 2, . . . ,ni; i = 1, 2, . . . ,N
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and

Cov
Ä
yir, yis

ä
= Cov

¶
exp

Ä
x>ir β + z>ir bi

ä
, exp

Ä
x>is β + z>is bi

ä©
= exp

¶(
x>ir + x>is

)
β
©

Cov
¶

exp
(
z>ir bi

)
, exp

(
z>is bi

)©
= exp

¶(
x>ir + x>is

)
β
© Ä

E
î
exp

{(
z>ir + z>is

)
bi
}ó
− E

¶
exp

(
z>ir bi

)©
E
¶

exp
(
z>is bi

)©ä
= exp

¶(
x>ir + x>is

)
β
© ñ

exp
®

1
2

(zir + zis)
> Ξ (zir + zis)

´
− exp

Ç
1
2

z>ir Ξ zir

å
exp

Ç
1
2

z>is Ξ zis

åô
= exp

¶(
x>ir + x>is

)
β
©

exp
®

1
2
(
z>ir Ξ zir + z>is Ξ zis

)´ ¶
exp

(
z>ir Ξ zis

)
− 1
©
. (C.1)

Note that in this procedure was used the moment generating function for the random
vector bi ∼ N q (0; Ξ), which is given by

Mbi (t) = exp
Ç

1
2

t> Ξ t
å
, t ∈ R q and i = 1, . . . ,N. (C.2)

Gamma - normal GLMM

Let us consider the GLMM as follows

Yi j | bi
ind
∼ G

Ä
µi j; φ

ä
,

log
Ä
µi j
ä

= x>i j β + z>i j bi,

bi
iid
∼ Nq (0; Ξ) for j = 1, 2, . . . ,ni; i = 1, 2, . . . ,N.

In this case the variance matrix is given by V
Ä
µir
ä

= µ 2
ir and therefore, for 1 ≤ i ≤ N and

1 ≤ r ≤ ni we have that

Var (Yir) = φ−1 E
Ä
µ2

ir

ä
+ Var

Ä
µir
ä

= φ−1 E
Ä
µ2

ir

ä
+ E

Ä
µ2

ir

ä
−
¶

E
Ä
µir
ä© 2

=
Ä
φ−1 + 1

ä
E
Ä
µ2

ir

ä
−
¶

E
Ä
µir
ä© 2

=
Ä
φ−1 + 1

ä
exp

Ä
2 x>irβ

ä
E
¶

exp
(
2 z>irbi

)©
− exp

Ä
2 x>irβ

ä î
E
¶

exp
(
z>ir bi

)©ó 2

= exp
Ä
2 x>irβ

ä (Ä
φ−1 + 1

ä
E
¶

exp
(
2 z>ir bi

)©
−
î
E
¶

exp
(
z>ir bi

)©ó 2)
= exp

Ä
2 x>irβ

ä ¶Ä
φ−1 + 1

ä
exp

(
2 z>ir Ξzir

)
− exp

(
z>ir Ξizir

)©
. (C.3)

Note that in the procedure above was used the expression (C.2).
Thus, from expressions (C.1) and (C.3), we can conclude that

ρ(i)
r s = Corr (Yir, Yis) =

Cov (Yir, Yis)
{Var (Yir)}

1/2
{Var (Yis)}

1/2
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=

exp
{(

x>ir + x>is
)
β
}

exp
ß

1
2
(
z>ir Ξ zir + z>is Ξ zis

)™ {
exp

(
z>ir Ξ zis

)
− 1
}

{Var (Yir)}
1/2
{Var (Yis)}

1/2

=

exp
ß

1
2
(
z>ir Ξ zir + z>is Ξ zis

)™ {
exp

(
z>ir Ξ zis

)
− 1
}

{(
φ−1 + 1

)
exp

(
2 z>ir Ξzir

)
− exp

(
z>ir Ξizir

)}1/2 {(
φ−1 + 1

)
exp

(
2 z>is Ξzis

)
− exp

(
z>is Ξizis

)}1/2

=
exp

(
z>ir Ξ zis

)
− 1{(

φ−1 + 1
)

exp
(

z>ir Ξzir
)
− 1
}1/2 {(

φ−1 + 1
)

exp
(

z>is Ξzis
)
− 1
}1/2 .

Gamma-normal random intercept GLMM

The expression above may be simplified by considering a gamma-normal random
intercept GLMM with logarithmic link. That is, if we consider the model

Yi j | bi
ind
∼ G

Ä
µi j; φ

ä
,

log
Ä
µi j
ä

= x>i j β + bi, (C.4)

bi
iid
∼ N (0; ξ) for j = 1, 2, . . . ,ni; i = 1, 2, . . . ,N,

then the correlation among two observations within ith subject, induced by the assump-
tion of the random effects distribution, is given by

ρ(i)
rs = ρ = Corr (Yir, Yis) =

exp ( ξ ) − 1Ä
φ−1 + 1

ä
exp ( ξ ) − 1

, (C.5)

for 1 ≤ i ≤ N, 1 ≤ r, s ≤ ni and r , s.
Several conclusions may be obtained from (C.5). Note that

• Under the model (C.4) the correlation structure within ith subject is a uniform
correlation. That is, the ni × ni correlation matrix for the ith subject assumes the
form 

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

 .

• Under the model (C.4), the structure of the correlation matrix in each subject is
the same and only depends on a parameter denoted by ρ and exposed in (C.5). In
general, this is not true.

• It is well known that the correlation coefficient is a measure of two random
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variables whose values are between −1 and 1. However, from (C.5), we can see

that 0 < ρ < 1 under the model (C.4). Also, when ξ→∞we have that ρ→
φ

φ + 1
.

Poisson - normal GLMM

Let us consider the GLMM as follows

Yi j | bi
ind
∼ Po

Ä
µi j
ä
,

log
Ä
µi j
ä

= x>i j β + z>i j bi,

bi
iid
∼ Nq (0; Ξ) for j = 1, 2, . . . ,ni; i = 1, 2, . . . ,N.

In this case the variance matrix is given by V
Ä
µir
ä

= µir and φ = 1. Therefore for
1 ≤ i ≤ N and 1 ≤ r ≤ ni we have that

Var ( Yi r ) = E
¶

V
Ä
µir
ä©

+ Var
Ä
µir
ä

= E
¶
µir
©

+ Var
Ä
µir
ä

= exp
Ä
x>ir β

ä
E
¶

exp
(
z>ir bi

)©
+ exp

Ä
2 x>ir β

ä [
E
¶

exp
(
2 z>ir bi

)©
− E

¶
exp

(
z>ir bi

)© 2 ]
= exp

Ä
2 x>ir β

ä [
exp

Ä
−x>ir β

ä
E
¶

exp
(
z>ir bi

)©
+ E

¶
exp

(
2 z>ir bi

)©
− E

¶
exp

(
z>ir bi

)© 2 ]
= exp

Ä
2 x>ir β

ä ®
exp

Ä
−x>ir β

ä
exp

Ç
1
2

z>ir Ξ zir

å
+ exp

(
2z>ir Ξ zir

)
− exp

Ä
z>i j Ξ zir

ä ´
= exp

Ä
2 x>ir β

ä
exp

(
z>ir Ξ zir

)®
exp

Ä
−x>ir β

ä
exp

Ç
−

1
2

z>ir Ξ zir

å
+ exp

(
z>ir Ξ zir

)
− 1
´
.

(C.6)

Note that in the procedure above was used the expression (C.2).
Thus, from expressions (C.1) and (C.6), we can conclude that

ρ(i)
rs =

Cov (Yir, Yis)
{Var ( Yir )} 1/2 {Var ( Yis )} 1/2

=
exp

{(
x>ir + x>is

)
β
}

exp
ß1

2
(
z>ir Ξ zir + z>is Ξ zis

)™ {
exp

(
z>ir Ξ zis

)
− 1
}

{Var ( Yir )} 1/2 {Var ( Yis )} 1/2

=
exp

(
z>ir Ξ zis

)
− 1{

exp
(
z>irΞzir

)
− 1
}1/2 {exp

(
z>isΞzis

)
− 1
}1/2 {exp

(
−x>ir β

)
kir + 1

}1/2 {exp
(
−x>is β

)
kis + 1

}1/2 ,

where

kir =

®
exp

Ç
3
2

z>irΞzir

å
− exp

Ç
1
2

z>irΞzir

å´−1

and

kis =

®
exp

Ç
3
2

z>isΞzis

å
− exp

Ç
1
2

z>isΞzis

å´−1

.
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Poisson - normal random intercept GLMM

The expression above may be simplified by considering a Poisson-normal random
intercept GLMM with logarithmic link. That is, if we consider the model

Yi j | bi
ind
∼ Po

Ä
µi j; φ

ä
,

log
Ä
µi j
ä

= x>i j β + bi, (C.7)

bi
iid
∼ N (0; ξ) for j = 1, 2, . . . ,ni; i = 1, 2, . . . ,N,

the correlation among two observations within ith subject, induced by the assumption
of the random effects distribution, is given by

ρ(i)
rs = Corr (Yir, Yis) =

1√
exp

Ä
− x>ir β

ä
k + 1

√
exp

Ä
− x>is β

ä
k + 1

, (C.8)

for 1 ≤ i ≤ N, 1 ≤ r, s ≤ ni and r , s and k =

®
exp

Ç
3
2
ξ
å
− exp

Ç
1
2
ξ
å´−1

.

It is important to highlight the following facts:

• Under the model (C.7) we can see that 0 < ρ(i)
rs < 1 , for 1 ≤ i ≤ N and 1 ≤ r, s ≤ ni.

• Unlike what happens in model (C.4), from equation (C.8), the correlation between
two observations of the same subject depends on the associated covariate values.
Thus, the correlation structure for the ith subject, in general, is unstructured.

Binomial negative - normal random intercept GLMM (ν fixed)

Let us consider the GLMM as follows

Yi j | bi
ind
∼ BN

Ä
µi j; ν

ä
,

log
Ä
µi j
ä

= x>i j β + bi,

bi
iid
∼ Nq (0; ξ) for j = 1, 2, . . . ,ni; i = 1, 2, . . . ,N.

It is possible to prove that that variance function is V
Ä
µi j
ä

= µi j
Ä

1 + ν−1 µi j
ä

for 1 ≤
j ≤ ni and 1 ≤ i ≤ N. Thus, following a similar procedure to that previously performed,
it is possible to prove that the correlation between two observations of the ith subject,
induced by the assumption of the random effects distribution, is given by

ρ(i)
rs = Corr (Yir, Yis) =

1√
exp (2ξ) ν−1 + exp

Ä
x>ir β

ä
k + 1

√
exp (2ξ) ν−1 + exp

Ä
x>is β

ä
k + 1

,
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where k =

®
exp

Ç
3
2
ξ
å
− exp

Ç
1
2
ξ
å´−1

, 1 ≤ r, s ≤ ni , i = 1, . . . ,N and r , s.

Again, 0 < ρ(i)
rs < 1 and the correlation structure for the ith subject is unstructured,

since ρ(i)
rs depends on the associated covariate values to the observations Yir and Yis.
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Implementation in R software

# ############################################################################
## To use t h i s f u n c t i o n i t i s n e c e s s a r y t o l o a d t h e f o l l o w i n g p a c k a g e s . ##
# ############################################################################
require ( m a t r i x c a l c )
require ( gamlss )
# ############################################################################
## DESCRIPTION ##
## ##
## Returns p o t e n t i a l l y i n f l u e n t i a l s u b j e c t s and o b s e r v a t i o n s o f a f i t t e d ##
## GLMM through gamlss ( ) f u n c t i o n j o i n t l y wi th t h e r e ( ) f u n c t i o n o f t h e ##
## gamlss p a c k a g e . Th i s f u n c t i o n i s b u i l t f o r s e v e r a l d i s t r i b u t i o n s ##
## in t h e e x p o n e n t i a l f a m i l y and s e v e r a l l i n k f u n c t i o n s . Among them we ##
## have ##
## ##
## D i s t r i b u t i o n Link f u n c t i o n s ##
## Gamma(GA) ” i n v e r s e ” , ” l o g ” and ” i d e n t i t y ” . ##
## P o i s s o n (PO) ” l o g ” ,” s q r t ” and ” i d e n t i t y ” . ##
## Normal (NO) ” i d e n t i t y ” and ” l o g ” . ##
## B e r n o u l l i ” l o g i t ” . ##
## N e g a t i v e b i n o m i a l ( NBI ) ” l o g ” ( f i x e d nu ) . ##
## I n v e r s e Gauss ian ( IG ) ”1 /muˆ2” and ” l o g ” . ##
## ##
## Current ly , t h i s f u n c t i o n a l l o w s t o o b t a i n c o n f o r m a l normal c u r v a t u r e ##
## measures f o r random i n t e r c e p t GLMMs and random s l o p e and i n t e r c e p t ##
## GLMMs. ##
## ##
## Arguments ##
## ##
## model a f i t t e d GLMM o b j e c t through t h e gamlss ( ) and r e ( ) f u n c t i o n s . ##
## For example , f o r a random i n t e r c e p t GLMM we have ##
## model<−gamlss ( r e s p o n s e ˜ cov1 + cov2 + cov3 + ##

137
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## r e ( random=˜ 1 | f a c t o r ) , d a t a= . . . , f a m i l y= . . . ) . ##
## ##
## d a t a d a t a s e t used by f i t t i n g t h e model . ##
## ##
## t y p e use ” s u b j e c t s ” t o d i s c r i m i n a t e p o t e n t i a l l y i n f l u e n t i a l sub− ##
## j e c t s and ” o b s e r v a t i o n s ” t o h i g h l i g h t p o t e n t i a l l y i n f l u e n t i a l ##
## o b s e r v a t i o n s . I f t h i s argument i s o m i t t e d , t h e f u n c t i o n ##
## p r o v i d e s two p l o t s f o r h i g h l i g h t i n g p o t e n t i a l l y i n f l u e n t i a l ##
## s u b j e c t s and o b s e r v a t i o n s . ##
## ##
## ##
# ############################################################################
l o c a l . influence .GLMM<−function ( model , data , type=c ( ” s u b j e c t s ” , ” observat ions ” ) ) {

a<−model
dat<−data
dia g i<−function ( a ) {

i f ( length ( a )==1)
{

da<−as . matrix ( a )
}

e lse {da<−diag ( a ) }
return ( da )
}

# ############################################################################
## Th i s f u n c t i o n a l l o w s t o e x t r a c t t h e e s t i m a t e d v a r i a n c e − c o v a r i a n c e m at r ix ##
## f o r t h e f i t t e d model by means o f t h e gamlss ( ) f u n c t i o n . ##
# ############################################################################

getSigmab <− function ( ob j )
{

vc <− VarCorr ( ob j )
suppressWarnings ( storage . mode ( vc ) <− ”numeric” )
i f ( ncol ( vc ) >2) {

var iances<−diag ( vc [ , ” Variance ” ] [ 1 : length ( vc [ , ” Variance ” ] ) −1 ] )
covar iance<−prod ( vc [ , ”StdDev” ] [ 1 : length ( vc [ , ”StdDev” ] ) −1 ] ) ∗
vc [ , ”Corr” ] [ ! i s . na ( vc [ , ”Corr” ] ) ]
var iances [ 1 , 2 ]<−covar iance
var iances [ 2 , 1 ]<−var iances [ 1 , 2 ]
covar iancematr ix<−var iances

} e lse {

covar iancematr ix<−dia g i ( vc [ , ” Variance ” ] [ 1 : length ( vc [ , ” Variance ” ] ) −1 ] )
}

return ( covar iancematr ix )
}

# ############################################################################
kr<−function ( a , b ) { kronecker ( a , b ) }
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# ############################################################################
Ko<−function ( q , r ) {

i f ( q==1){
Kqr<−diag ( r )

} e lse i f ( r ==1){
Kqr<−diag ( q )

}

e lse {

Kqr<−commutation . matrix ( q , r )
}

return ( Kqr ) } # commutat i onmatr ix

G<−function ( q ) {
i f ( q==1){

G<−diag ( 1 )
}

e lse {

G<−d u p l i c a t i o n . matrix ( q )
}

return (G) } ### d u p l i c a t i o n m a t r i x

N<−function ( q ) {Ko( q , q)+ diag ( q ˆ 2 ) } ### Nmatrix
# ############################################################################
## Lambda and Pi f u n c t i o n s from d e f i n i t i o n in s e c t i o n 3 . 4 . ##
# ############################################################################
H<−function (A, q ) { kr ( diag ( ncol (A) ) , Ko( q , nrow (A) ) )%∗%kr ( vec (A) , diag ( q ) ) } #Lambda
Gm<−function ( B ,m) { kr (Ko( ncol ( B ) ,m) , diag ( nrow ( B ) ) )%∗%kr ( diag (m) , vec ( B ) ) } # Pi
# ############################################################################
## E x t r a c t i n g some components o f t h e f i t t e d model . ##
#############################################################################

Y<−as . matrix ( a$y ) # Response v a r i a b l e
del<−as . vector ( which ( i s . na ( coef ( a ) ) ) )
X<−model . matrix ( a ) [ , − del ] ## Design mat r i x
beta<−coef ( a ) [ ! i s . na ( coef ( a ) ) ] ## F i x e d e f f e c t s
p<−length ( beta ) ##Number o f f i z e d e f f e c t s
d<−getSigmab ( getSmo ( a ) ) ## Var iance− c o v a r i a n c e m at r ix o f random− e f f e c t s
q<−ncol ( d ) ##Number o f randome− e f f e c t s
NT<−nrow (Y) ## t o t a l number o f o b s e r v a t i o n s
p i i j<− f i t t e d ( a , ”mu” )

# ############################################################################
## E x t r a c t i n g t h e p r e d i c t e d random e f f e c t s from t h e f i t t e d model ##
## and b u i l d i n g t h e d e s i g n ma t r i x Zi . ##
# ############################################################################

i f ( ncol ( ranef ( getSmo ( a ) ) ) >1 )
{
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slopeglmm<−names ( ranef ( getSmo ( a ) ) ) [ 2 ]
interceptglmm<−names ( a$mu. coefSmo [ [ 1 ] ] $ c o e f f i c i e n t s $random )
z e t a s<−cbind ( rep ( 1 ,NT) , dat [ , colnames ( dat )==slopeglmm ] )

} e lse {

interceptglmm<−names ( a$mu. coefSmo [ [ 1 ] ] $ c o e f f i c i e n t s $random )
z e t a s<−as . matrix ( rep ( 1 ,NT) )

}

c l u s t e r<−r l e ( as . vector ( dat [ , colnames ( dat )== interceptglmm ] ) ) $ l engths
k<−length ( c l u s t e r )
u<−matrix ( u n l i s t ( ranef ( getSmo ( a ) ) ) , ncol=nrow ( d ) )
u<−lapply ( 1 : k , function ( i ) {u [ i , ] } )

# ############################################################################
## Func t i on t o o b t a i n s e p a r a t e l y t h e o b s e r v a t i o n s f o r e a c h s u b j e c t . ##
# ############################################################################

pos<−c ( 0 ,cumsum( c l u s t e r ) )
d i v i s o r<−function (A) {

i f ( ncol (A) !=1)
{

spt<−function ( i ,A) {B<−A[ ( pos [ i ] + 1 ) : pos [ i +1 ] , ]
B<−as . matrix ( B )
i f ( ncol ( B)==1) {B<−t ( B ) }
e lse {B<−B }
return ( as . matrix ( B ) ) }
l i s<−lapply ( 1 : k , spt ,A=A) }

e lse {
spt<−function ( i ,A) {B<−A[ ( pos [ i ] + 1 ) : pos [ i +1 ] , ]
return ( B ) }
l i s<−lapply ( 1 : k , spt ,A=A)
}

return ( l i s ) }
# ############################################################################
## Func t i on t o d i s t i n g u i s h t h e h e s s i a n ma t r ix and t h e ma t r ix o f ##
## H e s s i a n s as d e s c r i b e d in s e c t i o n 2 . 4 . 1 . 1 . ##
# ############################################################################

j o i n t h e s s i a n<−function (A, d ) {
kk<−nrow (A) / ( d )
spt<−function ( i ,A) {

B<−A[ ( ( i −1) ∗d + 1 ) : ( i ∗d ) , ]
return ( B ) }

a<−lapply ( 1 : kk , spt ,A=A)
i n i t i a l<−a [ [ 1 ] ]
i f ( length ( a ) !=1)
{

for ( i in 1 : ( kk−1) )
{ b<−cbind ( i n i t i a l , a [ [ i + 1 ] ] )
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i n i t i a l<−b
} } e lse {

b<− i n i t i a l
}

return ( b )
}

# ############################################################################
## S e p a r a t i n g some components o f t h e f i t t e d model f o r e a c h s u b j e c t . ##
# ############################################################################

Xi<−d i v i s o r (X)
Yi<−d i v i s o r (Y)
Zi<−d i v i s o r ( z e t a s )
z e t a s<−Zi
p i i<−d i v i s o r ( as . matrix ( p i i j ) )

# ############################################################################
## Func t i on t o o b t a i n t h e omega ma t r i x d e f i n e d in t h e d e f i n i t i o n 3 o f ##
## s e c t i o n 3 . 4 . ##
# ############################################################################

Om<−function (A) {
i f ( ncol (A) !=1)
{

T<−as . matrix (A[ , 1 ] )
for ( j in 1 : ( ncol (A) −1 ) ) {

acu<−d i r e c t . sum( T , as . matrix (A[ , j + 1 ] ) )
T<−acu

}

}

e lse {T<−as . matrix (A) }
return ( T )

}

omegas<−lapply ( lapply ( c l u s t e r , diag ) ,Om)
# ############################################################################
## R e q u i r e d components f o r computing t h e c o n f o r m a l normal c u r v a t u r e f o r ##
## d i f f e r e n t d i s t r i b u t i o n s in t h e e x p o n e n t i a l f a m i l y and d i f f e r e n t l i n k ##
## f u n c t i o n s . ##
# ############################################################################
## P o i s s o n d i s t r i b u t i o n with l o g a r i t h m i c , i d e n t i t y and s q u a r e r o o t l i n k ##
## f u n c t i o n . ##
# ############################################################################

i f ( a$ family [1]==”PO” ) {
phi<−1
Vi<−lapply ( d i v i s o r ( as . matrix ( p i i j ) ) , d iag i )
l<−Y∗ log ( p i i j )− p i i j −lgamma (Y+1)
i f ( a$mu. l ink==” log ” ) {

Wi<−Vi
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Ai<−Vi
Aip<−Ai
Aip2<−Ai
r o i<−lapply ( lapply ( c l u s t e r , function ( a ) { rep ( 0 , a ˆ 2 ) } ) ,

function ( a ) { matrix ( a , nrow=sqr t ( length ( a ) ) ) } )
ro ip<−r o i
roipp<−r o i
}

i f ( a$mu. l ink==” i d e n t i t y ” ) {
Wi<−lapply ( d i v i s o r ( as . matrix ( p i i j ˆ ( − 1 ) ) ) , d i ag i )
Ai<−lapply ( c l u s t e r , diag )
Aip<−lapply ( lapply ( c l u s t e r , function ( a ) { rep ( 0 , a ˆ 2 ) } ) ,

function ( a ) { matrix ( a , nrow=sqr t ( length ( a ) ) ) } )
Aip2<−Aip
r o i<−lapply ( d i v i s o r ( as . matrix (− p i i j ˆ ( − 2 ) ) ) , d i ag i )
ro ip<−lapply ( d i v i s o r ( as . matrix (2 ∗ p i i j ˆ ( − 3 ) ) ) , d i ag i )
roipp<−lapply ( d i v i s o r ( as . matrix (−6 ∗ p i i j ˆ ( − 4 ) ) ) , d i ag i )

}

i f ( a$mu. l ink==” s q r t ” ) {
Wi<−lapply (4 ∗ c l u s t e r , diag )
Ai<−lapply ( d i v i s o r ( as . matrix (2 ∗ sqr t ( p i i j ) ) ) , d iag i )
Aip<−lapply (2 ∗ c l u s t e r , diag )
Aip2<−lapply ( lapply ( c l u s t e r , function ( a ) { rep ( 0 , a ˆ 2 ) } ) ,

function ( a ) { matrix ( a , nrow=sqr t ( length ( a ) ) ) } )
r o i<−lapply ( d i v i s o r ( as . matrix (−2 ∗ p i i j ˆ ( − 1 ) ) ) , d i ag i )
ro ip<−lapply ( d i v i s o r ( as . matrix (4 ∗ p i i j ˆ(−3 / 2 ) ) ) , d iag i )
roipp<−lapply ( d i v i s o r ( as . matrix (−12 ∗ p i i j ˆ ( − 2 ) ) ) , d i ag i )

}

}

# ############################################################################
## B e r n o u l l i d i s t r i b u t i o n with c a n o n i c a l l i n k . ##
# ############################################################################

i f ( a$ family [1]==” BI ” )
{

phi<−1
Vi<−lapply ( as . vector ( d i v i s o r ( as . matrix ( p i i j ∗ (1− p i i j ) ) ) ) , d iag i )
l<−choose ( 1 ,Y)+Y∗ log ( p i i j / (1− p i i j ) )+ log (1− p i i j )
i f ( a$mu. l ink==” l o g i t ” )
{

Wi<−Vi
Ai<−Vi
Aip<−lapply ( d i v i s o r ( as . matrix ( p i i j ∗ (1− p i i j ) ∗ (1−2 ∗ p i i j ) ) ) , d iag i )
Aip2<−lapply ( d i v i s o r ( as . matrix ( ( 6 ∗ p i i j ˆ2−6 ∗ p i i j +1) ∗ p i i j ∗ (1− p i i j ) ) ) , d iag i )
r o i<−lapply ( lapply ( c l u s t e r , function ( a ) { rep ( 0 , a ˆ 2 ) } ) ,

function ( a ) { matrix ( a , nrow=sqr t ( length ( a ) ) ) } )
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roip<−r o i
roipp<−r o i
}

}

# ############################################################################
## N e g a t i v e b i n o m i a l d i s t r i b u t i o n ( with f i x e d ) nu and l o g a r i t h m i c ##
## l i n k f u n c t i o n . ##
# ############################################################################

i f ( a$ family [1]==”NBI” )
{

phi<−1
nu<−exp ( coef ( a , ”sigma” ) )
Vi<−lapply ( d i v i s o r ( as . matrix ( p i i j ∗ ( { nu ˆ { −1 } } ∗ p i i j + 1 ) ) ) , d iag i )
Wi<−lapply ( d i v i s o r ( as . matrix ( p i i j / (1+nuˆ { −1 } ∗ p i i j ) ) ) , d iag i )
Ai<−lapply ( p i i , d iag i )
Aip<−Ai
Aip2<−Ai
r o i<−lapply ( d i v i s o r ( as . matrix (−nuˆ { −1 } ∗ p i i j / (1+nuˆ { −1 } ∗ p i i j ) ˆ { 2 } ) ) , d ia g i )
ro ip<−lapply ( d i v i s o r ( as . matrix ( nuˆ { −1 } ∗ p i i j ∗

( nuˆ { −1 } ∗ p i i j −1) / (1+nuˆ { −1 } ∗ p i i j ) ˆ { 3 } ) ) , d iag i )
roipp<−lapply ( d i v i s o r ( as . matrix (−(nuˆ { −1 } ∗ p i i j ∗

( ( nuˆ { −1 } ∗ p i i j )ˆ2−4 ∗nuˆ { −1 } ∗ p i i j +1) ) / (1+nuˆ { −1 } ∗ p i i j ) ˆ { 4 } ) ) , d ia g i )
l<−phi ∗Y∗ log ( ( p i i j ) / ( p i i j +nu))−nu∗ log ( p i i j +nu)+ ( lgamma ( nu+Y))−

lgamma (Y+1)−lgamma ( nu)+nu∗ log ( nu )
}

# ############################################################################
##Gamma d i s t r i b u t i o n with l o g a r i t h m i c , i n v e r s e and i d e n t i t y l i n k f u n c t i o n s . # #
# ############################################################################

i f ( a$ family [1]==”GA” )
{

phi<−1 / ( coef ( a , ”sigma” ) ) ˆ 2
l<−phi ∗ ((−Y / p i i j )− log ( p i i j ) ) + ( phi −1) ∗ log (Y)+ phi ∗ log ( phi )−lgamma ( phi )
lp<−−as . vector (Y) ∗ p i i j ˆ(−1)+ log ( ( phi ∗ as . vector (Y ) ) / ( p i i j ))+1−digamma ( phi )
Vi<−lapply ( d i v i s o r ( as . matrix ( p i i j ˆ 2 ) ) , d iag i )
cpp<−lapply ( d i v i s o r ( as . matrix ( rep ( ( 1 / phi )−trigamma ( phi ) ,NT) ) ) ,

function ( a ) { sum( a ) } )

i f ( a$mu. l ink==” log ” )
{

Wi<−lapply ( lapply ( c l u s t e r , function ( a ) { rep ( 1 , a ) } ) , d iag i )
Ai<−lapply ( p i i , d iag i )
Aip<−Ai
Aip2<−Ai
r o i<−lapply ( Ai , function ( a ){ − solve ( a ) } )
ro ip<−lapply ( Vi , function ( a ) { solve ( a ) } )
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roipp<−lapply ( d i v i s o r ( as . matrix (−2 ∗ p i i j ˆ ( − 3 ) ) ) , d i ag i )
}

i f ( a$mu. l ink==” inverse ” )
{

Wi<−Vi
Ai<−lapply ( d i v i s o r ( as . matrix (− p i i j ˆ 2 ) ) , d iag i )

Aip<−lapply ( d i v i s o r ( as . matrix (2 ∗ p i i j ˆ 3 ) ) , d iag i )
Aip2<−lapply ( d i v i s o r ( as . matrix (−6 ∗ p i i j ˆ 4 ) ) , d iag i )
r o i<−lapply ( lapply ( c l u s t e r , function ( a ) { rep ( 0 , a ˆ 2 ) } ) ,

function ( a ) { matrix ( a , nrow=sqr t ( length ( a ) ) ) } )
ro ip<−r o i
roipp<−r o i

}

i f ( a$mu. l ink==” i d e n t i t y ” )
{

Wi<−lapply ( d i v i s o r ( as . matrix ( p i i j ˆ ( − 2 ) ) ) , d i ag i )
Ai<−lapply ( c l u s t e r , diag )
Aip<−lapply ( lapply ( c l u s t e r , function ( a ) { rep ( 0 , a ˆ 2 ) } ) ,

function ( a ) { matrix ( a , nrow=sqr t ( length ( a ) ) ) } )
Aip2<−Aip
r o i<−lapply ( d i v i s o r ( as . matrix (−2 ∗ p i i j ˆ ( − 3 ) ) ) , d i ag i )
ro ip<−lapply ( d i v i s o r ( as . matrix (6 ∗ p i i j ˆ ( − 4 ) ) ) , d i ag i )
roipp<−roip<−lapply ( d i v i s o r ( as . matrix (−24 ∗ p i i j ˆ ( − 5 ) ) ) , d i ag i )

}

}

# ############################################################################
## Normal d i s t r i b u t i o n with i d e n t i t y and l o g l i n k f u n c t i o n s . ##
# ############################################################################

i f ( a$ family [1]==”NO” ) {
phi<−1 / ( coef ( a , ”sigma” ) ) ˆ 2
l<−phi ∗ ( p i i j ∗Y−0.5 ∗ p i i j ˆ 2 ) −0 .5 ∗ ( log (2 ∗ pi ∗phi ˆ ( −1) )+ phi ∗Yˆ 2 )
lp<−( p i i j ∗Y−0.5 ∗ p i i j ˆ 2 ) −0 .5 ∗ (−phi ˆ(−1)+Yˆ 2 )
cpp<−lapply ( d i v i s o r ( as . matrix ( rep (−1 / (2 ∗phi ˆ 2 ) ,NT) ) ) , function ( a ) { sum( a ) } )
Vi<−lapply ( c l u s t e r , diag )

i f ( a$mu. l ink==” i d e n t i t y ” ) {
Wi<−Vi
Ai<−Vi
Aip<−lapply ( lapply ( c l u s t e r , function ( a ) { rep ( 0 , a ˆ 2 ) } ) ,

function ( a ) { matrix ( a , nrow=sqr t ( length ( a ) ) ) } )
Aip2<−Aip
r o i<−Aip
roip<−Aip
roipp<−Aip
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}

i f ( a$mu. l ink==” log ” ) {
Wi<−lapply ( d i v i s o r ( as . matrix ( p i i j ˆ 2 ) ) , d iag i )
Ai<−lapply ( d i v i s o r ( as . matrix ( p i i j ) ) , d iag i )
Aip<−Ai
Aip2<−Ai
r o i<−Ai
roip<−Ai
roipp<−Ai
}

}

# ############################################################################
## I n v e r s e Gauss ian d i s t r i b u t i o n with ”1 /muˆ2” and l o g l i n k f u n c t i o n s . ##
# ############################################################################
i f ( a$ family [1]==”IG” ) {

phi<−1 / ( coef ( a , ”sigma” ) ) ˆ 2
l<−phi ∗ (−Y / (2 ∗ p i i j ˆ {2 } ) + 1 / p i i j ) −0.5 ∗ ( log ( ( 2 ∗ pi ∗Y ˆ { 3 } ) / phi )+ phi /Y)
lp<−−Y / (2 ∗ p i i j ˆ {2 } ) + 1 / p i i j −0.5 ∗ ((−1 / phi )+1 /Y)
cpp<−lapply ( d i v i s o r ( as . matrix ( rep ( − ( 0 . 5 ) ∗phi ˆ { −2 } ,NT) ) ) , function ( a ) { sum( a ) } )
Vi<−lapply ( d i v i s o r ( as . matrix ( p i i j ˆ 3 ) ) , d iag i )

i f ( a$mu. l ink==”1 /muˆ2 ” ) {
Wi<−lapply ( d i v i s o r ( as . matrix ( ( 0 . 2 5 ) ∗ p i i j ˆ 3 ) ) , d iag i )
Ai<−lapply ( d i v i s o r ( as . matrix ( − ( 0 . 5 ) ∗ p i i j ˆ 3 ) ) , d iag i )
Aip<−lapply ( d i v i s o r ( as . matrix ( ( 3 / 4) ∗ p i i j ˆ 5 ) ) , d iag i )
Aip2<−lapply ( d i v i s o r ( as . matrix (−(15 / 8) ∗ p i i j ˆ 7 ) ) , d iag i )
r o i<−lapply ( lapply ( c l u s t e r , function ( a ) { rep ( 0 , a ˆ 2 ) } ) ,

function ( a ) { matrix ( a , nrow=sqr t ( length ( a ) ) ) } )
ro ip<−r o i
roipp<−r o i
}

i f ( a$mu. l ink==” log ” ) {
Wi<−lapply ( d i v i s o r ( as . matrix (1 / p i i j ) ) , d iag i )
Ai<−lapply ( d i v i s o r ( as . matrix ( p i i j ) ) , d iag i )
Aip<−Ai
Aip2<−Ai
r o i<−lapply ( d i v i s o r ( as . matrix (−2 ∗ p i i j ˆ { − 2 } ) ) , d i ag i )
ro ip<−lapply ( d i v i s o r ( as . matrix (4 ∗ p i i j ˆ { − 2 } ) ) , d i ag i )
roipp<−lapply ( d i v i s o r ( as . matrix (−8 ∗ p i i j ˆ { − 2 } ) ) , d i ag i )
}

}

# ############################################################################
# ############################################################################
## Let ’ s b e g i n with t h e c o m p u t a t i o n o f t h e c o n f o r m a l normal c u r v a t u r e . ##
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# ############################################################################
# ############################################################################
# ############################################################################
## M m a t r i c e s d e f i n e d in s e c t i o n 3 . 6 . ##
#############################################################################

mi<−function ( a , b , c , d , e , f ) { dia g i ( a−b )%∗%c−(d ) ˆ ( 1 / 2)%∗%( solve ( e ) ) ˆ ( 1 / 2)%∗%f }
Mi<−mapply ( mi , Yi , p i i , ro i , Wi , Vi , Ai , SIMPLIFY=FALSE)
Mip<−mapply ( mi , Yi , p i i , roip , Wi , Vi , Aip , SIMPLIFY=FALSE)
Mipp<−mapply ( mi , Yi , p i i , roipp , Wi , Vi , Aip2 , SIMPLIFY=FALSE)

# ############################################################################
## Hess i an mat r i x ( o r e x p e c t e d Hess i an ma t r ix ) , wi th r e s p e c t t o b i , o f ##
## t h e j o i n t ” log− l i k e l i h o o d ” f u n c t i o n o f y i and b i . ( Appendix B . 2 ) . ##
# ############################################################################

hesconj<−function ( a , b ){ −phi ∗ t ( a )%∗%b%∗%a−solve ( d ) }
Hesconj<−mapply ( hesconj , zetas , Wi , SIMPLIFY=FALSE)

# ############################################################################
## R1 f u n c t i o n g i v e n in t h e d e f i n i t i o n 5 in s e c t i o n 3 . 5 . 2 . ##
# ############################################################################

Laplaced<−function ( a , b , c ) { as . matrix ( a)−kr ( diag ( nrow ( as . matrix ( a ) ) ) ,
t ( vec ( diag ( q ) ) ) )%∗%kr ( b , diag ( q ) )%∗%( kr ( diag ( ncol ( as . matrix ( a ) ) ) ,
vec ( solve ( c ) ) ) ) }

# ############################################################################
# ############################################################################
## D e l t a mat r i x under f i r s t p e r t u r b a t i o n scheme . S e c t i o n 3 . 7 . 1 . ##
# ############################################################################
# ############################################################################

funcion1<−function ( a , b , c , d , e ) { t ( a )%∗%( ( b ) ˆ ( 1 / 2 ) )%∗%( solve ( c ) ) ˆ ( 1 / 2)%∗%( d−e ) }
Funcion1<−mapply ( funcion1 , Xi , Wi , Vi , Yi , p i i , SIMPLIFY=FALSE)
hess iana1<−function ( a , b , c , d , e , f ) { kronecker ( t ( a ) , t ( b ) )%∗%c%∗%( d−2∗e%∗%f )%∗%b }
H1<−mapply ( hessiana1 , Xi , zetas , omegas , Mip , roi , Ai , SIMPLIFY=FALSE)
E1<−mapply ( Laplaced , Funcion1 , H1, Hesconj , SIMPLIFY=FALSE)

d<−as . matrix ( d )
funcion2<−function ( a ) { kr ( a , a ) }
Funcion2<−lapply ( u , funcion2 )
H2<−lapply ( rep ( 1 , k ) , function ( a ) { kr (N( q ) , diag ( q ) )%∗%H( diag ( q ) , q ) ∗a } )
E2<−mapply ( Laplaced , Funcion2 , H2, Hesconj , SIMPLIFY=FALSE)

scobeta<−lapply ( E1 , function ( a ) { phi ∗a } )

scov<−lapply ( E2 , function ( a ) { − (1 / 2) ∗ t (G( q ) )%∗%( vec ( solve ( d))− kr ( solve ( d ) ,
solve ( d ) )%∗%a ) } )

# ############################################################################
## d e l t a i v e c t o r d e f i n e d in e q u a t i o n ( 3 . 1 4 ) o f s e c t i o n 3 . 7 . 1 . ##
# ############################################################################
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i f ( a$ family [1]==”NBI” | | a$ family [1]==”PO” | | a$ family [1]==” BI ” )
{

F u l l y s c o r e<−mapply ( function ( a , b , c ) { rbind ( a , b ) } , scobeta , scov )
}

i f ( a$ family [1]==”GA” | | a$ family [1]==”NO” | | a$ family [1]==”IG” )
{

l i p<−d i v i s o r ( as . matrix ( lp ) )
Funcion10<−lapply ( l ip , function ( a ) { sum( a ) } )
H10<−mapply ( function ( a , b ) { t ( a )%∗%b%∗%a } , Zi , Mi , SIMPLIFY=FALSE)
E10<−mapply ( Laplaced , Funcion10 , H10 , Hesconj , SIMPLIFY=FALSE)
Scoredispersao<−E10
F u l l y s c o r e<−mapply ( function ( a , b , c ) { rbind ( a , b , c ) } , scobeta , scov ,
Scoredispersao )

}

# ############################################################################
# ############################################################################
## D e l t a mat r i x under s e c o n d p e r t u r b a t i o n scheme . S e c t i o n 3 . 7 . 2 . ##
# ############################################################################
# ############################################################################

l i<−d i v i s o r ( as . matrix ( l ) )
b i<−function ( c , d ) { diag ( c )+ rep ( 1 , c )%∗%t ( d ) }
Bi<−mapply ( bi , c l u s t e r , l i , SIMPLIFY=FALSE)
funcion3<−function ( a , b , c , d , e , f )

{ t ( a )%∗%( b ˆ ( 1 / 2 ) )%∗%solve ( c ) ˆ ( 1 / 2)%∗%diag i ( d−e )%∗%f }
Funcion3<−mapply ( funcion3 , Xi , Wi , Vi , Yi , p i i , Bi , SIMPLIFY=FALSE)

t i<−function ( a , b , c , d , e ) { dia g i ( a−b )%∗%solve ( c ) ˆ ( 1 / 2)%∗%d ˆ ( 1 / 2 ) }
Ti<−mapply ( t i , Yi , p i i , Vi , Wi , SIMPLIFY=FALSE)

h e s s i a n a 3 a r t<−function ( a , b , c , d , e , f , g , h , i , j , k ) {
phi ∗kr ( diag ( a∗p ) , t ( b ) )%∗%( phi ˆ { −1 } ∗kr ( t ( kr ( c , d ) )%∗%e , diag ( a ) )%∗%
e%∗%( f−2∗g%∗%h)+ kr ( kr ( diag ( a ) , k ) , diag ( a ) )%∗%e%∗%i )%∗%( b)+
phi ∗ (H( t ( b )%∗%j , p )%∗%t ( d )%∗%i%∗%b ) +

phi ∗kr ( diag ( a∗p ) , t ( b )%∗%i%∗%t ( e ) )%∗%kr ( j ,Gm( d , a )%∗%rep ( 1 , a ) )%∗%b }
H3art<−lapply ( mapply ( hess iana3ar t , c l u s t e r , Zi ,
Bi , Xi , omegas , Mip , roi , Ai , Mi , Ti , Funcion1 , SIMPLIFY=FALSE ) , j o i n t h e s s i a n , d=p∗q )
E3art<−mapply ( Laplaced , Funcion3 , H3art , Hesconj , SIMPLIFY=FALSE)

Funcion4art<−lapply ( l i , function ( a ) { matrix ( a , ncol = 1 ) } )
h e s s i a n a 4 a r t<−function ( a , b , c , d ) { phi ∗kr ( diag ( a ) , t ( b ) )%∗%c%∗%d%∗%b }
H4art<−mapply ( hess iana4ar t , c l u s t e r , Zi , omegas , Mi , SIMPLIFY=FALSE)
E4art<−mapply ( Laplaced , Funcion4art , H4art , Hesconj , SIMPLIFY=FALSE)

scorebetaomega<−mapply ( function ( a , b , c ) { phi ∗a−phi ∗b%∗%t ( c ) } ,
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E3art , E1 , E4art , SIMPLIFY=FALSE)

funcion5<−function ( a , b ) { as . matrix ( kr ( a , a ) )%∗%t ( b ) }
Funcion5<−mapply ( funcion5 , u , l i , SIMPLIFY=FALSE)
h e s s i a n a 5 a r t<−function ( a , b , c , d , e , f , g , h ) { kr ( kr ( a , diag ( q ˆ 2 ) )%∗%N( q ) , diag ( q ) )

%∗%H( diag ( q ) , q)+ phi ∗kr ( diag ( b∗q ˆ 2 ) , kr ( diag ( q ) , t ( c ) )%∗%N( q ) )%∗%
kr ( d%∗%e , vec ( diag ( q ˆ 2 ) ) ) + phi ∗kr ( kr ( diag ( b ) , f ) , t ( e ) )%∗%g%∗%h%∗%e+

phi ∗H( t ( e )%∗%d , q ˆ 2 )%∗%N( q )%∗%kr ( diag ( q ) , c ) }
H5art<−lapply ( mapply ( hess iana5ar t , Funcion4art , c l u s t e r , u , Ti , Zi , Funcion2 ,

omegas , Mi , SIMPLIFY=FALSE ) , j o i n t h e s s i a n , d=q ˆ 3 )
E5art<−mapply ( Laplaced , Funcion5 , H5art , Hesconj , SIMPLIFY=FALSE)

scorecovomega<−mapply ( function ( a , b , c ) { ( 1 / 2) ∗ t (G( q ) )%∗%
kr ( solve ( d ) , solve ( d ) )%∗%( a−b%∗%t ( c ) ) } , E5art , E2 , E4art , SIMPLIFY=FALSE)

t a u i<−mapply ( function ( a , b , c , d ) { a ˆ { 1 / 2 }%∗%solve ( b ) ˆ { 1 / 2 }%∗%( c−d ) } , Wi , Vi ,
Yi , p i i , SIMPLIFY=FALSE)

# ############################################################################
## D e l t a i mat r i x d e f i n e d in e q u a t i o n ( 3 . 1 8 ) in s e c t i o n 3 . 7 . 2 . ##
# ############################################################################
i f ( a$ family [1]==”GA” | | a$ family [1]==”NO” | | a$ family [1]==”IG” )
{

Funcion14<−mapply ( function ( a , b ) { t ( a )%∗%b } , l ip , Bi , SIMPLIFY=FALSE)
h e s s i a n a 1 4 a r t<−function ( a , b , c , d , e , f , g , h ) { phi ∗kr ( diag ( a ) , t ( b ) )%∗%(

kr ( c , d)+ phi ˆ { −1 } ∗kr ( t ( e ) , diag ( a ) )%∗%f%∗%g+vec ( c )%∗%t ( d)+
kr ( t ( rep ( 1 , a ) )%∗%h , f%∗%g ) )%∗%b }

H14art<−lapply ( mapply ( hess iana14ar t , c l u s t e r , Zi , Ti , taui , Bi , omegas , Mi , l ip ,
SIMPLIFY=FALSE ) , j o i n t h e s s i a n , d=q )

E14art<−mapply ( Laplaced , Funcion14 , H14art , Hesconj , SIMPLIFY=FALSE)

scorephiomega<−mapply ( function ( a , b , c ) { a−b%∗%t ( c ) } , E14art , E10 , E4art ,
SIMPLIFY=FALSE)

ful lyscoreomega<−mapply ( function ( a , b , c ) { rbind ( a , b , c ) } , scorebetaomega ,
scorecovomega , scorephiomega , SIMPLIFY=FALSE)

scoreobs<−function ( a ) {
s c o r e s<−a [ [ 1 ] ]
for ( i in 1 : ( k−1) )
{ A<−cbind ( scores , a [ [ i + 1 ] ] )
s c o r e s<−A
}

return (A) }
scorepsiomega<−scoreobs ( ful lyscoreomega )
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}

i f ( a$ family [1]==”NBI” | | a$ family [1]==”PO” | | a$ family [1]==” BI ” )
{

ful lyscoreomega<−mapply ( function ( a , b ) { rbind ( a , b ) } , scorebetaomega ,
scorecovomega , SIMPLIFY=FALSE)

scoreobs<−function ( a ) {
s c o r e s<−a [ [ 1 ] ]
for ( i in 1 : ( k−1) )
{ A<−cbind ( scores , a [ [ i + 1 ] ] )
s c o r e s<−A
}

return (A) }
scorepsiomega<−scoreobs ( ful lyscoreomega )

}

# ############################################################################
# ############################################################################
## Approximated Hess i an mat r i x f o r t h e m a r g i n a l l og− l i k e l i h o o d ( 2 . 8 ) . ##
## S e c t i o n 2 . 2 . 2 . ##
# ############################################################################
# ############################################################################
Funcion6<−mapply ( function ( a , b ) { t ( a )%∗%b%∗%a } , Xi , Mi , SIMPLIFY=FALSE)
hess iana6<−function ( a , b , c , d , e , f , g , h ) { kr ( kr ( t ( a ) , t ( a ) )%∗%b , t ( c ) )%∗%b%∗%

( d−3∗ ( e%∗%f+g%∗%h ) )%∗%c }
H6<−lapply ( mapply ( hessiana6 , Xi , omegas , Zi , Mipp , Ai , roip , Aip , ro i , SIMPLIFY=FALSE ) ,

j o i n t h e s s i a n , d=p∗q )
E6<−mapply ( Laplaced , Funcion6 , H6, Hesconj , SIMPLIFY=FALSE)

Funcion7<−lapply ( Funcion1 , function ( a ) ( a%∗%t ( a ) ) )
h e s s i a n a 7 a r t<−function ( a , b , c , d , e , f , g , h , i ) { kr (N( p ) , t ( a ) )%∗%( kr ( kr ( t ( b ) , t ( b )%∗%c ) ,
diag ( d ) )%∗%e%∗%( f−2∗g%∗%h)+ kr ( diag ( p ˆ 2 ) , i%∗%b )%∗%H( diag ( p ) , p )%∗%t ( b )%∗%i )%∗%a }
H7art<−lapply ( mapply ( hess iana7ar t , Zi , Xi , taui , c l u s t e r , omegas , Mip , roi , Ai , Mi ,
SIMPLIFY=FALSE ) , j o i n t h e s s i a n , d=p∗q )
E7art<−mapply ( Laplaced , Funcion7 , H7art , Hesconj , SIMPLIFY=FALSE)

# ############################################################################
## Approximated Hess i an ma t r i x in b e t a f o r t h e m a r g i n a l l og− l i k e l i h o o d ( 2 . 8 ) . #
# ############################################################################
hess ianabeta<−function ( a , b , c ) { ( phi ˆ 2 ) ∗a−( phi ˆ 2 ) ∗b%∗%t ( b)+ phi ∗ c }
Hessianabeta<−mapply ( hess ianabeta , E7art , E1 , E6 , SIMPLIFY=FALSE)
# ############################################################################

Funcion8<−lapply ( Funcion2 , function ( a ) { a%∗%t ( a ) } )
h e s s i a n a 8 a r t<−function ( a , b ) { kr (N( q ˆ 2 ) , diag ( q ) )%∗%( kr (N( q )%∗%kr ( diag ( q ) , a ) ,
vec ( t ( kr ( diag ( q ) , a ) )%∗%N( q ) ) ) + kr (H( t ( b ) , q ˆ 2 )%∗%N( q ) , diag ( q ) )%∗%H( diag ( q ) , q ) ) }
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H8art<−lapply ( mapply ( hess iana8ar t , u , Funcion2 , SIMPLIFY=FALSE ) , j o i n t h e s s i a n , d=q ˆ 3 )
E8art<−mapply ( Laplaced , Funcion8 , H8art , Hesconj , SIMPLIFY=FALSE)
PP<−kr ( diag ( q ) ,Gm( solve ( d ) , q ) )+ kr (H( solve ( d ) , q ) , diag ( q ) )

# ############################################################################
## Approximated Hess i an ma t r i x in x i f o r t h e m a r g i n a l l og− l i k e l i h o o d ( 2 . 8 ) . ##
# ############################################################################
hessianacov<−function ( a , b ) {

(1 / 2) ∗ t (G( q ) )%∗%( diag ( qˆ2)− kr ( t ( a ) , diag ( q ˆ 2 ) )%∗%PP+(1 / 2) ∗ solve ( kr ( d , d ) )%∗%
( b−a%∗%t ( a ) ) )%∗%solve ( kr ( d , d ) )%∗%G( q )
}

Hessianacov<−mapply ( hessianacov , E2 , E8art , SIMPLIFY=FALSE)
# ############################################################################
## Approximated Hess i an ma t r i x in p h i f o r t h e m a r g i n a l l og− l i k e l i h o o d ( 2 . 8 ) . # #
# ############################################################################
i f ( a$ family [1]==”GA” | | a$ family [1]==”NO” | | a$ family [1]==”IG” )
{

Funcion11<−lapply ( Funcion10 , function ( a ) { a ˆ 2 } )
h e s s i a n a 1 1 a r t<−function ( a , b , c , d ) { 2 ∗ t ( a )%∗%( b∗ c+d%∗%t ( d ) )%∗%a }
H11art<−mapply ( hess iana11ar t , Zi , Funcion10 , Mi , taui , SIMPLIFY=FALSE)
E11art<−mapply ( Laplaced , Funcion11 , H11art , Hesconj , SIMPLIFY=FALSE)
Hessianadispers ion<−mapply ( function ( a , b , c ) { a+b−c ˆ 2 } , cpp , E11art , E10 ,
SIMPLIFY=FALSE)
}

# ############################################################################
Funcion9<−mapply ( function ( a , b ) { a%∗%t ( b ) } , Funcion1 , Funcion2 , SIMPLIFY=FALSE)

h e s s i a n a 9 a r t<−function ( a , b , c , d , e , f , g , h , i , j ) { kr ( kr ( diag ( q ˆ 2 ) , t ( a ) ) , t ( b ) )%∗%
( kr ( c , d )%∗%( e−2∗ f%∗%g )%∗%b+kr (N( q ) , vec ( h ) )%∗%kr ( diag ( q ) , i ) )+

kr ( kr (N( q ) , t ( a )%∗%j ) , diag ( q ) )%∗%H( diag ( q ) , q)+H( kr ( diag ( q ) , t ( i ) )%∗%N( q ) , p )%∗%
t ( a )%∗%h%∗%b }

H9art<−lapply ( mapply ( hess iana9ar t , Xi , Zi , Funcion2 , omegas , Mip , roi , Ai , Mi , u , taui ,
SIMPLIFY=FALSE ) , j o i n t h e s s i a n , d=p∗q )

E9art<−mapply ( Laplaced , Funcion9 , H9art , Hesconj , SIMPLIFY=FALSE)
# ############################################################################
## Mixed d e r i v a t i v e in b e t a and x i f o r t h e m a r g i n a l l og− l i k e l i h o o d ( 2 . 8 ) . ##
# ############################################################################
c o v f i x h e s s<−function ( a , b , c ) { ( phi / 2) ∗ ( a−b%∗%t ( c ) )%∗%kr ( solve ( d ) , solve ( d ) )%∗%G( q ) }
Covfixhess<−mapply ( covf ixhess , E9art , E1 , E2 , SIMPLIFY=FALSE)
# ############################################################################
i f ( a$ family [1]==”GA” | | a$ family [1]==”NO” | | a$ family [1]==”IG” )
{

Funcion12<−mapply ( function ( a , b ) { a%∗%b } , Funcion1 , Funcion10 , SIMPLIFY=FALSE)
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h e s s i a n a 1 2 a r t<−function ( a , b , c , d , e , f , g , h , i , j ) { t ( kr ( a , b ) )%∗%
( c ∗d%∗%( e−2∗ f%∗%g)+ vec ( h )%∗%t ( i )+N( j )%∗%kr ( h , i ) )%∗%b }

H12art<−mapply ( hess iana12ar t , Xi , Zi , Funcion10 , omegas , Mip , roi , Ai , Mi , taui ,
c l u s t e r , SIMPLIFY=FALSE)

E12art<−mapply ( Laplaced , Funcion12 , H12art , Hesconj , SIMPLIFY=FALSE)
# ############################################################################
## Mixed d e r i v a t i v e in b e t a and p h i f o r t h e m a r g i n a l l og− l i k e l i h o o d ( 2 . 8 ) . ##
# ############################################################################

hess ianabetaphi<−function ( a , b , c ) { a+phi ∗ ( b−a%∗%t ( c ) ) }
Hessianabetaphi<−mapply ( hess ianabetaphi , E1 , E12art , E10 , SIMPLIFY=FALSE)

# ############################################################################
Funcion13<−mapply ( function ( a , b ) { as . matrix ( a )%∗%as . matrix ( b ) } , Funcion2 ,

Funcion10 , SIMPLIFY=FALSE)
h e s s i a n a 1 3 a r t<−function ( a , b , c , d , e , f ) { kr (N( q ) , diag ( q ) )%∗%H( diag ( q ) , q )%∗%
( diag ( q ) ∗a+b%∗%t ( c )%∗%d)+ kr ( diag ( q ˆ 2 ) , t ( d ) )%∗%( kr ( e , f%∗%d)+ kr (N( q )%∗%

kr ( diag ( q ) , b ) , c ) ) }
H13art<−mapply ( hess iana13ar t , Funcion10 , u , taui , Zi , Funcion2 , Mi ,

SIMPLIFY=FALSE)
E13art<−mapply ( Laplaced , Funcion13 , H13art , Hesconj , SIMPLIFY=FALSE)

# ############################################################################
## Mixed d e r i v a t i v e in x i and p h i f o r t h e m a r g i n a l l og− l i k e l i h o o d ( 2 . 8 ) . ##
# ############################################################################

hessianacovphi<−function ( a , b , c ) { ( 1 / 2) ∗ t (G( q ) )%∗%kr ( solve ( d ) , solve ( d ) )%∗%
( a−b%∗%t ( c ) ) }
Hessianacovphi<−mapply ( hessianacovphi , E13art , E2 , E10 , SIMPLIFY=FALSE)

}

# ############################################################################
# ############################################################################
## I n v e r s e o f Hess i an ma t r i x when t h e d i s t r i b u t i o n o f i n t e r e s t ##
## has d i s p e r s i o n p a r a m e t e r e q u a l s t o 1 . ##
# ############################################################################
# ############################################################################
i f ( a$ family [1]==”NBI” | | a$ family [1]==”PO” | | a$ family [1]==” BI ” )
{

hessianmodelbcd<−function ( a , b , c ) { rbind ( cbind ( a , b ) , cbind ( t ( b ) , c ) ) }
Hessianmodelbcd<−Reduce ( ’+ ’ , mapply ( hessianmodelbcd , Hessianabeta , Covfixhess ,

Hessianacov , SIMPLIFY=FALSE ) )
InvHessianmodelbcd<−solve ( Hessianmodelbcd )

}

# ############################################################################
# ############################################################################
## I n v e r s e o f Hess i an ma t r i x when t h e d i s t r i b u t i o n o f i n t e r e s t ##
## has d i s p e r s i o n p a r a m e t e r d i f f e r e n t t o 1 . ##
# ############################################################################
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# ############################################################################
i f ( a$ family [1]==”GA” | | a$ family [1]==”NO” | | a$ family [1]==”IG” )

{

hessianmodelbcd<−function ( a , b , c , d , e , f ) { rbind ( cbind ( a , b , c ) , cbind ( t ( b ) , d , e ) ,
cbind ( t ( c ) , t ( e ) , f ) ) }

Hessianmodelbcd<−Reduce ( ’+ ’ , mapply ( hessianmodelbcd , Hessianabeta , Covfixhess ,
Hessianabetaphi , Hessianacov , Hessianacovphi ,
Hessianadispersion , SIMPLIFY=FALSE ) )

InvHessianmodelbcd<−solve ( Hessianmodelbcd )
}

# ############################################################################
# ############################################################################
## Conformal normal c u r v a t u r e s f o r e a c h s u b j e c t and o b s e r v a t i o n . ##
# ############################################################################
# ############################################################################
conformal<−function ( a , b ) { abs ( diag ( ( t ( a )%∗%b%∗%a ) / sqr t (sum( diag ( ( t ( a )%∗%b%∗%a )

%∗%( t ( a )%∗%b%∗%a ) ) ) ) ) ) }
ILTOTALconf<−conformal ( Ful lyscore , InvHessianmodelbcd )
c u t t o f l o g c o n f<−2∗mean ( ILTOTALconf )

confobs<−conformal ( scorepsiomega , InvHessianmodelbcd )
cut tofconformal<−mean ( confobs )+4 ∗sd ( confobs )
# ############################################################################
# ############################################################################
## Index p l o t s t o d e t e c t i n f l u e n t i a l p o i n t s . ##
# ############################################################################
# ############################################################################
i f ( ! ( missing ( type ) ) ) {
i f ( type==” s u b j e c t s ” ) {

par ( mfrow=c ( 1 , 1 ) )
par ( mar = c ( 5 . 1 , 5 . 1 , 4 . 1 , 2 . 1 ) )
plot ( 1 : k , ILTOTALconf , ylab=expression ( B [ i ] ( ps i ) ) , x lab=” S u b j e c t s ” ,
ylim=c ( min ( ILTOTALconf ) −0 .000001 ,max ( c u t t o f l o g c o n f , max ( ILTOTALconf ) ) + 0 . 0 1 ) ,

cex = . 60 , cex . lab =1 , cex . axis =0 .8 , cex . main =1 .2 , main=”” , pch=19 )
# a b l i n e ( c u t t o f l o g c o n f , 0 , l t y =2)

i d e n t i f y ( 1 : k , as . vector ( ILTOTALconf ) , n=7 , cex =0 .7 )
}

i f ( type==” observat ions ” ) {
ss<−u n l i s t ( lapply ( 1 : k , function ( i ) { 1 : c l u s t e r [ i ] } ) )
l a b e l s p r i n t= paste ( ” ( ” , as . vector ( dat [ , colnames ( dat )== interceptglmm ] ) , ” , ” ,

ss , ” ) ” , sep=”” )
par ( mfrow=c ( 1 , 1 ) )
par ( mar = c ( 5 . 1 , 5 . 1 , 4 . 1 , 2 . 1 ) )
plot ( as . vector ( rep ( c ( 1 : k ) , c l u s t e r ) ) , as . vector ( confobs ) , type = ”p” , l t y = 1 ,
lwd = 1 , ylab=expression ( B [ i j ] ( ps i ) ) , x lab=” S u b j e c t s ” ,
ylim=c ( min ( confobs ) −0.00000001 , max ( cut tofconformal , max ( confobs ) ) + 0 . 0 0 0 1 ) ,
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cex = . 60 , cex . lab =1 , cex . axis =0 .8 , cex . main =1 .2 , main=”” , pch=18)
# a b l i n e ( c u t t o f c o n f o r m a l , 0 , l t y =2)

i d e n t i f y ( as . vector ( rep ( c ( 1 : k ) , c l u s t e r ) ) , l ab el s= l a b e l s p r i n t ,
as . vector ( confobs ) , n=7 , cex =0 .7 )

}

} e lse {
par ( mfrow=c ( 1 , 2 ) )
par ( mar = c ( 5 . 1 , 5 . 1 , 4 . 1 , 2 . 1 ) )
plot ( 1 : k , ILTOTALconf , ylab=expression ( B [ i ] ( ps i ) ) , x lab=” S u b j e c t s ” ,
ylim=c ( min ( ILTOTALconf ) −0 .000001 ,max ( c u t t o f l o g c o n f , max ( ILTOTALconf ) ) + 0 . 0 1 ) ,

cex = . 60 , cex . lab =1 , cex . axis =0 .8 , cex . main =1 .2 , main=”” , pch=19 )
i d e n t i f y ( 1 : k , as . vector ( ILTOTALconf ) , n=7 , cex =0 .7 )
ss<−u n l i s t ( lapply ( 1 : k , function ( i ) { 1 : c l u s t e r [ i ] } ) )
l a b e l s p r i n t= paste ( ” ( ” , as . vector ( dat [ , colnames ( dat )== interceptglmm ] ) , ” , ” ,

ss , ” ) ” , sep=”” )
plot ( as . vector ( rep ( c ( 1 : k ) , c l u s t e r ) ) , as . vector ( confobs ) , type = ”p” , l t y = 1 ,
lwd = 1 , ylab=expression ( B [ i j ] ( ps i ) ) , x lab=” S u b j e c t s ” , ylim=c ( min ( confobs )−

0 .00000001 ,max ( cut tofconformal , max ( confobs ) ) + 0 . 0 0 0 1 ) ,
cex = . 60 , cex . lab =1 , cex . axis =0 .8 , cex . main =1 .2 , main=”” , pch=18)

i d e n t i f y ( as . vector ( rep ( c ( 1 : k ) , c l u s t e r ) ) , l ab el s= l a b e l s p r i n t ,
as . vector ( confobs ) , n=7 , cex =0 .7 )

}

}
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distance for generalized linear mixed models. Computational Statistics & Data Analysis,
82:126–136. From page 2, 90, 91, 96, 97, 101



158 BIBLIOGRAPHY

Poon and Poon (1999) W-Y Poon and Yat Sun Poon. Conformal normal curvature and
assessment of local influence. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 61(1):51–61. From page 5, 10, 19

R Core Team (2018) R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2018. URL
https://www.R-project.org/. From page 4, 22, 26, 28, 30, 34, 64, 68, 83, 88, 104

Rabe-Hesketh et al. (2002) Sophia Rabe-Hesketh, Anders Skrondal and Andrew Pickles.
Reliable estimation of generalized linear mixed models using adaptive quadrature.
The Stata Journal, 2(1):1–21. From page 1

Rakhmawati et al. (2017) Trias Wahyuni Rakhmawati, Geert Molenberghs, Geert Ver-
beke and Christel Faes. Local influence diagnostics for generalized linear mixed
models with overdispersion. Journal of Applied Statistics, 44(4):620–641. From page 1, 2,
18, 21

Rigby and Stasinopoulos (2005) Robert A Rigby and D Mikis Stasinopoulos. Gener-
alized additive models for location, scale and shape. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 54(3):507–554. From page 30, 31, 105

Stasinopoulos and Rigby (2007) D Mikis Stasinopoulos and Robert A Rigby. General-
ized additive models for location scale and shape (gamlss) in r. Journal of Statistical
Software, 23(7):1–46. From page 89

Stasinopoulos et al. (2017) Mikis D Stasinopoulos, Robert A Rigby, Gillian Z Heller,
Vlasios Voudouris and Fernanda De Bastiani. Flexible Regression and Smoothing: using
GAMLSS in R. Chapman and Hall/CRC. From page 26, 29, 30, 64, 65, 66, 68, 79, 105

Stokes et al. (1995) Maura E Stokes, Charles S Davis and Gary G Koch. Categorical
Data Analysis Using the SAS System. SAS Institute. Inc., Cary, NC, pages 34–35. From

page 76, 78

Stroup (2012) Walter W Stroup. Generalized Linear Mixed Models: Modern Concepts,
Methods and Applications. CRC press. From page 1

Tan et al. (2001) Frans ES Tan, Mario JN Ouwens and Martijn PF Berger. Detection of
influential observations in longitudinal mixed effects regression models. Journal of
the Royal Statistical Society: Series D (The Statistician), 50(3):271–284. From page 2

Tang et al. (2006) Nian-Sheng Tang, Bo-Cheng Wei and Wen-Zhuan Zhang. Influence
diagnostics in nonlinear reproductive dispersion mixed models. Statistics, 40(3):
227–246. From page 2, 7, 18, 19, 105

https://www.R-project.org/


BIBLIOGRAPHY 159

Tapia et al. (2019a) Alejandra Tapia, Victor Leiva, Maria del Pilar Diaz and Viviana
Giampaoli. Sensitivity analysis of longitudinal count responses: a local influence
approach and application to medical data. Journal of Applied Statistics, 46(6):1021–
1042. From page 3, 19, 25

Tapia et al. (2019b) Alejandra Tapia, Victor Leiva, Maria del Pilar Diaz and Viviana
Giampaoli. Influence diagnostics in mixed effects logistic regression models. TEST,
pages 1–23. From page 3, 19, 25

Tuerlinckx et al. (2006) Francis Tuerlinckx, Frank Rijmen, Geert Verbeke and Paul De
Boeck. Statistical inference in generalized linear mixed models: a review. The British
Journal of Mathematical and Statistical Psychology, 59 Pt 2:225–255. From page 1, 8

Venables and Ripley (2002) William N Venables and Brian D Ripley. Modern Applied
Statistics with S. Springer Science, fourth ed. From page 31

Vonesh and Chinchilli (1996) Edward Vonesh and Vernon M Chinchilli. Linear and
Nonlinear Models for the Analysis of Repeated Measurements. CRC press. From page 1, 14

Wu (2009) Lang Wu. Mixed Effects Models for Complex Data. Chapman and Hall/CRC.
From page 1

Xiang et al. (2002) Liming Xiang, Siu-Keung Tse and Andy H Lee. Influence diagnostics
for generalized linear mixed models: applications to clustered data. Computational
Statistics & Data Analysis, 40(4):759–774. From page 2

Xiang et al. (2003) Liming Xiang, Andy H Lee and Siu-Keung Tse. Assessing local
cluster influence in generalized linear mixed models. Journal of Applied Statistics, 30
(4):349–359. From page 2

Xu et al. (2006) Liang Xu, Sik-Yum Lee and Wai-Yin Poon. Deletion measures for
generalized linear mixed effects models. Computational Statistics & Data Analysis, 51
(2):1131–1146. From page 2

Zeger and Karim (1991) Scott L Zeger and M Rezaul Karim. Generalized linear models
with random effects; a Gibbs sampling approach. Journal of the American Statistical
Association, 86(413):79–86. From page 8

Zhang and Lin (2008) Daowen Zhang and Xihong Lin. Variance component testing
in generalized linear mixed models for longitudinal/clustered data and other related
topics. In Random effect and latent variable model selection, pages 19–36. Springer. From

page 68, 83, 95



160 BIBLIOGRAPHY

Zhao et al. (2006) Yihua Zhao, John Staudenmayer, Brent A Coull and Matthew P Wand.
General design Bayesian generalized linear mixed models. Statistical Science, pages
35–51. From page 8

Zhu and Lee (2003) Hong-Tu Zhu and Sik-Yum Lee. Local influence for generalized
linear mixed models. Canadian Journal of Statistics, 31(3):293–309. From page 2, 3, 19, 39

Zhu and Lee (2001) Hong-Tu Zhu and Sik-Yum Lee. Local influence for incomplete
data models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63
(1):111–126. From page 2, 19


	List of symbols and abbreviations
	List of Figures
	List of Tables
	Introduction
	Objectives and thesis organization

	Basic Concepts
	Introduction
	Generalized linear mixed models (GLMMs)
	The Model
	On the estimation methods in GLMMs

	Local influence: general approach
	On the Laplace approximation
	Some remarks on notation
	bold0mu mumu `39`42`"613A``45`47`"603AF`39`42`"613A``45`47`"603AF`39`42`"613A``45`47`"603AF`39`42`"613A``45`47`"603AF`39`42`"613A``45`47`"603AF`39`42`"613A``45`47`"603AFbold0mu mumu xxxxxxbold0mu mumu xxxxxx and bold0mu mumu `39`42`"613A``45`47`"603AF`39`42`"613A``45`47`"603AF`39`42`"613A``45`47`"603AF`39`42`"613A``45`47`"603AF`39`42`"613A``45`47`"603AF`39`42`"613A``45`47`"603AFbold0mu mumu xxxxxxbold0mu mumu xxxxxx*

	Consequences of the Laplace approximation

	Concluding remarks

	Local influence in GLMMs
	Introduction
	Works on local influence in random effect models
	Local influence in GLMMs: our strategy
	Score bold0mu mumu `39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603ALbold0mu mumu  and Hessian bold0mu mumu `39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603ALbold0mu mumu bold0mu mumu 
	Approximate local influence through the Laplace approximation
	Remark on the notation
	Approximate computation of the moments of bold0mu mumu bbbbbbi"026A30C bold0mu mumu yyyyyyi
	Iterative process for computing 
	Computing i through gamlss package


	Approximation for bold0mu mumu `39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL
	Conformal normal curvature under different perturbation schemes: approximation for bold0mu mumu 
	Case weights - subjects
	Conformal normal curvature-subjects

	Case weights - observations
	Conformal normal curvature-observations


	Approximate local influence in random intercept GLMMs
	Approximate Hessian matrix
	Case weights - subjects
	Conformal normal curvature - subjects

	Case weights - observations
	Conformal normal curvature-observations


	Concluding remarks

	Numerical studies and applications
	Introduction
	Numerical studies
	Poisson - normal GLMM
	Gamma - normal GLMM

	Applications
	Milk data set
	Potentially influential points
	MeRC and MRC

	Respiratory data set
	Potentially influential points
	MeRC and MRC

	Insurance data set
	Potentially influential points
	MeRC and MRC


	Concluding remarks

	Conclusions
	Final considerations
	Suggestions for future research

	Proofs related to the Laplace approximation
	Proof of theorem 1
	Proof of theorem 2
	Proof of theorem 3

	Computations of the quantities related with the curvature
	Some aspects of notation
	Computation of bold0mu mumu `39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603ALbold0mu mumu bbbbbbi(bold0mu mumu ;bold0mu mumu yyyyyyi,bold0mu mumu bbbbbbi) and bold0mu mumu `39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603ALbold0mu mumu bbbbbbibold0mu mumu bbbbbbi(bold0mu mumu ;bold0mu mumu yyyyyyi,bold0mu mumu bbbbbbi)
	Computation of the score function bold0mu mumu `39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603ALbold0mu mumu (bold0mu mumu ;bold0mu mumu yyyyyy)
	Computation of the Hessian matrix bold0mu mumu `39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603ALbold0mu mumu bold0mu mumu (bold0mu mumu ;bold0mu mumu yyyyyy)
	Hessians for approximating bold0mu mumu `39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL`39`42`"613A``45`47`"603AL(bold0mu mumu ;bold0mu mumu yyyyyy)
	bold0mu mumu  under the first perturbation scheme(subjects)
	bold0mu mumu  under the second perturbation scheme (observations)
	Hessians for bold0mu mumu  under the second perturbation scheme


	Within-subject correlations
	Implementation in `39`42`"613A``45`47`"603AR software
	Bibliography

